
OneRoundSTL: In-Database Seasonal-Trend

Decomposition

Zijie Chen

Tsinghua University

chenzj23@mails.tsinghua.edu.cn

Shaoxu Song∗

Tsinghua University

sxsong@tsinghua.edu.cn

Jianmin Wang

Tsinghua University

jimwang@tsinghua.edu.cn

Abstract—Seasonal-trend decomposition has been widely used
in time series analysis, e.g., time series forecasting and anomaly
detection. Existing seasonal-trend decomposition methods, such
as STL and its variations, assume that the time series is complete
and sorted by timestamp. However, popular time series databases
usually adopt LSM-Tree based storage, which stores data in
pages not necessarily in time order. Moreover, time series stored
in databases often suffer from missing values due to sensor
failures, further compromising their integrity. A straightforward
idea is to first merge and sort the data of different pages,
and then decompose them. It obviously leads to heavy online
computation, repeated calculations for multiple queries, and still
cannot deal with the remaining missing data. In this paper, we
propose OneRoundSTL, which pre-calculates offline some results
in each individual page and concatenates the pre-calculated
results online at query time to obtain the decomposition outcome.
OneRoundSTL has been deployed and included as a function in
an open source time series database, Apache IoTDB. Experiments
on synthetic and real-world datasets in the system show that our
OneRoundSTL exhibits high efficiency, far exceeding the state-
of-the-art methods, while keeping decomposition effect.

Index Terms—Time Series Database, STL, LSM-Tree

I. INTRODUCTION

Seasonal-trend decomposition (STD) plays a key role in

analyzing time series data, increasingly sourced from the

Internet of Things (IoT). It uncovers the trend patterns τ and

seasonal changes s of time series x , as illustrated in Figure

1. STD is found useful in applications like anomaly detection

[1], [2], forecasting [3], [4], etc.

A. Challenge

Existing decomposition methods such as STL [5] and its

variations, OnlineSTL [6] and OneShotSTL [7], require time

series to be collected at equal time intervals, not having miss-

ing values. Moreover, they need the data to be arranged in time

order. This is obviously inconsistent with the real application

scenarios. Specifically, time series data are often stored in

dedicated databases, such as Apache IoTDB [8] and InfluxDB

[9]. These LSM-Tree based time series databases store data

in pages, i.e., the timestamps between different pages are not

necessarily continuous with out-of-order arrivals [10]. Even

worse, real-world data often suffer from missing values, e.g.,

due to sensor or network failures. For example, in Figure

1(a)(b), the time series x1, . . . , x1728 is stored in two pages,

where page 1 has x1, . . . , x123, x131, . . . , x855, x858, . . . , x864

∗Shaoxu Song (https://sxsong.github.io/) is the corresponding author.

Fig. 1: OneRoundSTL for time series x stored in two pages.

and page 2 stores x856, x857, x865, . . . , x1728. In page 1,

x123, . . . , x131 are missing due to data collection failures.

Moreover, x856, x857 are out-of-order arrivals, i.e., delayed

and stored in page 2, resulting in non-contiguous timestamps

between pages 1 and 2.

Obviously, existing decomposition methods cannot be di-

rectly applied in this scenario. A straightforward method

of applying existing decomposition methods to time series

databases is to first merge the pages and sort data by times-

tamps, and then decompose them from scratch. (1) Unfor-

tunately, it requires both merging and decomposing to be

performed entirely in the query phase, resulting in heavy

online computation. (2) In addition, different decomposition

tasks may be conducted on the same part of data, leading

to repeated computation. (3) Furthermore, it is still unable to

cope with the remaining missing values. Therefore, this simple

adaption is neither efficient nor effective in practical use.

B. Motivation

Note that almost all commodity time series databases em-

ploy LSM-tree based storage structures [11] for intensive

writes, where the pages are immutable once flushed to disk

[12] and updated by compaction [13]. A natural idea is thus

to pre-calculate certain results for the immutable data in each

page and use them to accelerate various online decomposition

queries in the future. Unfortunately, existing decomposition

724

2025 IEEE 41st International Conference on Data Engineering (ICDE)

2375-026X/25/$31.00 ©2025 IEEE
DOI 10.1109/ICDE65448.2025.00060

https://sxsong.github.io/

methods [5], [6], [7] need multiple iterations of the time series

stored in different pages. The computation in a page relies on

the results of other pages in the previous iterations, making the

pre-calculation solely inside a page useless. It motivates us to

devise a new one-round decomposition method that does not

require the results of multiple iterations. Moreover, the pre-

calculated results of different pages could be concatenated for

various decomposition queries.

Owing to the existence of missing and delay issues, data in

a page may be incomplete, as shown in Figure 1(a). To enable

the pre-calculation of decomposition over incomplete data, we

may utilize the values in the same phase of other periods. For

instance, for the missing values x123, . . . , x131, the decomposi-

tion pre-calculation could consider x267, . . . , x275 in the next

period. Of course, some incomplete data such as x856, x857

may be stored as delays in other pages, and not accessed in

the pre-calculation of the current page 1. Such pre-calculated

results thus need re-calculation, when concatenating the results

of pages 1 and 2 during the decomposition query processing.

C. Contribution

In this paper, we devise OneRoundSTL, a seasonal-trend

decomposition method tightly integrated with time series

database storage. To the best of our knowledge, this is the first

work that pre-computes seasonal-trend decomposition results

in time series databases. Our main contributions are:

1) We propose the iteration-free OneRoundSTL in Section II

to enable pre-calculation. The decomposition problem is trans-

formed to a linear system solving problem, thereby requiring

only one round of iteration. Furthermore, we propose pruned

LDLT decomposition to accelerate the linear system solving.

Proposition 3 shows that the pruned LDLT decomposition

converges to the standard LDLT decomposition.

2) We introduce the pre-calculation on each page for OneR-

oundSTL in Section III. To address the issue of missing

values, we propose to explore the seasonal features tailored

for different time series positions in Section III-C. We use

historical data to handle the pre-calculation for missing values,

thereby mitigating their impact on the pre-calculation process.

Proposition 4 establishes an error bound for the decomposition

results with our handling method.

3) We concatenate the pre-calculated results in multiple pages

for OneRoundSTL in Section IV. Proposition 5 indicates that

the concatenation results converge to the pre-calculated results,

thus significantly enhances the efficiency of concatenation. For

different timestamp ranges of two pages, i.e., adjacent, disjoint,

and overlapped, we detail specific steps respectively.

4) Remarkably, OneRoundSTL has been realized in a time

series database system Apache IoTDB, with details presented

in Section V. The document is available on the product website

[14] and the code is included in the system repository [15].

Re-calculation on truncated pages is performed for a specific

query. Proposition 6 shows that the re-calculated results con-

verge to the pre-calculated results, ensuring consistency of

decomposition across different page quantities.

TABLE I: Frequently used notations

Symbol Description

xi data point of time series x at time i

x
(m)
i data point of time series x in page m at time i
τi trend component of xi
si seasonal component of xi
ri residual component of xi
vi i-th data point of baseline seasonal component v

zi i-th data point of intermediate results z

aij (i, j) element of matrix A

bi i-th element of vector b

N time series length

M period length

α(m) starting timestamps in page m
β(m) ending timestamps in page m

∆ first order difference operator

∆2 second order difference operator

∆D second order diagonal difference operator

∆T seasonal difference operator

5) We conduct extensive experimental evaluation in Section

VI. Our proposed OneRoundSTL approach achieves much

higher efficiency than the state-of-the-art decomposition meth-

ods, while keeping the decomposition effect. The experiment

code and public data are available in [16] for reproducibility.

Table I lists the frequently used notations.

II. ONE ROUND DECOMPOSITION

Existing decomposition methods [17], [18], [7] require

multiple scans of time series, which hinders the application

of pre-calculation. In this section, we design an iteration-free

decomposition method named OneRoundSTL. Section II-A

introduces the general seasonal-trend decomposition. Section

II-B defines and analyzes the OneRoundSTL problem. Section

II-C gives the detailed steps of the decomposition.

A. Seasonal-Trend Decomposition

For a time series of N observations, x = [x1, x2, . . . , xN]T ,

where xi is the value at time i, we can decompose x into

xi = τi + si + ri, i = 1, 2, . . . , N, (1)

where τi, si, ri denote the trend, seasonal and residual com-

ponents of xi, respectively. In seasonal-trend decomposition,

τi describes the long-term increasing or decreasing trend; si
describes the cyclic features with a period M , which can be

estimated by period detection methods [19], [20]; ri describes

the short-term random fluctuations. Figure 1 shows an example

of decomposition, where Figures 1 (c), (d), and (e) represent

the trend components τi, seasonal components si, and residual

components ri, respectively. The decomposition results τ and

s are calculated as y in Formula 16 below by OneRoundSTL,

where y = [τ1, s1, ..., τN , sN]T .

2725

B. Problem Definition

We first define the challenges of missing data and delays.

Definition 1 (Missing issues). Given a time series x =
[x1, x2, . . . , xN]T , there exists i ∈ [1, N] such that xi is NaN ,

indicating the absence of a value at time i.

