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Quantiles are costly to compute exactly but can be efficiently estimated by quantile sketches. Extensive works

on summarizing streaming data, such as KLL sketch, focus on minimizing the cost in memory to provide cer-

tain error guarantees. For the problem of quantile estimation of values in LSM-tree based stores, streaming

methods have an expensive I/O cost linear to data size N . Since disk components (chunks and SSTables) in

the LSM-tree are immutable once flushed, quantile sketches can be pre-computed as a type of statistics to re-

duce I/O cost and accelerate queries. Unfortunately, to provide deterministic additive nN error guarantees on

queried data, all pre-computed deterministic sketches of queried chunks each with sizeNc should provide nNc

error guarantee, resulting in no improvement in the linear I/O cost. In this study, we propose pre-computing

randomized sketches which provide randomized additive error guarantees. Our major technical contributions

include (1) randomized sketches for data chunks constructed in flush events, which are proved to be optimal

and achieve an I/O cost proportional to
√
N , (2) hierarchical randomized sketches for SSTables constructed in

compaction events, that further improve the asymptotic I/O cost, (3) the KLL sketch summarizing proposed

pre-computed sketches is proved to be more accurate than that summarizing streaming data, and proved to

achieve sublinear I/O cost while achieving the same memory complexity as in the streaming settings. Exten-

sive experiments on synthetic and real datasets demonstrate the superiority of the proposed techniques. The

approach is deployed in an LSM-tree based time-series database Apache IoTDB.

CCS Concepts: • Information systems→DBMS engine architectures; •Theory of computation→ Sketch-

ing and sampling.
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1 Introduction

Quantiles are order statistics that characterize the distribution of data [6, 40]. Common quantiles

include median, quartiles and percentiles. Quantile computation is fundamental in data science

tasks including data profiling [19], monitoring [32] and outlier detection [4]. Computing exact

quantiles is costly, either loading all data in memory or scanning data in multiple rounds [33].

Thus, quantiles are often estimated by data structures named quantile sketches summarizing the

whole dataset.

Formally, given a set of values {x1, . . . , xN } equipped with a total order, the rank of value y is

R(y) = |{x8 | G8 ≤ y}|, and the q-quantile is the value y having R(y) = qN . Quantile sketches

summarize data arriving in a streaming fashion and provide estimated ranks and quantiles. Most

works [6, 18, 27, 31] focus on providing additive nN error guarantee, i.e.,
��R̂(y)−R(y)�� ≤ nN for
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Fig. 1. Overview of quantile estimation on values in LSM-tree based KV store with pre-computed sketches,

including (a) data in LSM-based KV store, (b) sketches for chunks in Section 3.1, (c) hierarchical sketches for

SSTables in Section 3.2, (d) query processor summarizing data online with a sketch in memory, (e)(f) query

processor summarizing pre-computed sketches in Section 4.

any value y, and analyze the required space in memory. In recent years, a family of randomized

sketches analyze the randomized guarantee of Pr
[��R̂(y)−R(y)��≤nN ]

≥ 1−X to improve the space

bound.

The log-structured merge-tree (LSM-tree) [34] is widely adopted to handle intensive writes, e.g.,

in Apache IoTDB [37]. In the LSM-tree, incoming data are buffered in memory and flushed to disk

as sorted-string tables (SSTables) at level 0. Compaction events are triggered to merge SSTables

into higher levels.

Pre-computed statistics in LSM-tree can improve query performance by reducing I/O. For the

lookup performance on specific keys, statistics like Bloom filters [3] and extreme keys of chunks

[24, 28] can be utilized. For the performance of aggregating values, extreme values and counts are

kept in IoTDB [24], while histograms and wavelets are kept for cardinality estimation in [1]. In

this paper, we consider the quantile estimation of values in LSM-based KV stores, with the help of

pre-computed quantile sketches.

1.1 �antile Sketch in LSM-tree Store

For the data model, each node in the LSM-tree is a data file in SSTable format on disk, denoted

by dashed rectangles in Figure 1(a). The SSTable file is immutable, consisting of key-value pairs

ordered by key, and partitioned into size-fixed data chunks (also named pages or blocks) [17, 24,

29, 30] denoted by solid rectangles with size #2 = 2 in Figure 1(a). Ingested data results in new

SSTables at level 0. In the LSM-tree with size-tiered compaction policy, T nodes occurred at the

same level L will be merged into a node at level L+1. For the example in Figure 1(a) where T = 4,

the SSTable at level 1 comes from merging 4 chunks.

Existing quantile query processing is online-sketching the data fetched from LSM-tree. Data

points read into memory are summarized by a quantile sketch as in Figure 1(d). It is implemented

in systems like InfluxDB [23] and needs expensive linear I/O cost.

The goal of the pre-computation is to attach quantile summaries to each data chunk (size-fixed

partition) and SSTable (the node). As in Figure 1(b)(c), chunk summaries S8 are built from chunk

data C8 , while SSTable summaries S[;,A ] are built from chunk summaries S8 .
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For the query model, the quantile query tries to combine information from summaries for SSTa-

bles or chunks fully contained in the query, and some data points in the left over parts. Figure 1

shows that to process a quantile query posed on all data, the query processing (f) reads sketch

items in (5, (6, ( [1,4] from disk and does not need to visit all data.

As for the constraints in queries, the disk-bounded solutions in Section 3 load all pre-computed

sketches in memory, i.e., it is not as space constrained as the streaming model. For the memory-

constrained solutions in Section 4, the memory budget is limited as KLL in streaming model, i.e.,

the data structure maintained in memory should be small. Thereby, the pre-computed summaries

are further compressed in memory.

Although any fully-mergeable [2] quantile sketch can be applied, whether randomized or not,

the key problem is to provide the aforementioned nN error guarantee on N queried data. The

properties of randomized sketches and randomized error guarantees promise an asymptotic im-

provement in I/O cost, even with keeping a memory bound as in streaming settings. Intuitions are

as follows.

1.2 Intuition

Since chunks and SSTables in LSM-trees are immutable, pre-computed quantile sketches can be

constructed in the insertion-only model, i.e., they do not need to consider deletes or updates.

Sketches are built when flush events and compaction events happen. For the chunk sketch, all

the data in the chunk are accessible in memory when the chunk is being flushed to disk. While

for the SSTable, not all data are in memory during compactions because of the partitioning. Thus,

SSTable sketches are built based on chunk sketches as in Figure 1(b)(c) to avoid costly asynchro-

nous scans.

Now we discuss why randomized quantile sketches in LSM-trees can improve asymptotic I/O

cost. To provide nN error guarantee on N queried data, all pre-computed deterministic sketches

have to achieve the same n , such as when data are independently identical distributed (i.i.d.).

That leads to trivial results of I/O bounds linear to N . However, when the target is to pro-

vide nN error guarantee with a high probability of 1−X , each pre-computed randomized sketch

does not need to achieve that error guarantee. For example, when a chunk sketch guarantees

Pr
[��R̂(y)−R(y)��≤nNc

]
≥ 0.99, k such sketches together could guarantee

��R̂(y)−R(y)��≤knNc with

confidence much higher than 0.99. In other words, for fixed n, X , as N grows and more chunk

sketches queried, each sketch can be less accurate and smaller in size. That promises a total I/O

cost sublinear to N . This property may be hard to apply in chunks as sketches are built ahead of

query, but can be applied in SSTables as higher level SSTables contains more data. That is, SSTable

sketches can properly compress chunk sketches for asymptotic improvements in I/O.

