
Largest Triangle Sampling for Visualizing Time Series in
Database
LEI RUI, Tsinghua University, China
XIANGDONG HUANG, Tsinghua University, China
SHAOXU SONG∗, Tsinghua University, China
CHEN WANG, Tsinghua University, China
JIANMIN WANG, Tsinghua University, China
ZHAO CAO, Huawei Technologies Co., Ltd, China

In time series visualization, sampling is used to reduce the number of points while retaining the visual features

of the raw time series. Area-based Largest Triangle Sampling (LTS) excels at preserving perceptually critical

points. However, the heuristic solution to LTS by sequentially sampling points with the locally largest triangle

area (a.k.a. Largest-Triangle-Three-Buckets, LTTB) suffers from suboptimal solution and query inefficiency.

We address the shortcomings by contributing a novel Iterative Largest Triangle Sampling (ILTS) algorithm

with convex hull acceleration. It refines the sampling results iteratively, capturing a broader perspective

by integrating more points in each iteration. Remarkably, we prove that the largest triangle can always be

found in the precomputed convex hulls, making the iterative sampling still efficient. Experiments demonstrate

increased visual quality over state-of-the-art baselines and significant speedups over the brute force approach.

CCS Concepts: • Information systems→ Database query processing.

Additional Key Words and Phrases: time series visualization, database query processing

ACM Reference Format:
Lei Rui, Xiangdong Huang, Shaoxu Song, Chen Wang, Jianmin Wang, and Zhao Cao. 2025. Largest Trian-

gle Sampling for Visualizing Time Series in Database. Proc. ACM Manag. Data 3, 1 (SIGMOD), Article 49

(February 2025), 26 pages. https://doi.org/10.1145/3709699

1 Introduction
Time series visualization, often represented by line charts [7], is extensively used. A contemporary

visualization system consists of a back-end database server and a front-end visualization client.

However, a naïve technique where the client queries the raw time series from the database fails to

meet the rapid response time requirements, due to the large amounts of data transferred. Therefore,

it is necessary to reduce the number of data points in the query result set, which can be accomplished

by replacing raw data queries with sampling queries [27]. An ideal sampling query should meet

two requirements: visual quality and query efficiency.

∗
Shaoxu Song (https://sxsong.github.io/) is the corresponding author.

Authors’ Contact Information: Lei Rui, Tsinghua University, Beijing, China, rl18@mails.tsinghua.edu.cn; Xiangdong Huang,

Tsinghua University, Beijing, China, huangxdong@tsinghua.edu.cn; Shaoxu Song, Tsinghua University, Beijing, China,

sxsong@tsinghua.edu.cn; Chen Wang, Tsinghua University, Beijing, China, wang_chen@tsinghua.edu.cn; Jianmin Wang,

Tsinghua University, Beijing, China, jimwang@tsinghua.edu.cn; Zhao Cao, Huawei Technologies Co., Ltd, Beijing, China,

caozhao1@huawei.com.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2025/2-ART49

https://doi.org/10.1145/3709699

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 49. Publication date: February 2025.

HTTPS://ORCID.ORG/0009-0004-0112-8329
HTTPS://ORCID.ORG/0000-0002-6868-4045
HTTPS://ORCID.ORG/0000-0002-9503-2755
HTTPS://ORCID.ORG/0000-0003-1698-8992
HTTPS://ORCID.ORG/0000-0001-6841-7943
HTTPS://ORCID.ORG/0000-0002-4214-7858
https://doi.org/10.1145/3709699
https://sxsong.github.io/
https://orcid.org/0009-0004-0112-8329
https://orcid.org/0000-0002-6868-4045
https://orcid.org/0000-0002-9503-2755
https://orcid.org/0000-0003-1698-8992
https://orcid.org/0000-0001-6841-7943
https://orcid.org/0000-0002-4214-7858
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3709699

49:2 Lei Rui et al.

(a) Raw

SSIM=0.18

p4

p5

p7

p8

(b) Extrema-based M4

SSIM=0.54

A

(c) Segment-based FSW

SSIM=0.76

q1 q2

q3

q4
q5

q6

q7 q8

B2 B3 B4 B5 B6 B7

(d) Area-based LTS

Fig. 1. Motivation of area-based sampling. Gray squares denote the pixels plotted by the raw data without
sampling, i.e., (a) ground truth. Comparing (b)-(d) with (a), pink pixels (with "+" markers) indicate those
plotted by the sampled data but not by the raw time series, while yellow pixels (with "x" markers) are marked
in ground truth but not by the sampled 8 points, both the fewer the better.

1.1 Motivation
The Structural SIMilarity (SSIM) index (SSIM) is a widely used metric for assessing visual quality

[19, 27, 31, 37, 38], with higher scores for better quality. Figure 1 shows some typical methods that

plot a time series in 18 pixel columns, with/without sampling.

Ideally, M4 [27] selects𝑚 = 4𝑤 points from 𝑤 buckets that align with the pixel column time

intervals, ensuring error-free visualization when rendered on a canvas with the target width 𝑤 .

However, user operations (e.g., resizing) and multiple physical screens (e.g., those on watches,

phones and computers) may lead to various canvas width𝑤 , making the number of sampled data

points𝑚 not exactly match the width𝑤 . When such a mismatch occurs, even slightly, the visual

quality of M4 can deteriorate significantly. This degradation happens because the sampled points

are tailored for line rasterization and become less effective, when the bucketing does not align with

the pixel columns.

By selecting points that maximize the triangle area, perceptually critical points [9, 29] can be

identified. For example, in Figure 1(d), the inflection point 𝑞5 forms the largest triangle with its

neighbors 𝑞4 and 𝑞6, and is selected by the area-based Largest Triangle Sampling (LTS) method (see

Section 2 for the formal definition). Such inflection points effectively capture the change in trends

before and after the inflection, leading to high structural similarity on pixels in the SSIM metric.

Unlike extrema-based methods which select horizontal or vertical extrema per bucket, area-based

sampling can identify critical points that are not extrema. For example, the critical turning point 𝑞5
sampled by LTS cannot be captured by the extrema-based method in Figure 1(b).

For segment-based methods, the goal of small distances in the data space (i.e., small y-differences)

does not necessarily correspond to small distances in the pixel space. For example, Feasible Space

Window (FSW) [30] in Figure 1(c) is an error-bounded piecewise linear approximation (ℓ∞-PLA)
method that greedily maximizes the segment length while bounding the y-difference of each point.

The points are close to segment A in terms of y-differences, whereas the corresponding plotted

pixels are distinct, i.e., low SSIM.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 49. Publication date: February 2025.

Largest Triangle Sampling for Visualizing Time Series in Database 49:3

B2

(a)

q1 q1
2

q0
3

B3

(b)

q1
2

q1
3

q0
4

B4

(c)

q1
3

q1
4 q0

5

B5anchor floater
(d)

q1
4

q1
5 q0

6

B6

(e)

q1
5
q1
6

q0
7

B7

(f)

q1
6

q1
7

q8

Fig. 2. Largest-Triangle-Three-Buckets (LTTB)

1.2 Challenge
Computing the LTS is obviously costly and not affordable, given various combinations of sampled

points to form triangles. A linear-time approximation to the LTS problem, known as Largest-

Triangle-Three-Buckets (LTTB) [34], sequentially samples points from left to right buckets. For

each bucket, it selects the point that maximizes the triangle area formed with left anchor 𝑙 and

right floater 𝑟 . Finally, all the anchor points constitute the sampling result.

As shown in Figure 2, for the current bucket being sampled, the term "left anchor" refers to the

sampled point in the left bucket, which has already been determined. The term "right floater" is

used because the sampled point in the right bucket has not yet been determined and is temporarily

substituted by the average of the data points in the right bucket.

Yet LTTB remains shortsighted despite using adjacent buckets. First, the previous sampling

errors in the left will affect the following ones. Moreover, the incoming points from further behind

the right adjacent bucket will not affect the currently sampled point. Consequently, as shown in

Figure 2(d), LTTB returns 𝑞1
5
of bucket 𝐵5 and misses the critical turning point 𝑞5 as in Figure 1(d).

Using the average point 𝑞0
6
in bucket 𝐵6 as the right floater, LTTB does not realize that there are

higher peaks behind bucket 𝐵5.

On the other hand, the query efficiency issue of LTTB is underestimated, especially in IoT

scenarios. A time series is often segmented and stored in dispersed disk pages (see Section 5.2).

Consequently, even a simple linear scan can be costly due to random I/O. Precomputation is often

used for query acceleration, e.g., by pre-aggregating sums and counts to enable faster average

calculations. Unfortunately, the triangle area formed by each point and its anchor-floater cannot be

calculated in advance, because the floater varies with distinct bucketing specified by online queries.

1.3 Intuition
To address both challenges in visual quality and query efficiency, we propose a novel Iterative

Largest Triangle Sampling (ILTS) algorithm with convex hull acceleration. Instead of relying one

time on the fixed anchor and floater like LTTB does, ILTS iteratively uses the latest sampled points

to refine the sampling results.

The rationale behind this iterative refinement is the propagation of the influence of points over

iterations, both forward and backward, for a holistic view in visualization. As verified in Figure 3(c),

ILTS uses the sampled point 𝑞1
6
in 𝐵6 during the first iteration as the right floater 𝑟 and succeeds in

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 49. Publication date: February 2025.

49:4 Lei Rui et al.

B2 B3 B4 B5 B6 B7

(a) ILTS init by average

q0
4

q0
5

q0
6

q0
7

B2 B3 B4 B5 B6 B7

(b) ILTS iteration τ= 1 (LTTB)

l= q1
4

r= q0
6

q1
6q1

5

B2 B3 B4 B5 B6 B7

(c) ILTS iteration τ= 2

l= q2
4

r= q1
6

q2
5

B2 B3 B4 B5 B6 B7

(d) ILTS iteration τ= 3

Fig. 3. Iterative Largest Triangle Sampling (ILTS)

selecting the critical point 𝑞2
5
in 𝐵5. Note that 𝑞

2

5
is affected by 𝑞1

6
which is affected by 𝑞0

7
. In other

words, the influence of 𝐵7 propagates to 𝐵5 through two iterations.

To enable precomputation without knowing buckets of sampling queries in advance, we calculate

the convex hull for each disk page, and prove that the largest triangle in any bucket can always

be found in the convex hulls. Note that the convex hull includes the outermost points of the set it

encloses, and thus has the largest area among all polygons formed from a subset of the points.

1.4 Contribution
The contributions of this paper are summarized as follows:

• We formally define the Largest Triangle Sampling problem.

• We introduce ILTS, an Iterative heuristic algorithm for Largest Triangle Sampling. It progressively

improves the sampling results by incorporating influence from more points in each iteration, and

prunes redundant computations by identifying reuse conditions.

• We propose to leverage convex hulls for database query acceleration of ILTS. The pruning idea is

to narrow the search space from raw data points to a smaller set of convex hull vertices and enable

early termination of the search whenever possible.

