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Time series data are often clustered repeatedly across various time ranges to mine frequent subsequence
patterns from different periods, which could further support downstream applications. Existing state-of-the-art
(SOTA) time series clustering method, such as K-Shape, can proficiently cluster time series data referring
to their shapes. However, in-database time series clustering problem has been neglected, especially in IoT
scenarios with large-volume data and high efficiency demands. Most time series databases employ LSM-Tree
based storage to support intensive writings, yet causing underlying data points out-of-order in timestamps.
Therefore, to apply existing out-of-database methods, all data points must be fully loaded into memory and
chronologically sorted. Additionally, out-of-database methods must cluster from scratch each time, making
them inefficient when handling queries across different time ranges. In this work, we propose an in-database
adaptation of SOTA time series clustering method K-Shape. Moreover, to solve the problem that K-Shape
cannot efficiently handle long time series, we propose Medoid-Shape, as well as its in-database adaptation
for further acceleration. Extensive experiments are conducted to demonstrate the higher efficiency of our
proposals, with comparable effectiveness. Remarkably, all proposals have already been implemented in an
open-source commodity time series database, Apache IoTDB.
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Machine learning.

Additional Key Words and Phrases: time series clustering, database query processing

ACM Reference Format:
Yunxiang Su, Kenny Ye Liang, and Shaoxu Song. 2025. In-Database Time Series Clustering. Proc. ACM Manag.
Data 3, 1 (SIGMOD), Article 46 (February 2025), 26 pages. https://doi.org/10.1145/3709696

1 Introduction
Time series clustering is of great importance for analysis. For example, time series clustering
could assist pattern mining of daily stock prices in finance [33], serve anomalous subsequence
detection for yearly climate analysis in meteorology [21], facilitate the analysis of the characteristics
associated with sleep apnea [25] and so on. The state-of-the-art (SOTA) time series clustering
method K-Shape [31, 32] can proficiently cluster time series by shapes and achieve significantly
better accuracy than other existing time series clustering methods.

However, K-Shape unfortunately faces challenges when meeting IoT scenarios, where extensive
time series data stored in databases pose serious challenges for time series clustering. On the one
hand, the arrival of IoT data is often out-of-order, due to transmission issues or sensor failures [15].
Most commodity time series databases employ Log Structured Merged Tree (LSM-Tree) [30] to
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Fig. 1. The workflow of in-database K-Shape

handle such out-of-order arrivals, where data points are batched into files with possibly overlapped
time intervals on disk. Therefore, applying the existing K-Shape algorithm typically involves loading
all the data outside databases and sorting chronologically. Unfortunately, it is obviously inefficient
in terms of I/O and incurs extra time.
On the other hand, time series clustering often needs to be performed multiple times over

different time ranges in IoT databases to discover various patterns across different time periods. For
instance, a forging machine in a steel processing factory may handle different types of steel bars
during various time periods, depending on the production orders. When processing each type of
steel bar, the machine may exhibit several working patterns influenced by its operating conditions
and the environment. To identify all machine working patterns across different product types,
analysts need to cluster subsequences of time series data over various time intervals to achieve a
comprehensive clustering result. Apparently, loading all related data out of databases and clustering
from scratch each time is extremely time-consuming.

1.1 Challenges
Considering such IoT scenarios with time series databases, the challenges of in-database time series
clustering are as follows.
(1) Time series are often stored out-of-order in LSM-Tree databases owing to delayed arrivals,

while existing clustering methods require data in chronological order. It incurs extra pre-processing
time overheads to sort data chronologically. Therefore, we propose in-database adaptations for
existing clustering method K-Shape, which can handle the out-of-order issues in LSM-Tree.

(2) Clustering may need to be performed repeatedly with different time filters for different tasks.
K-Shape requires clustering from scratch each time, making it inefficient. To support frequent
clustering queries, we propose in-database K-Shape with pre-computation.

(3) K-Shape is also inefficient in handling long subsequences due its high complexity with respect
to the subsequence length. Therefore, we propose Medoid-Shape and in-database Medoid-Shape
for acceleration, by leveraging approximate clustering and avoiding time-consuming eigenvector
decomposition.
To tackle these challenges, the paper mainly focuses on how to efficiently cluster time series in

databases by leveraging database properties. We primarily concentrate on achieving high efficiency
for in-database time series clustering. The following example illustrates the challenges of LSM-Tree
based database storage.

Example 1. Figure 1(a) presents a time series stored in an LSM-Tree based time series database,
recording the solar radiation intensity in a wind farm, where the x-axis denotes time and the y-axis
denotes page number. Data points are batched into 4 pages 𝑃1, 𝑃2, 𝑃3, 𝑃4 on disk, each denoted by a gray
rectangle. The higher the page number is, the later the data points arrive in the database. The dotted
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lines in Figure 1(a) split the data points in each page into several subsequences, and each subsequence
represents the data of one day, i.e., starting from 00:00 and ending at 23:59. Most subsequences contain
complete daily data (in blue), i.e., complete subsequences, while some only contain a part of daily data
(in orange), i.e., incomplete subsequences (which will be formally defined in Section 2.3).

Generally, the order of data arriving in the database is the same as that of data generation, e.g.,
𝑃1, 𝑃2 and 𝑃3 have consecutive timestamps. Unfortunately, due to transmission issues, there may exist
out-of-order points. For instance, in the failed subsequence of 𝑃3 (in red), values are wrongly recorded
as the default value 0 due to failure. The correct values are received after 𝑃3 has been written to disk,
and thus they are batched with the later page with a higher number 4.
Such out-of-order issues obviously impede in-database clustering. First, to apply out-of-database

methods, all related pages on disk must be costly loaded and merged to ensure each data point is
up-to-date. Moreover, users may cluster multiple times on different time ranges (denoted by blue arrows
in Figure 1(a)). Existing methods can only repeatedly load data, and cluster from scratch each time.
Note that simply merging the clustering centroids of each page may lead to wrong results. For

instance, the aforementioned failed subsequence may be taken into account when clustering in 𝑃3, and
the failed subsequence may form a new cluster by itself.

1.2 Contributions
To tackle challenges in IoT scenarios, in this work, we focus on the in-database adaptation of a
SOTA time series clustering method, K-Shape [31, 32]. Our contributions are as follows:

(1) In-database K-Shape in Section 3. Unlike K-Shape [31] which clusters from scratch, in-database
K-Shape utilizes pre-computed page-level metadata in Figure 1(a) for acceleration. Metadata, record-
ing centroids and matrices, are later aggregated from each page for clustering. Due to disorder
storage in databases, page-level metadata cannot be directly merged. Lemma 1, Propositions 2 and
3 address different cases of aggregating page metadata, as illustrated in Figure 1(b). We iteratively
aggregate the next page and obtain the middle aggregation result in Figure 1(c). The final result is
reached once all pages are processed, as depicted in Figure 1(d).
(2) Medoid-Shape in Section 4. The eigenvector decomposition stage of K-Shape [31] faces

difficulties with long subsequences. Instead, we replace the time-consuming decomposition with an
approximate medoid-based solution, while still achieving effective shape-based clustering results.
The approximation correctness is theoretically ensured by Proposition 6, with the error bound
guaranteed by Proposition 7.
(3) In-database Medoid-Shape in Section 5. Similar to the in-database K-Shape, the proposed

Medoid-Shape can also be adapted to in-database Medoid-Shape for further acceleration. Again, the
page metadata cannot be directly merged due to disorder. Propositions 8, 9 and 10 address various
aggregation cases in LSM-Tree based storage accordingly.
(4) Extensive experiments in Section 6. We conduct extensive experiments to demonstrate the

high efficiency of our proposals. In-database K-Shape shows up to 2 orders of magnitude improve-
ment over the original K-Shape. Medoid-Shape and its in-database adaptation also demonstrate
significantly greater efficiency than K-Shape, particularly as subsequence length increases.

Table 1 lists the time and space complexity of the proposals and the baselines. Here 𝑖𝑡𝑒𝑟 denotes
the maximal iteration numbers,𝑊 denotes the approximate clustering time complexity, 𝑠 denotes
the sampling size, 𝑟 denotes the approximate cluster number, ℓ denotes the average overlapped
length, and 𝑁,𝑀 denote the total and overlapped page numbers, respectively. Table 2 lists other
symbols frequently used.
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Table 1. Time and space complexity of methods

Method Query Time Space

K-Shape O(max{𝑛𝑘𝑙 log 𝑙, 𝑛𝑙2, 𝑘𝑙3} × 𝑖𝑡𝑒𝑟 ) O(𝑛𝑙 + 𝑘𝑙2)
Medoid-Shape O(𝑊 + 𝑘2𝑠𝑟𝑙 log 𝑙) O(𝑠𝑙 + 𝑘𝑙)
in-db K-Shape O(𝑘 (𝑁 −𝑀)𝑙2 + 𝑘𝑀𝑙3⌈ℓ/𝑙⌉) O(𝑘𝑁𝑙2)
in-db Medoid-Shape O(𝑟 (𝑁 −𝑀)𝑙 + 𝑟𝑀ℓ + 𝑘2𝑠𝑟𝑙 log 𝑙) O(𝑘𝑁𝑙)

Table 2. Notations

Symbol Description

𝑛 the number of subsequences
𝑙 subsequence length
𝑘 cluster number
𝜏 time interval
𝑋𝑖 a subsequence starting from 𝑖𝑙𝜏 ending at (𝑖 + 1)𝑙𝜏
T𝑙 set of subsequences 𝑋𝑖 with length 𝑙 in time series 𝑇
C set of shape-based centroids

𝐶
(𝑖 )
𝑗

the 𝑗-th shape-based centroid in page 𝑃𝑖
S (𝑖 )
𝑗

the 𝑗-th sum matrix in page 𝑃𝑖
𝛿
(𝑖 )
𝑗

the 𝑗-th average intra-cluster distance in page 𝑃𝑖
𝑈
(𝑖 )
𝑗

the 𝑗-th approximate centroid in page 𝑃𝑖
𝑤
(𝑖 )
𝑗

weight w.r.t.𝑈 (𝑖 )
𝑗

2 Preliminary
2.1 K-Shape Clustering
Shape-based distance [31, 32] measures the similarity by aligning two time series using cross-
correlation, defined as follow.