So far we simply load pre-computed sketches intomemory in the query process, i.e., thememory

cost is equal to the I/O cost. The cost is better than linearity, but still larger than thememory bounds

of existing sketches constructed from streaming data.When thememory budget is constrained, we

can treat pre-computed sketches as weighted inputs of existing streaming algorithms like the KLL

sketch [27], resulting in a size-limited sketch in memory. Since this memory-constrained solution

introduces error during compressing pre-computed sketches, the sketches should bemore accurate

to keep the overall nN error guarantee.

1.3 Challenge

The essential problem is to pre-compute randomized sketches that can achieve asymptotic im-

provements in I/O cost. For chunk sketch construction, the key is to leverage the fact that all data

are in memory, which is different from streaming settings. The challenge is to obtain the optimal
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result in the randomized sketch format. For SSTable sketch construction, it should properly com-

press chunk sketches and still be effective when the SSTable is large and not all data are queried

in the query with specific key ranges. Key analyses consist of the improved I/O cost with chunk

sketches and SSTable sketches, as well as whether the improvement exists when the memory is

constrained.

1.4 Contributions

Our major contributions in this study are as follows.

(1) The chunk sketch is built holistically from the entire chunk data inmemory, which is different

from streaming methods such as KLL that summarize data one by one. Thereby, the chunk sketch

is proved to be the optimal randomized sketch in Proposition 3.3 and improves the I/O complexity

in Proposition 3.4.

(2) The hierarchical sketches for the SSTable are built from compressing chunk sketches and

effective when only a part of chunks in the SSTable are queried. It is different from summarizing

all data with a single KLL sketch, which cannot accelerate quantile queries on partial data. The

SSTable sketches have bounded error in Proposition 3.6 and further improve I/O complexity in

Proposition 3.7.

(3) Our analyses show that when the memory budget in query is constrained, to guarantee

the same nN error, compressing pre-computed sketches has a better I/O complexity than KLL

summarizing data fetched in a streaming fashion, as presented in Propositions 4.3, 4.4 and Table

3.

(4) The proposed method has become a function in an LSM-tree based time-series database

Apache IoTDB [24]. The document is released in the product website [21]. The code is included in

the GitHub repository of IoTDB by the system developers [22].

(5) Extensive experiments on synthetic and real datasets demonstrate the superiority of our

proposals. The required I/O cost to achieve nN error guarantee is shown to be consistent with our

analyses. The time cost of the query process is significantly improved. The related code and data

are available for reproducibility [5].

2 Preliminaries

Here we introduce preliminaries of randomized quantile sketches and LSM-based stores. Table 1

lists the frequently used notations.

2.1 Randomized �antile Sketch

The family of quantile sketches [2, 27, 31] summarize data with a structure S consisting of H

leveled compactors. The compactor at height h, denoted as S[ℎ], stores items with the weight of

2h−1, where 1 ≤ ℎ ≤ � . For any value ~, its estimated rank '̂(~) in the sketch is the sum of its

weighted ranks in all compactors.

Arriving data are first inserted into the bottom compactor. Each compactor has capacity and

triggers a compaction operation when full. A compaction will sort items, output even-indexed or

odd-indexed items to the next compactor, and clear the current one. Figure 2 shows an example of

adding values {5, 9, 3, 6, 6} to a KLL sketch [27]. The first compaction keeps the even-indexed 9 in

{5, 9} and the second compaction keeps the odd-indexed 3 in {3, 6}, resulting in Figure 2(c). The

estimated rank of the value 7 is R̂(7) = 1 ∗ 20 + 1 ∗ 21 = 3 and the error is '̂(7) −'(7) = 3− 4 = −1.
Randomized compactions, first introduced by Agarwal et al. [2] bring internal randomness. A

randomized compaction outputs odd or even indexed items randomly with equal probability, not

always odd, always even, or taking turns. Thus, the example in Figure 2 is a possible case after
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Table 1. Notations

Symbol Description

N Number of data points queried

S Sketch in memory during query execution

R(x) Real rank of value x in queried data

R̂(x) Estimated rank of value x

H Height of sketch S

S[h] Compactor at height h in sketch S

mh Number of compactions at height ℎ

K Capacity of the top compactor S[H ]
W Capacity decrement factor in sketch (

Ci The i-th data chunk in LSM-tree

Nc Number of data points in each data chunk

Si Chunk sketch for Ci

Hc Height of each chunk sketch

Mc Size limit of each chunk sketch

T Size ratio of components in an LSM-tree

Ts Size ratio of sketches in an SSTable

two randomized compactions. Figure 3 shows the impact of a randomized compaction on rank

estimation. The error introduced by a randomized compaction at height ℎ, is a random variable

∈ {−2ℎ−1, 0, 2ℎ−1} which is zero-mean sub-Gaussian. A zero-mean variable - with variance f2 is

sub-Gaussian if E[exp(B- )] ≤ exp(− 1
2B

2f2) for any B ∈ R.
The error of the randomized sketch, '̂(G) −'(G), is the sum of these independent sub-Gaussian

variables. Letmℎ be the number of compactions at heightℎ, '̂(G)−'(G) is zero-mean sub-Gaussian

with a variance f2 ≤ ∑ℎ=�−1
ℎ=1 4ℎ−1mℎ as in [2, 27]. Then we apply the Chernoff tail bound for sub-

Gaussian variables: Pr
[
|R̂(G) − R(G) | > 0

]
≤ 2 exp

(
− 02

2f2

)
, for any 0>0. Thus, the randomized

guarantee of Pr
[��R̂(y)−R(y)��≤nN ]

≥ 1−X holds, when f2 ≤ 1
2n

2# 2/log 2
X
. Since f2 ≤ ∑

4ℎ−1mℎ

as just introduced, the number of randomized compactionsmℎ should be small enough. This is the

basis of our I/O cost analyses.

KLL sketch [27] is the randomized sketch achieving the best asymptotic behavior in the stream-

ing model. It takes streaming data as input and summarizes them with leveled compactors and

randomized compactions as just introduced. The main conceptual contribution of KLL is the ex-

ponentially decreasing capacities for compactors. In detail, the parameter  is the capacity of the

top compactor, and W ∈ ( 12 , 1) is the capacity decrement factor. The capacity of the compactor at

height ℎ is set to be  W�−ℎ . That results in exponentially increasing compactions at lower heights

and provides the optimal bound of variance of the sub-Gaussian error. A mergeable version in

the open-source algorithms library Apache Datasketches [12] achieves a memory complexity of

$
(
1
n
(log 1

X
) 12
)
to provide n# error guarantee on # data with probability at least 1−X . Its I/O com-

plexity is $ (# ) for the streaming input.
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Fig. 2. Process of feeding values to a sketch with leveled compactors. The first compaction keeps even-

indexed 9 in {5, 9}. The second compaction keeps odd-indexed 3 in {3, 6}.
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Fig. 3. A randomized compaction over 6 items at height h.

2.2 LSM-Tree based Store

In LSM-tree based systems, a batch of flushed data are stored as an SSTable at level 0 and then

compacted (merged) to higher level SSTables. The size ratio T defines the frequency of SSTable

compaction and affects the shape of LSM-tree [25].

To optimize themerge process, LSM-tree based systems partition SSTables into several fixed-size

chunks or pages [30]. In the widely used tiering policy [13, 14], there are at most T − 1 SSTables in
each level. A level L SSTable is at most T times larger than a SSTable at level L− 1. SSTables at the
same level may have overlapping key ranges [30]. Figure 1(a) shows an LSM-tree with size ratio

T = 4 and chunk size Nc = 2. The SSTable at level 0 has 1 chunk in this case. The SSTable at level

1 is built by merging 4 level 0 SSTables and partitioned into 4 chunks C1, . . . ,C4.

When performing an aggregate query posed on data in a key range, data in all chunks overlapped

with queried key range are read and the values are aggregated one by one. To accelerate this, LSM-

tree based systems can pre-compute statistics for SSTables and chunks as in [1, 37].