• We present the implementation details in a time series database Apache IoTDB [36]. We employ

a compact bitmap representation for storing convex hulls and leverage bounding boxes of convex

hulls for I/O pruning. The source code for ILTS and other baselines is in the GitHub repository [2].

• We show the superiority of ILTS in visual quality and query efficiency through extensive com-

parative experiments with state-of-the-art baselines, including comparisons with two very recent

works [31, 37] in the context of a time series database. Moreover, we demonstrate the energy

efficiency advantage of ILTS in resource-constrained settings. We also perform an ablation study to

understand the contribution of each component of ILTS. For reproducibility, the experimental code,

data, and scripts are available in [3].

All the contributions of this paper are organized as follows. Section 2 introduces the LTS problem.

We then present the ILTS algorithm in Section 3. Section 4 presents the convex hull pruning method.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 49. Publication date: February 2025.

Largest Triangle Sampling for Visualizing Time Series in Database 49:5

To advance, Section 5 describes the system implementation. The experimental results are reported

in Section 6. We review related work in Section 7. Finally, Section 8 concludes the paper.

2 Largest Triangle Sampling
The effective area of a point is the area of the triangle formed by that point and its two adjacent

points [35]. The effective area of a time series is thus the sum of the effective areas of all non-

terminal points within it. The goal of Largest Triangle Sampling (LTS) is to sample one point per

bucket such that the resulting sampled time series has the largest effective area.

Definition 1 (Largest Triangle Sampling). Given an input time series 𝑇 = {𝑝1, . . . , 𝑝𝑛} =
{(𝑡1, 𝑣1), . . . , (𝑡𝑛, 𝑣𝑛)} consisting of 𝑛 data points sorted in increasing order of time and a threshold𝑚
for the length of the sampled time series (𝑚 ≥ 3), the Largest Triangle Sampling (LTS) divides the time
range (𝑡1, 𝑡𝑛) into𝑚 − 2 equal-width buckets and selects one point per bucket along with the global
first and last points, such that the effective area of the sampled time series is maximized. Formally,

𝐿𝑇𝑆 (𝑇) = argmax

𝑇 ′
𝐴(𝑇 ′),

where

𝑇 ′ = {𝑞𝑖 ∈ 𝑇 | 𝑞𝑖 .𝑡 ∈ 𝐵𝑖 , 𝑖 = 1, . . . ,𝑚}, 𝐴(𝑇 ′) =
𝑚−1∑︁
𝑖=2

Δ𝑞𝑖−1𝑞𝑖𝑞𝑖+1,

𝐵𝑖 =


{𝑡1} if 𝑖 = 1,

(𝑡1 + (𝑡𝑛−𝑡1)∗(𝑖−2)𝑚−2 , 𝑡1 + (𝑡𝑛−𝑡1)∗(𝑖−1)𝑚−2] if 𝑖 = 2, . . . ,𝑚 − 2,
(𝑡1 + (𝑡𝑛−𝑡1)∗(𝑚−3)𝑚−2 , 𝑡𝑛) if 𝑖 =𝑚 − 1,
{𝑡𝑛} if 𝑖 =𝑚.

Strictly speaking, the output of argmax is a collection of sampled time series with the same

largest effective area. For ease of presentation, we use the equal sign to indicate returning any one

of them. Note that for generality, we treat the global first point 𝑝1 as 𝑞1 selected from the singleton

interval 𝐵1 = {𝑡1} and the global last point 𝑝𝑛 as 𝑞𝑚 selected from 𝐵𝑚 = {𝑡𝑛}. The time bucket 𝐵𝑖
may be empty, i.e., �𝑝 ∈ 𝑇, s.t. 𝑝.𝑡 ∈ 𝐵𝑖 . In that case, the corresponding 𝑞𝑖 in the sampled time

series does not exist, and the length of the sampled time series is less than the threshold𝑚. For

simplicity, below we assume that all buckets are non-empty.

Example 1. As shown in Figure 1(d), given the raw time series 𝑇 (colored in blue) and a threshold
𝑚 = 8 for the length of the sampled time series, the six time buckets 𝐵2, . . . , 𝐵7 that equally divide the
total time range are annotated in green. 𝑇 ′ is obtained by selecting one point per equal-width bucket
plus the global first and last points. 𝐿𝑇𝑆 (𝑇) is the one with the largest effective area among all possible
𝑇 ′. The effective area of 𝐿𝑇𝑆 (𝑇) = {𝑞1, . . . , 𝑞8} is the sum of the areas of the six dash-dotted triangles,
i.e., 𝐴(𝐿𝑇𝑆 (𝑇)) = Δ𝑞1𝑞2𝑞3 + Δ𝑞2𝑞3𝑞4 + Δ𝑞3𝑞4𝑞5 + Δ𝑞4𝑞5𝑞6 + Δ𝑞5𝑞6𝑞7 + Δ𝑞6𝑞7𝑞8.

3 Iterative Sampling
As mentioned in the introduction, LTTB lacks the view of incoming buckets beyond the bucket

immediately to the right. In this section, we present an iterative heuristic algorithm called Iterative

Largest Triangle Sampling (ILTS) to address this limitation. ILTS iteratively refines its sampling

results to capture a more holistic view of the underlying data.

3.1 Iterative Computation
The LTS problem in Definition 1 can be approximated using the largest triangle routine defined

below. It relies on two fixed points to sample the local optimal point in a bucket at a time.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 49. Publication date: February 2025.

49:6 Lei Rui et al.

avg

τ=1 (LTTB)

τ=2

τ=3

B! B" B# B$B% B&

flo
at

er

B' B*

q+
5

q,
5

q+
4

q,
4

q-
6

q+
6

anchor

q-5q-
4

q.
6

q.
7

Fig. 4. The influence of future points spreads backward with each iteration. Horizontal and diagonal arrows
indicate sources of left anchor and right floater points, respectively. Shape changes reflect alterations in
sampled points.

Definition 2 (Largest Triangle Routine). Given the set of data points P in a bucket, the left
anchor point 𝑙 , and the right floater point 𝑟 , the largest triangle routine selects 𝑝∗ ∈ P that forms the
largest triangle area with 𝑙 and 𝑟 , i.e.,

𝑝∗ = argmax

𝑝∈P
Δ𝑙𝑝𝑟 . (1)

The remaining question is how to determine 𝑙 and 𝑟 . ILTS addresses this by sequentially and

iteratively leveraging adjacent latest sampled points. Let 𝑞𝜏
𝑖
denote the sampled point in the 𝑖-th

bucket during the 𝜏-th iteration, 𝜏 = 0 for initialization. Then we have

𝑞𝜏𝑖 = argmax

𝑝∈𝑇, 𝑝.𝑡 ∈𝐵𝑖

Δ𝑞𝜏𝑖−1𝑝𝑞
𝜏−1
𝑖+1 , 𝜏 ≥ 1, 𝑖 = 2, . . . ,𝑚 − 1.

It means when selecting the local optimal point in the current bucket 𝐵𝑖 during the 𝜏-th iteration,

ILTS takes the sampled point in the left bucket during the current iteration as the left anchor 𝑙 and

the sampled point in the right bucket during the previous iteration as the right floater 𝑟 .

Example 2. Figure 3 shows the iterative process of ILTS. For bucket 𝐵5, the sampled point is initialized
by the average point 𝑞0

5
as in Figure 3(a), and then iteratively updated by the largest triangle routine.

Specifically, during the first iteration in Figure 3(b), 𝑞1
5
is selected based on 𝑙 = 𝑞1

4
and 𝑟 = 𝑞0

6
. And

during the second iteration in Figure 3(c), the critical point 𝑞2
5
with high curvature is preserved with

𝑙 = 𝑞2
4
and 𝑟 = 𝑞1

6
. Finally in Figure 3(d), the third iteration does not further improve the result, i.e.,

achieving convergence. As additionally shown in Figure 4, the initially sampled points reflect only the
influence of their own buckets. With each subsequent iteration, the number of buckets to the right that
can directly or indirectly influence the sampling of the current bucket grows, as indicated by the red
diagonal dashed arrows in Figure 4.

3.2 Iterative Pruning
To speed up the computation of LTS, one observation is that during each iteration, we can prune

sampling in a bucket, i.e., avoid the computation of the largest triangle routine, if its adjacent

sampled points remain unchanged during their last two iterations.

Formally, for a bucket 𝐵𝑖 to be sampled during the 𝜏-th iteration, if 𝑞𝜏
𝑖−1 = 𝑞𝜏−1

𝑖−1 and 𝑞𝜏−1
𝑖+1 = 𝑞𝜏−2

𝑖+1 ,
we have 𝑞𝜏

𝑖
= 𝑞𝜏−1

𝑖
, i.e., reusing the previously sampled point.

Example 3. Shape changes in Figure 4 represent the change of sampled points in each bucket
over iterations. The hatched shading indicates the buckets that meet the reuse condition during some

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 49. Publication date: February 2025.

Largest Triangle Sampling for Visualizing Time Series in Database 49:7

iteration. For example, from 𝑞3
4
= 𝑞2

4
and 𝑞2

6
= 𝑞1

6
, we can prune sampling in bucket 𝐵5 during the third

iteration, but reuse 𝑞3
5
= 𝑞2

5
instead.

3.3 Iterative Algorithm
The pseudocode of ILTS is shown in Algorithm 1. After initialization (line 2), during each subsequent

iteration (line 4), proceeding sequentially from left to right buckets (line 6), ILTS applies the largest

triangle routine in a bucket (line 11) with anchor-floater being its adjacent latest sampled points

(line 10). Line 7 shows the condition under which a bucket can reuse its sampled point from the

previous iteration. That is, leftEq = 𝑡𝑟𝑢𝑒 and 𝐹𝑖+1 = 𝑡𝑟𝑢𝑒 means that its left and right sampled points

remain unchanged during their last two iterations, respectively. Line 16 indicates the condition for

early termination of the entire iteration process, which occurs when all sampled points remain

unchanged in their last two iterations. In such cases, further iterations are unnecessary because

the sampling result has stabilized.