Definition 2 (Delay issues). The timestamp ranges of time

series across database pages overlap. Specifically, let x
(m)
i

and x
(n)
j denote data points of time series x on pages m and n

at times i and j, respectively. There exists i < j, i, j ∈ [1, N],
with m > n.

In this context, the one-round decomposition problem is

inspired by the following three characteristics of time series

[21]: (1) Low-noise, where the random fluctuations (ri)
2

are minimized; (2) Seasonality, where the differences in the

seasonal components (∆T si)
2 at the same phase are smaller;

and (3) Smoothness, where the changes in the trend (∆2τi)
2

are smoother.

Definition 3. Given a time series x ∈ R
N , the input seasonal

period parameter M , the input smoothness parameter λ and

baseline seasonal component v = [v1, v2 . . . , vM]T , we define

the OneRoundSTL results τi and si of xi as the solution to the

following optimization problem.

min
τ,s

N∑

i=1

r2i +

N∑

i=1

(∆T si)
2
+ λ

N−1∑

i=2

(∆2τi)
2

s.t. ri = xi − τi − si

∆T si = si − vi mod M

∆2τi = ∆(∆τi) = τi+1 − 2τi + τi−1

(2)

The baseline seasonal component vi can be automatically

set during the cold start phase as shown in Section II-C2.

λ is a hyper-parameter to control the smoothness. Indeed,

OneRoundSTL can be seen as an extension of the Hodrick-

Prescott filter [22], a simple but effective smoothing method

that can be solved with a single pass of the data. It motivates

us to solve OneRoundSTL by only one round of data scan.

1) Matrix Reformulation: The OneRoundSTL problem in

Formula 2 can be solved using maximum likelihood estimation

[23]. Specifically, Formula 2 is reformulated as a linear

system Ay = b, where y is a combination of τ and s , as

y = [τ1, s1, ..., τN , sN]T . And the specific forms of parameter

A and b are determined as follows. The detailed reformulation

process can be found in the supplementary [24].

A = AT
1 A1 +AT

2 A2 + λAT
3 A3 ∈ R

2N×2N ,

b = AT
1 x+AT

2 u ∈ R
2N ,

u = [vT , . . . vT]T ∈ R
N ,

A1 =



1 1

. . .

1 1


 ∈ R

N×2N ,

A2 =



0 1

. . .

0 1


 ∈ R

N×2N ,

A3 =



1 0 −2 0 1

. . .
. . .

. . .
. . .

. . .

1 0 −2 0 1


 ∈ R

(N−2)×2N .

2) Properties of Matrix A and Vector b: Prior to solving

the linear system Ay = b, we analyze the properties of A and

b to accelerate the process. We first focus on matrix A. For

clarity, we initially present the elements of A as follows:

A =




a11 a12 a13 a14 · · · a1,2N
a21 a22 a23 a24 · · · a2,2N
a31 a32 a33 a34 · · · a3,2N
a41 a42 a43 a44 · · · a4,2N

...
...

...
...

. . .
...

a2N,1 a2N,2 a2N,3 a2N,4 · · · a2N,2N




∈ R
2N×2N

Proposition 1 (Sparsity of A). A is a band matrix with a

bandwidth of 4, i.e.,

aij = 0, |i− j| > 4, i, j ∈ [1, 2N].

Proposition 1 infers that each row contains no more than

nine non-zero elements. This property can reduce the cost of

scanning A from O(n2) to O(n), as shown in Algorithm 1.

Furthermore, since the process of extracting seasonal and

trend component for each data point is identical, A exhibits a

certain level of repetition. For brevity, we define operator ∆D.

For any element aij of matrix A, ∆Daij = aij − ai−2,j−2.

Proposition 2 (Repetition of A). Except for the first and last

4 rows, the elements in the remaining rows exhibit a pattern

of alternating repetition, i.e.,

∆Daij = 0, |i− j| ≤ 4, i, j ∈ [7, 2N − 4].

Finally, we briefly discuss the construction of vector b. It is

composed of baseline seasonal component v and original data

x . Specifically, for b = [b1, b2, · · · , b2N], we have:

b2i−1 = xi 1 ≤ i ≤ N,

b2i = xi + vi mod M 1 ≤ i ≤ N.
(3)

Thus, we can directly construct b without matrix operations.

C. Problem Solving

We give the detailed solving steps of the linear system

Ay = b below. Note that, at this stage, we do not consider

missing and delay issues. As a preparation, we perform the

LDLT decomposition of the matrix A in Section II-C1 and

construct b in the cold start phase in Section II-C2. The

solution contains a forward substitution in Section II-C3 and

a backward substitution in Section II-C4. Note that we obtain

the results through only one round of bidirectional scanning,

i.e., iteration-free.

3726

=

!!"

!!#!!$

1

1

1

!!"1

1

1

1

1

!#!!$

1

1

1

1

1

1

1

1

1

!!"1

1

1

!#!$

1

1

1

1

1

1

1

1

!!"

!#!$

! " # #!$ " %

=

%!

%!

%"

%"

%#

%#

%$

%$

!$

%%&"

%%&"

%%&!

%%&!

%%

%%

&!

'!

&"

'"

&#

'#

&$

'$

!$

&%&"

'%&"

&%&!

'%&!

&%

'%

+

('

((

()*+

(,*+

!$

(-.(*+

(-.' *+

(-*+

&!

'!

&"

'"

&#

'#

&$

'$

!$

&%&"

'%&"

&%&!

'%&!

&%

'%

Fig. 2: LDLT decomposition, where white cells represent 0; the blue and red bands in A are exactly the same; the purple and

yellow bands in L and D are similar; green cells represents the independent data of the first and last 4 rows.

1) LDLT Decomposition: Figure 2 shows the process of

solving linear system Ay = b using LDLT decomposition.

Specifically, it decomposes matrix A into a lower triangular

matrix L and a diagonal matrix D , and guarantees that

A = LDLT .

After that, we can decompose Ay = b into two linear

equations: Lz = b and DLT y = z.

For clarity, we initially present the elements of decomposi-

tion results L and D . According to the definition of LDLT

decomposition, L is a lower triangular matrix presented as:

L =




1 0 0 0 · · · 0
l21 1 0 0 · · · 0
l31 l32 1 0 · · · 0
l41 l42 l43 1 · · · 0
...

...
...

...
. . .

...

l2N,1 l2N,2 l2N,3 l2N,4 · · · 1




∈ R
2N×2N

and D is a diagonal matrix presented as:

D =




d11 0 0 0 · · · 0
0 d22 0 0 · · · 0
0 0 d33 0 · · · 0
0 0 0 d44 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · d2N,2N




∈ R
2N×2N

Due to the properties of A discussed in Section II-B2, L and

D also share some properties that can be leveraged to simplify

the decomposition process. We first discuss the sparsity of L,

which is a consequence of the sparsity of A in Proposition 1.

Corollary 1 (Sparsity of L). L is a lower band matrix with

bandwidth 4, i.e.,

lij = 0, i− j > 4, i, j ∈ [1, 2N].

Unlike A, both L and D do not exhibit repetition due to the

inconsistency between the initial 4 rows and the subsequent

rows of A. However, since the subsequent rows of A still

present repetition pattern as introduced in Proposition 1,

elements of L and D shows a tendency to be equal, i.e., the

elements within L and D exhibit convergence.

Algorithm 1: Pruned LDLT Decomposition

Input: A ∈ R
2N×2N

Output: L ∈ R
2N×2N , D ∈ R

2N×2N

1 L = zeros(2N, 2N);D = zeros(2N, 2N);
2 converge = False;

3 for (i = 1; i ≤ 2N ; i++) do

4 lii = 1;

5 if converge and i ≤ 2N − 4 then

6 dii = di−2,i−2;

7 for (j = i+ 1; j ≤ i+ 4; j ++) do

8 lji = lj−2,i−2;

9 else

10 dii = aii −
∑i−1

k=max(1,i−4) dkk · l2ik;

11 for (j = i+ 1; j ≤ min(2N, i+ 4); j ++) do

12 lji = (aji−
∑i−1

k=max(1,j−4) ljk ·dkk ·lik)/dii;

13 if
∑i

h=i−1 |∆Ddhh|+
∑h−1

j=h−4 |∆Dlhj | < ǫ

then

14 converge = True;

15 return L,D;

Proposition 3 (Convergence of L and D). {li,j , li+2,j+2 · · · }
and {di,i, di+2,i+2 · · · } converge, i.e., for any positive number

ǫ, there exist K ∈ N such that for all i > K having

|li+2,j+2 − li,j | < ǫ and |di+2,i+2 − di,i| < ǫ

Inspired by Corollary 1 and Proposition 3, we present a

novel formulation for the pruned LDLT decomposition, which

significantly improves computational efficiency compared to

the traditional LDLT decomposition. Specifically, for lji of

matrix L and dii of matrix D , they can be obtained by:

lji = (aji −
i−1∑

k=max(1,j−4)

ljk · dkk · lik)/dii (4)

dii = aii −
i−1∑

k=max(1,i−4)

dkk · l2ik. (5)

4727

When the absolute difference between corresponding elements

across two rows is less the user-defined threshold ǫ, i.e.,∑i

h=i−1(|∆Ddhh| +
∑h−1

j=h−4 |∆Dlhj |) < ǫ, we consider L

and D have converged and can directly extend the results as:

lji = lj−2,i−2 (6)

dii = di−2,i−2 (7)

Algorithm 1 presents the details of pruned decomposition

method. Lines 12 and 10 outline the computation of L and

D before convergence, corresponding to Formulas 4 and 5.