Definition 1 (Shape-Based Distance [31, 32]). For two time series 𝑋,𝑌 , their Shape-Based
Distance (SBD) is

SBD(𝑋,𝑌 ) = 1 −max
𝑤

(𝑋 ∗ 𝑌 )𝑤
∥𝑋 ∥∥𝑌 ∥ ,

where operator ∗ denotes cross-correlation, a.k.a. vector convolution.

K-Shape clustering problem [31, 32] aims to find a partition for subsequences to maximize the
overall intra-cluster similarities, with respect to the shape-based distance, defined as follow.

Definition 2 (K-Shape Clustering [31, 32]). Given a set of subsequences T𝑙 , K-Shape clustering
problem aims to find a set of centroids C = {𝐶1, . . . ,𝐶𝑘 }, satisfying

C∗ = argmax
C

∑︁
𝑋𝑖 ∈T𝑙

max
𝐶 𝑗 ∈C

(
max
𝑤

(𝑋𝑖 ∗𝐶 𝑗 )𝑤
∥𝑋𝑖 ∥∥𝐶 𝑗 ∥

)
. (1)

Formula 1 aims to find centroids C to minimize the sum shape-based distances between each
subsequence 𝑋𝑖 and its closest centroid 𝐶 𝑗 , i.e., minimizing

∑
𝑋𝑖 ∈T𝑙 SBD(𝑋𝑖 ,𝐶 𝑗 ). Since minimizing
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the sum of SBD(𝑋𝑖 ,𝐶 𝑗 ) is equal to maximizing the sum of max𝑤
(𝑋𝑖∗𝐶 𝑗 )𝑤
∥𝑋𝑖 ∥ ∥𝐶 𝑗 ∥ referring to Definition 1,

the problem of K-Shape clustering can be thus formulated as Definition 2.
The existing solution for K-Shape clustering iteratively assigns each point to its nearest centroid

and updates each centroid referring to its members, until convergence. Each time updating the
centroid, it extracts shapes from a sum matrix (see [31, 32] for more details), which utilizes matrix
eigenvector decomposition, taking up to O(𝑘𝑙3) time, where 𝑙 denotes the subsequence length.
Complexity Analysis. The overall time complexity for K-Shape is O(max{𝑛𝑘𝑙 log 𝑙, 𝑛𝑙2, 𝑘𝑙3} ×

𝑖𝑡𝑒𝑟 ), where 𝑛 denotes the subsequence numbers, 𝑖𝑡𝑒𝑟 denotes the maximum number of iterations.
Thus, the efficiency of K-Shape is quite concerning when 𝑙 increases.

2.2 LSM-Tree Database
To handle intensive writings in IoT scenarios, time series databases often employ LSM-Tree [30] as
storage structure, such as InfluxDB [4] and Apache IoTDB [1]. Inserted data points are first stored
in memory. When the number of points exceeds a threshold, they are batched and flushed to disk
as an immutable file, i.e., a page. Note that the points in each page are chronologically sorted, but
there may be conflicts or overlaps in timestamps across pages. For example, in the overlapped part
of Figure 1(a), the data points in 𝑃4 overwrite those in 𝑃3 with the same timestamps.

Considering the possible out-of-order points in time series databases, a straightforward approach
to apply K-Shape is to load all related points into memory, sort them by their timestamps, and then
cluster subsequences from scratch. However, this approach may be extremely time-consuming for
large volumes of time series data.

2.3 In-Database Time Series Clustering
Different from the previous works, we focus on in-database clustering, by leveraging pre-computed
metadata in databases. Given a time series𝑇 stored in a database, in-database time series clustering
aims to cluster all the subsequences of𝑇 cropped by scrolling windows, formally defined as follows.

Definition 3 (Subseqence). Given subsequence length 𝑙 , a time series 𝑇 can be divided into a
number of subsequences T𝑙 = {𝑋𝑖 },

𝑋𝑖 = {𝑝 ∈ 𝑇 |𝑖𝑙𝜏 ≤ 𝑝.𝑡 < (𝑖 + 1)𝑙𝜏},

where 𝜏 denotes the time interval and 𝑖 is a non-negative integer.

If subsequence 𝑋𝑖 has |𝑋𝑖 | = 𝑙 , it is called a complete subsequence. Otherwise, it is called an
incomplete subsequence. The subsequence length 𝑙 is set based on the real-world applications. For
example, clustering the radiation intensity data by 24 hours in Example 1.

3 In-Database K-Shape Clustering
3.1 Metadata in A Single Page
Referring to Definition 3, a single page may contain multiple complete subsequences with |𝑋𝑖 | = 𝑙 ,
and up to 2 incomplete subsequences with |𝑋𝑖 | < 𝑙 . For complete subsequences in a page, we apply
the K-Shape algorithm in [31] to find 𝑘 clusters as well as the centroids through iterations. Then,
we store all the centroids 𝐶 𝑗 as metadata. Besides, for all members in each cluster, we store the
sum of all product matrices of each subsequence and its transpose, i.e., S𝑗 =

∑
𝑋𝑖 ∈ 𝑗-th cluster𝑋

𝑇
𝑖 𝑋𝑖 ,

𝑗 = 1, . . . , 𝑘 as metadata. We also calculate the average intra-cluster shape-based distance 𝛿 𝑗 for
each cluster and store as metadata. For up to 2 incomplete subsequences, their values would also be
stored, and would be further involved in the aggregation of complementary pages in Section 3.2.2.
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3.2 Aggregation in Multiple Pages
To aggregate the pre-computed metadata of multiple pages, we sort all pages referring to their
starting time and merge one by one. As illustrated in Figure 1(b), there may be three cases when
merging a new page into the current aggregation result: adjacent (page 𝑃2), complementary (page
𝑃3), and overlapped (page 𝑃4). We will further explain and clarify the three cases for aggregation,
in Section 3.2.1, 3.2.2 and 3.2.3, respectively.

3.2.1 Aggregation of Adjacent Pages. Page 𝑃𝑖+1 is an adjacent page, if 𝑃𝑖 .endTime+𝜏 = 𝑃𝑖+1 .startTime∧
𝑃𝑖+1 .startTime%(𝑙𝜏) = 0. For instance, page 𝑃2 in Figure 1(a) is an adjacent page, since the times-
tamps of 𝑃1 and 𝑃2 are chronologically consecutive, and both the tail of 𝑃1 and the head of 𝑃2 are
complete subsequences.

With the matching strategy proposed by [10], the clustering centroids of an adjacent page could
be directly merged into the current aggregation result by updating the corresponding sum matrices.
To be specific, for each centroid 𝐶 (𝑖+1)

ℎ
in 𝑃𝑖+1, if there exists a centroid 𝐶 𝑗 in current aggregation

result close enough to 𝐶 (𝑖+1)
ℎ

, we merge them and update the corresponding sum matrix.

Lemma 1. Given current aggregation result aggregated from 𝑃1, . . . , 𝑃𝑖 , with centroids 𝐶 𝑗 , average
intra-cluster distances 𝛿 𝑗 and sum matrices S𝑗 , 𝑗 = 1, . . . , 𝑘 , if 𝑃𝑖+1 is an adjacent page, it could be
aggregated into current aggregation result by: for each centroid 𝐶 (𝑖+1)

ℎ
in 𝑃𝑖+1,

𝑗∗ = argmin
𝑗

SBD(𝐶 𝑗 ,𝐶
(𝑖+1)
ℎ
),

S𝑗∗ ← S𝑗∗ + S (𝑖+1)ℎ
, if SBD(𝐶 𝑗∗ ,𝐶

(𝑖+1)
ℎ
) ≤ 𝛿 𝑗∗ ,

S++𝑘 ← S (𝑖+1)ℎ
, otherwise.

Example 2. Figure 2 illustrates an example aggregating an adjacent 𝑃𝑖+1 into the current aggregation
result. Note that each centroid corresponds to a sum matrix which is omitted for more space in the
figure. We first take 𝐶 (𝑖+1)2 for example. First, 𝐶3 in current aggregation result is the closet centroid to
𝐶
(𝑖+1)
2 , i.e., 3 = argmin𝑗 SBD(𝐶 𝑗 ,𝐶

(𝑖+1)
2 ). Moreover, they are close enough, i.e., SBD(𝐶3,𝐶

(𝑖+1)
2 ) < 𝛿3.

Thus, they can be directly merged. Unfortunately, there does not exist a 𝐶 𝑗 in the current aggregation
result close enough to 𝐶 (𝑖+1)3 , so 𝐶 (𝑖+1)3 becomes a new centroid 𝐶4 in the updated aggregation result.

Unlike the existing matching strategy [10], we approximately update 𝐶 𝑗 and 𝛿 𝑗 by weighted
averaging to avoid time-consuming shape extraction. As the sum matrices are precisely updated,
we only need to extract the centroids from the sum matrices once to obtain the final clustering
centroids, after all pages are aggregated, as illustrated in Figure 1(d). Note that aggregation by
Lemma 1 may create a new cluster, for example 𝐶4 in Figure 2. To ensure there are 𝑘 ultimate
centroids, we will merge close centroids after merging all pages.

3.2.2 Aggregation of Complementary Pages. Page 𝑃𝑖+1 is a complementary page, if 𝑃𝑖 .endTime+𝜏 =

𝑃𝑖+1 .startTime ∧ 𝑃𝑖+1.startTime %(𝑙𝜏) ≠ 0. For instance, page 𝑃3 in Figure 1(a) is a complementary
page, where the green rectangle denotes the complementary part with the former page 𝑃2. Though
the timestamps of 𝑃2 and 𝑃3 are chronologically consecutive, the tail of 𝑃2 and the head of 𝑃3
are both incomplete subsequences. Intuitively, the complementary case could be inducted to the
adjacent case, by further considering the newly formed subsequence as a new page.