Algorithm 1: Iterative Largest Triangle Sampling

Input: an input time series T = {𝑝1, . . . , 𝑝𝑛}, a threshold𝑚 for the length of the sampled

time series, the max number of iterations 𝑘

Output: a sampled time series 𝐼𝐿𝑇𝑆 (𝑇) = {𝑞1, . . . , 𝑞𝑚}
1 determine time buckets 𝐵𝑖 , 𝑖 = 1, . . . ,𝑚, as in Definition 1

2 initialize 𝑞𝑖 by either a random sample or the average point of the data points in the bucket

𝐵𝑖 , 𝑖 = 1, . . . ,𝑚

3 initialize the flag array 𝐹 with 𝐹𝑖 = false, 𝑖 = 1, . . . ,𝑚 − 1 and 𝐹𝑚 = true
4 for 𝜏 ∈ {1, . . . , 𝑘} do
5 initialize the flags allEq = true, leftEq = true
6 for 𝑖 ∈ {2, . . . ,𝑚 − 1} do
7 if leftEq and 𝐹𝑖+1 then
8 set 𝐹𝑖 = true
9 continue

10 set 𝑙 = 𝑞𝑖−1, 𝑟 = 𝑞𝑖+1, 𝑞 = 𝑞𝑖

11 compute 𝑞𝑖 = argmax𝑝∈𝑇, 𝑝.𝑡 ∈𝐵𝑖
Δ𝑙𝑝𝑟 by the largest triangle routine (Definition 2),

enhanced with convex hull acceleration

12 if 𝑞𝑖 = 𝑞 then
13 set leftEq = true, 𝐹𝑖 = true
14 else
15 set allEq = false, leftEq = false, 𝐹𝑖 = false
16 if allEq then
17 break

18 return {𝑞1, . . . , 𝑞𝑚}

For initialization, 𝑞0𝑖 can either be random sampling or average. We highlight that LTTB is a

special case of ILTS with average initialization and single iteration. As a result, the acceleration

technology of ILTS can be applied to LTTB without obstacles.

Note that ILTS is an approximation to the LTS problem but can give the optimal solution in

some special cases, such as triangle waves [1]. Furthermore, ILTS usually converges after a few

iterations, with empirical results showing that it stabilizes after about four iterations [4].

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 49. Publication date: February 2025.

49:8 Lei Rui et al.

Proposition 1 (Optimal and convergent special case). When the input is a triangle wave,
ILTS can provide the optimal solution to the LTS problem and can converge in one iteration.

Proof. Please see full proof in [4]. □

4 Convex Hull Pruning
In this section, we devise a convex hull based method to accelerate ILTS. Specifically, when iterative

pruning in the previous section fails, in order to speed up the computation of the largest triangle

routine (i.e., line 11 of Algorithm 1), we perform a fast search on the precomputed convex hull

instead of raw data points, thereby reducing the CPU cost of traversing points.

4.1 Narrow Down the Search Space
Given a set of data points P, the convex hull of P is the smallest convex polygon containing P. That
is, it is the unique convex polygon whose vertices are a subset of P and within which all points in P
fall [16]. Let 𝐶𝐻 (P) ⊆ P denote the vertices of the convex hull of P. In the following, we transform

the routine of finding the point with the largest triangle area formed with the anchor-floater pair

(Definition 2) into a search confined to the convex hull vertices for the farthest point from the

anchor-floater line (Proposition 2).

Proposition 2 (farthest convex hull vertex). The largest triangle routine in Definition 2
is equivalent to selecting 𝑝∗ ∈ 𝐶𝐻 (P) that has the largest perpendicular distance to the fixed line 𝐿
connecting 𝑙 and 𝑟 , i.e.,

𝑝∗ = argmax

𝑝∈P
Δ𝑙𝑝𝑟 = argmax

𝑝∈𝐶𝐻 (P)
𝑑 (𝑝, 𝐿), (2)

where

𝑑 (𝑝, 𝐿) = |𝐴 ∗ 𝑝.𝑡 + 𝐵 ∗ 𝑝.𝑣 +𝐶 |√
𝐴2 + 𝐵2

, 𝐿 : 𝐴𝑡 + 𝐵𝑣 +𝐶 = 0,

𝐴 = 𝑟 .𝑣 − 𝑙 .𝑣, 𝐵 = 𝑙 .𝑡 − 𝑟 .𝑡, 𝐶 = 𝑟 .𝑡 ∗ 𝑙 .𝑣 − 𝑙 .𝑡 ∗ 𝑟 .𝑣 .

Proof. First, because the two points 𝑙 and 𝑟 are fixed, the largest triangle routine is equivalent

to selecting the point in P that is farthest from the line 𝐿 connecting 𝑙 and 𝑟 , i.e.,

𝑝∗ = argmax

𝑝∈P
Δ𝑙𝑝𝑟 = argmax

𝑝∈P
𝑑 (𝑝, 𝐿).

Next, we prove that the point in 𝐶𝐻 (P) that is farthest from 𝐿 must also be the farthest in P, i.e.,

argmax

𝑝∈P
𝑑 (𝑝, 𝐿) = argmax

𝑝∈𝐶𝐻 (P)
𝑑 (𝑝, 𝐿).

We use proof by contradiction. Let 𝑑∗ = max𝑝∈P{𝑑 (𝑝, 𝐿)}. From 𝐶𝐻 (P) ⊆ P, we know that

𝑑 (𝑝, 𝐿) ≤ 𝑑∗, ∀𝑝 ∈ 𝐶𝐻 (P). Suppose that max𝑝∈𝐶𝐻 (P) {𝑑 (𝑝, 𝐿)} ≠ 𝑑∗, which leads to 𝑑 (𝑝, 𝐿) <
𝑑∗, ∀𝑝 ∈ 𝐶𝐻 (P). Then the point argmax𝑝∈P 𝑑 (𝑝, 𝐿) will fall outside the convex hull of P, which is

a contradiction to the definition of convex hulls and completes the proof. □

Therefore from Equation 1 to Equation 2, we narrow the search space from P to 𝐶𝐻 (P). Note
that |𝐶𝐻 (P) | is smaller than |P|.

Example 4. Given P = {𝑝1, . . . , 𝑝1000} plotted as blue lines in Figure 5, the convex hull of P is a
convex polygon bounded by black lines with vertices represented by hollow points. Given P, 𝑙 , and 𝑟 ,
the largest triangle routine selects 𝑝986, which is the farthest convex hull vertex from the anchor-floater
line 𝐿, and forms the largest triangle area with 𝑙 and 𝑟 .

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 49. Publication date: February 2025.

Largest Triangle Sampling for Visualizing Time Series in Database 49:9

Fig. 5. Example of fast search on the convex hull

4.2 Fast Search on the Convex Hull
Next, we propose to speed up the search on the convex hull by terminating it early whenever

possible. To achieve this, we first present a proposition for identifying the candidate farthest vertices.

Then, we extract geometric connectivity from the chronologically organized vertices. Finally, we

provide the complete fast search algorithm with the early stop mechanism.

4.2.1 Candidate Farthest Vertices. We identify potential farthest vertices by utilizing the normal

vector ®n(𝐿) = (𝐴, 𝐵) of the line 𝐿 : 𝐴𝑡 + 𝐵𝑣 +𝐶 = 0. Recall that 𝐿 : 𝐴𝑡 + 𝐵𝑣 +𝐶 = 0 is the fixed line

connecting the left anchor point 𝑙 and the right floater point 𝑟 , as defined in Proposition 2.

Proposition 3 (extreme vertices along the normal vector). For a convex hull vertex 𝑜2,
given its geometrically connected vertices 𝑜1 and 𝑜3, let

𝑠 = 𝑠𝑖𝑔𝑛(−−→𝑜2𝑜1 · ®n(𝐿)) + 𝑠𝑖𝑔𝑛(−−→𝑜2𝑜3 · ®n(𝐿)),
where 𝑠𝑖𝑔𝑛(𝑥) is the function returning the sign of 𝑥 , i.e.,

𝑠𝑖𝑔𝑛(𝑥) =

1, if 𝑥 > 0,

−1, if 𝑥 < 0,

0, if 𝑥 = 0.

If 𝑠 > 0, 𝑜2 is the lowest vertex in the direction of ®n(𝐿); if 𝑠 < 0, 𝑜2 is the highest vertex in the direction
of ®n(𝐿); and if 𝑠 = 0, 𝑜2 is a non-extreme vertex along ®n(𝐿).

Proof. Table 1 enumerates all cases of the sum of signs. Here we prove the case for the sum

of signs being zero, which happens when the signs are one positive and one negative. Both signs

being zero means that 𝑜1, 𝑜2 and 𝑜3 are on the same line, which is impossible for the convex hull

vertices and thus will not happen. Imagine a coordinate system with 𝑜2 as the origin and ®n(𝐿) as
the y axis. Opposite signs of 𝑠𝑖𝑔𝑛(−−→𝑜2𝑜1 · ®n(𝐿)) and 𝑠𝑖𝑔𝑛(−−→𝑜2𝑜3 · ®n(𝐿)) mean that 𝑜1 and 𝑜3 are one

higher and one lower than 𝑜2 in the direction of ®n(𝐿). Therefore, 𝑜2 is not an extreme vertex (i.e.,

neither highest nor lowest) along ®n(𝐿). Other cases can be similarly proved. □

According to Proposition 3, the convex hull vertex farthest from 𝐿 must be among the extreme

vertices along ®n(𝐿). That is, given the highest vertex 𝑝ℎ𝑖 ∈ 𝐶𝐻 (P) and the lowest vertex 𝑝𝑙𝑜 ∈ 𝐶𝐻 (P)
along ®n(𝐿), we have

𝑝∗ = argmax

𝑝∈P
Δ𝑙𝑝𝑟 = argmax

𝑝∈𝐶𝐻 (P)
𝑑 (𝑝, 𝐿) = argmax

𝑝∈{𝑝ℎ𝑖 ,𝑝𝑙𝑜 }
𝑑 (𝑝, 𝐿). (3)

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 49. Publication date: February 2025.

49:10 Lei Rui et al.

Table 1. Enumeration of the sum of signs

𝑠𝑖𝑔𝑛(−−→𝑜2𝑜1 · ®n(𝐿)) 𝑠𝑖𝑔𝑛(−−→𝑜2𝑜3 · ®n(𝐿)) 𝑠 Type of 𝑜2

0 0 0 will not happen

-1 1 0 non-extreme

1 -1 0 non-extreme

0 1 1 lowest

1 0 1 lowest

1 1 2 lowest

0 -1 -1 highest

-1 0 -1 highest

-1 -1 -2 highest

Therefore, we can stop the search early once we find 𝑝ℎ𝑖 and 𝑝𝑙𝑜 . Again, from Equation 2 to

Equation 3, we further reduce the number of points that need to be traversed.

Example 5. As shown in Figure 5, for the convex hull vertex 𝑝1,
−−−→
𝑝1𝑝6 and

−−−−→
𝑝1𝑝192 form both obtuse

angles with the normal vector ®n(𝐿), having 𝑠𝑖𝑔𝑛(−−−→𝑝1𝑝6 · ®n(𝐿)) + 𝑠𝑖𝑔𝑛(−−−−→𝑝1𝑝192 · ®n(𝐿)) = −2. It means
that 𝑝1 is the highest vertex along ®n(𝐿) and thus might be the farthest point from 𝐿. Similarly, 𝑝986
might be the farthest point, as it is the lowest vertex along ®n(𝐿), having 𝑠𝑖𝑔𝑛(−−−−−−→𝑝986𝑝998 · ®n(𝐿)) + 𝑠𝑖𝑔𝑛(−−−−−−→
𝑝986𝑝898 · ®n(𝐿)) = 2. Therefore, we terminate the search once the two extreme vertices are found,
returning 𝑝∗ = argmax𝑝∈{𝑝1,𝑝986 } 𝑑 (𝑝, 𝐿) without traversing the remaining vertices.