2.3 Online KLL Sketch Construction over LSM-tree based Store

Quantile estimation in LSM-tree based systems has not been benefited from pre-computed sum-

maries yet. When estimating quantile with KLL algorithm, the KLL sketch in memory is built

online with all queried data points one by one, which I/O cost is O(N ).
As shown in Figure 1(d), the KLL sketch S in memory is online built with all the 12 data points

{2, 1, 3, 7, 7, 5, 0, 6, 4, 2, 9, 8} arriving in a streaming fashion. Randomized compactions are triggered

during the process.
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(a) (b)

Weight
Number of 

compactions

22 0

21 1

20 1

(c)

1 2 2 4 5 7 7 8 9 1 1

1

2 7

1

2 7

1

4 8

1

5 9

(d1) (d2) (d3) (d4)

Fig. 4. Example of building a randomized sketch for a chunk with 9 values {1, 9, 5, 2, 7, 2, 8, 4, 7} under size
limit of 3. (a) sorts all values in memory and (b)(c)(d) assign compactors from bo�om to top. (d1)...(d4) show

all possible results because of the internal randomness.

3 Randomized Sketches on Disk

We introduce pre-computed sketches for chunks and SSTables in Sections 3.1 and 3.2 respectively.

For each type of sketch, we present the construction algorithm during LSM-events, analyze the

error, and show the asymptotic I/O cost.

3.1 Optimal Chunk Sketches

The randomized sketch for the chunk is constructed during LSM-tree flushing. Since chunks are

basic units of I/O and any chunk to flush is stored in memory, we propose building an optimal

sketch with all in-memory data. In the following, we present Algorithm 1 for constructing a chunk

sketch, analyze its optimality in Proposition 3.3, and show the I/O cost (total size of chunk sketches)

sublinear to # in Proposition 3.4.

3.1.1 Construction Algorithm. Algorithm 1 illustrates the construction of chunk sketch S8 for any

chunk C8 during flushing. In the KV-store, data in the chunk are sorted by keys, while the quantile

queries in this paper are on values. Thus, the algorithm starts by sorting the values of chunk data

cached in memory. Based on the chunk size Nc and the size limit Mc on each chunk sketch, the

height Hc of the randomized sketch is computed (Line 2). Then the bottom Hc − 1 compactors

Si [1], . . . , Si [Hc − 1] are assigned (Line 3-7). Finally the top compactor Si [Hc] is computed (Line 8).

Algorithm 1: Building optimal randomized sketch in a chunk

Input: Chunk C8 , chunk sketch size limit M2

Output: The optimal sketch S8 with H2 compactors

1 v1, . . . , vNc
← the sorted Nc values of data in C8 ;

2 r, Hc ← 1, 1 + ⌈log2
Nc

Mc
⌉;

3 for h← 1 to Hc − 1 do
4 if ⌊Nc/2h−1⌋ MOD 2 = 0 then Si [h] ← ∅ ;

5 else Si [h], r ← {vr }, r+2h−1;
6 r ← r + RANDOM(0, 1) · 2h−1;
7 end

8 Si [Hc] ←
{
vr+8 ·2Hc−1 | 0 ≤ 8 < Nc/2Hc−1

}
;
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Example 3.1. Figure 4 shows an example of building a chunk sketch from Nc=9 values

{1, 9, 5, 2, 7, 2, 8, 4, 7}whenMc=3. The proposed algorithm sorts all values in the chunk at the begin-

ning. The height of the sketch is calculated to be Hc=3 and the three compactors are constructed

from the bottom to the top. Figure 4(d1)...(d4) are the result of the randomized variable r being

0...3, respectively.

The built sketch Si has a T-shape, where only the top compactor Si [Hc] has more than one item.

The randomness of the sketch comes from the random bits in Line 6 generated Hc − 1 times.

3.1.2 Error Analysis. Now we discuss the performance of the chunk sketch more formally. Since

the error of randomized quantile sketches comes from randomized compactions, we first show the

number of compactions in the construction as follows.

Lemma 3.2. The T-shape chunk sketch S8 returned by Algorithm 1 is in the form of a randomized

quantile sketch consisting of H2 compactors, where |S8 [H2 ] | = ⌊ N2

2H2 −1
⌋, |S8 [h] | = ⌊ N2

2ℎ−1
⌋ mod 2 ≤ 1

and mh = 1, 1 ≤ h < H2 .

Proof. For the size of compactors, Lines 4 and 5 in the algorithm determine that |S8 [h] |= ⌊ N2

2ℎ−1
⌋

mod 2, while Line 8 brings |S8 [H2 ] | = ⌊ N2

2H2 −1
⌋. As for the number of compactions mh, the h-th

execution of Line 6 corresponds to a randomized compaction at height h: The case of the random

bit being 0 is equivalent to keeping odd-indexed items in the compaction, and the case of being 1

is keeping even-indexed items. Thus, there is mh=1, 1≤h<H2 . �

Now we show that the constructed chunk sketch is optimal. That is, under the same size limit

on sketch, it has the minimal probability of the estimation error exceeding nN2 for any n .

Proposition 3.3. The T-shape chunk sketch S8 built for chunk C8 is optimal, i.e., for any x and n ,

there does not exist any other randomized sketch S′8 with the same size having

Pr[|R(x, S′8 ) − R(x) | > nN2 ] < Pr[|R(x, S8 ) − R(x) | > nN2 ] .

Proof. Since the error of randomized sketches is zero-mean sub-Gaussian as introduced in Sec-

tion 2.1, according to the Chernoff tail bound for sub-Gaussian variables, the proposition holds

if the variance of error is shown to be minimal. Invoke Lemma 3.2, we have that the height

�2 = 1+ ⌈log2
Nc

Mc
⌉ and number of compactions<ℎ = 1 of the proposed sketch reaches their mini-

mal values for any #2 , "2 . Recall that the bound of variance of error is f2 ≤∑ℎ=H2−1
h=1

4h−1mh as in

Section 2.1, the proposed chunk sketch reaches the optimal bound and the proposition holds. �

There are conceptual differences between summarizing chunk data with the proposed T-shape

sketch and sampling or KLL. Sampling selects samples from #2 data in the chunk, KLL treats #2
data as streaming input and summarizes them with multiple compactions, while the proposed

T-shape sketch summarizes #2 in-memory data with the least compactions according to Lemma

3.2.

3.1.3 I/O Cost Analysis. For chunk sketches, their space on disk is equal to the I/O cost in the

accelerated query process. Herewe analyze the required I/O cost, i.e., the total size of pre-computed

chunk sketches, to provide nN error guarantee on N queried data.

Proposition 3.4. Given chunk size N2 , for any n, X , there exists randomized chunk

sketches guaranteeing Pr
[��R̂(y)−R(y)��≤nN ]

≥ 1 − X for any value y whose total size is

$
(
1
n
(log 1

X
) 12# 1

2 /#2
1
2 + # /#2

)
.
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Proof. Invoke Lemma 3.2 aboutmℎ , the variance of error of# /#2 chunk sketches is bounded as
f2 ≤ (# /#2 )

∑�2−1
ℎ=1

<ℎ·4ℎ−1 ≤ #
3#2

4�2−1. Apply the Chernoff bound for sub-Gaussian variables, the

target error guarantee needs f2 ≤ 1
2n

2# 2/log 2
X
. It holds when #

3#2
4�2−1 ≤ 1

2n
2# 2/log 2

X
and we get

the upper bound of 2�2 as 2�2 ≤
√
6#2#n

√
log (X/2). Note that the chunk sketch should be non-null,

i.e., 2�2 ≤#2 . Thus the required size of a chunk sketch is$ (#2/2�2−1) = $ ( 1
n
·
√
log 1

X
·
√
#2/# + 1).