Proposition 2. Given current aggregation result aggregated from 𝑃1, . . . , 𝑃𝑖 , if 𝑃𝑖+1 is a comple-
mentary page, it could be aggregated into current aggregation result by sequentially aggregating 𝑃𝑛𝑒𝑤
and 𝑃𝑖+1 into current aggregation result by Lemma 1, where 𝑃𝑛𝑒𝑤 only contains the newly formed
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Fig. 2. The case for aggregating an adjacent page 𝑃𝑖+1

centroid𝐶 (𝑛𝑒𝑤 ) = {𝑝 ∈ 𝑃𝑖 |𝑝.𝑡 ≥ ⌊ 𝑃𝑖 .endTime
𝑙𝜏

⌋𝑙𝜏} ∪ {𝑝 ∈ 𝑃𝑖+1 |𝑝.𝑡 ≤ ⌈𝑃𝑖+1 .startTime
𝑙𝜏

⌉𝑙𝜏}, average distance
𝛿 (𝑛𝑒𝑤 ) = 0 and sum matrix S (𝑛𝑒𝑤 ) = 𝐶 (𝑛𝑒𝑤 )

𝑇
𝐶 (𝑛𝑒𝑤 ) .

Example 3. Figure 1(b) illustrates three cases for aggregation of multiple pages. To aggregate
complementary page 𝑃3 into the current aggregation result, we first combine the tail of 𝑃2 and the head
of 𝑃3 to form a new page 𝑃𝑛𝑒𝑤 , which contains only one centroid 𝐶 (𝑛𝑒𝑤 ) in orange (namely the new
subsequence) and its sum matrix S (𝑛𝑒𝑤 ) . Then we can obtain the aggregation result by sequentially
merging two adjacent pages 𝑃𝑛𝑒𝑤 and 𝑃3 into the current aggregation result according to Lemma 1.

3.2.3 Aggregation of Overlapped Pages . An overlapped page refers to a page having overlapped
time intervals with its former page, i.e., 𝑃𝑖+1.startTime ≤ 𝑃𝑖 .endTime. In such case, some data
points in 𝑃𝑖 will be updated by the points with the same timestamps in 𝑃𝑖+1. For example, in Figure
1(a), the points of 𝑃4 in the overlapped part update those of 𝑃3, as 𝑃4 has the higher number 4.

The current aggregation result w.r.t. 𝑃1, . . . , 𝑃𝑖 would be unreliable if there is an overlapped page
𝑃𝑖+1, and it should be updated by considering all conflicting points in 𝑃𝑖 and 𝑃𝑖+1. That is, we need
to load the points in the overlapped part of 𝑃𝑖 and 𝑃𝑖+1, and then update the aggregation result.
Fortunately, the aggregation result could be fast updated by the proposition below.

Proposition 3. Given current aggregation result aggregated from 𝑃1, . . . , 𝑃𝑖 , consider page 𝑃𝑖+1,
overlapped with 𝑃𝑖 . Denote 𝑋 𝑗 an updated subsequence belonging to the ℎ-th cluster in current aggre-
gation result. It is updated to 𝑋 ′𝑗 belonging to the 𝑞-th cluster in 𝑃𝑖+1. The sum matrices can be updated
by

Sℎ ← Sℎ + ∇𝑋𝑇
𝑗 𝑋 𝑗 + 𝑋𝑇

𝑗 ∇𝑋 𝑗 + ∇𝑋𝑇
𝑗 ∇𝑋 𝑗 ,

S (𝑖+1)𝑞 ← S (𝑖+1)𝑞 − (𝑋 ′𝑗 )𝑇𝑋 ′𝑗 ,

where ∇𝑋 𝑗 = 𝑋 ′𝑗 −𝑋 𝑗 , if 𝑋 ′𝑗 a complete subsequence; otherwise, update Sℎ by treating 𝑋 ′𝑗 as𝐶
(𝑛𝑒𝑤 ) in

Proposition 2.

Proof. Referring to Section 3.1, we have Sℎ =
∑

𝑋𝑖 ∈ℎ-th cluster𝑋
𝑇
𝑖 𝑋𝑖 . If 𝑋 𝑗 is updated to 𝑋 ′𝑗 , we

need to eliminate the influence of 𝑋 𝑗 by subtracting 𝑋𝑇
𝑗 𝑋 𝑗 from Sℎ . And then we need to consider

the influence of𝑋 ′𝑗 by adding𝑋
′
𝑗
𝑇𝑋 ′𝑗 . Since the updates often happen on a small number of points, we

can directly focus on the updates of𝑋 𝑗 , and treat𝑋 ′𝑗 = 𝑋 𝑗 +∇𝑋 𝑗 . Thus, we have new summatrix with
Sℎ ← Sℎ−𝑋𝑇

𝑗 𝑋 𝑗 +𝑋 ′𝑗
𝑇𝑋 ′𝑗 = Sℎ−𝑋𝑇

𝑗 𝑋 𝑗 + (𝑋 𝑗 +∇𝑋 𝑗 )𝑇 (𝑋 𝑗 +∇𝑋 𝑗 ) = Sℎ +∇𝑋𝑇
𝑗 𝑋 𝑗 +𝑋𝑇

𝑗 ∇𝑋 𝑗 +∇𝑋𝑇
𝑗 ∇𝑋 𝑗 .

For sum matrix 𝑆 (𝑖+1)𝑞 , we only need to eliminate the influence of 𝑋 ′𝑗 by subtracting 𝑋 ′𝑗
𝑇𝑋 ′𝑗 .
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Note that if 𝑋 ′𝑗 is an incomplete subsequences, its sum matrices are not pre-computed as stated
in Section 3.1. So in this case, Proposition 2 can be directly applied for this case to update and
aggregate incomplete subsequences. □

To eliminate the negative influence of failed subsequences (e.g., the failed subsequence in Figure
1(a)), centroids and average intra-cluster distances should be re-calculated after updating sum
matrices. After handling all conflicting points and updating all sum matrices by Proposition 3,
overlapped cases could simply be inducted to adjacent cases in Lemma 1.

Example 4. Consider page 𝑃4 overlapped with 𝑃3 in Figure 1(a). We first update the sum matrices
𝑆ℎ in current aggregation result, by loading original data points in 𝑃3 and 𝑃4 and applying Proposition
3 for each updated subsequence. Since there is no complete updated subsequence, we do not need to
update the metadata in 𝑃4. We then re-calculate centroid 𝐶ℎ and 𝛿ℎ from Sℎ by extracting shapes.
Then we could merge 𝑃4 into the current aggregation result by Lemma 1.

3.2.4 Discussion on Handling Shifting. First, in complementary cases, a new subsequence 𝐶 (new) is
first assembled from two complementary pages as shown in Figure 1(a). Then, the shift between
the newly generated subsequence𝐶 (new) and the existing centroids𝐶1, . . . ,𝐶𝑘 will be handled. After
that, we will calculate shape-based distance (i.e., inner product calculations in [10]) and do the
computation of new centroids, as shown in Figure 1(b).
Besides, shifting across pages may also happen across out-of-order cases, that is, overlapped

cases. In this case, an existing subsequence 𝑋 𝑗 will be updated by a subsequence 𝑋 ′𝑗 in a later page.
During pre-computation, the shift of 𝑋 𝑗 has already been applied, referring to its corresponding
pre-computed centroid 𝐶ℎ . Note that the updating from 𝑋 𝑗 to 𝑋 ′𝑗 will not significantly change the
shape of subsequences, so we apply the same shift to 𝑋 ′𝑗 , update the sum matrix and then do the
computation of the new centroid. Such a strategy is similar to the updating processing in [10],
where shifts are not changed during centroid merging and updating.

3.3 In-Database K-Shape Algorithm
We are now prepared to introduce our in-database K-Shape. Algorithm 1 provides the pseudo-code,
and Figure 1 illustrates the corresponding in-database adaptation workflow.

3.3.1 Algorithm. We first initialize the aggregation result with the first page 𝑃1 in Line 2. Then
we load the next page 𝑃𝑖+1 each time, and merge with current aggregation result. For adjacent
page 𝑃𝑖+1, we could directly merge 𝑃𝑖+1 into current aggregation result by Lemma 1 in Line 6. If
𝑃𝑖+1 is a complementary page, we first generate 𝑃𝑛𝑒𝑤 with corresponding 𝐶 (𝑛𝑒𝑤 ) ,S (𝑛𝑒𝑤 ) , 𝛿 (𝑛𝑒𝑤 )
by Proposition 2, and sequentially merge 𝑃𝑛𝑒𝑤 and 𝑃𝑖+1 into current aggregation result in Lines
8-9. For adjacent and complementary cases, we adopt weighted averaging to update centroids and
intra-cluster distances in Line 10. Otherwise, if 𝑃𝑖+1 is an overlapped page, we apply Proposition
3 on each updated subsequence, aggregate sum matrices, and then extract centroids by existing
methods (namely ExtractShape) in [31, 32] from matrices from Lines 12 to 15. After traversing all
pages, we extract final exact centroids in Line 16. If 𝑘 has been updated as discussed in Section
3.2.1, we merge close centroids in Line 17 to ensure 𝑘 ultimate centroids.