Similarly, Lines 8 and 6 outline the computation of L and D

after convergence, corresponding to Formulas 6 and 7.

As for time complexity, each l and d require at most 4

calculations before convergence. Calculation terminates once

converged, where φ is the minimum number of rows that

converge. For each row, L involves 4 off-diagonal compu-

tations, as its bandwidth is 5 excluding the diagonal, while

D requires only 1 diagonal computation. This results in 5

computations per row, leading to a total time complexity of

O(4×5φ). Notably, when λ = 1, φ = 38, which is significantly

smaller than the scale of million-level datasets. Therefore, the

algorithm exhibits low computational complexity.

As for space complexity, L and D are stored in system

files, enabling decomposition computation for any time series.

Considering Corollary 1, both L and D are sparse, and the

non-zero data locations are fixed. Therefore, the value 0 does

not need to consume space storage. The space complexity of L

and D can thus be reduced from O(N2) to O(N). Similarly,

considering Proposition 3, the calculation of L and D can

converge. After convergence, its values remain unchanged.

Therefore, there is no need to store the unchanged values.

The space complexity of L can thus be further reduced from

O(N) to O(φ), and D from O(N) to O(φ). Note that the space

complexity of L and D is independent of the time series length

N at this time.

2) Cold Start: As indicated in Section II-B, b in the

equation Lz = b requires baseline seasonal components v .

To obtain v , we first retain the first n×M cycles of original

data as the cold start phase. Specifically, we use the existing

batch seasonal-trend decomposition [21], [18], [17], resulting

in the initial seasonal component s̃ = s1, s2, . . . , sn×M .

Subsequently, we derive v by calculating the average of s̃
with the same phase as:

vi =
1

n

n−1∑

k=0

sk×M+i. (8)

Although we have obtained the decomposition results of

the first n periods in the cold start phase, for consistency,

OneRoundSTL still starts from the first point and re-calculates.

Handling Missing Values in Cold Start: If missing values

occur in the cold start phase, we lack any prior knowl-

edge for handling. Furthermore, the existing seasonal-trend

decomposition algorithm is unable to handle missing values.

Consequently, we resort to the existing methods [25], [26].

Algorithm 2: OneRoundSTL

Input: x ∈ R
N , T , λ

Output: τ ∈ R
N , s ∈ R

N , r ∈ R
N

1 calculate L,D ∈ R
2N×2N by Algorithm 1;

2 calculate v ∈ R
M by Formula 8;

3 calculate z ∈ R
2N by Formula 9;

4 calculate y ∈ R
2N by Formula 10;

5 for (i = 1; i ≤ N ; i++) do

6 τi = y2i−1;

7 si = y2i;

8 ri = xi − τi − si;

9 return τ , s , r ;

3) Forward Substitution: Forward substitution is the pro-

cess of solving the equation Lz = b. As shown in Section

II-C1, L represents a lower triangular coefficient matrix.

Therefore, each zi can be solved at a time, starting from any

chosen row j:

zi = F(i, j, L, b, z) = bi −
i∑

k=max(i−3,j)

li−j,k−j · zk (9)

for i = j, . . . , 2N , where i denotes the current index and j
denotes the starting index of the forward substitution.

4) Backward Substitution: Backward substitution is the

process of solving the equation DLT y = z. As shown in

Section II-C1, DLT represents an upper triangular coefficient

matrix. Therefore, each yi can be solved at a time, starting

from any chosen row j:

yi = B(i, j, L, d, z, y) =
zi
di

−

min(i+3,j)∑

k=i

lk−j+2N,i−j+2N · yk

(10)

for i = 1, . . . , j, where i denotes the current index and j
denotes the starting index of the backward substitution.

III. PRE-CALCULATION ON EACH PAGE

In this section, we introduce the pre-calculation of OneR-

oundSTL on each page in LSM-Tree based time series

databases. At this stage, we consider the presence of missing

and delay issues in the database. Specifically, Section III-A

introduces the pages in the database. Section III-B introduces

the specific steps of pre-calculation. Section III-C supplements

the STD-based missing value handling method.

A. Pages in LSM-Tree

The Log-Structured Merge-Tree (LSM-Tree) [11] is a popu-

lar data storage structure in databases, particularly for facilitat-

ing high-throughput writing operations. Therefore, LSM-Tree

is commonly incorporated in time series databases designed

for IoT scenarios, such as Apache IoTDB [10].

Pages are the fundamental units of storage in LSM-Tree.

Each page typically contains a subset of IoT data. Pages

help in organizing data, enabling efficient access and retrieval.

5728

When a read operation is performed, the relevant pages are

accessed, minimizing the amount of data read from disk.

Therefore, we first define the data contained in each page.

Definition 4. The m-th page contains a subset of the original

data x , with timestamp starting from α(m) to β(m), i.e., xt in

page m, where α(m) ≤ t ≤ β(m).

B. Pre-calculation without Missing Values

Since pages in the database are stored in different locations,

it is necessary to pre-calculate the data on each page inde-

pendently. As the calculation deals with only single pages,

for simplicity, in this section, we abbreviate the notation in

Definition 4 to α and β. By first constructing b with Formula

3. the pre-calculation can be considered a forward substitution

process starting from the starting timestamp α, i.e.,

zi = F(i, α, L, b, z) (11)

for i = α, . . . , β.

C. Pre-calculation with Missing Values

For different positions, we adopt different missing values

handling methods, including head missing values handling

in Section III-C1 and subsequent missing values handling

in Section III-C2. We present the complete algorithm and

analysis of pre-calculation in the appendix [24].

1) Handling Head Missing Values: We first define the range

of head values of each page.

Definition 5. The head values of time series x are xi for

0 < i < φ, where φ is the minimum number of rows that the

pruned LDLT decomposition converges.

For the head values, we employ existing methods for

handling missing values. There are two main reasons: (1) the

data on each page is stored in different locations on the hard

disk, and thus the head data of each page has less historical

information to use; (2) considering Proposition 3, if LDLT

decomposition does not converge, i.e., 0 ≤ i ≤ φ, non-zero

values of L and D differ in each row. According to Formulas

4 and 5, the values of the last four rows are derived from the

preceding rows, hence the last four rows change with different

i. In contrast, after convergence, the non-zero values in each

row of L and D cease changing, which facilitates the partial

decomposition we proposed in Section III-C2. Therefore, we

select the range of head values from 1 to φ.

2) Handling Subsequent Missing Values: For the data after

the head values, we propose another missing value handling

strategy. Let xi be the missing value. At this stage, z2i−1

and z2i cannot be derived using Formula 11, hindering the

subsequent pre-computation that relies on z2i−1 and z2i.

Inspired by Formula 1 and the stability of time series, we

utilize the baseline seasonal component vi mod M and τi−1

to represent z2i−1 and z2i. Notably, τi−1 (i.e., y2i−3) can be

recalculated by using Formula 9 with xi−1 as the endpoint,

and then decomposing with Formula 10. The specific handling

process is as follows:

zj = F(j, i−N,L, b, z), 2i− 5 ≤ j ≤ 2i− 2

yj = B(j, i− 1, L, d, z, y), 2i− 3 ≤ j ≤ 2i− 2

z2i−1 = y2i−3 + vi mod M −
i∑

k=max(i−3,j)

li−j,k−j · zk

z2i = y2i−3 + 2vi mod M −
i∑

k=max(i−3,j)

li−j,k−j · zk

(12)

Hence, we obtain the pre-calculated results z2i−1 and z2i for

the missing value xi, enabling subsequent pre-calculations to

be carried out at zj for j > 2i. Proposition 4 further provides

an error bound for z2i−1 and z2i obtained using this method.

Proposition 4 (Error Bound of Missing Value Handling).

For the ground truth of xi, z2i−1 and z2i, i.e., x̃i, z̃2i−1

and z̃2i, we have |z̃2i−1 − z2i| < |y2i−3 + vi mod M − x̃i|
with zj = F(j, i − N,L, b, z) for 2i − 5 ≤ j ≤ 2i − 2
and yj = B(j, i − 1, L, d, z, y) for 2i − 3 ≤ j ≤ 2i − 2,

z2i−1 = y2i−3 + vi mod M −
∑i

k=max(i−3,j) li−j,k−j · zk,

z2i = y2i−3 + 2vi mod M −
∑i

k=max(i−3,j) li−j,k−j · zk.

We provide a flowchart along with step-by-step breakdowns

of the pre-calculation process to facilitate the reader’s under-

standing. Specifically, the orange section on the left side is

completed during database creation, while the blue section on

the right is executed when the time series data is input.