By summing up the size of # /#2 chunk sketches, we have the proposition. �

Intuitively, the proof shows that for the fixed n , as more data are queried, the required size

of each chunk sketch decreases at a speed of
√
N but is at least $ (1). That means small chunk

sketch size"2 can still ensure the n# error guarantee in queries when # is large. Compared with

Proposition 3.3 about the error in individual chunk, Proposition 3.4 is the more important result

on improving asymptotic I/O complexity of quantile queries with error guarantees.

However, this result is hard to be utilized in pre-computation since queries are unknown. For

the same chunk size limit in pre-computation, the number of chunks is linear to N and so as the

I/O cost. It motivates us to design sketches for SSTables since their size can grow as more data are

ingested.

3.2 Hierarchical SSTable Sketches

Randomized sketches for SSTables are constructed during LSM-tree compaction events. Discus-

sions in this section are based on LSM-tree with size-tiering merge policy. Due to the partitioning

techniques in LSM-tree, not all data in the SSTable will be fetched in memory. Thus we construct

SSTable sketches based on chunk sketches. In the following, we present Algorithm 2 of building

sketches for an SSTable, the error analysis of SSTable sketches in Proposition 3.6, and the asymp-

totic I/O cost in Proposition 3.7.

3.2.1 Construction Algorithm. The two main ideas about SSTable sketches are: (1) Analyses about

chunk sketches allow further compressing chunk sketches to improve the I/O complexity. (2) Build-

ing only one sketch for the whole SSTable has a low chance to utilize due to not all data are queried,

data updates or overlapping key ranges in LSM-tree.

Sketches for a level L SSTable is organized as a tree with a branching factor T and a height at

most L. For the further compression, we introduce a parameter of sketch size ratio TB . A sketch at

height h is at most TB times larger than a sketch at height h − 1, having TB < T . The construction

process shown in Algorithm 2 is like building a T -fork segment tree from bottom to top. The k

chunk sketches in the SSTable are the leaves of the tree. The i-th sketch at height h is the result

of combining and further compacting T sketches at height h−1. To be detailed, we combine T

compactors at each height, and perform randomized compactions from bottom to top until the

sketch size does not exceed the limit. The size limit is TB times the average size of the combined T

sketches.

Example 3.5. Figure 5 shows an example of building sketches for a level 2 SSTable with 4 chunks

when T = 2, TB = 1. All sketches generated have the same size since TB = 1. When generating S[1,4] ,
we combine S[1,2], S[3,4] and perform a randomized compaction at height 2 (keeping 1 in {1, 2}) and
another at height 4 (keeping {5, 9} in {4, 5, 7, 9}). Due to space limit, other possible results from

randomized compactions are not shown.

3.2.2 Error Analysis. Since the top sketches take more randomized compactions (Line 5), they

are less accurate (i.e., more error introduced) than the chunk sketches. We show below that the
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Algorithm 2: Building sketches for an SSTable

Input: k chunk sketches S1, . . . , S: , LSM-tree size ratio T , sketch size ratio TB
Output: several sketches S[;,A ] each representing a segment [;, A ] of chunks.

1 S[8,8 ] ← S8 for 1 ≤ 8 ≤ : ;
2 for ℎ ← 1 to ⌈log) :⌉ do
3 ;4= ← Tℎ ; // Length of segment

4 for 8 ← 1 to ⌊ :
;4=
⌋ do

5 ; ← 1 + (8 − 1) · ;4=; // Left endpoint

6 S[;,;+;4=−1] ←combine and further compact {S[;+( 9−1) · ;4=) ,;+9 · ;4=) −1]
|1 ≤ 9 ≤ ) };

7 end

8 end

S1 S2 S3 S4 

S[1,2] S[3,4] 

S[1,4] 

1

4 8

3

3 9

1

4 9

2

2 7

0

5 6

2

5 7

1

5 9

Fig. 5. Example of building hierarchical sketches for a level 2 SSTable with 4 chunks when T = 2, TB = 1.

Sketches are organized as an implicit segment tree. S[1,4] is built by combining and further compacting

S[1,2] and S[3,4] .

error guarantee provided by S[1,TL ] is still comparable to that of the combined chunk sketches

{S1, ..., STL }.

Proposition 3.6. Given
√
T<Ts<T, in a level L SSTable, if chunk sketches {S1, ..., STL } guarantees

Pr
[��R̂(~)−R(y)��≤nN ]

≥ 1−X , the top sketch S[1,TL ] guarantees that Pr
[��R̂(~)−R(y)��≤C · nN ]

≥ 1−X
where C =

√
1 + 4Hc

T−(T/Ts )2 , H2 is the height of chunk sketches.

Proof. According to the Chernoff bound, the key idea is again to analyze and compare the

bound
∑
4ℎ−1mh of variance of estimation error. For combined chunk sketches {S1, ..., STL }, there

ism′
h
= TL, 1≤h<Hc , since numbers of compactions in a chunk sketch is known (Lemma 3.2). For

S[1,TL ] , its height is Hc+L·log T
Ts

and the number of compactions is

mh =

{
TL, 1 ≤ h < Hc

TL−8−1, Hc+8 ·log T
Ts
≤h<Hc+(8+1) ·log T

Ts
, 0 ≤ 8 < L

.

Thus
∑Hc+L·log T

Ts

h=1
4ℎ−1mh ≤

(
1+ 4Hc

T−(T/Ts )2
)
·∑Hc

h=1
4ℎ−1m′

h
when Ts >

√
T . Invoking Chernoff bound

concludes the proof. �

3.2.3 I/O Cost Analysis. The I/O cost to analyze is the total size of sketches utilized in the query to

provide nN error guarantee on N queried data. Intuitively, the I/O cost is determined by data size

N , precision n , SSTable size ratio ) in LSM-tree, SSTable sketches size ratio )B , chunk size #2 and

chunk sketch height �2 . Among the parameters, #2 and �2 determine chunk sketch size, while )

and)B influence SSTable sketch size.),)B and #2 are fixed in the LSM-tree. Since larger �2 brings
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Table 2. Space complexity of disk-bounded solutions with different pre-computed sketches, when ) =

10,)B = 5.

I/O & Memory

DeterChunk $
(
1
n
· # /#2

)
RandChunk $

(
1
n
(log 1

X
) 12# 1

2 /#2
1
2 + # /#2

)
RandSSTable $

(√
1
n
(log 1

X
) 12# 0.45/#2

1
4 + (# /#2 )0.7

)

smaller I/O but larger error as in the proof of Proposition 3.6, the idea for computing required I/O

is to analyze the maximum �2 under n# error guarantee. The result is as follows.

Proposition 3.7. Given N2 , T >0, Ts ∈ (
√
T , T ), there exists randomized SSTable sketches guaran-

teeing Pr
[��R̂(y)−R(y)��≤nN ]

≥ 1−X for any value y whose corresponding I/O cost during the query

is $

(√
1
n
(log 1

X
) 12# (− 1

4+log) )B)/#2
1
4 + (# /#2 )log) )B

)
.

Proof. Since there are at most ) SSTables at the largest level of LSM-tree with size-tiering

policy, the asymptotic I/O cost in query is the required size of the top sketch in the largest SSTable.