3.3.2 Complexity Analysis. Aggregating an adjacent or complementary page takes O(𝑘𝑙2) time.
When aggregating an overlapped page, it takes O(𝑘𝑙3) time at most due to the time-consuming
shape extraction. Denoting overall page number as 𝑁 , overlapped page number as𝑀 and average
overlapped length as ℓ , the overall time complexity for in-database K-Shape is O(𝑘 (𝑁 −𝑀)𝑙2 +
𝑘𝑀𝑙3⌈ ℓ

𝑙
⌉).
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Algorithm 1 K-Shape on LSM-Tree Based Store
Input: Multiple pages 𝑃𝑖 each with pre-computed sum matrix S𝑖
Output: Cluster centroids C
1: sort all pages 𝑃𝑖 by 𝑃𝑖 .startTime
2: 𝐶 𝑗 ← 𝐶

(1)
𝑗

,S𝑗 ← S (1)𝑗
, 𝑗 = 1, . . . , 𝑘

3: for each consecutive pages 𝑃𝑖 , 𝑃𝑖+1 do
4: if 𝑃𝑖 .endTime < 𝑃𝑖+1.startTime then
5: if 𝑃𝑖 .endTime + 𝜏 = 𝑃𝑖+1 .startTime and 𝑃𝑖+1.startTime%(𝑙𝜏) = 0 then
6: update S𝑗 with 𝑃𝑖+1 by Lemma 1, 𝑗 = 1, . . . , 𝑘
7: else
8: generate 𝑃𝑛𝑒𝑤 by Proposition 2
9: update S𝑗 with 𝑃𝑛𝑒𝑤, 𝑃𝑖+1 by Lemma 1, 𝑗 = 1, . . . , 𝑘
10: update 𝐶 𝑗 , 𝛿 𝑗 by weighted averaging, 𝑗 = 1, . . . , 𝑘
11: else
12: for each updated subsequence do
13: update corresponding Sℎ and S (𝑖+1)𝑞 by Proposition 3
14: update S𝑗 with 𝑃𝑖+1 by Lemma 1, 𝑗 = 1, . . . , 𝑘
15: 𝐶 𝑗 , 𝛿 𝑗 ← ExtractShape(S𝑗 ), 𝑗 = 1, . . . , 𝑘
16: 𝐶 𝑗 ← ExtractShape(S𝑗 ), 𝑗 = 1, . . . , 𝑘
17: merge close centroids if 𝑘 updated
18: return C← {𝐶1, . . . ,𝐶𝑘 }

4 Medoid-Shape Clustering
Although K-Shape can outperform other time series clustering methods [31], both K-Shape and its
in-database adaptation in Section 3 still meet difficulties with long subsequences. Therefore, we
propose a variant of K-Shape clustering, Medoid-Shape clustering.

4.1 Medoid-Shape Clustering Problem
Why Medoid-Shape? When subsequence length 𝑙 is large, in-database K-Shape takes O(𝑘𝑙2)
space for each page to store sum matrices, and O(𝑘𝑙3) time to extract shapes from matrices. Thus,
K-Shape and its in-database adaptation may take extremely high storage space and time costs with
𝑙 increasing. Unlike K-Shape, Medoid-Shape clustering aims to find a subset of all subsequences to
represent clustering centroids.

Definition 4 (Medoid-Shape Clustering). Given a set of subsequences T𝑙 , Medoid-Shape clus-
tering problem aims to find a set of centroids C = {𝐶1, . . . ,𝐶𝑘 } ⊆ T𝑙 , satisfying

C∗ = argmax
C⊆T𝑙

∑︁
𝑋𝑖 ∈T𝑙

max
𝐶∈C

(
max
𝑤

(𝑋𝑖 ∗𝐶)𝑤
∥𝑋𝑖 ∥∥𝐶 ∥

)
.

Similar to Definition 2, Medoid-Shape clustering also aims to minimize the sum shape-based
distances between each subsequence 𝑋𝑖 and its closest centroid 𝐶 𝑗 . However, instead of finding an
optimal arbitrary set of centroids C, Medoid-Shape aims to choose a set of actual subsequences as
centroids, i.e., C ⊆ T𝑙 . Our solution below can significantly benefit from such simple modification.
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4.2 A Greedy Solution
In this section, we first prove that the aim function of Medoid-Shape clustering is submodular in
Proposition 4. Then an effective greedy solution in [27] could be applied with a promising error
bound.
Given a subsequence 𝑋 and a centroid 𝐶 ∈ C, we introduce 𝑔(𝑋,𝐶) = max𝑤 (𝑋∗𝐶 )𝑤∥𝑋 ∥ ∥𝐶 ∥ , equal to

1 − SBD(𝑋,𝐶) referring to Definition 1, and we denote 𝑓T𝑙 (C) =
∑

𝑋 ∈T𝑙 max𝐶∈C 𝑔(𝑋,𝐶) as the aim
function in Definition 4. For simplicity, we omit the subscript and use 𝑓 (C) to represent 𝑓T𝑙 (C).

Proposition 4. Function 𝑓 (C) is a non-negative submodular function with respect to C.

Proof. Consider A ⊆ B and a new element 𝑉 ∉ B.

𝑓 (A ∪ {𝑉 }) − 𝑓 (A) =
∑︁
𝑋

max
𝐶∈A∪{𝑉 }

𝑔(𝑋,𝐶) −max
𝐶∈A

𝑔(𝑋,𝐶)

=
∑︁
𝑋

max
(
𝑔(𝑋,𝑉 ),max

𝐶∈A
𝑔(𝑋,𝐶)

)
−max

𝐶∈A
𝑔(𝑋,𝐶).

Similarly, for set B,

𝑓 (B ∪ {𝑉 }) − 𝑓 (B) =
∑︁
𝑋

max
(
𝑔(𝑋,𝐶),max

𝐶∈B
𝑔(𝑋,𝐶)

)
−max

𝐶∈B
𝑔(𝑋,𝐶).

For an arbitrary𝑋 , denote𝑑𝑖 𝑓 𝑓 (𝑋 ) = max (𝑔(𝑋,𝑉 ),max𝐶∈A 𝑔(𝑋,𝐶))−max𝐶∈A 𝑔(𝑋,𝐶)−max(𝑔(𝑋,𝑉 ),
max𝐶∈B 𝑔(𝑋,𝐶)) +max𝐶∈B 𝑔(𝑋,𝐶).
Since A ⊆ B, there has max𝐶∈B 𝑔(𝑋,𝐶) ≥ max𝐶∈A 𝑔(𝑋,𝐶). Consider the following three cases:
Case (1): 𝑔(𝑋,𝑉 ) > max𝐶∈B 𝑔(𝑋,𝐶). There has

max
(
𝑔(𝑋,𝑉 ),max

𝐶∈A
𝑔(𝑋,𝐶)

)
= max

(
𝑔(𝑋,𝑉 ),max

𝐶∈B
𝑔(𝑋,𝐶)

)
= 𝑔(𝑋,𝑉 ).

Thus, 𝑑𝑖 𝑓 𝑓 (𝑋 ) = max𝐶∈B 𝑔(𝑋,𝐶) −max𝐶∈A 𝑔(𝑋,𝐶) ≥ 0.
Case (2): max𝐶∈A 𝑔(𝑋,𝐶) ≤ 𝑔(𝑋,𝑉 ) ≤ max𝐶∈B 𝑔(𝑋,𝐶). Similarly, there has𝑑𝑖 𝑓 𝑓 (𝑋 ) = 𝑔(𝑋,𝑉 )−

max𝐶∈A 𝑔(𝑋,𝐶) ≥ 0.
Case (3): 𝑔(𝑋,𝑉 ) < max𝐶∈A 𝑔(𝑋,𝐶). There has 𝑑𝑖 𝑓 𝑓 (𝑋 ) = 0.
By considering the three cases above, there always has 𝑓 (A ∪ {𝑉 }) − 𝑓 (A) ≥ 𝑓 (B ∪ {𝑉 }) −

𝑓 (B),∀A ⊂ B,𝑉 ∉ B. Thus, function 𝑓 is submodular. □

Since 𝑓 is submodular, we could apply existing greedy-stochastic method [27], i.e., pseudo-code
in the following Algorithm 2, to find an approximately optimal set C to maximize 𝑓 (C).
Algorithm 2 greedily finds one centroid each iteration in Line 3. During one iteration, a set of

subsequences T𝑠
𝑙
with size 𝑠 is first sampled in Line 4. Then each subsequence in T𝑠

𝑙
is temporarily

added to the current centroid set C in Line 5, and calculate the overall aim function 𝑓 in Line 6.
Then the subsequence in current sample set which can maximize the aim function is selected and
added to centroids in Lines 7-8. By Algorithm 2, with subsequence number 𝑛 and sample size 𝑠 , we
can find centroids in O(𝑘2𝑠𝑛𝑙 log 𝑙) time with (1 − 𝑒−1 − 𝑒− 𝑠𝑘

𝑛 ) approximation ratio in expectation
(see [27] for more details).

Note that shifting becomes part of the greedy solution. Because when calculating shape-based
distances between subsequences and current centroids (as in Line 6 in Algorithm 2), shifting has
already be taken into consideration.
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Algorithm 2 Greedy Solution for Medoid-Shape Clustering
Input: A time series T , subsequence length l, cluster size k
Output: A set of cluster centroids C
1: T𝑙 ← all the subsequences in T with length l
2: C← 𝜙

3: while |C| < 𝑘 do
4: sample T𝑠

𝑙
⊂ T𝑙\C

5: for each subsequence 𝑋 ∈ T𝑠
𝑙
do

6: 𝑓 (C ∪ {𝑋 }) ← ∑
𝑋 𝑗 ∈T𝑙 max𝐶ℎ∈C∪{𝑋 } 𝑔(𝑋 𝑗 ,𝐶ℎ)

7: 𝑋 ∗ ← argmax𝑋 ∈T𝑠
𝑙
𝑓 (C ∪ {𝑋 })

8: C← C ∪ {𝑋 ∗}
9: return C

4.3 Approximate Aim Function Evaluation
Note that we need to traverse all pairs of subsequences 𝑋 𝑗 and current centroids 𝐶ℎ to evaluate the
aim function 𝑓 (C ∪ {𝑋 }) in Line 6 of Algorithm 2, with time complexity up to O(𝑘𝑛) each time,
which is extremely time-consuming. Thereby, we propose to find an approximate solution for aim
function evaluation.