4.2.2 Geometric Connectivity Reconstruction. Proposition 3 assumes the knowledge of geometric

connectivity between vertices. However, we traverse the convex hull vertices in chronological order

for storage representation reasons (see Section 5.2.2). Therefore, we need to reconstruct geometric

connectivity while traversing.

Given a set of data points P sorted in increasing order of time, the first and last points of P must

be the vertices of the convex hull of P. Thus, we can divide the convex hull of P into upper and

lower parts by connecting the first and last points of P [8]. Any two chronologically neighboring

vertices on the same part of the hull must also be geometrically connected, forming the endpoints

of a side of the convex polygon.

Example 6. As shown in Figure 5, the line 𝐻 connecting the first point 𝑝1 and the last point 𝑝1000
divides the convex hull into upper and lower parts. 𝑝898, 𝑝986, and 𝑝998 are chronologically neighboring
vertices in the lower part. Hence, {𝑝898, 𝑝986, 𝑝998} is a triplet of geometrically connected vertices.

4.2.3 Fast Search Algorithm. Combining the previous two sections, Algorithm 2 shows the fast

search algorithm on the convex hull. Every time a convex hull vertex comes, we reconstruct its

geometric connectivity by adding it to the corresponding sliding triplet (line 8-15, as in Section

4.2.2), and check if the middle point of that triplet is an extreme vertex along ®n(𝐿) (line 16-20, as in
Section 4.2.1). Once the highest and the lowest vertices are found (line 21), the search stops and

returns the farther extreme vertex (line 23).

LL, LU, RL, and RU in Algorithm 2 are sliding triplets used for geometric connectivity reconstruc-

tion in the left lower, left upper, right lower, and right upper parts of the convex hull, respectively.

Combining line 6 and line 7 in Algorithm 2, the directions "increasing" and "decreasing" refer to

traversing the convex hull vertices alternately in ascending and descending order of time. Recall that

the line 𝐻 connecting the first and last points divides the convex hull into upper and lower parts.

Thus, with time progressing from left to right ("increasing") and from right to left ("decreasing"),

combined with the upper and lower parts of the convex hull, there are four regions where the

triplets LL, LU, RL, and RU slide.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 49. Publication date: February 2025.

Largest Triangle Sampling for Visualizing Time Series in Database 49:11

Algorithm 2: Fast search on the convex hull

Input: a set of data points P sorted in increasing order of time, the left anchor point 𝑙 , the

right floater point 𝑟

Output: the point 𝑝∗ ∈ P that forms the largest triangle area with 𝑙 and 𝑟

1 determine the convex hull vertices 𝐶𝐻 (P) sorted in increasing order of time, the dividing

line 𝐻 that connects the first and last points of P, the normal vector ®n(𝐿)
2 initialize 𝐿𝐿 counterclockwise and 𝐿𝑈 clockwise by the first two convex hull vertices

3 initialize 𝑅𝐿 clockwise and 𝑅𝑈 counterclockwise by the last two convex hull vertices

4 initialize the flags highest = lowest = false
5 while true do
6 for dir ∈ {increasing, decreasing} do
7 𝑝 ← the next convex hull vertex with dir timestamp

8 if dir = increasing and 𝑝 is above or on 𝐻 then
9 update 𝐿𝑈 by sliding it to 𝑝

10 if dir = increasing and 𝑝 is below or on 𝐻 then
11 update 𝐿𝐿 by sliding it to 𝑝

12 if dir = decreasing and 𝑝 is above or on 𝐻 then
13 update 𝑅𝑈 by sliding it to 𝑝

14 if dir = decreasing and 𝑝 is below or on 𝐻 then
15 update 𝑅𝐿 by sliding it to 𝑝

16 𝑝 ← the middle point of the updated triplets

17 if 𝑝 is the highest vertex along ®n(𝐿) then
18 highest = true, 𝑝ℎ𝑖 = 𝑝

19 if 𝑝 is the lowest vertex along ®n(𝐿) then
20 lowest = true, 𝑝𝑙𝑜 = 𝑝

21 if highest = true and lowest = true then
22 break

23 𝑝∗← the point farther from 𝐿 between 𝑝ℎ𝑖 and 𝑝𝑙𝑜 as in Equation 3

24 return 𝑝∗

Example 7. Continuing the example in Figure 5, Figure 6 shows the step breakdown. LL, LU,
RL, and RU are sliding containers, each holding a triplet of three geometrically connected convex
hull vertices. At initialization, 𝐿𝑈 = {𝑝6, 𝑝1, 𝑛𝑢𝑙𝑙}, 𝐿𝐿 = {𝑝1, 𝑝6, 𝑛𝑢𝑙𝑙}, 𝑅𝑈 = {𝑝998, 𝑝1000, 𝑛𝑢𝑙𝑙},
𝑅𝐿 = {𝑝1000, 𝑝998, 𝑛𝑢𝑙𝑙}. Then vertex 𝑝32 is traversed in increasing chronological order in the first round,
and 𝐿𝐿 is updated as {𝑝1, 𝑝6, 𝑝32}. The middle point 𝑝6 of the updated 𝐿𝐿 is a non-extreme vertex by
Proposition 3. When vertex 𝑝192 is traversed in the third round as shown in Figure 6(d), the highest
vertex 𝑝1 along ®n(𝐿) is found in the updated triplet 𝐿𝑈 = {𝑝6, 𝑝1, 𝑝192}. Similarly, the lowest vertex
𝑝986 is found in 𝑅𝐿 = {𝑝998, 𝑝986, 𝑝898}. With 𝑝1 and 𝑝986 found, the search terminates and outputs
𝑝986, which is farther from 𝐿 than 𝑝1. The traversal of remaining vertices in the middle part is skipped.

5 System Implementation
In this section, we describe the implementation details of our in-database ILTS. We start from

the system deployment with the database as a black box. After that, we delve into the database

architecture, presenting the physical storage of time series and convex hulls, as well as the sampling

query processing logic.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 49. Publication date: February 2025.

49:12 Lei Rui et al.

Fig. 6. Step breakdown of fast search on the convex hull

0.5 1.0 1.5 2.0 2.5 3.0
number of input data points ×108

0

1

2

3

4

5

6

ti
m

e
 (

s
)

×102

(A)

(B)
(C)

(a) Total response time

Raw

LTTB

ILTS

Raw
(A)

LTTB
(B)

ILTS
(C)

0

1

2

3

4

5

6

ti
m

e
 (

s
)

×102

(b) Response time decomposition

server computation

communication

client rendering

Fig. 7. Visualizing time series from a remote database without/with in-database sampling queries (baseline
LTTB and our ILTS)

5.1 System Deployment
When a user requests an ad-hoc visualization of a time series, the visualization client sends

an online query request to the database. The database executes the query and sends the query

result set back to the client. Finally, the client renders the line chart on the screen. The sampling

query that benefits from this work follows the format: SELECT sample(T) FROM T GROUP BY
([startTime,endTime),interval), where interval is the time length of the sampling bucket.

As indicated in the upper half of Figure 7, in-database sampling queries, as opposed to raw data

queries, can greatly reduce the size of the query result set.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 49. Publication date: February 2025.

Largest Triangle Sampling for Visualizing Time Series in Database 49:13

Fig. 8. ILTS and other baselines implemented in a time series database Apache IoTDB

The results in Figure 7 are obtained from real experiments, with experimental code and data

available in [3]. The sampling queries (either LTTB or our ILTS) show significant speedup, compared

to the non-sampling query encapsulating and transferring the entire raw data. The speedup is more

obvious with large 𝑛 (reaching 300 million points), given the much smaller sample size.

As shown in Figure 7, it is evident that in-database sampling queries, such as LTTB, can sig-

nificantly reduce the data transfer time between the remote database and the visualization client,

compared to the raw data queries. Instead, query execution time in the database server becomes

the bottleneck. Hence our work contributes to accelerating such in-database sampling queries to

further decrease the response time of visualization applications. With hundreds of millions of input

points, our ILTS with convex hull acceleration turns out to achieve a 3–5× speedup compared to

the brute force LTTB approach.

5.2 Database Architecture
Figure 8 gives an overview of our implementation in an open-source time series database Apache

IoTDB [36]. The source code of ILTS and other baseline methods have been committed to the

GitHub repository [2] of Apache IoTDB by the system developers.

5.2.1 Time Series Storage. Note that high concurrency data writes are common in IoT scenarios,

where time series data are continually generated by (often millions of) sensors and sent to the

database server. The recent data of a time series (from one senor) are first buffered in memory.

When the limited memory buffer is full, the buffered segment is flushed to the disk, stored as a

disk page. Then, the next segment of this time series is buffered, leading to the next disk page, and

so on and so forth. For instance, as shown in Figure 8, the time series "A", highlighted in green, is

stored as two pages P1 and P2 across dispersed disk locations. We maintain a convex hull for each

disk page and store these convex hulls in the metadata. Metadata remains in memory until the

file is closed, at which point it is flushed contiguously to the end of the file, making access to the

metadata I/O friendly.

5.2.2 Convex Hull Representation. For compact metadata storage, we use a bitmap to represent

the convex hull of a disk page P𝑗 , with each bit indicating whether the corresponding point in

chronological order is a convex hull vertex or not. That is,

𝐵(P𝑗) = (𝑏1𝑏2 . . .)2,

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 49. Publication date: February 2025.

49:14 Lei Rui et al.

R(ℙ1)
R(ℙ2)

✔
R(ℙ3)

✔

R(ℙ4)
×

Ll

r

maxDist
UB(ℙ4, L)

Bi

Fig. 9. Bounding box of convex hull for I/O Pruning

where for 𝑝𝑖 ∈ P𝑗 ,

𝑏𝑖 =

{
0, if 𝑝𝑖 is not a vertex of the convex hull of P𝑗 ,

1, otherwise.

Note that the number of vertices of a convex hull is not known in advance, and using bitmap

representation for convex hulls helps to keep the metadata space overhead manageable. There

exist many algorithms to construct the planar convex hull, including Jarvis March [25], Graham

Scan [24], Quickhull [11], and Chan’s algorithm [13]. In the implementation, Quickhull is used to

compute the convex hull for each flushed disk page. As we will show later in the experiments, the

effort of precomputing convex hulls pays off in terms of improved query efficiency.

5.2.3 Pruning by Bounding Box. Note that the bitmap representation requires scanning the corre-

sponding disk page to obtain convex hull vertices, as the bitmap only indicates the locations of

vertices within the disk page. Therefore, we propose to use the bounding boxes [33] of convex hulls

to further prune I/O of disk pages.