Step 1: Problem Definition. Section II-B formulates the

mathematical expression of the decomposition problem.

Step 2: Matrix Reformulation. Section II-B1 reformulates

the decomposition problem into an equivalent matrix form,

i.e., solving the linear equation Ay = b, and provides the

precise definition of A.

Step 3: Pruned LDLT Decomposition. Section II-C1 de-

composes the parameter matrix A into an upper triangular

matrix L and a diagonal matrix D, yielding A = LDLT .

This splits the equation Ay = b into two parts, Lz = b and

DLT y = z.

Step 4: Cold Start. Section II-C2 performs a cold start,

constructing the vector b based on the input time series x.

However, at this stage, missing values in b remain unhandled.

Step 5: Pre-calculation with missing values handling. Sec-

tion III presents the pre-calculation process, where Lz = b
is solved to obtain the intermediate result z. Section III-C

then addresses missing values in b by leveraging past pre-

calculation results.

Example 1. Figure 5 shows the pre-calculation results of

OneRoundSTL. Note that on Page 3, x3n−3 is missing. By

employing the missing value handling method, we are able

to acquire the pre-calculated results z6n−3 and z6n−2 corre-

sponding to x3n−3 with zj = F(j, 3n−3−N,L, b, z) for 6n−
11 ≤ j ≤ 6n−8, yj = B(j, 3n−4, L, d, z, y) for 6n−9 ≤ j ≤
6n−8, z2i−1 = y2i−3+vi mod M−

∑i

k=max(i−3,j) li−j,k−j ·zk,

z2i = y2i−3 + 2vi mod M −
∑i

k=max(i−3,j) li−j,k−j · zk.

6729

Fig. 3: Flowchart of Pre-calculation

IV. CONCATENATION OF MULTIPLE PAGES

In this section, we discuss the operation of concatenation

on two pages. It naturally applies to multiple pages as well.

We can order all pages based on their start time and then con-

catenate pages pairwise. We first provide a formal definition

of concatenation on two pages.

Definition 6. The concatenation of two pages combines the

pre-calculated result zj for α(m−1) ≤ j ≤ β(m−1) in the

(m − 1)-th page with zk for α(m) ≤ k ≤ β(m) in the m-th

page, and outputs zi for α(m−1) ≤ i ≤ β(m) that is the same

as the results calculated directly in the same range.

As discussed in Section III-B, pre-calculation is performed

independently on each page. The concatenation extends the

pre-calculated range from a single page to two pages, necessi-

tating the re-calculation of results. We denote the re-calculated

results of zi as z̄i. Referring to Definition 6, we have

z̄i = F(i, α(m−1), L, b, z) (13)

We first introduce the three types of timestamp range cases

for two pages in an LSM-Tree based database in Section

IV-A. Different timestamp range cases require different re-

calculation process. Correspondingly, we introduce the con-

catenation method of adjacent pages in Section IV-B. Then,

we introduce the concatenation method of disjoint pages in

Section IV-C. Finally, we introduce the concatenation method

of overlapped pages in Section IV-D.

A. Page Relationship in LSM-Tree

Figure 4 presents a concise depiction of the storage orga-

nization utilized by LSM-Tree. Each page stores a segment

of the time series x . A larger page number means that its

data are newer. Owing to the existence of missing and out-

of-order arrivals, two pages can exhibit distinct relationships

on timestamps: (a) Adjacent pages, whose timestamps are

consecutive, as shown by Pages 1 and 2 in Figure 4. (b)

Disjoint pages, whose timestamps have a gap between them,

e.g., due to missing or delayed values, as shown by Pages 2

and 3 in Figure 4. (c) Overlapped pages, where the delayed

values such as x13 in the page having a larger page number

!

"#$%

&

'

(

)*+,-#./0#12

345%

)4+ 67/48%12

!!

!9!:!(!'!&!!!;<=>9:('&!

?4@A%

"#$%

)8+,BC%D@4EE%7

!"#

Fig. 4: Pages (with different markers) in LSM-Tree based

storage for different parts of a time series. Hollow markers

represent missing values, some of which (x13) may be filled

in the subsequent pages owing to out-of-order arrivals.

fill the incomplete data in the previous page with a smaller

number, as shown by Pages 3 and 4 in Figure 4. To assemble

the time series x , these pages with various relationships should

be concatenated, as presented in Section IV.

B. Concatenating Adjacent Pages

The (m− 1)-th page and the m-th page are adjacent pages

if and only if β(m−1) + 1 = α(m). Since the two adjacent

pages have continuous timestamps, it is only required to re-

calculate from the connection point, i.e., i = α(m). Note that

it does not require re-calculating the entire m-th page due to

the convergence property introduced below.

Proposition 5 (Convergence of Re-calculation in Concate-

nation). The re-calculated results z̄i = F(i, α(m−1), L, b, z)
converges to zi, i.e., for any positive number ζ, there exists

K ∈ N ,K ≥ 2α(m) − 1, such that for all i > K having

|z̄i − zi| < ζ.

Based on Proposition 5, we can improve the efficiency of

re-calculation. Specifically, with a given convergence threshold

ζ, we obtain the re-calculated results z̄i by Formula 13 starting

from i = α(m). Then, we concatenate the pages with zi = z̄i.

Once converged, i.e., |z̄i − zi| < ζ, we resort to stored pre-

calculated results zi instead of further re-calculating z̄i.

Example 2. Figure 5(a) shows the concatenating process of

adjacent pages. Page 1 stores x
(1)
1 , x

(1)
2 , · · · , x

(1)
n . Page 2

stores x
(2)
n+1, x

(2)
n+2, · · · , x

(2)
2n . Referring to Definition 6, β(1) =

n, α(2) = n + 1. Since α(2) = β(1) + 1, Page 1 and 2 are

adjacent. Considering 2α(2) − 1 = 2n+ 1, the concatenation

re-calculates from z2n+1 until convergence.

C. Concatenating Disjoint Pages

The (m− 1)-th page and the m-th page are disjoint pages

if and only if β(m−1) + 1 < α(m). Since both x and z are

missing between the two pages, i.e., xi for β(m−1) < i <
α(m) and zi for 2β(m−1) < i < 2α(m) − 1 are missing, we

need to first handle these missing xi with Formula 12 and

7730

!"#$%%& !"#$%%' !"#$%%(!"#$%%)

!!"
#!$

"!%"
#%$

!%"&'
#%$

"!(")%
#%$

!(")(!(")'!("
#($

!("&'
#($

"!")'
#($

!"
#'$

"!(
#'$

!'
#'$

#*"&'
#!$

"#+"&'
#%$

#+"&%
#%$

"#!"),
#%$

#!")%#!")'#!"&'
#($

#!"&%
#($

"#(")'
#($

#("&'
#'$

"#%
#'$

#'
#'$

#*"
#!$

"#+"
#%$

#+"&(
#%$

"#!")+
#%$

#!")!#!")(#!"
#($

#!"&(
#($

"#(")(
#($

#("
#'$

"#!
#'$

#(
#'$

!"
#'$

"!(
#'$

!'
#'$

#("&'
#'$

"#%
#'$

#'
#'$

#("
#'$

"#!
#'$

#(
#'$

!("
#($

!("&'
#($

"!")'
#($

#!"&'
#($

#!"&%
#($

"#(")'
#($

#!"
#($

#!"&(
#($

"#(")(
#($

!%"
#%$

!%"&'
#%$

"!(")%
#%$

#+"&'
#%$

#+"&%
#%$

"#!"),

#%$

#+"
#%$

#+"&(
#%$

"#!")+
#%$

!!"
#!$

"!%"
#!$

!%"&'
#!$

#*"&'
#!$

"#+"&'
#!$

#+"&%
#!$

#*"
#!$

"#+"
#!$

#+"&(
#!$

*"+%",-".$/0 *1+%,23-42/0 *.+%45$67"88$,

Fig. 5: Concatenation of the pre-calculated results for pages

with various relationships.

calculate zi with Formula 9. Then, referring to Proposition

5, we concatenate the pages by re-calculating zi from i =
2α(m) − 1 until convergence.

Example 3. Figure 5(b) shows the concatenating process of

disjoint pages. Page 2 stores x
(2)
n+1, x

(2)
n+2, · · · , x

(2)
2n , while Page

3 stores x
(3)
2n+3, x

(3)
2n+4, · · · , x

(3)
3n . Referring to Definition 6, we

have β(2) = 2n, α(3) = 2n + 3. Since α(3) = β(2) + 3 >
β(2) + 1, Page 1 and 2 are disjoint. Therefore, we first

handling missing value x2n+1 and x2n+2 with Formula 12.

Then we calculate the corresponding z4n+1 · · · z4n+4. Finally,

considering 2α(3)−1 = 4n+5, the concatenation re-calculate

from z4n+5 until convergence.

D. Concatenating Overlapped Pages

The (m − 1)-th page and the m-th page overlap if and

only if β(m−1) + 1 > α(m). The process of concatenating

overlapped pages involves three steps: (1) Select the original

xi for α(m) ≤ i ≤ β(m−1) in the overlap. If both pages contain

points with identical timestamps, retain the points on the page

with the larger page number. (2) Recalculate zi for 2α(m) −
1 ≤ i ≤ 2β(m−1) in the overlap. (3) Recalculate zi from

i = 2β(m−1) + 1 until convergence.