4.3.1 Intuition for Approximation. Consider two segments T [1 : 𝑛] and T [2 : 𝑛 + 1] in time series
𝑇 . They tend to have similar shapes, i.e., close in shape-based distance in Definition 1, since there
is only one element shifted. Further consider an arbitrary sequence 𝐶ℎ . Intuitively, the shape-based
distance between 𝐶ℎ and T [1 : 𝑛] would be similar to that between 𝐶ℎ and T [2 : 𝑛 + 1]. Therefore,
it is natural to wonder whether there exists a triangle inequality for shape-based distances.

Unfortunately, regular triangle inequality cannot hold with only shape-based distance involved. A
simple counter-example is 𝑎 = [1, 1], 𝑏 = [−1,−1], 𝑐 = [1,−1]. There has max(𝑎 ∗ 𝑏) = −1,max(𝑎 ∗
𝑐) = 1 and max(𝑏 ∗ 𝑐) = 1. Referring to Definition 1, SBD(𝑎, 𝑏) = 1.5, SBD(𝑎, 𝑐) = 0.5 and
SBD(𝑏, 𝑐) = 0.5. Obviously, SBD(𝑎, 𝑐) + SBD(𝑏, 𝑐) < SBD(𝑎, 𝑏), so the triangle inequality cannot
hold. However, when both 𝐿1-norm and 𝐿2-norm involve, we can propose a bound for shape-based
distances. Before that, we briefly introduce Lemma 5 as the mathematical basis of the bounds in
Proposition 6.

Lemma 5 (Young’s Ineqality[41]). Given 𝑝, 𝑞, 𝑟 ∈ [1,∞], if 𝑎 ∈ 𝐿𝑝 (R𝑙 ), 𝑏 ∈ 𝐿𝑟 (R𝑙 ), then

∥𝑎 ∗ 𝑏∥𝑞 ≤ ∥𝑎∥𝑝 ∥𝑏∥𝑟 ,

where 𝑝, 𝑞, 𝑟 satisfy 1
𝑞
+1 = 1

𝑝
+ 1

𝑟
, 𝐿 denotes the Lebesgue space and operator ∗ denotes cross-correlation,

a.k.a. vector convolution.

Proposition 6. Given two subsequences 𝑋𝑖 and 𝑋 𝑗 , and a reference subsequence 𝐶ℎ , the difference
between the shape-based distances of 𝑋𝑖 and 𝑋 𝑗 can be bounded by

𝑔(𝑋 𝑗 ,𝐶ℎ) − 𝑔(𝑋𝑖 ,𝐶ℎ) ≤
(

∥∇𝑋 ∥
∥𝑋𝑖 ∥ − ∥∇𝑋 ∥

) (
𝑔(𝑋𝑖 ,𝐶ℎ) +

∥𝐶ℎ ∥1
∥𝐶ℎ ∥

)
,

where ∇𝑋 = 𝑋 𝑗 − 𝑋𝑖 and ∥•∥ without subscript denotes the 𝐿2-norm for simplicity.

Proof. Denote ∇𝑋 as the difference of subsequences 𝑋𝑖 and 𝑋 𝑗 ,

∇𝑋 = 𝑋 𝑗 − 𝑋𝑖 . (2)
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Fig. 3. The bound between 𝑔(𝑋𝑖 ,𝐶ℎ) and 𝑔(𝑋 𝑗 ,𝐶ℎ)

Since the convolution operation satisfies the linear property, the following equation holds,

𝑋 𝑗 ∗𝐶ℎ = 𝑋𝑖 ∗𝐶ℎ + ∇𝑋 ∗𝐶ℎ .

Therefore,

max
𝑤
(𝑋 𝑗 ∗𝐶ℎ)𝑤 = max

𝑤
(𝑋𝑖 ∗𝐶ℎ + ∇𝑋 ∗𝐶ℎ)𝑤 ≤ max

𝑤
(𝑋𝑖 ∗𝐶ℎ)𝑤 +max

𝑤
(∇𝑋 ∗𝐶ℎ)𝑤 . (3)

Referring to the definition of infinity norm, we have

max
𝑤
(∇𝑋 ∗𝐶ℎ)𝑤 ≤ ∥∇𝑋 ∗𝐶ℎ ∥∞.

Referring to the Young’s inequality in Lemma 5, with 𝑝 = 1, 𝑟 = ∞, 𝑞 = ∞, the following
inequality holds,

max
𝑤
(∇𝑋 ∗𝐶ℎ)𝑤 ≤ ∥∇𝑋 ∗𝐶ℎ ∥∞ ≤ ∥∇𝑋 ∥∞∥𝐶ℎ ∥1 . (4)

That is, given a reference subsequence𝐶ℎ , the termmax𝑤 (∇𝑋 ∗𝐶ℎ)𝑤 can be bounded by ∥∇𝑋 ∥∞.
On the other hand, from Equation 2, there has

∥𝑋𝑖 ∥ ≤ ∥𝑋 𝑗 ∥ + ∥∇𝑋 ∥,
1
∥𝑋 𝑗 ∥

≤ 1
∥𝑋𝑖 ∥ − ∥∇𝑋 ∥

. (5)

By combining Equations 3, 4 and 5, there has
max𝑤 (𝑋 𝑗 ∗𝐶ℎ)𝑤

∥𝑋 𝑗 ∥
≤ max𝑤 (𝑋𝑖 ∗𝐶ℎ)𝑤
∥𝑋𝑖 ∥ − ∥∇𝑋 ∥

+ ∥∇𝑋 ∥∞∥𝐶ℎ ∥1
∥𝑋𝑖 ∥ − ∥∇𝑋 ∥

,

that is,
max𝑤 (𝑋 𝑗 ∗𝐶ℎ)𝑤
∥𝑋 𝑗 ∥∥𝐶ℎ ∥

− max𝑤 (𝑋𝑖 ∗𝐶ℎ)𝑤
∥𝑋𝑖 ∥∥𝐶ℎ ∥

≤ ∥∇𝑋 ∥
∥𝑋𝑖 ∥ − ∥∇𝑋 ∥

max𝑤 (𝑋𝑖 ∗𝐶ℎ)𝑤
∥𝑋𝑖 ∥∥𝐶ℎ ∥

+ ∥∇𝑋 ∥∞
∥𝑋𝑖 ∥ − ∥∇𝑋 ∥

∥𝐶ℎ ∥1
∥𝐶ℎ ∥

≤ ∥∇𝑋 ∥
∥𝑋𝑖 ∥ − ∥∇𝑋 ∥

(
max𝑤 (𝑋𝑖 ∗𝐶ℎ)𝑤
∥𝑋𝑖 ∥∥𝐶ℎ ∥

+ ∥𝐶ℎ ∥1
∥𝐶ℎ ∥

)
=const.

(
∥∇𝑋 ∥

∥𝑋𝑖 ∥ − ∥∇𝑋 ∥

)
.

Note that the constant implies that it does not relate to 𝑋 𝑗 , it is only related to 𝑔(𝑋𝑖 ,𝐶ℎ), the
𝐿1-norm and 𝐿2-norm of 𝐶ℎ . □
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4.3.2 Implication of Proposition 6. Figure 3 illustrates the relationship among 𝑋𝑖 , 𝑋 𝑗 and𝐶ℎ . Gener-
ally, Proposition 6 holds for any𝑋𝑖 , 𝑋 𝑗 with small ∥∇𝑋 ∥ and any𝐶ℎ . To better clarify the implication
of Proposition 6, we consider 𝑋𝑖 as a 𝐿2-norm clustering centroid (namely approximate centroid),
𝑋 𝑗 as an arbitrary member w.r.t. 𝑋𝑖 , and𝐶ℎ as a shape-based centroid in current C. The implication
of Proposition 6 is that given approximate centroid 𝑋𝑖 , the shape-based distances between its
any member 𝑋 𝑗 and 𝐶ℎ can be bounded by 𝑔(𝑋𝑖 ,𝐶ℎ) +

(
∥∇𝑋 ∥

∥𝑋𝑖 ∥−∥∇𝑋 ∥

) (
𝑔(𝑋𝑖 ,𝐶ℎ) + ∥𝐶ℎ ∥1

∥𝐶ℎ ∥

)
. Without

Proposition 6, we need to costly traverse all pairs of 𝑋 𝑗 and 𝐶ℎ (denoted by the dotted arrows in
Figure 3) to evaluate aim function 𝑓 (C∪ {𝑋 }) in Line 6 of Algorithm 2. Instead, with Proposition 6,
we could approximately evaluate 𝑓 (C ∪ {𝑋 }) by just traversing all pairs of 𝐶ℎ and approximate
centroids 𝑋𝑖 . Since the number of approximate centroids is much lower than that of subsequences,
the aim function evaluation time cost could significantly decrease.

4.3.3 Approximate Algorithm. Algorithm 3 presents the pseudo-code for approximate aim function
evaluation, which serves to replace Line 6 of Algorithm 2 for acceleration.

Algorithm 3 Approximate Aim Function Evaluation
Input: An aim function 𝑓 w.r.t. subsequences T𝑙 , current cluster centroids C, a newly added

centroid 𝑋
Output: Approximation for 𝑓 (C ∪ {𝑋 })
1: if T𝑙 not approximately clustered then
2: cluster all the subsequences T𝑙 into 𝑟 approximate clusters with centroids𝑈1, ...,𝑈𝑟 respec-

tively
3: 𝑤𝑖 ← number of members in the 𝑖-th cluster, 𝑖 = 1, . . . , 𝑟
4: 𝑓 (C ∪ {𝑋 }) ← 0
5: for each centroid𝑈𝑖 do
6: 𝑓 (C ∪ {𝑋 }) ← 𝑓 (C ∪ {𝑋 }) +𝑤𝑖 max

𝐶ℎ∈C∪{𝑋 }
𝑔(𝑈𝑖 ,𝐶ℎ)

7: return 𝑓 (C ∪ {𝑋 })

Algorithm 3 first applies approximate clustering on all subsequences in Lines 1-3, to cluster
subsequences T𝑙 into approximate clusters. Note that such approximate clustering only needs to be
done once, and the results could be reused. Then the aim function 𝑓 w.r.t. the current centroid set
C ∪ {𝑋 } can be calculated by only considering all approximate centroids𝑈1, . . . ,𝑈𝑟 in Line 6.
Note that numerous existing clustering methods could be applied for approximate clustering

in Line 2, such as grouping by a given threshold [37], K-Means [24] and LSH-based clustering
[11]. Moreover, approximate clustering only serves as an intermediate metric for aim function
evaluation, and does not directly correlate to the final shape-based clustering results.