Based on the proofs of Propositions 3.4 and 3.6, the variance of error in that top sketch is bounded

with f2 ≤
(
1+ 4Hc

T−(T/Ts )2
)

#
3#2

4�2−1. Invoke the Chernoff bound, the target error guarantee needs

f2 ≤ 1
2n

2# 2/log 2
X
. Thus we get the upper bound of 2�2 as 16�2

= $ (n2#2# log 2
X
). Similar to

the proof of Proposition 3.4, chunk sketch is non-null and it brings another upper bound of 2�2 as

2�2 ≤#2 . Since the size of the top sketch grows)B times when # grows) times, the I/O complexity

is $ (# log) )B /2�2 ). Apply the upper bound of 2�2 and we have the proposition. �

Since the I/O complexity result in Proposition 3.7 is complicated with many factors, we describe

each term to help understanding. The first part of the first term in the I/O complexity,

√
1
n
(log 1

X
) 12 ,

is influenced by the required error guarantee. That is, the n closer to 0 needs larger sketches. The

second part of the first term, # (− 1
4+log) )B) , is influenced by the queried data size N . According

to the proof above, we have that for nN error guarantee, the upper bound of 2�2 is proportional

to #
1
4 . Thus the required size of each chunk sketch #2/2�2 is proportional to N −

1
4 . The last term

(# /#2 )log) )B comes from the limit that chunk sketch is non-null. It is the I/O cost when all chunk

sketches are of size 1 and independent of n about error guarantee.

To further illustrate the conclusion in simplified form and show the improved I/O complexity in

real systems, we compare the results in Table 2 under a typical setting of T =10 in LSM-trees, and

the size ratio of SSTable sketches as TB = 5. In Table 2, the DeterChunk is to keep the values with

rank nN2 , 2nN2 , ... deterministically as a summary of the chunk. The RandChunk and RandSSTable

correspond to the proposed randomized sketches. All solutions simply keep queried pre-computed

sketches in memory. That is, these disk-bounded solutions have a memory cost equal to the I/O

cost during queries.

4 Memory-Constrained Solutions

The disk-bounded solutions so far have a memory cost equal to the I/O cost, which is not compara-

blewith thememory bounds provided by streaming algorithms like the$
(
1
n
(log 1

X
) 12
)
ofmergeable

KLL [27]. The natural idea is to treat the pre-computed sketches as weighted input and apply the
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(a) (b) (c1) (c2)

3 6

3 5 8 9

2 7 2 3 6 7

3 5 8 9

2 3 6

Weight
Number of 

compactions

24 0

23 m
3
Æ1

22 m
2
Æm

2
+1

21 m
1
Æm

1
+1

20 m
0
Æm

0
+1

Fig. 6. Process of merging (a) the size-limited KLL sketch S in memory with (b) a pre-computed chunk sketch

S8 , resulting in (c2) the merge result a�er compaction.

existing algorithms to compress them in memory. Here we apply the KLL algorithm, i.e., setting

exponentially decreasing capacities for compactors maintained in memory. For these memory-

constrained solutions, our contribution is to show that the improvement in I/O cost still exists

while reaching the same memory bound as streaming algorithms.

4.1 Process of Merging Sketch

Algorithm 3 illustrates the process of merging a pre-computed randomized sketch S′ on disk into

the size-limited KLL sketch S in memory. As shown, we first combine compactors at same height

by Merge Sort in Line 1, and then compact compactors exceeding their capacity from bottom to

top as in Line 4.

Algorithm 3:Memory-constrained merging

Input: A KLL sketch S of H compactors with parameters K and W , a pre-computed sketch

S′ of H ′ compactors to be merged

Output: The merged result S

1 for ℎ ← 1 to H ′ do S[ℎ] ←MergeSort(S[ℎ], S8 [ℎ]) ;
2 while true do

3 for ℎ ← 1 to H − 1 do
4 if |S[ℎ] | > KW�−ℎ then compact S[ℎ] ;
5 end

6 if |S[H ] | ≤ K then return ;

7 compact S[H ];
8 H ← H + 1;
9 end

Example 4.1. Figure 6 shows the process of merging a pre-computed chunk sketch S8 into the

in-memory KLL sketch S with K = 4. As shown in (c1), we first combine compactors at same

height and reorder them individually. Then we check the size of compactors from bottom to top.

S[3] is detected and compacted, making S[4] = [2, 3, 5, 6, 8, 9] exceeds capacity K . The following

compaction at height 4 increases the sketch height H to 5, and the final result is shown in (c2).

Note that the increase of<1,<2 comes from accumulating the compactions in pre-computation of

S8 .
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4.2 I/O Cost Analysis

Now we analyze the required I/O cost of the memory-constrained solutions with pre-computed

sketches, while keeping the memory bound $
(
1
n
(log 1

X
) 12
)
of the streaming mergeable KLL [12].

We start with analyzing when merging pre-computed chunk sketches is more accurate than

streaming settings. The key is to compare the bound
∑
4ℎ−1mh of variance of error.

Proposition 4.2. Given any capacity of the top compactor  > 0, capacity decrement factor

W ∈ ( 12 , 1) and chunk sketch height H2 ≥ 2, if the KLL sketch ( constructed from# streaming data guar-

antees Pr
[��R̂(y)−R(y)��≤nN ]

≥ 1−X , the KLL sketch ( ′ summarizing pre-computed chunk sketches

guarantees Pr
[��R̂(y)−R(y)��≤n′N ]

≥ 1−X and n′ ≤ n when N ≥ K1−logW 2 · N logW 2

2 · F (W,H2 ), where
F (W,Hc) is a constant expression having

F (W, h) = 1

4 − 2W · (
3W

(2W − 1)(1 − W) )
logW 2 · ( (2W)

ℎ−1 − 1
4ℎ−1 − 1

)logW 2 .

Proof. According to the Chernoff bound, the key idea is to analyze and compare the bound of

variance of error in ( ′ and ( , i.e.,
∑
4ℎ−1m′

h
and

∑
4ℎ−1mh. We have <ℎ =<′

ℎ
, ℎ ≥ �2 since the

two methods only differ in the bottom �2 − 1 compactors. For ℎ ≤ �2 − 1, we have <′
ℎ
= # /#2

from Lemma 3.2 and<ℎ ≥ 2# (W/2)ℎ/( W� ) from [27]. Thus the merged ( ′ is more accurate when∑
4ℎ−1# /#2 ≤

∑
4ℎ−12# (W/2)ℎ/( W� ) and then it is  W� ≤ 3

2
(2W )�2 −2W

(2W−1) (4�2 −1−1)#2 . That means �

should be large enough as W ∈ ( 12 , 1). Note that the sketch height � increases as # grows. Since

a sketch with height �−1 summarizes at most
∑ℎ=�−1
ℎ=1 2ℎ−1 W�−1−ℎ data, the lower bound of #

given � is # ≥  
4−2W 2

� . Apply the requirement of � and we have the proposition. �

Intuitively, for the streaming sketch ( , as # grows, the sketch height� grows, capacities W�−ℎ

decreases and compactions at some height ℎ happen more and more frequently, i.e., mℎ is super-

linear to # . In contrast, for the merged sketch ( ′, mℎ =# /#2 is linear to # . Thus a large enough

# makes merging chunk sketches have smaller
∑
4ℎ−1mh and more accurate.

For example, when W =
2
3 , K = 213, N2 = 213, H2 = 5, Proposition 4.2 states that for N ≥ 3.4 ∗ 106,

summarizing chunk sketches is better than streaming settings. It is prevalent to query over 107

data in LSM-based systems handling intensive writes.

Now we can compute the required I/O cost of chunk sketches while providing a memory bound.

The basic idea is that, for any KLL parameters  ,W , we find the requirement on 2�2 about chunk

sketches so that summarizing chunk sketches outperforms streaming settings, and then calculate

the I/O cost of $ (# /2�2 ).