Formally, the bounding box of a disk page P𝑗 is 𝑅(P𝑗) = {𝑝 | 𝑝.𝑡 ∈ {𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 }, 𝑝.𝑣 ∈ {𝑣𝑚𝑖𝑛,

𝑣𝑚𝑎𝑥 }}, where 𝑡𝑚𝑖𝑛 = 𝑚𝑖𝑛({𝑝.𝑡 | 𝑝 ∈ P𝑗 }), 𝑡𝑚𝑎𝑥 = 𝑚𝑎𝑥 ({𝑝.𝑡 | 𝑝 ∈ P𝑗 }), 𝑣𝑚𝑖𝑛 = 𝑚𝑖𝑛({𝑝.𝑣 | 𝑝 ∈
P𝑗 }), 𝑣𝑚𝑎𝑥 =𝑚𝑎𝑥 ({𝑝.𝑣 | 𝑝 ∈ P𝑗 }) . We have the following proposition for the loose upper bound

on the point-to-line distance.

Proposition 4 (distance upper bound). Given a disk page P𝑗 and the fixed anchor-floater line 𝐿,
the perpendicular distance from the point in P𝑗 to 𝐿 has an upper bound𝑈𝐵(P𝑗 , 𝐿) =𝑚𝑎𝑥 ({𝑑 (𝑝, 𝐿) |
𝑝 ∈ 𝑅(P𝑗)}).

Example 8. As Figure 9 shows, points in bucket 𝐵𝑖 are stored into four pages, i.e., P = {𝑝 ∈ 𝑇 | 𝑝.𝑡 ∈
𝐵𝑖 } = {P1, . . . , P4}. For each page, its convex hull is colored yellow, and its bounding box is plotted
as an orange dashed rectangle. The distance from P4 to 𝐿 is upper bounded by the distance from the
upper left corner of 𝑅(P4) to 𝐿.

Therefore, we explicitly store the bounding box 𝑅(P𝑗) of each convex hull in the metadata and

leverage them to prune I/O and further speed up query processing. As shown in Figure 9, given the

largest distance maxDist currently found from the processed pages, for the following page P𝑗 , if

𝑈𝐵(P𝑗 , 𝐿) ≤ maxDist, then P𝑗 can be pruned as a whole (e.g., P2 and P3). The pruned disk pages

do not need to be loaded and searched, because they must not contain the point whose distance

from 𝐿 exceeds𝑚𝑎𝑥𝐷𝑖𝑠𝑡 according to Proposition 4. Otherwise, when the pruning fails, we load

the corresponding page (e.g., P4) from disk and apply fast search on its convex hull as in Section 4

to update𝑚𝑎𝑥𝐷𝑖𝑠𝑡 .

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 49. Publication date: February 2025.

Largest Triangle Sampling for Visualizing Time Series in Database 49:15

5.2.4 Complexity Analysis. Let 𝑛 be the number of input data points and 𝑚 be the number of

sampled points. Suppose each disk page contains 𝑐 data points where 𝑐 is a constant, and each

number occupies 64 bits. We analyze below that our method has a space complexity that is linear

with respect to the number of input points, and a time complexity that is linear in the number of

sampled points and logarithmic in the number of input points.

Space Complexity. According to Section 5.2.2 and Section 5.2.3, we store 𝑛 bits for the convex

hull bitmap representation and 𝑛/𝑐 × 256 bits for the bounding boxes of convex hulls. Therefore,
the space complexity is linear with respect to 𝑛.

Time Complexity. The number of disk pages in a bucket is approximately
𝑛

𝑚 ·𝑐 . In the best case, we

only need to access the bounding box of the convex hull of each disk page in a bucket, i.e., traversing

4 · 𝑛
𝑚 ·𝑐 points. Enumerate 𝑐 from 1 to

𝑛
𝑚
, i.e., from one point per page to all points in a bucket

per page, then the average number of traversed points in a bucket is 4

(
1

1
+ 1

2
+ 1

3
+ · · · + 1

𝑛/𝑚

)
.

Therefore, according to the harmonic number, the time complexity for a single bucket is log(𝑛
𝑚
).

The total time complexity for𝑚 buckets is thus𝑚 · log(𝑛
𝑚
). Given that𝑚 is usually much smaller

than 𝑛, we have𝑚 · 𝑙𝑜𝑔(𝑛
𝑚
) ≈𝑚 · log𝑛. Thus, the overall time complexity of ILTS is𝑚 log𝑛.

5.2.5 Sampling Query Processing. As shown in Figure 8, the core query processing logic of ILTS is

implemented in ILTSExecutor, which relies on MetadataReader to access convex hull metadata

𝐵(P𝑗) and 𝑅(P𝑗), and DataReader to access disk pages P𝑗 . During each iteration of Algorithm 1,

the ILTSExecutor reuses the previously sampled point in a bucket whenever possible by iterative

pruning (line 7 of Algorithm 1). For the unpruned bucket, the executor computes the largest triangle

routine (line 11 of Algorithm 1), which is equivalent to searching among disk pages of the bucket

for the farthest point from the anchor-floater line. To accelerate this, ILTSExecutor utilizes the
bounding boxes 𝑅(P𝑗) to prune pages that must not contain the farthest point (Section 5.2.3).

For the unpruned page, I/O operations are inevitable; that is, the page P𝑗 is loaded from disk to

memory. However, ILTSExecutor can reduce the CPU cost of traversing points by convex hull

pruning (Algorithm 2). Finally, SampleDataSet is used to consume results from ILTSExecutor and
encapsulate them to return to the database client. While compact metadata is loaded into memory

as a whole at the start of the query, dispersed disk pages are loaded only when necessary.

As indicated by OtherExecutor (in blue box) in Figure 8, other baselines are also implemented

natively in the time series database Apache IoTDB, for a fair comparison. Each sampling method is

executed by a distinct Executor on the server, with DataReader serving as a common infrastructure

for accessing disk pages. The difference is that MetadataReader for convex hulls is used exclusively
by the ILTSExecutor.

6 Experiments
In this section, we first compare our proposed ILTS with other baseline methods to verify the

performance gains of our method in terms of both visual quality and query efficiency. Then

we perform an ablation study to understand the contribution of each component of ILTS. All

experiments are conducted on the machine from Alibaba Cloud with Intel(R) Xeon(R) Platinum

8369B CPU @ 2.70GHz processors, 32GB of memory, and 250GB SSD. Experimental code, data, and

scripts are available in [3] for reproducibility.

6.1 Experimental Settings
6.1.1 Baselines. We compare ILTS with baselines in four categories, i.e., (1) area based: our ILTS,

LTTB [34], MinMaxLTTB [18], Visvalingam-Whyatt (Visval) [35], (2) extrema based: MinMax, M4

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 49. Publication date: February 2025.

49:16 Lei Rui et al.

[27], Uniform, (3) segment based: Feasible Space Window (FSW) [30], Sim-Piece [28], (4) transform

based: Discrete Fourier Transform (DFT) [6], Principal Component Analysis (PCA) [26].

For a fair comparison, all methods are calibrated to produce similar numbers of sampled points

𝑚. Specifically, for methods using buckets (ILTS, LTTB, MinMaxLTTB, MinMax, M4, and Uniform),

we adjust the number of buckets based on the number of points sampled per bucket. For example,

M4 samples four points per bucket, leading to𝑚/4 buckets. For segment-based methods controlled

by error thresholds (FSW and Sim-Piece), we conduct a binary search beforehand to identify the

threshold that yields approximately𝑚 sampled points. For Visval, DFT, and PCA, we retain the𝑚

most significant points or components, based on area, amplitude, and variance, respectively.

In addition to the sampling algorithms above, we also compare our approach in two other

application scenarios. OM3 [37] precomputes a multi-level representation of time series to support

interactive progressive visualization. MinMaxCache [31] provides error-bounded adaptive caching

as a middleware for user operations.

6.1.2 Datasets. We first experiment on the UCR datasets [14, 15] to demonstrate the significance

of improvement in terms of visual accuracy. Since each series in the UCR datasets is relatively

short, we concatenate all series within each class to form longer series. In total, we experiment on

120 long series from the 128 classes in the UCR datasets, excluding those containing null values.

Then we experiment on real-world long time series from the NIST campus photovoltaic (PV)

arrays andweather station [12]. This station collects photovoltaic irradiance data andmeteorological

data, with a collection frequency of 1 second, spanning four years from 2015 to 2018. Specifically,

we use four datasets in the experiments: Qloss for battery charge, Pyra1 for solar irradiance,

WindSpeed for wind speed, and RTD for panel temperature.

6.1.3 Canvas Size and Sampling Size. We provide details about the experimental evaluation re-

garding the width and height of the visualization canvas in pixels. Overall, most of the number

of M4 buckets𝑚/4 is less than the number of pixel columns𝑤 in our experiments. The reason is

that the area-based sampling methods (LTTB and our ILTS) work on a relatively small sample size,

where the error-free condition of M4 does not apply. It is always promising to sample and transfer

a smaller set of points. This is particularly important in resource-constrained scenarios (such as

energy and bandwidth). Given the limited battery capacity of end devices, a smaller sample size

can reduce energy consumption, thereby extending the battery life of these devices. To validate

that, we conduct a battery life experiment in Section 6.5.1.

6.1.4 Visual Quality Metrics. In our visual quality experiments, in addition to direct visual in-

spection of line charts, we use SSIM [19, 27, 31, 37, 38] to quantitatively measure the perceived

image distortion. The Structural SIMilarity (SSIM) index [38] is proposed to account for variations

in luminance, contrast, and structural components that are valued by human perception. SSIM

yields a score ranging from -1 to 1, where values closer to 1 indicate less perceived distortion and

higher visual quality. We use the standard Mean SSIM (MSSIM) [5, 38] implementation, which

first calculates SSIM within a sliding window across the entire image, and then averages the SSIM

values from all windows to obtain the overall image quality score.

6.1.5 Database Performance Metrics. For experiments related to query efficiency, we measure the

database query execution time.

6.2 Accuracy Comparison
We first compare the visualization accuracy, measured by SSIM, of the 11 sampling methods on

the UCR dataset, with a fixed canvas size of 1000 × 250 and 800 sampled points. The results are

presented in Figure 10 using a critical difference diagram based on the Wilcoxon-Holm test [17, 21].

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 49. Publication date: February 2025.

Largest Triangle Sampling for Visualizing Time Series in Database 49:17

1234567891011

Uniform

PCA

Sim-Piece

M4

FSW

Visval

DFT

MinMax

MinMaxLTTB

LTTB

ILTS

Fig. 10. Critical difference diagram with Wilcoxon-Holm test on UCR datasets

A lower rank indicates better performance, and methods with no significant pairwise difference in

accuracy form a clique (illustrated by a horizontal black line connecting the dots representing the

methods in the clique). The results show that our ILTS ranks first, achieving the highest SSIM and

demonstrating a significant difference compared to other methods.