4.3.4 Complexity Analysis. Algorithm 3 takes O(𝑘𝑟𝑙 log 𝑙) time per evaluation, much lower than
O(𝑘𝑛𝑙 log 𝑙) without approximation. The overall time complexity for Medoid-Shape is O(𝑊 +
𝑘2𝑠𝑟𝑙 log 𝑙), where 𝑂 (𝑊 ) denotes the approximate clustering time.

4.3.5 Guaranteed Error Bound. In addition to lower time complexity, there is a guaranteed error
bound in expectation in Proposition 7, whereas K-Shape cannot provide a promising error bound.

Proposition 7. Algorithm 2 with approximation in Algorithm 3 returns an approximate maximum
aim function 𝑓 with the following promising error bound in expectation

𝑓 ≥ (1 − 𝑒−1 − 𝑒− 𝑠𝑘
𝑛 ) 𝑓 ∗ −

∑︁
𝑖

𝑤𝑖𝑑𝑖

∥𝑈𝑖 ∥ − 𝑑𝑖
max
𝐶ℎ

(
𝑔(𝑈𝑖 ,𝐶ℎ) +

∥𝐶ℎ ∥1
∥𝐶ℎ ∥

)
,
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where 𝑓 ∗ denotes the theoretical optimal aim function score, 𝑑𝑖 denotes the maximum distance between
members and centroid𝑈𝑖 in the 𝑖-th approximate cluster.

Proof. Given the maximum distance 𝑑𝑖 between members and centroid w.r.t. 𝑈𝑖 , we have
∥∇𝑋 ∥ ≤ 𝑑𝑖 for all members in the 𝑖-th approximate cluster. Since ∥∇𝑋 ∥

∥𝑋𝑖 ∥−∥∇𝑋 ∥ is monotonically
increasing w.r.t. ∥∇𝑋 ∥, for any 𝑋 𝑗 belonging to the 𝑖-th approximate cluster we have

∥∇𝑋 ∥
∥𝑈𝑖 ∥ − ∥∇𝑋 ∥

≤ 𝑑𝑖

∥𝑈𝑖 ∥ − 𝑑𝑖
.

Therefore, given any shape-based centroid 𝐶ℎ , by Proposition 6, there has

𝑔(𝑈𝑖 ,𝐶ℎ) ≥ 𝑔(𝑋 𝑗 ,𝐶ℎ) −
𝑑𝑖

∥𝑈𝑖 ∥ − 𝑑𝑖

(
𝑔(𝑈𝑖 ,𝐶ℎ) +

∥𝐶ℎ ∥1
∥𝐶ℎ ∥

)
.

Furthermore, by considering all members for𝑈𝑖 , we have

𝑤𝑖𝑔(𝑈𝑖 ,𝐶ℎ) ≥
∑︁
𝑋 𝑗

𝑔(𝑋 𝑗 ,𝐶ℎ) −
𝑤𝑖𝑑𝑖

∥𝑈𝑖 ∥ − 𝑑𝑖

(
𝑔(𝑈𝑖 ,𝐶ℎ) +

∥𝐶ℎ ∥1
∥𝐶ℎ ∥

)
. (6)

Note that the aim function score 𝑓 returned by Algorithms 2 and 3 is

𝑓 =
∑︁
𝑖

𝑤𝑖 max
𝐶ℎ

𝑔(𝑈𝑖 ,𝐶ℎ). (7)

Moreover, referring to the error analysis in [27] with respect to greedy-stochastic method, given
sample size 𝑠 and subsequence number 𝑛 there has∑︁

𝑖

∑︁
𝑋 𝑗

max
𝐶ℎ

𝑔(𝑋 𝑗 ,𝐶ℎ) ≥ (1 − 𝑒−1 − 𝑒−
𝑠𝑘
𝑛 ) 𝑓 ∗, (8)

where 𝑓 ∗ denotes the theoretical optimal aim function score.
By combining Equations 6, 7 and 8, we can prove

𝑓 =
∑︁
𝑖

𝑤𝑖 max
𝐶ℎ

𝑔(𝑈𝑖 ,𝐶ℎ)

≥
∑︁
𝑖

∑︁
𝑋 𝑗

max
𝐶ℎ

𝑔(𝑋 𝑗 ,𝐶ℎ) −
∑︁
𝑖

𝑤𝑖𝑑𝑖

∥𝑈𝑖 ∥ − 𝑑𝑖

(
𝑔(𝑈𝑖 ,𝐶ℎ) +

∥𝐶ℎ ∥1
∥𝐶ℎ ∥

)
≥ (1 − 𝑒−1 − 𝑒− 𝑠𝑘

𝑛 ) 𝑓 ∗ −
∑︁
𝑖

𝑤𝑖𝑑𝑖

∥𝑈𝑖 ∥ − 𝑑𝑖

(
𝑔(𝑈𝑖 ,𝐶ℎ) +

∥𝐶ℎ ∥1
∥𝐶ℎ ∥

)
.

□

5 In-Database Medoid-Shape
To further accelerate Medoid-Shape in Section 4, the approximate centroids could also be stored as
pre-computed metadata during flushing, just like in-database K-Shape in Section 3.

5.1 Metadata in A Single Page
Different from Section 3.1, we do not store K-Shape clustering results as metadata. Instead, we
apply approximate clustering on each page, such as aforesaid K-Means [24], LSH-based clustering
[11] and so on. Approximate centroids𝑈 𝑗 , cluster weights𝑤 𝑗 and average intra-cluster distances 𝛿 𝑗
are stored as metadata. Since there is no need to store matrices, the space complexity of in-database
Medoid-Shape is much smaller than that of in-database K-Shape.
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5.2 Aggregation in Multiple Pages
Similar to Section 3.2, we also consider three cases when merging a new page into current aggrega-
tion result: adjacent pages in Section 5.2.1, complementary pages in Section 5.2.2, and overlapped
pages in Section 5.2.3.

5.2.1 Aggregation of Adjacent Pages. Similar to Section 3.2.1, to aggregate adjacent pages, we may
merge approximate centroids close enough into one centroid, or new a centroid.

Proposition 8. Given current aggregation result aggregated from 𝑃1, . . . , 𝑃𝑖 , with approximate
centroids 𝑈 𝑗 and cluster sizes𝑤 𝑗 , 𝑗 = 1, . . . , 𝑟 , if 𝑃𝑖+1 is an adjacent page, it could be aggregated into
current aggregation result by: for each centroid𝑈 (𝑖+1)

ℎ
in 𝑃𝑖+1,

𝑗∗ = argmin
𝑗

∥𝑈 𝑗 −𝑈 (𝑖+1)ℎ
∥,

𝑈 𝑗∗ ←
𝑤 𝑗∗𝑈 𝑗∗

𝑤 𝑗∗ +𝑤 (𝑖+1)ℎ

+
𝑤
(𝑖+1)
ℎ

𝑈
(𝑖+1)
ℎ

𝑤 𝑗∗ +𝑤 (𝑖+1)ℎ

, if ∥𝑈 𝑗∗ −𝑈 (𝑖+1)ℎ
∥ ≤ 𝛿 𝑗∗ ,

𝑈++𝑟 ← 𝑈
(𝑖+1)
ℎ

, otherwise.

After applying Proposition 8, cluster weights𝑤 𝑗 and average distances 𝛿 𝑗 could be accordingly
updated by weighted averaging.

5.2.2 Aggregation of Complementary Pages. Similar to Section 3.2.2, we generate 𝑃𝑛𝑒𝑤 by the
proposition below, and sequentially merge 𝑃𝑛𝑒𝑤 and 𝑃𝑖+1 into current aggregation result.

Proposition 9. Given current aggregation result aggregated from 𝑃1, . . . , 𝑃𝑖 , if 𝑃𝑖+1 is a comple-
mentary page, it could be aggregated into current aggregation result by sequentially aggregating 𝑃𝑛𝑒𝑤
and 𝑃𝑖+1 into current aggregation result by Proposition 8, where 𝑃𝑛𝑒𝑤 only contains the newly formed
centroid𝑈 (𝑛𝑒𝑤 ) = {𝑝 ∈ 𝑃𝑖 |𝑝.𝑡 ≥ ⌊ 𝑃𝑖 .endTime

𝑙𝜏
⌋𝑙𝜏} ∪ {𝑝 ∈ 𝑃𝑖+1 |𝑝.𝑡 ≤ ⌈𝑃𝑖+1 .startTime

𝑙𝜏
⌉𝑙𝜏},𝑤 (𝑛𝑒𝑤 ) = 1 and

average distance 𝛿 (𝑛𝑒𝑤 ) = 0.

5.2.3 Aggregation of Overlapped Pages. Similar to Section 3.2.3, we only need to update each
subsequence involved in the overlapped part, and induct overlapped cases into adjacent cases.

Proposition 10. Given current aggregation result aggregated from 𝑃1, . . . , 𝑃𝑖 , consider page 𝑃𝑖+1,
overlapped with 𝑃𝑖 . Denote 𝑋 𝑗 an updated subsequence belonging to the ℎ-th cluster in current aggre-
gation result. It is updated to 𝑋 ′𝑗 belonging to the 𝑞-th cluster in 𝑃𝑖+1. The approximate centroids can
be updated by

𝑈ℎ ← 𝑈ℎ +
1
𝑤ℎ

(𝑋 ′𝑗 − 𝑋 𝑗 ), 𝑈
(𝑖+1)
𝑞 ←

𝑤𝑞

𝑤𝑞 − 1
𝑈
(𝑖+1)
𝑞 − 1

𝑤𝑞 − 1
𝑋 ′𝑗 .