Example 4. Figure 5(c) shows the concatenating process of

disjoint pages. Page 3 stores x
(3)
2n+3, x

(3)
2n+4, · · · , x

(3)
3n , and Page

4 stores x
(4)
3n−1, x

(4)
3n , · · · , x

(4)
4n . Since x3n−1 is delayed, it is

absent on Page 3 and stored instead on Page 4. Referring to

Formula 12, the pre-calculated results z
(3)
6n−3 and z

(3)
6n−2 are

obtained, resulting in an overlap of z across two pages. As for

concatenation, we first select the original xi within the over-

lapped points, i.e., x3n−1 = x
(4)
3n−1, and x3n = x

(3)
3n . Then we

re-calculate each overlapped zi as zi = F(i, α(m−1), L, b, z)
for 4n + 1 ≤ i ≤ 4n + 4. Finally, the concatenation re-

calculates from z6n+1 until convergence.

V. SYSTEM DEPLOYMENT

OneRoundSTL has been included as a function in Apache

IoTDB [10], an open-source time series database management

Fig. 6: Deployment of OneRoundSTL in Apache IoTDB.

system. The document is available on the product website [14]

and the code is included in the system repository [15]. Figure

6 presents an overview of the deployment.

A. Decomposition Query

Since the decomposing process is triggered by query, we

first define the decomposition results of specific queries.

Definition 7 (Decomposition query). The decomposition query

returns trend components τ and seasonal component s of time

series x in the specified range, starting from timestamp η to

the end θ, i.e., τi and si, where η ≤ i ≤ θ.

The corresponding SQL statement is as follows.

select x,trend(x),season(x),residual(x)

from root.device

where time>=2 and time<=7

At this point, the seasonal components, trend components,

and residual components of time series x with timestamps in

the range of [2, 7] are returned.

B. Re-calculation on Truncated Pages

Considering that the pre-calculation has already performed

forward substitution, we only need to perform backward

substitution at this time. However, the pre-calculated results

are the forward substitution results of the entire data page,

ranging from α to β, rather than the query range η to θ.

Therefore, we need to do head re-calculation, which adjust the

pre-calculated to start from η, and tail re-calculation, which

adjust the pre-calculated to end with θ.

1) Head Re-calculation: The re-calculated results z̄i is

computed as

z̄i = F(i, η, L, b, z)

Similar to the re-calculation during concatenation, head re-

calculation also shows the convergence property.

Proposition 6 (Convergence of Head Re-calculation). The re-

calculated results z̄i = F(i, η, L, b, z) converges to zi, i.e., for

8731

any positive number ζ, there exists K ∈ N ,K ≥ 2η−1, such

that for all i > K having

|z̄i − zi| < ζ.

Based on Proposition 6, we re-calculate the head zi as

zi = F(i, η, L, b, z) (14)

for i = 2η − 1 until converge. As a result, the initial pre-

calculation timestamp for z shifts from α to η.

Example 5. Figure 6 illustrates the query processing of

OneRoundSTL. As indicated, x1, . . . , xn are stored in Page

1, and xn+1, . . . , x2n are in Page 2. The SQL statement

specifies the query of xi, τi, si, ri for i = 2, 3, . . . , 2n − 1.

Hence, we employ head re-calculation to adjust the starting

point of pre-calculation from 1 to 2. Specifically, we compute

zi = F(i, 2, L, b, z) for i = 3 . . . until convergence.

2) Tail Re-calculation: In order to adjust θ as the ending

timestamp for pre-calculated results, we need to re-calculate

zi. Since the end of the matrix L and D only affect the last

four rows as introduced in Proposition 2, we only need to re-

calculate the last four zi, i.e., i = 2θ− 3, . . . , 2θ. Since L and

D have N rows, we designate θ−N as the starting point for

re-calculation, i.e.,

zi = F(i, θ − N , L, b, z) (15)

for 2θ − 3 ≤ i ≤ 2θ.

Example 6 (Example 5 continued). Note that the query range

in Figure 6 spans from 2 to n−1. We employ tail re-calculation

to adjust the ending point of the pre-calculated results to n−1.

Specifically, we compute zi = F(i, n − 1 − N , L, b, z) for

2n− 5 ≤ i ≤ 2n− 2.

After the re-calculation is completed, we can use backward

substitution referring to Formula 10 as

yi = B(i, θ, L, d, z, y) (16)

for 2η− 1 ≤ i ≤ 2θ to obtain the decomposition results y , as

mentioned in Section II-C4. Finally, we extract the seasonal

and residual components from z as τi = y2i−1 and si = y2i.

C. Query Processing

Algorithm 3 shows the details of OneRoundSTL in the data

query phase. For each pair of consecutive pages in the query

range, Line 2 concatenate them. The results of concatenation

are x and z of all pages involved in the query. As we only

query the decomposition results of some of the data, Line 3

performs head re-calculation to adapt to the query start point,

and Line 4 performs tail re-calculation to adapt to the query

end point. Finally, Line 5 obtains the decomposition result.

The time complexity of the concatenation is O(φ), where

φ is the minimum number of re-calculations to converge. The

head re-calculation is also related to the convergence, with a

time complexity of O(φ). The tail re-calculation is only for

the last 4 rows, with a time complexity of O(1). The time

Algorithm 3: OneRoundSTL Query

Input: x ∈ R
N , t ∈ R

N , z ∈ R
2N , v ∈ R

T , L ∈
R

2N×2N , D ∈ R
2N×2N , η ∈ N

+, θ ∈ N
+

Output: τ ∈ R
N , s ∈ R

N

1 foreach pair of consecutive pages (m− 1)-th page and

(m)-th page where β(m−1) ≥ η and α(m) ≤ θ do

2 concatenate by Formula 13;

3 head re-calculate by Formula 14;

4 tail re-calculate by Formula 15;

5 decomposing by Formula 16;

6 return τ, s, r;

TABLE II: Comparison on online complexity

Algorithm Online Complexity

OnlineSTL O(M)
OneShotSTL O(I)
BacktrackSTL O(W)
OneRoundSTL O(1)

complexity of each zi backward substitution in decomposing is

O(1), so the total time complexity is O(2Q), where Q = θ−η
is the size of the data being queried. In summary, the total

time complexity is O(2Q+ φ).

We provide Table II to compare the online complexity

of OneRoundSTL with the competitors. Note that we only

compare online methods, as existing batch methods, such as

RobustSTL, have significantly higher time costs than online

methods. Specifically, OnlineSTL’s complexity depends on

the period length M , OneShotSTL’s complexity is related

to the user-defined maximum number of iterations I , and

BacktrackSTL is influenced by the user-defined window size

W . In contrast, OneRoundSTL requires only 4 calculations

per data point, resulting in O(1) complexity, independent of

any parameters. Therefore, OneRoundSTL clearly outperform

existing online methods.

VI. EXPERIMENT

The experiments evaluate (1) decomposition effectiveness

and efficiency of OneRoundSTL; (2) performance of OneR-

oundSTL deployed in time series database Apache IoTDB.

We further provide ablation study and parameter study of

OneRoundSTL in the appendix [24].

A. Experimental Setup

1) Datasets: We use two synthetic datasets and two real-

world datasets, consistent with the setup in [7]. The synthetic

datasets have corresponding decomposition ground truth,

which can be used to evaluate the effectiveness. And the real-

world datasets can be used to evaluate efficiency in the real-

world application scenarios. The datasets and their properties

are briefly listed in Table III.

• Triangle [7] dataset is generated with a triangle wave, and

inject an abnormal value into the residual component, to test

the robustness of the algorithm.

9732

TABLE III: Features of datasets

Type Time series size N Period M

Triangle Synthetic 1,000,000 144
Square Synthetic 1,000,000 144
Power Real 5,241,600 144
Voltage Real 22,825,440 1440

• Square [7] dataset is generated with a square wave, and

add a periodic mutation to the seasonal component, to test the

algorithm’s ability to deal with periodic mutations.

• Power [27] dataset contains records of power consumption

from three different distribution networks in Tetouan city,

located in northern Morocco.

• Voltage [28] dataset contains records of electricity consump-

tion in a house located in Sceaux.

2) Metrics: There are three evaluation metrics involved

in the experiment: (1) RMSE (Root Mean Square Error)

calculates the RMSE between the decomposition result and

the ground truth. (2) Space Cost calculates the space occupied

by storing the experimental results. The calculation adopts

the space cost of 64-bit compiler, that is, each floating-

point number occupies 4 bytes. (3) Time Cost calculates the

running time of the decomposition process. The results of the

LDLT decomposition, L and D, can be computed and stored

on disk as prior knowledge. Therefore, the time for LDLT

decomposition is not included.

3) Methods: We compare with the state-of-the-art methods,

including RobustSTL showing the best decomposition effect,

and STL having the highest decomposition efficiency.