6.3 Visualization Comparison
Figure 11 presents the line chart visualizations generated by various sampling algorithms on a fixed

250× 150 canvas. Each column corresponds to a specific dataset covering approximately one month

of data (2.5 million points). By default, 100 points are sampled per dataset, except for the WindSpeed

dataset, where 200 points are sampled to account for its more random fluctuation patterns. The

first row, colored in green, displays the line charts of the raw time series. Each subsequent row

shows the line charts by a different sampling method, with MMLTTB short for MinMaxLTTB. The

SSIM score is annotated on top of each chart to quantitatively assess its visual quality, with the first

row serving as the ground truth. Within each dataset column, ILTS with the highest SSIM value

(bolded) is highlighted by a blue solid-line rectangle. Additionally, visual defects are emphasized

with red dotted rectangles.

Next we take a closer look at Figure 11. In the panel temperature dataset RTD, the line chart
generated by LTTB captures the daily periodic variations and the long-term declining trend (due to

the winter season). However, regarding the micro-fluctuations throughout the day, as indicated by

the red dotted rectangle in Figure 11, LTTB portrays the trend that starts slowly and then rises

quickly as a uniformly increasing trend, hindering overheating risk identification and thermal

designs. The visual defects of MinMax stem from jaggedness caused by alternating vertical extrema

and the artificial lines formed by neighboring extrema of the same polarity [19]. Sim-Piece generates

disjoint segments whose endpoints may not exist in the raw data. Thus, visual artifacts are produced

from the connected lines of disjoint ends, leading to poor visualization. As discussed in [23], DFT

and PCA focus on lower bounding the Euclidean distance while smoothing out perceptually critical

points, resulting in poor visual quality.

Apart from using the SSIMmetric to evaluate visual quality, we conduct a user study to investigate

people’s preferences for visualization results in Figure 11. The user study involves 20 participants,

all with some experience in data analysis, including one who is a product manager at Apache

IoTDB. Following the same line of [34], we ask participants to select the four charts they consider

closest to the raw chart, from the 11 charts for each dataset shown in Figure 11. The results show

that ILTS receives the most votes, aligning with the SSIM metric.

6.4 Parameter Evaluation
In this section, we quantitatively compare the methods in terms of visual quality, query efficiency

and scalability. We exclude sampling methods with nonlinear time complexity, such as DFT, as well

as those with clearly poor visual quality, such as Uniform. The default number of input points in

this section is 10 million, covering approximately four months of data.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 49. Publication date: February 2025.

49:18 Lei Rui et al.

Fig. 11. Visualizations of sampled time series. Percentages in parentheses are the votes in the user study.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 49. Publication date: February 2025.

Largest Triangle Sampling for Visualizing Time Series in Database 49:19

103 104

w

0.75

0.80

0.85

0.90

0.95

1.00

S
S
IM

(a) Qloss

103 104

w

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

S
S
IM

(b) Pyra1

103 104

w

0.70

0.75

0.80

0.85

0.90

0.95

1.00

S
S
IM

(c) WindSpeed

103 104

w

0.7

0.8

0.9

1.0

S
S
IM

(d) RTD

ILTS LTTB MinMaxLTTB MinMax M4 OM3

Fig. 12. Effectiveness on the number of pixel columns w. The black vertical dashed line represents𝑤 =𝑚/4.

6.4.1 Varying the Number of Pixel Columns 𝑤 . Figure 12 presents the SSIM comparison results

as the number of pixel columns 𝑤 varies, with a fixed number of sampled points𝑚 = 2000. M4

operates under its ideal condition of 𝑚 = 4𝑤 when 𝑤 = 𝑚/4 = 500, achieving a perfect SSIM

score of 1, the highest among all methods. However, as𝑤 increases, M4’s SSIM decreases rapidly,

becoming the worst among all methods. In contrast, ILTS demonstrates more robust performance,

consistently achieving the highest SSIM in most cases (except for the above𝑤 =𝑚/4).
OM3 exhibits a higher SSIM than M4 as it returns more sampled points than M4 given the same

number of buckets [37]. Despite this, ILTS still achieves a higher SSIM than OM3 in most cases.

6.4.2 Varying the Number of Sampled Points𝑚. Figure 13 shows the SSIM results under various

numbers of sampled points𝑚 on a fixed 2500 × 1500 canvas. Again, ILTS has the highest SSIM

among all methods in most cases, attributed to the area-based routine and the iterative refinement.

Figure 14 shows the query latency comparison results under different𝑚. The query latency of

ILTS increases with𝑚, because a larger𝑚 means more buckets specified in the query and hence

fewer disk pages per bucket, reducing the I/O pruning effectiveness. The query latency of other

methods remains nearly constant with𝑚, because they read and traverse all input points anyway.

We increase the number of sampled points𝑚 to meet𝑚 = 4𝑤 in Figures 13 and 14 so that the

case for M4 buckets to align with their corresponding pixel column time intervals is included in

our experiments. The SSIM of M4 under𝑚 = 4𝑤 is higher than others, but it drops sharply when

the sample size𝑚 is slightly decreased or increased, as also observed in [27].

We include OM3 in the experiments in Figures 13 and 14. Again, this very recent work exhibits

a higher SSIM than M4, because it actually returns more sampled points than M4 given the

same number of buckets [37]. The time cost of OM3 is higher than that of M4 in Apache IoTDB

implementation, due to the power-of-two length padding [37]. Note that the time cost comparison

of OM3 may be unfair, since Apache IoTDB does not support to build an index as the original

PostgreSQL implementation of OM3. We store the OM3 coefficient table (schema: id, minc, maxc)

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 49. Publication date: February 2025.

49:20 Lei Rui et al.

103 104

m

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

S
S
IM

(a) Qloss

103 104

m

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
S
IM

(b) Pyra1

103 104

m

0.6

0.7

0.8

0.9

1.0

S
S
IM

(c) WindSpeed

103 104

m

0.5

0.6

0.7

0.8

0.9

1.0

S
S
IM

(d) RTD

ILTS LTTB MinMaxLTTB MinMax M4 OM3

Fig. 13. Effectiveness on the number of sampled points m. The black vertical dashed line represents𝑚 = 4𝑤 .

103 104

m

0

10

20

30

40

50

ti
m

e
 (

s
)

(a) Qloss

103 104

m

0

10

20

30

40

50

ti
m

e
 (

s
)

(b) Pyra1

103 104

m

0

10

20

30

40

50

ti
m

e
 (

s
)

(c) WindSpeed

103 104

m

0

10

20

30

40

50

ti
m

e
 (

s
)

(d) RTD

ILTS LTTB MinMaxLTTB MinMax M4 OM3

Fig. 14. Efficiency on the number of sampled points m

IL
T
S

LT
T
B

M
M

LT
T
B

M
in

M
a
x

M
4

O
M

30

10

20

30

40

50

ti
m

e
 (

s
)

(a) Qloss

IL
T
S

LT
T
B

M
M

LT
T
B

M
in

M
a
x

M
4

O
M

30

10

20

30

40

50

ti
m

e
 (

s
)

(b) Pyra1

IL
T
S

LT
T
B

M
M

LT
T
B

M
in

M
a
x

M
4

O
M

30

10

20

30

40

50

ti
m

e
 (

s
)

(c) WindSpeed

IL
T
S

LT
T
B

M
M

LT
T
B

M
in

M
a
x

M
4

O
M

30

10

20

30

40

50

ti
m

e
 (

s
)

(d) RTD

total I/O

Fig. 15. Query latency breakdown of Figure 14

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 49. Publication date: February 2025.

Largest Triangle Sampling for Visualizing Time Series in Database 49:21

1 3 5 7 9

n ×106

10

20

30

ti
m

e
 (

s
)

(a) Qloss

1 3 5 7 9

n ×106

10

20

30

ti
m

e
 (

s
)

(b) Pyra1

1 3 5 7 9

n ×106

10

20

30

ti
m

e
 (

s
)

(c) WindSpeed

1 3 5 7 9

n ×106

10

20

30

ti
m

e
 (

s
)

(d) RTD

ILTS LTTB MinMaxLTTB MinMax M4

Fig. 16. Scalability on the number of input points 𝑛 by varying the dataset size

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

time (min)

45
50
55
60
65
70
75
80
85

b
a
tt

e
ry

 l
e
v
e
l
(%

)

M4

ILTS

Fig. 17. Raspberry Pi battery level changes over time

as two time series (with id as timestamps and minc, maxc as values) in Apache IoTDB. Unlike

PostgreSQL’s index-based queries on id, IoTDB queries rely on time filters without index support.

The reason for the runtime results of baselines to be similar is that they read and traverse all

input points. To provide further insights, we include an additional experiment that breaks down

the query latency of the baseline runtime under𝑚 = 2000 of Figure 14 into I/O and CPU time, as

shown in Figure 15. ILTS exhibits the lowest I/O time, attributed to the convex hull acceleration.

6.4.3 Varying the Number of Input Points 𝑛 by Dataset Size. We vary the dataset size 𝑛 in Figure 16

(varying query selectivity performing similarly in [4]), while fixing the number of sampled points

to 8k. As 𝑛 increases, each bucket contains more disk pages, thereby increasing the opportunity

of disk pages being pruned. As a result, the query latency of ILTS scales sublinearly with 𝑛. The

query latency of other methods increases linearly with 𝑛, as they process all input points.

6.5 Application Evaluation
6.5.1 Battery Life Experiment. Recall that in Figures 13 and 14, ILTS achieves reasonably good

SSIM scores (e.g., >0.85) with fewer sampled points and lower query latency compared to M4. To

validate the energy saving benefits of ILTS in resource-constrained scenarios, we test the battery

life of end devices with querying and transmitting workloads. We install the database, with both

ILTS and M4 implemented, on a Raspberry Pi 4B device. Over each 200-second period, the database

executes 10 concurrent queries and transmits the compressed query results to a remote client. The

battery levels for ILTS sampling 2k points and M4 sampling 10k points are shown in Figure 17.

During the drop in battery level from 85% to 45%, M4 works only for 170 mins, while our ILTS lasts

for 290 mins. Consequently, ILTS handles 1.7 times more query requests than M4, processing 870

and 510 requests, respectively.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 49. Publication date: February 2025.

49:22 Lei Rui et al.