5.3 In-Database Medoid-Shape Algorithm
On the basis of metadata and aggregation introduced in Sections 5.1, 5.2, we are now ready to
introduce in-database Medoid-Shape. Algorithm 4 provides the pseudo-code, and Figure 4 illustrates
the corresponding in-database adaptation workflow.

5.3.1 Algorithm. We first initialize the aggregation result with the first page 𝑃1 in Line 2. Then
we iteratively load the next page 𝑃𝑖+1 , and merge it with the current aggregation result. For an
adjacent page 𝑃𝑖+1, we can directly merge 𝑃𝑖+1 into the current aggregation result by Proposition
8 in Line 6. If 𝑃𝑖+1 is a complementary page, we generate 𝑃𝑛𝑒𝑤 by Proposition 9, and sequentially
merge both 𝑃𝑛𝑒𝑤 and 𝑃𝑖+1 into the current aggregation result in Lines 8-9. In both adjacent and
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Fig. 4. The workflow of in-database Medoid-Shape

Algorithm 4Medoid-Shape on LSM-Tree Based Store
Input: A time series𝑇 stored in multiple pages 𝑃𝑖 , each with pre-computed approximate clustering

centroids𝑈 (𝑖 )
𝑗

, 𝑗 = 1, . . . , 𝑟
Output: Medoid-Shape cluster centroids C
1: sort all pages 𝑃𝑖 by 𝑃𝑖 .startTime
2: 𝑈 𝑗 ← 𝑈

(1)
𝑗

, 𝑗 = 1, . . . , 𝑟
3: for each consecutive pages 𝑃𝑖 , 𝑃𝑖+1 do
4: if 𝑃𝑖 .endTime < 𝑃𝑖+1.startTime then
5: if 𝑃𝑖 .endTime + 𝜏 = 𝑃𝑖+1 .startTime and 𝑃𝑖+1 .startTime%(𝑙𝜏) = 0 then
6: update𝑈 𝑗 with 𝑃𝑖+1 by Proposition 8, 𝑗 = 1, . . . , 𝑟
7: else
8: generate 𝑃𝑛𝑒𝑤 by Proposition 9
9: update𝑈 𝑗 with 𝑃𝑛𝑒𝑤, 𝑃𝑖+1 by Proposition 8, 𝑗 = 1, . . . , 𝑟
10: update𝑈 𝑗 , 𝛿 𝑗 by weighted averaging, 𝑗 = 1, . . . , 𝑟
11: else
12: for each updated subsequence do
13: update corresponding𝑈ℎ and𝑈 (𝑖+1)𝑞 by Proposition 10
14: update𝑈 𝑗 with 𝑃𝑖+1 by Proposition 8, 𝑗 = 1, . . . , 𝑟
15: solve C by Algorithms 2 with 3
16: return C

complementary cases, 𝑈 𝑗 and 𝛿 𝑗 can be updated by weighted averaging in Line 10. Otherwise, if
𝑃𝑖+1 is an overlapped page, we apply Proposition 10 on each updated subsequence, and then merge
it as in the adjacent case in Lines 12-14. After traversing all pages, we apply a greedy solution
with approximation (Algorithms 2 and 3) to determine the final centroids in Line 15. Note that
for in-database adaptation, the sample set can be approximated as as the union of all approximate
centroids from all pages, to avoid the costly process of loading original data.

5.3.2 Complexity Analysis. Each time aggregating an adjacent or complementary page takes O(𝑟𝑙)
time, where 𝑟 denotes the number of approximate clusters. Given average overlapped length ℓ ,
aggregating an overlapped page takes O(𝑟 ℓ) time. The final greedy selection with approximation
takes O(𝑘2𝑠𝑟𝑙 log 𝑙) time referring to the complexity analysis in Section 4.3.3. Consider 𝑁 pages
in total with 𝑀 overlapped pages, the overall time complexity for in-database Medoid-Shape is
O(𝑟 (𝑁 −𝑀)𝑙 + 𝑟𝑀ℓ + 𝑘2𝑠𝑟𝑙 log 𝑙).
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Table 3. Dataset Information

Dataset Subsequence
Length # Subsequences # Clusters

GW-WindTurbine 192 50,000 3
TY-Vehicle 96 100,000 3
UCR-Air 166 4,307 3

UCR-ECG 140 5,000 5

6 Experiments
6.1 Setup
We compare the original K-Shape [31, 32] as the baseline with proposed Medoid-Shape and our
in-database adaptations: in-database K-Shape, in-database Medoid-Shape. We implement all these
methods in Apache IoTDB [1], an open-source LSM-Tree based time series database. For a fair
comparison, K-Shape and Medoid-Shape are implemented as user defined functions by utilizing
the series reader in the database, which merge all possibly overlapped pages, load all related data
points and cluster from scratch.

Table 3 lists 4 datasets used in our evaluation, with 2 private datasets from our industrial partners
and 2 public datasets available on UCR time-series collection [13]. We use the first 5,000 and 10,000
subsequences in 2 private datasets for all experiments except subsequence number experiments,
due to the consuming time costs of K-Shape under large data sizes. Without extra instructions,
the default page size in the database is set to 10240, the default max iteration number is set to 100,
and the default sample rate is set to 0.3. For Medoid-Shape and its in-database adaptation, we use
K-Means as the default approximate clustering method.
The rationale behind the choice of two benchmark datasets is that they are among the most

complex (with a subsequence length of 166) and large-volume datasets (with 5,000 subsequences) in
UCR repository. And the rationale behind the choice of private datasets is that the private datasets
from our industry partners contain more subsequences (up to 100,000) with large length (up to
192), while public time series clustering datasets can hardly reach such data size. The original
aim of evaluation on private datasets is to demonstrate the performance of our proposals under
extremely large-volume data and long subsequences. It is worth noting that the evaluation can be
also conducted on other public datasets from UCR repository with no doubt.

All the experiments run on a machine with Intel Core i7-10750H CPU (2.60GHz). The algorithm
code has been included (by system developers) in the system repository of Apache IoTDB [2]. The
experiment related code is available in [3].

6.2 Scalability under different data loads
6.2.1 Scalability in Subsequence Numbers. Figure 5 presents the time costs under different sub-
sequence numbers 𝑛. Our in-database methods perform the best under all data sizes. The out-of-
database methods apparently cost more time, since they need to load all data points and cluster
from scratch. In-database K-Shape takes less time than in-database Medoid-Shape in Figures 5(b),
5(d). This is because the subsequence length of TY-Vehicle is much smaller than that of other
datasets. And UCR-ECG has a higher cluster number than other datasets, leading to more loops for
Medoid-Shape and in-database Medoid-Shape, as analyzed in Sections 4.3.3 and 5.2.3.
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Fig. 5. Time costs under different subsequence numbers
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Fig. 6. Time costs under different subsequence lengths

6.2.2 Scalability in Subsequence Lengths. Figure 6 presents the time costs under different sub-
sequence lengths, where 𝑙 in the x-axis denotes the default subsequence length in Table 3. The
subsequence numbers of 4 datasets are fixed to 400 in this experiment for a fair comparison, and
we change subsequence length from 0.5𝑙 to 5𝑙 . With the increase of subsequence lengths, both the
time costs of K-Shape and in-database K-Shape increase rapidly, due to the time-consuming shape
extraction (referring to analysis in Sections 2.1 and 3.3). However, Medoid-Shape and in-database
Medoid-Shape respectively show up to 1 and 2 orders of magnitude improvement under large
subsequence length, i.e., 5𝑙 with around 1000 data points in Figure 6(a)(c)(d). They are demonstrated
to cost significantly less time given long subsequences.
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Fig. 7. Time costs under different complementary ratios

6.3 Efficiency under Different Configuration
6.3.1 Varying Complementary Page Numbers. Figure 7 presents the time costs under different
complementary page numbers. We set page size as 100𝑙 instead of 10240 to control complementary
page numbers. The x-axis in Figure 7 represents the ratio of complementary page number to overall
page number. All pages are adjacent when the ratio is equal to 0, and all pages are complementary
when the ratio is equal to 1. Our in-database proposals have a slight increase with the number of
complementary pages increasing. This is because we need to create a new page containing one
subsequence, which is generated by two complementary pages, as discussed in Sections 3.2.2. This
newly formed page incurs an extra adjacent page aggregation, resulting in extra execution time.
Still, the out-of-database methods have almost constant time costs.

6.3.2 Varying Overlapped Page Number. Figure 8 presents the time costs under different overlapped
page numbers𝑀 . Similarly, the overlapped ratio represents the ratio of overlapped page number𝑀
to overall page number 𝑁 . As shown, the time cost of in-database K-Shape has a rapid increase as
the overlapped ratio increases, while that of in-database Medoid-Shape has a slight increase. This
is because in-database K-Shape needs to extract shapes each time processing an overlapped page,
which takes O(𝑘𝑀𝑙3⌈ ℓ

𝑙
⌉) time, as discussed in Section 3.3. In contrast, in-database Medoid-Shape

can efficiently process overlapped pages in linear time O(𝑟𝑀ℓ), as discussed in Section 5.3. Note that
for “extreme” out-of-order cases where overlap ratio is equal to 1.0, i.e., every page is overlapped
with some pages, in-database K-Shape significantly costs more time, but still less than K-Shape.