• OneRoundSTL is our Algorithm 3, which utilizes pre-

calculation to improve decomposition performance

• STL [5] is a batch STD algorithm using Loess.

• RobustSTL [17] is a batch STD algorithm using bilateral

filter and non-local seasonal filter.

• FastRobustSTL [18] is an extension of RobustSTL, using

the ADMM algorithm to improve computational efficiency.

• OnlineSTL [6] is an online STD method using tri-cube

kernel filter and exponential smoothing.

• OneShotSTL [7] is an online STD algorithm using l1-norm

filter and solved by IRLS (iterative reweighted least squares).

• BacktrackSTL [29] is a non-iterative online STD algorithm

that integrates outlier-resilient smoothing, non-local seasonal

filtering, and a backtracking technique.

B. Comparison of Decomposition

The comparative experiment uses synthetic datasets, with

known ground truths. It consists of three parts: (1) example

decomposition; (2) comparison of decomposition effects; (3)

comparison of decomposition efficiency.

1) Example Decomposition: We present typical decompo-

sition results on synthetic and real-world datasets, providing a

more intuitive visualization of the decomposition effect. As for

synthetic dataset, Figure 7 shows that OneRoundSTL can ex-

tract trend features well. Although the seasonal component of

2
6

10

Tr
en

d

Square Wave
(a) Tru h

−9
−3

3

S
ea

so
na

l

−15
−5

5

R
es

id
ua

l

2
6

10

Tr
en

d

(b) OneRoundSTL

−5
0

S
ea

so
na

l

−15
−5

5

R
es

id
ua

l

2
6

10

Tr
en

d

(c) OneSho STL

−9
−3

3

S
ea

so
na

l

−15
−5

5

R
es

id
ua

l
2
6

10

Tr
en

d

(d) Robus STL

−9
−3

3
S

ea
so

na
l

0 20 40 60
Time

−15
−5

5

R
es

id
ua

l

−6
−9
−12Tr

en
d

Triangle Wave
(e) Tr th

−1
0
1

S
ea
so
na
l

−5
0
5

R
es
id
 a
l

−6
−9
−12Tr

en
d

(f) OneRo ndSTL

−1
0

S
ea
so
na
l

−5
0
5

R
es
id
 a
l

−6
−9
−12Tr

en
d

(g) OneShotSTL

−1
0
1

S
ea
so
na
l

−5
0
5

R
es
id
 a
l

−6
−9
−12Tr

en
d

(h) Rob stSTL

−1
0
1

S
ea
so
na
l

0 20 40 60
Time

−5
0
5

R
es
id
 a
l

Fig. 7: Decomposition effectiveness on Synthetic Dataset

the outlier is affected, the seasonal features outside the outlier

are well preserved. In contrast, OneShotSTL is significantly af-

fected by the outlier around time 20. This is because the IRLS

method used by OneShotSTL cannot accurately solve the l1-

norm, thereby affecting its decomposition performance. For

RobustSTL, the current best-performing method, its results are

closest to the ground truth due to its superior filter. Note that

RobustSTL is affected by periodic mutations. At this time the

residual components in Figure 7(d) exhibit greater fluctuations

compared to Figure 7(a), i.e., OneRoundSTL shows superior

accuracy relative to RobustSTL. As for real-world dataset,

Figures 8 show the decomposition results of OneRoundSTL,

OneShotSTL and RobustSTL on Power and Voltage datasets.

It is evident that OneRoundSTL yields a smoother trend

component compared to OneShotSTL and RobustSTL. In the

seasonal component, OneRoundSTL is capable of capturing

finer variations, such as the spikes near the local minima

of the data, which in real-world scenarios could represent

nighttime electricity inspections. Decomposition results from

other methods are provided in the appendix [24].

2) Effectiveness: Table IV quantitatively shows the effects

of various methods. Due to the memory overhead exceeding

64GB for RobustSTL and FastRobustSTL on the full dataset,

we first test their effectiveness using a smaller dataset of

10733

−2
0
2

O
rig

in
al

(a) Original Dataset Power

−2
0
2

Tr
en

d

(b) OneRoundSTL

−2
0
2

S
ea

so
na

l

−2
0
2

R
es

id
ua

l

−2
0
2

Tr
en

d

(c) OneShotSTL

−2
0
2

S
ea

so
na

l

−2
0
2

R
es

id
ua

l

−2
0
2

Tr
en

d

(d) RobustSTL

−2
0
2

S
ea

so
na

l

0 500 1000
Time

−2
0
2

R
es

id
ua

l

−2
0
2

O
rig

in
al

(e) Original Dataset Voltage

−2
0
2

Tr
en

d

(f) OneRoundSTL

−2
0
2

S
ea

so
na

l

−2
0
2

R
es

id
ua

l
−2

0
2

Tr
en

d

(g) OneShotSTL

−2
0
2

S
ea

so
na

l

−2
0
2

R
es

id
ua

l

−2
0
2

Tr
en

d

(h) RobustSTL

−2
0
2

S
ea

so
na

l

0 500 1000
Time

−2
0
2

R
es

id
ua

l

Fig. 8: Decomposition effectiveness on Real-world Dataset

size 1k. As presented, OneRoundSTL present superior RMSE

performance over batch method STL and all of the streaming

method such as OnlineSTL. It is because the Hodrick-Prescott

filter used in OneRoundSTL provides better smoothing effects

than filters in other methods, such as the tri-cube filter used by

OnlineSTL. Moreover, it offers competitive results even with

the state-of-the-art method, RobustSTL, similar to the quali-

tative analysis in Section VI-B1. It shows that OneRoundSTL

handle square waves more effectively than RobustSTL.

3) Efficiency: Table IV also shows the time cost of algo-

rithms. OneRoundSTL outperforms all existing methods, with

particular advantages over RobustSTL and FastRobustSTL

due to the use of pre-calculation. Section V-C shows that

OneRoundSTL’s online complexity is O(1), while the single

loop complexity of RobustSTL is O(N2), multiple loops are

required for convergence. The existing state-of-the-art efficient

method, BacktrackSTL, has an online complexity of O(W),
where W is the user-defined window size. This W is signifi-

cantly larger than the computation required for each data point

in OneRoundSTL.

C. Comparison in TSDB

The comparison in TSDB consists of four parts: (1) varying

query size; (2) evaluation addressing the missing value issue;

We provide experiments on varying page sizes and evaluation

addressing the out-of-order issue in the appendix [24].

1) Query Size: Due to the low decomposition efficiency of

RobustSTL and FastRobustSTL, which limits their practicality

for database queries, we present their results only for query

TABLE IV: Comparison on decomposition effectiveness

Dataset Size Algorithm
Trend

(RMSE)
Seasonal
(RMSE)

Residual
(RMSE)

Time Cost
(seconds)

Triangle
Wave

1,000

OneRoundSTL 0.030 0.024 0.043 0.002
STL 0.013 0.453 0.453 0.018

OnlineSTL 0.054 0.056 0.031 0.088
OneShotSTL 0.771 0.741 0.057 0.108

BacktrackSTL 0.136 0.368 0.056 0.037
RobustSTL 0.017 0.006 0.018 55.690

FastRobustSTL 0.007 0.016 0.016 41.295

1,000,000

OneRoundSTL 0.024 0.020 0.035 0.078
STL 0.002 0.420 0.412 0.248

OnlineSTL 0.053 0.053 0.034 28.476
OneShotSTL 0.824 0.814 0.128 22.723

BacktrackSTL 0.201 0.531 0.183 1.297
RobustSTL - - - -

FastRobustSTL - - - -

Square
Wave

1,000

OneRoundSTL 0.025 0.026 0.001 0.004
STL 0.106 0.107 0.003 0.038

OnlineSTL 0.050 0.051 0.001 0.097
OneShotSTL 0.232 0.153 0.131 0.433

BacktrackSTL 0.136 0.104 0.010 0.081
RobustSTL 0.069 0.017 0.015 118.910

FastRobustSTL 0.003 0.039 0.039 49.041

1,000,000

OneRoundSTL 0.028 0.028 0.002 0.084
STL 0.104 0.182 0.005 0.267

OnlineSTL 0.068 0.068 0.003 30.834
OneShotSTL 0.241 0.168 0.162 81.036

BacktrackSTL 0.137 0.174 0.021 1.435
RobustSTL - - - -

FastRobustSTL - - - -

OneRoundSTL
STL

OneShotSTL
OnlineSTL

BacktrackSTL
RobustSTL

FastRobustSTL

0.5m 2m 3.5m 5m
Query Size

10−1
100
101
102
103
104

Qu
er

y
Ti

m
e

Co
st

 (s
)

(a) Power

2m 8m 14m 20m
Query Size

10−1
100
101
102
103
104
105

Qu
er

y
Ti

m
e

Co
st

 (s
)

(b) Voltage

Fig. 9: Varying query size

sizes of 0.5m and 1m. Figure 9 shows that while query

times increase with data size for all methods, OneRoundSTL

consistently performs over an order of magnitude faster than

the other algorithms, demonstrating its superior efficiency.