0 10 20 30 40 50
0.92

0.94

0.96

0.98

S
S
IM

(a) Accuracy

0 10 20 30 40 50

0.0

0.5

1.0

1.5

2.0

ti
m

e
 (

m
s
)

zoom in

pan

(b) Query

ILTSCache MinMaxCache

Fig. 18. ILTSCache v.s. MinMaxCache

Table 2. Ablation study settings

Acceleration component 𝐼𝐿𝑇𝑆𝑎 𝐼𝐿𝑇𝑆𝑏 𝐼𝐿𝑇𝑆𝑐 𝐼𝐿𝑇𝑆𝑑

Iterative Pruning (Section 3.2) ✓ ✓ ✓
Convex Hull Pruning (Section 4) ✓ ✓
I/O Pruning (Section 5.2.3) ✓

0.2 0.4 0.6 0.8 1.0

m ×104

10
20
30
40
50
60
70
80

ti
m

e
 (

s
)

1 2 3

n ×108

10

20

30

40

50

60

70

80

ti
m

e
 (

s
)

ILTSa ILTSb ILTSc ILTSd

Fig. 19. Query latency results of the ablation study

IL
TS

a

IL
TS

b

IL
TS

c

IL
TS

d

0
10
20
30
40
50
60
70
80

ti
m

e
 (

s
)

(a) Query latency breakdown

total I/O

IL
TS

a

IL
TS

b

IL
TS

c

IL
TS

d

0

1

2

3
n
u
m

b
e
r

o
f

d
is

k
 p

a
g
e
s ×104

pages

0

1

2

n
u
m

b
e
r

o
f

p
o
in

ts

×109

(b) Count statistics

points

Fig. 20. Query latency breakdown and count statistics

6.5.2 Interactive Visual Exploration with Caching. MinMaxCache [31] considers an interesting

scenario of user operations (e.g., pan, zoom). While our proposal is not originally designed for such

interactive visual exploration, we can reuse the previously fetched sampled points in such operations

(which we refer to as ILTSCache). To understand ILTS’s applicability in real-time visualization

scenarios, we conduct an experiment in Figure 18, comparing MinMaxCache and ILTSCache (both

built on top of Apache IoTDB) in terms of visual quality (SSIM) and query response time in the case

of user operations. For MinMaxCache, we adopt the experimental parameters from [31], including

an error bound of 5% and an initial aggregation factor (AF) of 4. For ILTSCache, AF is fixed at 8,

twice the initial AF of MinMaxCache, as the latter aggregates two values (min and max) per group.

The error evaluation steps in MinMaxCache are omitted in ILTSCache. The results show that the

performance of ILTSCache is comparable to MinMaxCache.

6.6 Ablation Study
To understand the contribution of each acceleration component of ILTS, we perform an ablation

study on the RTD dataset with a larger scale, totaling 370 million data points, recording panel

temperature frommultiple locations spanning four years. The ablation settings are shown in Table 2.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 49. Publication date: February 2025.

Largest Triangle Sampling for Visualizing Time Series in Database 49:23

Table 3. Overview of related sampling methods, where 𝑛 is the number of raw data points,𝑚 is the number
of sampled points, and 𝜖 is the maximum error threshold.

Method Category Time Complexity Control

ILTS (our) area-based 𝑂 (𝑚 log𝑛) 𝑚

LTTB [34] area-based 𝑂 (𝑛) 𝑚

MinMaxLTTB [18] area-based 𝑂 (𝑛) 𝑚

Visval [35] area-based 𝑂 (𝑛 log𝑛) 𝑚

MinMax extrema-based 𝑂 (𝑛) 𝑚

M4 [27] extrema-based 𝑂 (𝑛) 𝑚

Uniform extrema-based 𝑂 (𝑛) 𝑚

FSW [30] segment-based 𝑂 (𝑚 · 𝑛) 𝜖

Sim-Piece [28] segment-based 𝑂 (𝑛 +𝑚 log𝑚) 𝜖

DFT [6] transform-based 𝑂 (𝑛 log𝑛) 𝑚

PCA [26] transform-based 𝑂 (𝑚2 · 𝑛) 𝑚

Three components are gradually added from 𝐼𝐿𝑇𝑆𝑏 to 𝐼𝐿𝑇𝑆𝑑 , and 𝐼𝐿𝑇𝑆𝑎 is the brute force approach

without using any of them. Iterative pruning (Section 3.2) reduces buckets to be resampled by

identifying reuse opportunities between iterations; convex hull pruning (Section 4) reduces points

to be traversed by narrowing down the search space from raw points to convex hull vertices and

terminating the search when possible; I/O pruning (Section 5.2.3) reduces disk pages to be loaded

by pruning pages that must not contain the farthest point.

The results are shown in Figure 19 and Figure 20. Figure 19 presents the query latency under

various𝑚 and 𝑛. Fixing the number of sampled points𝑚 and input points 𝑛 (as indicated by dashed

lines in Figure 19), Figure 20 provides a detailed investigation of the query latency breakdown, as

well as count statistics including the number of disk pages accessed and points traversed.

As also observed in previous experiments, the query latency of 𝐼𝐿𝑇𝑆𝑑 (i.e., final ILTS) increases

linearly with 𝑚 and sublinearly with 𝑛. The query latency of 𝐼𝐿𝑇𝑆𝑎 , 𝐼𝐿𝑇𝑆𝑏 , and 𝐼𝐿𝑇𝑆𝑐 remains

constant with𝑚 and increases linearly with 𝑛. The latency breakdown and count statistics reveal

that all three acceleration components contribute to reducing points traversed, thereby reducing

CPU time. The I/O pruning component further reduces disk pages accessed, thus reducing I/O time.

The time complexity of the method with I/O pruning is 𝑂 (𝑚 log𝑛) as discussed in Section

5.2.4, while the time complexity of the method with only CPU processing acceleration (iterative

pruning and convex hull pruning) is linear with respect to the data size 𝑛. As a result, I/O pruning

significantly reduces I/O time.

7 Related Work
While there is research on lossy compression for machine learning tasks [10, 20, 22, 32], our work

focuses on sampling for visualization tasks. Table 3 lists the four categories of sampling methods

investigated in our paper. Below we focus on research addressing time-domain sampling methods.

7.1 Area-based Sampling
Visvalingam-Whyatts (Visval) [35] eliminates the point with the least effective area in a bottom-up

manner. Linear-time Largest-Triangle-Three-Buckets (LTTB) [34] sequentially samples points from

left to right buckets. Largest-Triangle-Dynamic (LTD) [34] further adjusts buckets through splitting

and merging, and then applies LTTB on the buckets. Jonas Van Der Donckt et al. [18] confirm that

LTTB excludes vertical extrema and propose MinMaxLTTB to solve the problem. However, our

experimental results indicate that the visual quality of MinMaxLTTB lies between that of MinMax

and LTTB. In contrast, our ILTS can surpass LTTB and achieve superior visual quality.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 49. Publication date: February 2025.

49:24 Lei Rui et al.

7.2 Extrema-based Sampling
Uniform, MinMax, and M4 [27] are extrema-based methods as they select either horizontal ex-

trema (Uniform), vertical extrema (MinMax), or both (M4) from each bucket. M4 is designed for

perfect binary line chart visualization, ideally requiring the sampling buckets to align with their

corresponding pixel column time intervals.

OM3 [37], inspired by M4, proposes a multi-level tree structured representation for time series. It

traverses the tree layer by layer to enable progressive interactive visualization, pruning redundant

inter-column line segments along the way. However, OM3 requires a specialized plotting client and

does not accommodate non-uniform timestamps.

MinMaxCache [31] focuses on locality-based exploration, using caching for interactive visualiza-

tion. It calculates the maximum potential pixel errors and dynamically adjusts the granularity of

cached min-max aggregates based on the error bound.

When it comes to accuracy guarantees for visualizations, M4 ensures error-free visualizations by

modeling the rendering semantics of line rasterization as query-level aggregation. OM3 has no

accuracy guarantee for intermediate visualizations but can eventually reach error-free visualizations

in a progressive way. MinMaxCache provides approximate visualizations with user-controllable

pixel error-bound guarantees. Although ILTS does not provide error guarantees, our ILTSCache

performs comparably to MinMaxCache, as shown in Figure 18.

7.3 Segment-based Sampling
Feasible Space Window (FSW) [30] relaxes the segmentation trigger condition from detecting when

a point falls outside the feasible space to waiting until the space becomes empty. Sim-Piece [28]

is one of the most recent works on Piecewise Linear Approximation (PLA). It can achieve a high

compression ratio even under a small error threshold. However, as the experiments show, Sim-Piece

does not produce coherent visualizations due to the disjoint segments.

8 Conclusion
In this paper, we study the area-based Largest Triangle Sampling for time series visualization. We

propose ILTS, a novel Iterative Largest Triangle Sampling algorithm enhanced with in-database

convex hull acceleration. This algorithm progressively refines the sampling results by bidirectionally

propagating the influence of points—heuristically forward within each iteration and iteratively

backward between iterations. For better query performance, we improve the algorithm to prune

redundant sampling in a bucket by identifying unchanged results. Moreover, we utilize precomputed

convex hulls to prune the search space for the local optimal point, significantly reducing unnecessary

traversal of points and I/O of disk pages. Experiments show that ILTS achieves increased visual

quality and these acceleration techniques significantly improve the query efficiency. For future

work, we plan to explore dynamic bucketing, evaluating its strengths and limitations in the context

of visualization tasks as well as database querying. Dynamic bucket-based sampling is a double-

edged sword, in that it could use fewer sampled points for low-variation data but may also cause

overly dense buckets within a single pixel column.

Acknowledgments
This work is supported in part by the National Natural Science Foundation of China (62021002,

62232005, 92267203, 62072265), the National Key Research and Development Plan (2021YFB3300500),

Beijing National Research Center for Information Science and Technology (BNR2025RC01011),

and Beijing Key Laboratory of Industrial Big Data System and Application. Shaoxu Song (https:

//sxsong.github.io/) is the corresponding author.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 49. Publication date: February 2025.

https://sxsong.github.io/
https://sxsong.github.io/

Largest Triangle Sampling for Visualizing Time Series in Database 49:25

References
[1] [n. d.]. https://en.wikipedia.org/wiki/Triangle_wave.

[2] [n. d.]. https://github.com/apache/iotdb/tree/research/LTS-visualization.

[3] [n. d.]. https://github.com/LeiRui/vis-triangle.

[4] [n. d.]. https://github.com/LeiRui/vis-triangle/blob/main/supplement.pdf.

[5] [n. d.]. https://scikit-image.org/docs/stable/api/skimage.metrics.html.

[6] Rakesh Agrawal, Christos Faloutsos, and Arun N. Swami. 1993. Efficient Similarity Search In Sequence Databases.

In Foundations of Data Organization and Algorithms, 4th International Conference, FODO’93, Chicago, Illinois, USA,
October 13-15, 1993, Proceedings (Lecture Notes in Computer Science, Vol. 730), David B. Lomet (Ed.). Springer, 69–84.

doi:10.1007/3-540-57301-1_5

[7] Wolfgang Aigner, Silvia Miksch, Heidrun Schumann, and Christian Tominski. 2011. Visualization of Time-Oriented
Data. Springer. doi:10.1007/978-0-85729-079-3

[8] Alex M. Andrew. 1979. Another Efficient Algorithm for Convex Hulls in Two Dimensions. Inf. Process. Lett. 9, 5 (1979),
216–219. doi:10.1016/0020-0190(79)90072-3

[9] Fred Attneave. 1954. Some Informational Aspects of Visual Perception. Psychological review 61, 3 (1954), 183.