6.3.3 Varying Overlap Length. Figure 9 illustrates the time costs under different overlap lengths
ℓ with a fixed overlapped ratio equal to 1.0. Overlap length ℓ denotes the average number of
points with conflicts between two consecutive pages, i.e., points with the same timestamps but
in different pages. The time costs of in-database adaptations have a slight increase when overlap
length increases, since they need more time to split the overlapped part given more points involved
in overlap, as analyzed in Sections 3.3 and 4.3. The last points in Figure 9 indeed represent the
“extreme” out-of-order cases where overlapped ratio is equal to 1.0 and overlapped length reaches
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Fig. 9. Time costs under different overlap lengths

10,000 data points (w.r.t. 10,240 data points in a page). As shown, in such “extreme” cases, the
in-database methods still outperform the according out-of-database methods in terms of efficiency.

6.4 Evaluation on Other Platforms
6.4.1 Evaluation on RocksDB. Indeed, our proposal is not dependent or relevant to a particular data-
base management, as long as time series are segmented and stored in pages with pre-computation.
Note that segmented storage is rather common in databases, and almost all commodity databases
apply segmented store. Thus, our in-database solutions can also be applied to other DBMS with
segmented storage, such as RocksDB.
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Fig. 10. Evaluation on RocksDB

We implement and compare the efficiency of our proposals on RocksDB [6]. RocksDB natively
supports meta blocks, which record metadata and are stored in the same files with data points.
Therefore, we utilize such meta blocks to store our pre-computed metadata in Sections 3.1 and 5.1.

Figure 10 presents the query time costs with varying subsequence numbers in RocksDB. Still,
in-database methods significantly take less time than out-of-database methods. It demonstrates that
our solution does not depend on or be relevant to a particular DBMS. Note that all the baselines
become more efficient than the implementation on IoTDB. This is because RocksDB does not use a
server-client architecture, but instead is invoked as header files. Besides, the efficient compilation
in C language also contributes to the high efficiency.

Therefore, our solution can be easily deployed to LSM-Tree based DBMS with pre-computation,
such as Apache IoTDB [1], while some DBMS may not natively support pre-computation, posing a
deployment challenge. It demonstrates that the proposed techniques are not particularly relevant
or dependent on the previously implemented system Apache IoTDB.

6.4.2 Evaluation on PostgreSQL. We consider LSM-Tree databases, since they are more difficult
and expensive to conduct query processing and clustering analysis. To efficiently handle intensive
writing of data, LSM-Tree database takes a strategy of out-of-place updates, which means that the
updates of tuples are stored into another file with higher version. And a new tuple does not explicitly
overwrite the obsolete tuple on disk. Instead, updates in traditional databases are often in-place.
That is, when updating a tuple, traditional databases locate this tuple on disk (by timestamp) and
overwrite its obsolete value. Therefore, the case in traditional databases, such as PostgreSQL [5], is
relatively easier.
In this sense, it is easier to deploy our proposal to relational databases, as long as relational

databases support pre-computation. To clarify and extend the scope of the proposed solutions, we
further discuss the alternative about applying the proposed solution on relational databases. To
better clarify this, we implement and evaluate our proposal in a relational database, PostgreSQL
[5]. The implementation on PostgreSQL is a special case where all pages are adjacent and they can
be aggregated referring to Section 3.2.1. Since PostgreSQL natively stores the statistical metadata
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Fig. 11. Evaluation on PostgreSQL

as a relational table, we similarly store the pre-computed metadata of each block as a relational
table. When a query arrives, our implementation loads all related tables and then aggregate.
Figure 11 shows the query time costs with varying subsequence numbers on PostgreSQL. In-

database K-Shape on PostgreSQL costs more time than that on RocksDB, because it takes more
time to query a relational table on PostgreSQL than loading metadata on RocksDB. Our in-database
solutions consistently cost less time. The results extend the scope of the proposed solution and
prove that our solution is not only crafted for LSM-Tree databases.

6.5 Evaluation on More Datasets and Baselines
6.5.1 Evaluation on Additional Baselines. We further conduct efficiency and effectiveness exper-
iments with more recent advanced time series clustering methods. We implement and compare
FrOKShape [23], MUSLA [42], wFCM [17], PAM+DTW [18, 35] and Time2Feat [9] as follows.

In Figures 12 and 13, we conduct critical differential diagrams to show the average ranking across
datasets of each method w.r.t. time costs and Rand Indexes, respectively. Rand Index [34] is defined
by 𝑅 = 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 , where 𝑇𝑃,𝑇𝑁, 𝐹𝑃 and 𝐹𝑁 denote true positive, true negative, false positive
and false negative classification series, respectively. Each method in the figures associates with an
average ranking. Higher ranking approaching to 1 means higher Rand Indexes or lower time costs.
The wiggly line connects all measures that do not perform statistically differently according to the
Nemenyi test [29].

It is worth noting that in-database time series clustering often needs to be repeatedly conducted
on extensive data in LSM-Tree based store, which motivates our proposal as in Section 1. Therefore,
our main focus is the efficiency of in-database clustering. As for effectiveness, in Figure 13, K-Shape
and in-database K-Shape, as well as Medoid-Shape and in-database Medoid-Shape do not perform
statistically differently in terms of Rand Indexes. Besides, our proposals can indeed achieve similar
effectiveness as these time-consuming baselines.
As illustrated in Figure 12, all these additional methods cost more time than our proposal

referring to the following reasons. FrOKShape [23] defines a multi-variable shape-based distance
and utilizes DTW barycenter averaging as clustering strategy, which has similar time costs to
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K-Shape. MUSLA [42] learns shapelet-transformed representation, and the learning process is
relatively time-consuming. wFCM [17] divides a sequence into multiple segments, applies linear
regression on each segment and then uses weighted DTW [35] on the regression coefficients, which
inevitably incurs extra time. Similarly, the high complexity of calculating DTW also impedes the
efficiency of PAM+DTW [18, 35]. Time2Feat [9], as a learning method, extracts multiple features
from subsequences, and clusters in the feature space. Besides, all these methods do not utilize
database storage structure for acceleration. Besides, all these additional methods do not utilize
database storage structure for acceleration, and therefore, they cost more time.

6.5.2 Evaluation on Additional Datasets. Moreover, to tackle the limited numbers of datasets and
better clarify the significance of the results, we further consider 20 UCR datasets covering all the
dataset types on UCR time-series collection [13], including Sensor, Simulated, Spectrum, Image,
Device, Traffic and so on. We select 2 datasets from each type with varying characteristics (e.g.,
subsequence numbers, subsequence length and cluster numbers). Due to the limited space, the full
experimental results are given in the supplementary [7].
These experimental results in Figure 12 show that, in-database K-Shape, Medoid-Shape and

in-database Medoid-Shape consistently cost much less time across all datasets. Moreover, in Figure
13, K-Shape and in-database K-Shape, as well as Medoid-Shape and in-database Medoid-Shape
achieve comparable average Rand Indexes, without statistical difference. These experiments on
more public datasets from UCR further demonstrate the performance of our greedy approximation.

7 Related Works
Our proposals put effort in in-database time series clustering, while existing works scarcely focus
on in-database clustering. To further highlight the novelty of our proposals, we review existing
time series clustering methods in Section 7.1, which are devised without considering in-database
scenarios, and recent in-database learning methods in Section 7.2.

7.1 Time Series Clustering
Time series clustering strongly relies on series similarity measures [8]. Three most commonly used
measures are euclidean distance (ED) [14], dynamic time wrapping (DTW) [35] and shape-based
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distance (SBD) [31, 32]. ED can be measured in linear time, but cannot handle shifts and aligning.
DTW and its variants [43] can well capture shapes and shifts, while they require quadratic time per
measure. SBD is proved to perform better than ED, and costs much less time than DTW. Besides,
KL distance [12], related distance [22], HMM dependency [36] can also serve as measures, while
either inefficient or ineffective.

Therefore, we focus on time series clustering with SBD in this work. Since SBD is defined with
convolution, classic clustering prototypes cannot be directly applied to calculate centroids, such
as K-Means [24], DBSCAN [16]. Thus, K-Shape [31, 32] proposes to calculate centroids by matrix
eigenvector decomposition. Unfortunately, it may be extremely time-costly given long subsequences
due to its cubic time complexity. Times-C [39] proposes to optimize K-Shape clustering by GPU,
by utilizing CUDA programming. However, CUDA programming is dedicated to GPU resources,
while difficult to adapt to database systems often without GPU resources. Although there exist
clustering methods based on deep neural network [9, 19, 40], they all need abundant training time
to perform, much more inefficient than K-Shape. Our proposals in this work aim to accelerate
K-Shape in databases, as well as handle long subsequences.

7.2 In-Database Learning
In-database learning emerges as a prevailing trend in both database and machine learning areas in
recent years. On the one hand, numerous learned data structures are proposed for databases for
storage optimization and query acceleration. For example, learned index [26] proposes to replace
traditional database indexes by a model learning data distribution. Learned bloom filter [28] utilizes
a learned function to enhance the query performance.

On the other hand, machine learning models could benefit from databases for acceleration. For
instance, existing work [20] accelerates statistical methods by utilizing synergizing key tools for
relational databases. LSMAR [38] learns auto-regressive models in time series databases. However,
to the best of our knowledge, there is no existing work studying in-database time series clustering.

8 Conclusion
In this paper, we study in-database time series clustering, to support repeatedly time series clustering
with various time ranges in LSM-Tree based time series databases. Existing out-of-database methods
unfortunately suffer from low efficiency, given IoT data of large volume and frequent clustering
queries with different time filters. Therefore, we propose to efficiently cluster time series in databases,
with the utilization of database properties. Specifically, we devise an in-database adaptation of
a SOTA time series clustering method, K-Shape. To solve that K-Shape performs inefficiently
with long subsequences, we propose Medoid-Shape and the according in-database Medoid-Shape
adaptation for further acceleration. We derive several propositions to ensure the aggregation in
multiple pages for in-database proposals. We also prove a guaranteed error bound for Medoid-Shape
to ensure its effectiveness. Remarkably, we implement and deploy all proposals in Apache IoTDB, an
open-source commodity LSM-Tree based time series database. Extensive experiments demonstrate
the higher efficiency of our proposals with comparable effectiveness.
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