Notably, OnlineSTL’s efficiency varies with period length, as

seen in Figure 9(b) for the Voltage dataset compared to Figure

9(a) for Power. In contrast, OneRoundSTL maintains stable

efficiency regardless of period length.

2) Missing Value Evaluation: Figure 10 and 11 shows

that OneRoundSTL maintains stable performance with a low

missing rate, but its performance significantly degrades with

substantial irregularities. Moreover, as the missing rate and

length increases, the number of handled data points rises,

leading to higher pre-calculation time costs.

To address the issue of poor performance when handling a

large number of missing values, we extend the missing value

handling approach in Section III-C. Considering the limited

historical information, we use all available data to handle

missing values. Specifically, we employ LOESS regression

models trained on data with the same phase to capture trend

and seasonal information. As observed in Figures 10 and 11,

11734

OneRoundSTL (Pre-calculation) OneRoundSTL (Regression)

100 101

Missing Rate (%)
0.02
0.04
0.06
0.08
0.10
0.12

RM
SE

(a) Trend

100 101

Missing Rate (%)

0.025
0.030
0.035
0.040
0.045
0.050
0.055

RM
SE

(b) Seasonal

100 101

Missing Rate (%)

0.01
0.02
0.03
0.04
0.05
0.06
0.07

RM
SE

(c) Residual

100 101

Missing Rate (%)
0

50

100

150

200

Pr
e-

ca
lcu

la
tio

n
Ti

m
e

Co
st

 (m
s) (d) Time Cost

Fig. 10: Varying missing rate

OneRoundSTL (Pre-calculation) OneRoundSTL (Regression)

100 101

Missing Length
0.02
0.04
0.06
0.08
0.10
0.12

RM
SE

(a) Trend

100 101

Missing Length

0.03
0.04
0.05
0.06
0.07

RM
SE

(b) Seasonal

100 101

Missing Length

0.01
0.02
0.03
0.04
0.05
0.06

RM
SE

(c) Residual

100 101

Missing Length
0

20
40
60
80

100
120

Pr
e-

ca
lcu

la
tio

n
Ti

m
e

Co
st

 (m
s) (d) Time Cost

Fig. 11: Varying missing length

OneRoundSTL (Pre-calculation) and OneRoundSTL (Regres-

sion) exhibit nearly identical performance when missing rates

and lengths are low, with the former demonstrating notably

lower runtime. This highlights the proposed OneRoundSTL’s

advantages under minimal missing conditions. However, as

missing rate and length increase, OneRoundSTL (Regres-

sion) is less impacted than OneRoundSTL (Pre-calculation).

Notably, OneRoundSTL (Regression) shows reduced runtime

at high missing rates due to lower the training cost of the

regression model.

VII. RELATED WORK

We discuss the related studies on (1) seasonal-trend decom-

position and (2) time series database storage.

A. Seasonal-Trend Decomposition

Existing seasonal-trend decomposition methods can be di-

vided into batch methods and online methods. (1) Batch meth-

ods, such as STL [5], RobustSTL [17] and FastRobustSTL

[18], decompose the entire time series. These methods achieve

good decomposition effects and are widely used in time series

analysis. However, their low decomposition efficiency renders

them unsuitable for database scenarios. (2) Online methods,

such as OnlineSTL [6] and OneShotSTL [7], can decompose

time series in a streaming manner. These methods exhibit high

efficiency and suitability for database streaming scenarios.

However, they suffer from low effect compared to batch

methods.

B. Time Series Database Storage

Time series databases for IoT widely adopt Log-Structured

Merge-Tree (LSM-Tree) [11] for storage, such as InfluxDB

[9] and IoTDB [8], since LSM-Tree can effectively deal with

write-intensive scenarios. Existing studies have leveraged the

structure of LSM-Tree to accelerate the query of data features.

LSMAR [30] learns AutoRegression models in LSM-Tree to

accelerate time series prediction. LSMAR also utilizes pre-

calculation and stores the pre-calculated results in the metadata

of each page. Absalyamov et al. [31] learn data synopses in

LSM-Tree, such as histograms and wavelets. However, none

of these methods consider seasonal-trend decomposition.

VIII. CONCLUSION

In this paper, we propose OneRoundSTL an efficient method

of seasonal-trend decomposition in time series database. To

improve efficiency, our novel one round decomposition design

enables pre-calculation in database, which is unlike for the

existing methods with multiple rounds of data scan. The

implementation of OneRoundSTL in a time series database has

three parts, (1) pre-calculation in each page, (2) concatenation

the pre-calculated results of multiple queried pages, and (3)

online re-calculation of some results for the decomposition

query. Owing to the existence of missing and delayed values,

we use historical features to handle the data absent from a

page in pre-calculation. OneRoundSTL has been deployed

as a function of Apache IoTDB, an open source time series

database. Experiments on real and synthetic data demonstrate

that OneRoundSTL significantly improves the decomposition

efficiency while keeping the decomposition effect.

ACKNOWLEDGEMENT

This work is supported in part by the Ministry of Indus-

try and Information Technology, the National Natural Sci-

ence Foundation of China (62021002, 92267203, 62072265,

62232005), the National Key Research and Development Plan

(2021YFB3300500), and Beijing Key Laboratory of Industrial

Big Data System and Application. Shaoxu Song (https://

sxsong.github.io/) is the corresponding author.

12735

https://sxsong.github.io/
https://sxsong.github.io/

REFERENCES

[1] T. Kieu, B. Yang, C. Guo, C. S. Jensen, Y. Zhao, F. Huang, and
K. Zheng, “Robust and explainable autoencoders for unsupervised time
series outlier detection,” in 38th IEEE International Conference on

Data Engineering, ICDE 2022, Kuala Lumpur, Malaysia, May 9-12,

2022. IEEE, 2022, pp. 3038–3050. [Online]. Available: https://doi.
org/10.1109/ICDE53745.2022.00273

[2] N. Laptev, S. Amizadeh, and I. Flint, “Generic and scalable framework
for automated time-series anomaly detection,” in Proceedings of the

21th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, Sydney, NSW, Australia, August 10-13, 2015,
L. Cao, C. Zhang, T. Joachims, G. I. Webb, D. D. Margineantu, and
G. Williams, Eds. ACM, 2015, pp. 1939–1947. [Online]. Available:
https://doi.org/10.1145/2783258.2788611

[3] H. Wu, J. Xu, J. Wang, and M. Long, “Autoformer: Decomposition
transformers with auto-correlation for long-term series forecasting,”
in Advances in Neural Information Processing Systems 34: Annual

Conference on Neural Information Processing Systems 2021, NeurIPS

2021, December 6-14, 2021, virtual, M. Ranzato, A. Beygelzimer, Y. N.
Dauphin, P. Liang, and J. W. Vaughan, Eds., 2021, pp. 22 419–22 430.

[4] T. Zhou, Z. Ma, Q. Wen, X. Wang, L. Sun, and R. Jin, “Fedformer:
Frequency enhanced decomposed transformer for long-term series
forecasting,” in International Conference on Machine Learning, ICML

2022, 17-23 July 2022, Baltimore, Maryland, USA, ser. Proceedings
of Machine Learning Research, K. Chaudhuri, S. Jegelka, L. Song,
C. Szepesvári, G. Niu, and S. Sabato, Eds., vol. 162. PMLR, 2022,
pp. 27 268–27 286. [Online]. Available: https://proceedings.mlr.press/
v162/zhou22g.html

[5] R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning, “Stl:
A seasonal-trend decomposition,” J. Off. Stat, vol. 6, no. 1, pp. 3–73,
1990.

[6] A. Mishra, R. Sriharsha, and S. Zhong, “Onlinestl: Scaling time
series decomposition by 100x,” Proc. VLDB Endow., vol. 15, no. 7,
pp. 1417–1425, 2022. [Online]. Available: https://www.vldb.org/pvldb/
vol15/p1417-mishra.pdf

[7] X. He, Y. Li, J. Tan, B. Wu, and F. Li, “Oneshotstl: One-shot
seasonal-trend decomposition for online time series anomaly detection
and forecasting,” Proc. VLDB Endow., vol. 16, no. 6, pp. 1399–1412,
2023. [Online]. Available: https://www.vldb.org/pvldb/vol16/p1399-he.
pdf

[8] “https://iotdb.apache.org.”

[9] “https://github.com/influxdata/influxdb.”

[10] C. Wang, J. Qiao, X. Huang, S. Song, H. Hou, T. Jiang, L. Rui,
J. Wang, and J. Sun, “Apache iotdb: A time series database for iot
applications,” Proc. ACM Manag. Data, vol. 1, no. 2, pp. 195:1–195:27,
2023. [Online]. Available: https://doi.org/10.1145/3589775

[11] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil, “The
log-structured merge-tree (lsm-tree),” Acta Informatica, vol. 33,
no. 4, pp. 351–385, 1996. [Online]. Available: https://doi.org/10.1007/
s002360050048

[12] Y. Kang, X. Huang, S. Song, L. Zhang, J. Qiao, C. Wang, J. Wang, and
J. Feinauer, “Separation or not: On handing out-of-order time-series
data in leveled lsm-tree,” in 38th IEEE International Conference on

Data Engineering, ICDE 2022, Kuala Lumpur, Malaysia, May 9-12,

2022. IEEE, 2022, pp. 3340–3352. [Online]. Available: https://doi.
org/10.1109/ICDE53745.2022.00315

[13] C. Fang, Z. Chen, S. Song, X. Huang, C. Wang, and J. Wang, “On
reducing space amplification with multi-column compaction in apache
iotdb,” Proc. VLDB Endow., vol. 17, no. 11, pp. 2974–2986, 2024.