Proposition 4.3. For any n > 0, X > 0 and capacity decrement factor W ∈ ( 12 , 1), there exists

randomized chunk sketches and a KLL sketch summarizing them with $
(
1
n
(log 1

X
) 12
)
memory and

$

(
(N/N2 )

1/
(
1+log 1

W

)
+ # /#2

)
I/O complexity, that guarantees Pr

[��R̂(y)−R(y)��≤nN ]
≥ 1−X .

Proof. According to the proof in Proposition 4.2, to make summarizing chunk sketches out-

performs streaming,  W� = $ ((W/2)�2#2 ) is required and thus (2/W)�2
= $ ( #2

W� 
) is sufficient.

Then we get the upper bound of 2�2 as 2�2
= $ (( #2

W� 
)1/log(2/W ) ). Note that W� is the capacity

of the bottom compactor, which is $ (W log# ). Then the I/O complexity is computed as # /2�2
=

$
(
# /

(
#2 (# )log(1/W )

)1/log(2/W ) )
= $

(
#

1−log 1
W /log

2
W /#

1/log 2
W

2

)
= $

(
(N/N2 )

1/
(
1+log 1

W

) )
, which is the
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Table 3. Space complexity of memory-constrained solutions, when W =
2
3 ,) = 10,)B = 5

I/O Memory

KLLStream[27] $ (# ) $
(
1
n
(log 1

X
) 12
)

RandChunk $
(
# 0.63/#2 0.63 + # /#2

)
$
(
1
n
(log 1

X
) 12
)

RandSSTable $
(
# 0.51/#2 0.32 + (# /#2 )0.7

)
$
(
1
n
(log 1

X
) 12
)

first term of the result. Again the second term of the I/O complexity comes from that chunk

sketches are non-null. Since it is more accurate than streaming settings, the memory bound is

also $
(
1
n
(log 1

X
) 12
)
. �

Similarly, we analyze the I/O cost of compressing SSTable sketches with memory constraints.

Proposition 4.4. For any n > 0, X > 0, W ∈ ( 12 , 1),
√
) < )B < ) , there exists ran-

domized SSTable sketches and a KLL sketch summarizing them with a memory complexity of

$
(
1
n
(log 1

X
) 12
)
and I/O complexity of$

©­­«
#

©­«
log)B
log)

(1− log 2W

log) ·log 8
W

)−log 1
W /log

8
W
ª®¬

#

(
1− log)B

log)
log 2W
log)

)
/log 8

W

2

+ ( #
#2
)log)B/log)

ª®®¬
, that guarantees

Pr
[��R̂(y)−R(y)��≤nN ]

≥ 1−X .

Proof. Since Proposition 3.6 bounds the variance of error in top SSTable sketch with that of

chunk sketches, the key idea is to apply that bound and invoke the proof process in Proposition

4.3. Let the maximum level of SSTable to be !, the height of the top sketch in a level ! SSTable is

�2 + ! log() /)B ). Again, we analyze the bound of variance of error. According to Proposition 3.6

and the proof in Proposition 4.2, for compactors at height below �2 + ! log() /)B ), the variance of
error of merged sketch ( is smaller than that of streaming ( ′ when (1+ 4Hc

T−(T/Ts )2 )
#
#2

∑�2−1
ℎ=1

4ℎ−1 ≤∑�2+! log() /)B )−1
ℎ=1

4ℎ−1<′
ℎ
. That holds when

4�2
)−() /)B )2 W

�
= $

(
( W2 )�2 (2W)! log))B#2

)
. Note that !

grows with # as #2)
!
=# and thus there is (2W)! log))B = (# /#2 )log))B log) 2W . So the upper bound

of 2�2 is computed as 2�2 ≤
(
()−() /)B )2 )#2

 W�

)1/log(8/W ) (
#
#2

) log))B log) 2W/log(8/W )
. Another upper bound

of 2�2 ≤#2 comes from non-null chunk sketches again. Apply the upper bounds of 2�2 above and

the I/O complexity $ (# log))B /2�2 ) is computed to be the proposition. More detailed process can

be found in [36]. �

Since the I/O complexity above is complicated, we provide interpretations to help reading. The

latter term of the I/O complexity is the same as that in Proposition 3.7, which comes from the limit

of chunk sketch is non-null. The first term comes from that the required chunk sketch size de-

creases as # grows, similar to that in Proposition 3.7. Note that the I/O complexity is independent

of n, X .

Table 3 summarize the space complexity for nN error guarantee in the common settings of

W =
2
3 for KLL sketch in memory,) = 10 for LSM-tree, and)B = 5 for SSTable sketches. Compared

with disk-bounded solutions in Table 2, memory-constrained solutions need larger I/O cost for the

better memory cost.

5 System Deployment
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Chunk C1 Footer

Chunk C2 Footer

Chunk C3 Footer

s0 TimeseriesIndex S[L,R] ChunkIndex1 S1 ChunkIndex2 S2 ChunkIndex3 S3

IndexOfTimeseriesIndex

Fig. 7. Storing chunk sketches S8 and SSTable sketches S[!,' ] in TsFile

The proposed solutions have been deployed in a time-series database Apache IoTDB [24, 37]. The

system employs an LSM-tree based KV store [34] to handle intensive writes of time-series data in

IoT scenarios, where the key of data is the generation timestamp and the value is the IoT sensor

reading. The quantile query is on the value of data and the query statement is as follows.

SELECT quantile(series0, 0.5)

FROM root.sg0.device0

WHERE TIME >= 2022-01-01T00:00:00.000

AND TIME <= 2022-01-03T00:00:00.000

The query is posed over a segment of time-series series0 specified by the time range, and the

result is the estimated 0.5-quantile of values. We present below more details of the deployment.

5.1 Sketch Construction and Storage

In Apache IoTDB, arrived data are first cached in memory, and flushed to disk when reaching the

size limit. The basic unit of I/O is chunk (also named page). Chunk sketches are constructed by

Algorithm 1 in Section 3.1 during the flush events. After an LSM-tree compaction event, SSTable

sketches for the new SSTable are generated by Algorithm 2 in Section 3.2, but not all sketches

must be rebuilt. For chunks with non-overlapped key ranges, the corresponding chunk sketches

and SSTable sketches can be reused, since these chunk data are not changed in the compaction.

Figure 7 briefly illustrates the structure of TsFile, the format of SSTable in Apache IoTDB. The

constructed chunk sketch S8 is stored together with the corresponding chunk index, thus we can

read sketches without loading data in query processing. Similarly, the constructed hierarchical

SSTable sketches, which height is larger than 1, are stored at the position of time-series index. We

can read only SSTable sketches without loading chunk sketches.

5.2 �ery with Sketches

The deployed query processor avoids visiting the data if the corresponding sketches can be uti-

lized. When utilizing hierarchical sketches in the SSTable for a query with time range, the range

will be decomposed as discussed in Section 3.2.3. The quantile queries are on the values of the

KV-store, so sketches can be utilized if the key ranges of summarized files or chunks do not over-

lap. In IoTDB, key ranges of files and chunks are available for the query processor as meta data.

Whether to use a sketch is decided by checking whether the corresponding key range is over-

lapped with others. There are overlapping sorted runs in the LSM-tree because keys of arrival

data are unordered or there are updates. For time-series data, data loads with transmission delays

[26] can cause unordered key arrivals. Overlapping runs limit the benefit of using sketches but do

not impact correctness.