[10] Joseph Azar, Abdallah Makhoul, Mahmoud Barhamgi, and Raphaël Couturier. 2019. An energy efficient IoT data

compression approach for edge machine learning. Future Gener. Comput. Syst. 96 (2019), 168–175. doi:10.1016/J.

FUTURE.2019.02.005

[11] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. 1996. The Quickhull Algorithm for Convex Hulls. ACM
Trans. Math. Softw. 22, 4 (1996), 469–483. doi:10.1145/235815.235821

[12] Matthew Boyd. 2016. NIST Weather Station for Photovoltaic and Building System Research. doi:10.6028/NIST.TN.1913

[13] Timothy M. Chan. 1996. Optimal Output-Sensitive Convex Hull Algorithms in Two and Three Dimensions. Discret.
Comput. Geom. 16, 4 (1996), 361–368. doi:10.1007/BF02712873

[14] Hoang Anh Dau, Anthony J. Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh Gharghabi,

Chotirat Ann Ratanamahatana, and Eamonn J. Keogh. 2019. The UCR time series archive. IEEE CAA J. Autom. Sinica 6,
6 (2019), 1293–1305. doi:10.1109/JAS.2019.1911747

[15] Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh Gharghabi, Choti-

rat Ann Ratanamahatana, Yanping Chen, Bing Hu, Nurjahan Begum, Anthony Bagnall, Abdullah Mueen, Gustavo

Batista, and Hexagon-ML. 2019. The UCR Time Series Classification Archive. https://www.cs.ucr.edu/~eamonn/time_

series_data_2018/.

[16] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. 2008. Computational geometry: algorithms
and applications, 3rd Edition. Springer. https://www.worldcat.org/oclc/227584184

[17] Janez Demsar. 2006. Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res. 7 (2006), 1–30.
https://jmlr.org/papers/v7/demsar06a.html

[18] Jeroen Van Der Donckt, Jonas Van Der Donckt, Michaël Rademaker, and Sofie Van Hoecke. 2023. MinMaxLTTB:

Leveraging MinMax-Preselection to Scale LTTB. In 2023 IEEE Visualization and Visual Analytics (VIS), Melbourne,
Australia, October 21-27, 2023. IEEE, 21–25. doi:10.1109/VIS54172.2023.00013

[19] Jonas Van Der Donckt, M. Jeroen Van Der Donckt, Michaël Rademaker, and Sofie Van Hoecke. 2023. Data Point Selection

for Line Chart Visualization: Methodological Assessment and Evidence-Based Guidelines. CoRR abs/2304.00900 (2023).

doi:10.48550/ARXIV.2304.00900 arXiv:2304.00900

[20] Frank Eichinger, Pavel Efros, Stamatis Karnouskos, and Klemens Böhm. 2015. A time-series compression technique

and its application to the smart grid. VLDB J. 24, 2 (2015), 193–218. doi:10.1007/S00778-014-0368-8
[21] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain Muller. 2019. Deep

learning for time series classification: a review. Data Min. Knowl. Discov. 33, 4 (2019), 917–963. doi:10.1007/S10618-019-
00619-1

[22] Abdur Rahim Mohammad Forkan, Yong-Bin Kang, Felip Martí Carrillo, Abhik Banerjee, Chris McCarthy, Hadi Ghaderi,

Breno G. S. Costa, Anas Dawod, Dimitrios Georgakopoulos, and Prem Prakash Jayaraman. 2024. AIoT-CitySense:

AI and IoT-Driven City-Scale Sensing for Roadside Infrastructure Maintenance. Data Sci. Eng. 9, 1 (2024), 26–40.

doi:10.1007/S41019-023-00236-5

[23] Tak-Chung Fu, Korris Fu-Lai Chung, Robert Wing Pong Luk, and Chak-man Ng. 2008. Representing financial time

series based on data point importance. Eng. Appl. Artif. Intell. 21, 2 (2008), 277–300. doi:10.1016/J.ENGAPPAI.2007.04.009
[24] Ronald L. Graham. 1972. An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set. Inf. Process.

Lett. 1, 4 (1972), 132–133. doi:10.1016/0020-0190(72)90045-2
[25] Ray A. Jarvis. 1973. On the Identification of the Convex Hull of a Finite Set of Points in the Plane. Inf. Process. Lett. 2, 1

(1973), 18–21. doi:10.1016/0020-0190(73)90020-3

[26] Ian T. Jolliffe. 1986. Principal Component Analysis. Springer. doi:10.1007/978-1-4757-1904-8

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 49. Publication date: February 2025.

https://en.wikipedia.org/wiki/Triangle_wave
https://github.com/apache/iotdb/tree/research/LTS-visualization
https://github.com/LeiRui/vis-triangle
https://github.com/LeiRui/vis-triangle/blob/main/supplement.pdf
https://scikit-image.org/docs/stable/api/skimage.metrics.html
https://doi.org/10.1007/3-540-57301-1_5
https://doi.org/10.1007/978-0-85729-079-3
https://doi.org/10.1016/0020-0190(79)90072-3
https://doi.org/10.1016/J.FUTURE.2019.02.005
https://doi.org/10.1016/J.FUTURE.2019.02.005
https://doi.org/10.1145/235815.235821
https://doi.org/10.6028/NIST.TN.1913
https://doi.org/10.1007/BF02712873
https://doi.org/10.1109/JAS.2019.1911747
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.worldcat.org/oclc/227584184
https://jmlr.org/papers/v7/demsar06a.html
https://doi.org/10.1109/VIS54172.2023.00013
https://doi.org/10.48550/ARXIV.2304.00900
https://arxiv.org/abs/2304.00900
https://doi.org/10.1007/S00778-014-0368-8
https://doi.org/10.1007/S10618-019-00619-1
https://doi.org/10.1007/S10618-019-00619-1
https://doi.org/10.1007/S41019-023-00236-5
https://doi.org/10.1016/J.ENGAPPAI.2007.04.009
https://doi.org/10.1016/0020-0190(72)90045-2
https://doi.org/10.1016/0020-0190(73)90020-3
https://doi.org/10.1007/978-1-4757-1904-8

49:26 Lei Rui et al.

[27] Uwe Jugel, Zbigniew Jerzak, Gregor Hackenbroich, and Volker Markl. 2014. M4: A Visualization-Oriented Time Series

Data Aggregation. Proc. VLDB Endow. 7, 10 (2014), 797–808. doi:10.14778/2732951.2732953
[28] Xenophon Kitsios, Panagiotis Liakos, Katia Papakonstantinopoulou, and Yannis Kotidis. 2023. Sim-Piece: Highly

Accurate Piecewise Linear Approximation through Similar Segment Merging. Proc. VLDB Endow. 16, 8 (2023), 1910–1922.
doi:10.14778/3594512.3594521

[29] Zhilin Li. 1995. An Examination of Algorithms for the Detection of Critical Points on Digital Cartographic Lines. The
Cartographic Journal 32, 2 (1995), 121–125. doi:10.1179/caj.1995.32.2.121

[30] Xiaoyan Liu, Zhenjiang Lin, and Huaiqing Wang. 2008. Novel Online Methods for Time Series Segmentation. IEEE
Trans. Knowl. Data Eng. 20, 12 (2008), 1616–1626. doi:10.1109/TKDE.2008.29

[31] Stavros Maroulis, Vassilis Stamatopoulos, George Papastefanatos, and Manolis Terrovitis. 2024. Visualization-aware

Time Series Min-Max Caching with Error Bound Guarantees. Proc. VLDB Endow. 17, 8 (2024), 2091–2103. https:

//www.vldb.org/pvldb/vol17/p2091-maroulis.pdf

[32] Manuel Milling, Shuo Liu, Andreas Triantafyllopoulos, Ilhan Aslan, and Björn W. Schuller. 2024. Audio Enhancement

for Computer Audition - An Iterative Training Paradigm Using Sample Importance. J. Comput. Sci. Technol. 39, 4
(2024), 895–911. doi:10.1007/S11390-024-2934-X

[33] Hanan Samet. 2006. Foundations of multidimensional and metric data structures. Academic Press.

[34] Sveinn Steinarsson. 2013. Downsampling time series for visual representation. Master’s thesis. University of Iceland.

[35] Mahes Visvalingam and J. Duncan Whyatt. 1993. Line Generalisation by Repeated Elimination of Points. Cartographic
Journal 30 (1993), 46–51. https://api.semanticscholar.org/CorpusID:54049050

[36] Chen Wang, Jialin Qiao, Xiangdong Huang, Shaoxu Song, Haonan Hou, Tian Jiang, Lei Rui, Jianmin Wang, and

Jiaguang Sun. 2023. Apache IoTDB: A Time Series Database for IoT Applications. Proc. ACM Manag. Data 1, 2 (2023),
195:1–195:27. doi:10.1145/3589775

[37] Yunhai Wang, Yuchun Wang, Xin Chen, Yue Zhao, Fan Zhang, Eugene Wu, Chi-Wing Fu, and Xiaohui Yu. 2023. OM3:

An Ordered Multi-level Min-Max Representation for Interactive Progressive Visualization of Time Series. Proc. ACM
Manag. Data 1, 2 (2023), 145:1–145:24. doi:10.1145/3589290

[38] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. 2004. Image quality assessment: from error

visibility to structural similarity. IEEE Trans. Image Process. 13, 4 (2004), 600–612. doi:10.1109/TIP.2003.819861

Received July 2024; revised September 2024; accepted November 2024

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 49. Publication date: February 2025.

https://doi.org/10.14778/2732951.2732953
https://doi.org/10.14778/3594512.3594521
https://doi.org/10.1179/caj.1995.32.2.121
https://doi.org/10.1109/TKDE.2008.29
https://www.vldb.org/pvldb/vol17/p2091-maroulis.pdf
https://www.vldb.org/pvldb/vol17/p2091-maroulis.pdf
https://doi.org/10.1007/S11390-024-2934-X
https://api.semanticscholar.org/CorpusID:54049050
https://doi.org/10.1145/3589775
https://doi.org/10.1145/3589290
https://doi.org/10.1109/TIP.2003.819861

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Challenge
	1.3 Intuition
	1.4 Contribution

	2 Largest Triangle Sampling
	3 Iterative Sampling
	3.1 Iterative Computation
	3.2 Iterative Pruning
	3.3 Iterative Algorithm

	4 Convex Hull Pruning
	4.1 Narrow Down the Search Space
	4.2 Fast Search on the Convex Hull

	5 System Implementation
	5.1 System Deployment
	5.2 Database Architecture

	6 Experiments
	6.1 Experimental Settings
	6.2 Accuracy Comparison
	6.3 Visualization Comparison
	6.4 Parameter Evaluation
	6.5 Application Evaluation
	6.6 Ablation Study

	7 Related Work
	7.1 Area-based Sampling
	7.2 Extrema-based Sampling
	7.3 Segment-based Sampling

	8 Conclusion
	Acknowledgments
	References