[14] “https://iotdb.apache.org/UserGuide/latest/SQL-Manual/UDF-
Libraries apache.html.”

[15] “https://github.com/apache/iotdb/tree/research/OneRoundSTL.”

[16] “https://github.com/czjthss/OneRoundSTL.”

[17] Q. Wen, J. Gao, X. Song, L. Sun, H. Xu, and S. Zhu, “Robuststl: A
robust seasonal-trend decomposition algorithm for long time series,”
in The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI

2019, The Thirty-First Innovative Applications of Artificial Intelligence

Conference, IAAI 2019, The Ninth AAAI Symposium on Educational

Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA,

January 27 - February 1, 2019. AAAI Press, 2019, pp. 5409–5416.
[Online]. Available: https://doi.org/10.1609/aaai.v33i01.33015409

[18] Q. Wen, Z. Zhang, Y. Li, and L. Sun, “Fast robuststl: Efficient
and robust seasonal-trend decomposition for time series with complex

patterns,” in KDD ’20: The 26th ACM SIGKDD Conference on

Knowledge Discovery and Data Mining, Virtual Event, CA, USA,

August 23-27, 2020, R. Gupta, Y. Liu, J. Tang, and B. A. Prakash,
Eds. ACM, 2020, pp. 2203–2213. [Online]. Available: https://doi.org/
10.1145/3394486.3403271

[19] Q. Wen, K. He, L. Sun, Y. Zhang, M. Ke, and H. Xu, “Robustperiod:
Robust time-frequency mining for multiple periodicity detection,” in
SIGMOD ’21: International Conference on Management of Data,

Virtual Event, China, June 20-25, 2021, G. Li, Z. Li, S. Idreos, and
D. Srivastava, Eds. ACM, 2021, pp. 2328–2337. [Online]. Available:
https://doi.org/10.1145/3448016.3452779

[20] X. Song, Q. Wen, Y. Li, and L. Sun, “Robust time series dissimilarity
measure for outlier detection and periodicity detection,” in Proceedings

of the 31st ACM International Conference on Information & Knowledge

Management, Atlanta, GA, USA, October 17-21, 2022, M. A. Hasan
and L. Xiong, Eds. ACM, 2022, pp. 4510–4514. [Online]. Available:
https://doi.org/10.1145/3511808.3557686

[21] A. Dokumentov and R. J. Hyndman, “Str: Seasonal-trend decomposition
using regression,” arXiv preprint arXiv:2009.05894, 2020.

[22] A. Moghtaderi, P. Borgnat, and P. Flandrin, “Trend filtering: Empirical
mode decompositions versus l1 and hodrick-prescott,” Adv. Data Sci.

Adapt. Anal., vol. 3, no. 1-2, pp. 41–61, 2011. [Online]. Available:
https://doi.org/10.1142/S1793536911000751

[23] J. Fu and S. Levine, “Offline model-based optimization via normalized
maximum likelihood estimation,” in 9th International Conference on

Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7,

2021. OpenReview.net, 2021. [Online]. Available: https://openreview.
net/forum?id=FmMKSO4e8JK

[24] “https://github.com/czjthss/OneRoundSTL/blob/main/supplementary.
pdf.”

[25] S. Song, A. Zhang, J. Wang, and P. S. Yu, “SCREEN: stream
data cleaning under speed constraints,” in Proceedings of the 2015

ACM SIGMOD International Conference on Management of Data,

Melbourne, Victoria, Australia, May 31 - June 4, 2015, T. K. Sellis,
S. B. Davidson, and Z. G. Ives, Eds. ACM, 2015, pp. 827–841.
[Online]. Available: https://doi.org/10.1145/2723372.2723730

[26] A. Zhang, S. Song, and J. Wang, “Sequential data cleaning: A statistical
approach,” in Proceedings of the 2016 International Conference on

Management of Data, SIGMOD Conference 2016, San Francisco, CA,

USA, June 26 - July 01, 2016, F. Özcan, G. Koutrika, and S. Madden,
Eds. ACM, 2016, pp. 909–924. [Online]. Available: https://doi.org/10.
1145/2882903.2915233

[27] A. Salam and A. El Hibaoui, “Comparison of machine learning al-
gorithms for the power consumption prediction:-case study of tetouan
city–,” in 2018 6th International Renewable and Sustainable Energy

Conference (IRSEC). IEEE, 2018, pp. 1–5.
[28] B. N. E. Houda, L. Lakhdar, and A. Meraoumia, “Time series

analysis of household electric consumption with xgboost model,” in 4th

International Conference on Pattern Analysis and Intelligent Systems,

PAIS 2022, Oum El Bouaghi, Algeria, October 12-13, 2022. IEEE,
2022, pp. 1–6. [Online]. Available: https://doi.org/10.1109/PAIS56586.
2022.9946913

[29] H. Wang, H. Guo, Z. Zhu, Y. Zhang, Y. Zhou, and X. Zheng,
“Backtrackstl: Ultra-fast online seasonal-trend decomposition with
backtrack technique,” in Proceedings of the 30th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining, KDD 2024,

Barcelona, Spain, August 25-29, 2024, R. Baeza-Yates and F. Bonchi,
Eds. ACM, 2024, pp. 5848–5859. [Online]. Available: https://doi.org/
10.1145/3637528.3671510

[30] Y. Su, W. Ma, and S. Song, “Learning autoregressive model in
lsm-tree based store,” in Proceedings of the 29th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining, KDD 2023,

Long Beach, CA, USA, August 6-10, 2023, A. K. Singh, Y. Sun,
L. Akoglu, D. Gunopulos, X. Yan, R. Kumar, F. Ozcan, and J. Ye,
Eds. ACM, 2023, pp. 2061–2071. [Online]. Available: https://doi.org/
10.1145/3580305.3599405

[31] I. Absalyamov, M. J. Carey, and V. J. Tsotras, “Lightweight
cardinality estimation in lsm-based systems,” in Proceedings of the

2018 International Conference on Management of Data, SIGMOD

Conference 2018, Houston, TX, USA, June 10-15, 2018, G. Das,
C. M. Jermaine, and P. A. Bernstein, Eds. ACM, 2018, pp. 841–855.
[Online]. Available: https://doi.org/10.1145/3183713.3183761

13736

https://doi.org/10.1109/ICDE53745.2022.00273
https://doi.org/10.1109/ICDE53745.2022.00273
https://doi.org/10.1145/2783258.2788611
https://proceedings.mlr.press/v162/zhou22g.html
https://proceedings.mlr.press/v162/zhou22g.html
https://www.vldb.org/pvldb/vol15/p1417-mishra.pdf
https://www.vldb.org/pvldb/vol15/p1417-mishra.pdf
https://www.vldb.org/pvldb/vol16/p1399-he.pdf
https://www.vldb.org/pvldb/vol16/p1399-he.pdf
https://iotdb.apache.org
https://github.com/influxdata/influxdb
https://doi.org/10.1145/3589775
https://doi.org/10.1007/s002360050048
https://doi.org/10.1007/s002360050048
https://doi.org/10.1109/ICDE53745.2022.00315
https://doi.org/10.1109/ICDE53745.2022.00315
https://iotdb.apache.org/UserGuide/latest/SQL-Manual/UDF-Libraries_apache.html
https://iotdb.apache.org/UserGuide/latest/SQL-Manual/UDF-Libraries_apache.html
https://github.com/apache/iotdb/tree/research/OneRoundSTL
https://github.com/czjthss/OneRoundSTL
https://doi.org/10.1609/aaai.v33i01.33015409
https://doi.org/10.1145/3394486.3403271
https://doi.org/10.1145/3394486.3403271
https://doi.org/10.1145/3448016.3452779
https://doi.org/10.1145/3511808.3557686
https://doi.org/10.1142/S1793536911000751
https://openreview.net/forum?id=FmMKSO4e8JK
https://openreview.net/forum?id=FmMKSO4e8JK
https://github.com/czjthss/OneRoundSTL/blob/main/supplementary.pdf
https://github.com/czjthss/OneRoundSTL/blob/main/supplementary.pdf
https://doi.org/10.1145/2723372.2723730
https://doi.org/10.1145/2882903.2915233
https://doi.org/10.1145/2882903.2915233
https://doi.org/10.1109/PAIS56586.2022.9946913
https://doi.org/10.1109/PAIS56586.2022.9946913
https://doi.org/10.1145/3637528.3671510
https://doi.org/10.1145/3637528.3671510
https://doi.org/10.1145/3580305.3599405
https://doi.org/10.1145/3580305.3599405
https://doi.org/10.1145/3183713.3183761