Figure 8 shows an example of querying on two overlapping SSTables. As in Figure 8(a), both

SSTable consist of four chunks. SSTable 2 has the more recent version, thus the entry with times-

tamp 9 and value 4 is a update. The timestamp of time-series here serves as the key of KV data

in Figure 1. In Figure 8(b)(c), the chunk sketch (8 summarizing chunk �8 is constructed from �8
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Fig. 8. Solution deployed in Apache IoTDB, with (a) key-range overlapping SSTables caused by delay or

update, (b) chunk sketches, (c) SSTable sketches and (d) query posed over data in a time range

with Algorithm 1, and SSTable sketch ( [;,A ] summarizing chunks {�; , ...,�A } is constructed from

{(; , ..., (A } with Algorithm 2. As in Figure 8(d), the query is posed on data specified by the time

range [1, 12]. In the accelerated query processing, data with timestamps 7,8,9,12 are visited be-

cause of the overlapping or queried time range. Chunk sketches S1, S2, S3, S6 are utilized because

the chunks are contained in the query and not overlapped.

5.3 Implementation in Other Systems

While our current implementation is on Apache IoTDB, it is highly possible to implement in other

LSM-based systems like RocksDB. RocksDB supports the size-tiered compaction policy, mentioned

Section 2.2. The chunk in Section 3.1 corresponds to the data block in RocksDB, while the SSTable

corresponds to the file formatted as BlockBasedTable.

The chunk sketch in Section 3.1 summarizes values in a data block, and the SSTable sketches

in Section 3.2 summarize the whole file. Based on the file format of RocksDB [17], to store the

pre-computed sketches, new meta blocks need to be added in the file of RocksDB. One new meta

block consists of chunk (data block) sketches and is maintained in the same way of the index

block. Another new meta block consists of the hierarchical SSTable sketches and is maintained in

the same way of the filter block [17].

Sketches summarize values of data in the KV-store, while they can be utilized in queries if the

key ranges of summarized files or data blocks do not overlap. To check this in the query process,

the key range of the file needs to be added into the stats block [17].

6 Experimental Evaluation

In experiments, we evaluate the performance of pre-computed sketches to verify propositions. The

related code and data are available for reproducibility [5].

6.1 Experimental Setup

We implement solutions in Apache IoTDB [37]. The experiments are conducted on a machine with

Intel(R) Core(TM) i7-11800H CPU @2.30GHz, 64GB DDR4 DRAM memory and 2TB NVMe SSD.

6.1.1 Datasets. We employ synthetic and real-world datasets with various distributions shown in

Figure 9.
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Fig. 9. Value distributions of employed datasets

(1) Lognormal is a synthetic datasetwith 1×109 i.i.d. values sampled from a log-normal distribution

[15] with a scale parameter of 1 and a shape parameter of 2.

(2) Bitcoin [9] is a public dataset on Kaggle, which records the transaction of Bitcoin since 2009.

(3) Thruster [11] is a public dataset on Kaggle, which is based on the physics of monopropellant

chemical thrusters.

(4) Taxi [10] is a public dataset on Kaggle, recording longitude data about pick ups and drop offs

of taxes.

6.1.2 Metrics. To measure the performance, we perform queries on different parts of data and

report the average time cost, required I/O and actual error rate of estimated quantiles. The queried

quantiles are {0.01%, 0.02%, ..., 99.99%}.

6.1.3 Baselines. Besides solutions utilizing the proposed pre-computed randomized sketches, we

implement several methods based on existing techniques as follows: (1) NoSketch loads all queried

data in memory and finds the exact quantile with QuickSelect [20] algorithm. (2) DDSketch sum-

marizes streaming data with a size-limited DDSketch [32]. (3) TDigest summarizes streaming

data with a size-limited t-digest with scale function k0 [16]. (4) DeterChunk keeps values with

rank nN2 , 2nN2 , ... deterministically as the chunk sketch. In the memory-constrained settings, De-

terChunk takes the chunk sketches as weighted input to the upstream randomized compaction

method KLL. (5) KLL summarizes streaming data with a KLL sketch [27] in memory.

6.1.4 Parameters. For LSM-tree, the parameters are a chunk size of 8KB (Nc = 1024), a Memtable

size of 800KB and a component size ratio of T = 10. These parameters are close to the default

settings in practical systems like LevelDB [28] and IoTDB [24]. For SSTable sketches, the size ratio

is )B = 5, consistent with the settings in Tables 2 and 3. For KLL sketch in memory applied in

memory-constrained solutions, we set W =
2
3 as in the algorithms library Apache DataSketches

[12].

6.2 Performance of Disk-Bounded Solutions

We first show the performance of disk-bounded solutions to verify Table 2 about I/O complexity. In

this experiment the requirement on error guarantee is set to be an average error of 0.005. Figure
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Fig. 10. Performance of disk-bounded solutions with varied # , to provide a guarantee of 0.005 average error

10 reports the required I/O cost as well as the corresponding actual error and query time cost

with various data size N to achieve the required accuracy. Here the memory cost in query is not

constrained and equal to the I/O cost.

For the I/O cost, the cost of DeterChunk is linear toN , i.e., the required size of each chunk sketch

keeps the same. That is consistent with the$
(
1
n
· # /#2

)
in Table 2. The curve of randomized chunk
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sketches (RandChunk) is proportional to
√
N for smallN , but becomes linear toN whenN ≥1×107.

That is because the required size of each randomized chunk sketch decreases as N grows and

becomes 1 for large enough N . The curve of randomized SSTable sketches (RandSSTable) has a

turning point for the same reason. Its trend line is proportional to N 0.25 and then N 0.71. Overall,

the asymptotic behaviors are similar in different datasets and consistent with the upper bounds in

Table 2. For example, the performance of RandSSTable for small N (∝ N 0.24 in subfigure (b1)) is

better than the loose upper bound of ∝ N 0.45 in the table.

For the average actual error, all results are below the required 0.005. When N is large enough

and the size of chunk sketches becomes 1, the error of randomized sketches further decreases. In

this case, the total size of sketches is determined by the non-null chunk sketch limit and larger than

required by accuracy. For the query time cost, the performance is similar to that of the I/O cost.

Unpacking the large SSTable on disk dominates the time cost when N is small. Thus RandSSTable

significantly outperforms RandChunk when N is large enough.

6.3 Performance of Memory-Constrained Solutions

Now we compare the performance of solutions under the memory-constrained settings.

6.3.1 Varying N. Figure 11 shows the required I/O cost as well as the corresponding actual error

and query time cost with various N to verify Table 3. Again, the required error guarantee is set to

be an average error of 0.005 if possible. According to the space bound of streaming algorithm KLL,

the memory limit is computed to be 2,644 bytes and applied to methods except NoSketch.

The NoSketch method loading the whole queried data occupies memory proportional to N and

suffers from OutOfMemory error when #=1 × 109. NoSketch is significantly slower (by order-of-

magnitude) than the proposed solution using randomized sketches. DDSketch has a time cost very

close to KLL, while C-digest is much slower, which is consistent to results in [8]. Both DDSketch

and TDigest summarize all queried data online and show large average rank error, as they do not

provide rank error guarantees. DeterChunk takes the same I/O as in Figure 10 but does not achieve

the error guarantee due to the memory constraint. In terms of I/O and query time, DeterSketch

outperforms NoSketch but performs worse than the proposed solutions.

For RandChunk and RandSSTable, the turning point of I/O cost exists for the same reason of

chunk sketch size reaching 1. The curve of RandChunk turns from ∝ N 0.53 to ∝ N . The curve of

RandSSTable is proportional to N 0.22 and then N 0.70. In summary, results on all datasets are be-

low the upper bounds in Table 3. The actual error of RandChunk and RandSSTable do not further

decrease significantly after N is large enough, which is different from that in disk-bounded solu-

tions. It is because the memory budget is limited in this experiment. The time cost of RandSSTable

significantly outperforms RandChunk when N is large and the difference in I/O is large enough.

6.3.2 Varying Memory Constraint. Now we vary the memory constraint, referring to Algorithm 3

in Section 4 about query process. Similar results on some datasets are omitted. As shown in Figure

12, there is little change in time cost of all memory-constrainedmethods. The solutionwith SSTable

sketches keeps two order of magnitude improvement in query time compared to the streaming

methods (KLL, TDigest and DDSketch). In terms of error, all methods have better accuracy as the

constrained memory grows. As the constrained memory grows, the error of solutions with pre-

computation (RandChunk, RandSSTable and DeterChunk) become closer to that in disk-bounded

experiments in Figure 10. Proposed solutions with pre-computed randomized sketches provide

accuracy comparable to or better than baselines in all cases.
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Fig. 11. Performance ofmemory-constrained solutionswith varied# , to provide a guarantee of 0.005 average

error if possible, within 2,664 bytes memory except the no-sketch solution

6.4 Performance of System Deployment

Finally, we evaluate the overall performance of Apache IoTDB with pre-computed sketches de-

ployed.
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Fig. 12. Varying memory constraint
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Fig. 13. Space amplification by pre-computed sketches, under (a) various chunk sketch size M2 and (b) vari-

ous SSTable sketch size ratio TB , relative to no pre-computation

6.4.1 Space Amplification Introduced by Sketches. Here we show the space amplification intro-

duced by the sketches under various parameters in Figure 13. The space cost relative to no pre-

computation grows as chunk sketch size M2 and SSTable sketch size ratio TB . In Figure 13(b),

M2=512 bytes is fixed and the result shows that the SSTable sketches are much smaller than chunk

sketches. Recall that in Sections 6.2 and 6.3, the chunk sketch size M2 can be close to 1 to achieve

0.005 average error under large # , which means a minimal impact on space amplification.

6.4.2 Write Performance Affected by Sketches. We show the effect of generating proposed sketches

in a write-intensive scenario. Figure 14 shows the write throughput as time, with/without com-

paction, having M2=512 bytes and TB=5. The x-axis indicates the passage of time as the system
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Fig. 14. Write throughput as time, (a) with compactions and (b) without compactions in the scenario
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Fig. 15. �ery performance improved by pre-computed sketches over the time-series data with various delay

rates, relative to no pre-computation

operates, and the y-axis represents the write throughput. In Figure 14(a), compactions are trig-

gered at some timestamps to limit the number of files, and considerably hinder the throughput,

since it is not able to keep up with the insertion rate. Generating sketches further reduce the av-

erage throughput by about 3% compared with NoSketch, which is marginal. The reason is that

generating sketches during compactions does not need additional scanning. In Figure 14(b), there

is no compaction, the number of files grows as time and the average throughput is 8.3% higher

than that in (a). Again, generating sketches reduce the average throughput by about 3%.

6.4.3 �ery Performance in Out-of-order Data. As discussed in Section 5, data with out-of-order

arrivals will impede query optimization with pre-computed summaries. We consider data loads

with transmission delays based on a real-world case [26], and vary the rate of data suffered from

severe delays.

Figure 15 shows the relative query performance of memory-constrained solution with SSTable

sketches, compared to no pre-computation. As more data suffer from severe delays, the time cost
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Fig. 16. �ery performance improved by pre-computed sketches over the data with various update rates,

relative to no pre-computation

and error rate of solution with pre-computations become closer to those of the streaming KLL,

i.e., relative performance closer to 1, since fewer pre-computed summaries can be utilized. In real-

world scenarios, most delays are minimal. The rates of severe delays observed from the case in

[38] and the industrial use case in [26] are only 0.05% and 0.0375% respectively, where the im-

provements on time cost and error rate by pre-computed sketches are significant.

6.4.4 �ery Performance in Updated Data. Due to the out-of-place update nature of LSM-tree,

data updates will impede utilizing pre-computed summaries in query processing. Here we gen-

erate data loads such that each insert has a probability up to 50% to update a recent data point.

Figure 16 shows the relative query performance of memory-constrained solution with SSTable

sketches compared to no pre-computation. With more updates, more pre-computed summaries

are no longer valid, and thus the performance becomes closer to that without pre-computation.

Actually, any pre-computation including our proposed sketch is feasible for low-update scenarios

such as IoT. The reason is that the pre-computation are no longer valid when the corresponding

data are updated.

7 Related Work

The related studies are mainly in quantile algorithms and data summaries in LSM-tree based stor-

age.

7.1 �antile Estimation

The quantile problem in limited memory is first studied in [33]. The idea of sketching, i.e., leveled

compactors, is proposed and then developed in the following decades. Sketches like MRL sketch

[31] and GK sketch [18] are introduced. Agarwal et al. [2] propose the randomized compaction

in the compactor. The KLL sketch [27] integrates these techniques and is proved to be optimal

in space. Mergeability of quantile summaries is discussed in [2]. Algorithms library in Apache

DataSketches [12] provides an implementation of fully mergeable KLL sketch.

In addition, other algorithms like C-digest [16] and DDSketch [32] are popular in practice. The

C-digest adopts averaging and linear interpolation to summarize data, which can be attacked [8]

but performs well in simple scenarios. DDSketch takes logarithm operation and performs well in

estimating extreme quantiles of long-tailed distributions. These algorithms can not provide any

rank error guarantees but are practical in some scenarios and thus covered as baselines in our

study.

Sketches like KLL± [39] support data deletion. In other words, the pre-computed sketch can

be updated and utilized in query. However, to determine the value to delete or update, the entire
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chunk should be read from disk and decompressed. Hence, the deletion scheme of sketches does

not improve the I/O cost and thus is not considered in this study.

Most recently, the ReqSketch [7] achieves the best known asymptotic behavior in providing the

type of relative error guarantees. That is, more accurate estimations for more extreme quantiles. It

is not considered in our study because in the problem of pre-computation, the extreme quantile on

the whole dataset may be non-extreme quantiles on SSTables. Thus the relative error guarantee is

not suitable for pre-computation.

7.2 Data Summaries in LSM-tree based Systems

LSM-tree based stores with immutable SSTables like Apache IoTDB [37] often pre-compute and

store some simple and mergeable info such as the count of the data, to accelerate simple aggre-

gation queries. For more complex data summaries, their mergeability must be considered. Ab-

salyamov et al. [1] propose generating histograms and wavelets for indexed attributes to estimate

cardinality in query with value range filter. The work does not actually merge the summaries

since equi-height histograms are hard to merge. Singh et al. [35] combine disk-resident indexes

and streaming algorithms to estimate quantiles. It needs to reorder disk data by their values, which

is not practical in LSM-tree based store.

8 Conclusions

In this study, our major technical contributions are the pre-computation of randomized sketches in

LSM-based store and the improved I/O complexity to provide error guarantees in quantile queries.

First, we construct the chunk sketch over all the chunk data in memory, which is proved to be the

randomized sketch with optimal error guarantees (Proposition 3.3). To achieve nN error guaran-

tee, the required chunk sketch size decreases as # grows and brings an I/O cost proportional to√
# (Proposition 3.4). Next, we construct hierarchical sketches for each SSTable by compressing

the chunk sketches, thus the asymptotic I/O cost is further improved (Proposition 3.7). Finally,

we study the improvement in I/O while keeping a memory bound as that in streaming solutions,

by compressing pre-computations with KLL algorithm. Analyses show that the in-memory KLL

sketch summarizing pre-computations can be more accurate than summarizing streaming data

(Proposition 4.2). In this memory-constrained setting, pre-computations still bring asymptotic im-

provement in I/O (Propositions 4.3 and 4.4). Tables 2 and 3 summarize our major theoretical contri-

butions in common LSM-tree settings. The pre-computations are deployed in an LSM-tree based

time-series database Apache IoTDB. Extensive experiments support the asymptotic behavior anal-

yses and show the superiority of our proposals.
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