
Exploring SIMD Vectorization in Aggregation
Pipelines for Encoded IoT Data

Rui Kang
Tsinghua University

kr20@mails.tsinghua.edu.cn

Shaoxu Song∗
Tsinghua University

sxsong@tsinghua.edu.cn

Jianmin Wang
Tsinghua University

jimwang@tsinghua.edu.cn

Abstract—Time-series databases have been critical for collect-
ing and analyzing data in industries where sensors send large
amounts of IoT data by network devices. Both data received from
networks and data collected in database storage are sufficiently
encoded to reduce I/O occupation and latency. The IoT encoders
successively combine the Delta, Repeat, and Packing operators,
yielding a higher compression ratio than simply adopting each.
However, efficient compression makes query execution even
harder, requiring serial decoding before processing queries.
Among them, selective aggregations, such as down-sampling, are
the core of time series analytical queries. This paper identifies
operators to process and accelerate IoT aggregation queries
based on encoded data arrays, extensible to integrate thread-level
and instruction-level designs. In addition, encoded data could
aggregate directly in parallel without decoding, and encoding
statistics can help to reduce unnecessary computation. Identified
operators construct a pipeline query engine to integrate into an
existing open source database, the Apache IoTDB. Remarkably,
our systemic evaluations show vast improvements in the efficiency
of selective aggregation over existing works.

Index Terms—IoT Data, Vectorization, Query Optimization

I. INTRODUCTION

IoT data are time-ordered sequences composed of times-
tamps and sensor readings. IoT databases encode each se-
quence for fast delivery through networks [1], [2], [3] and
space-efficient storage on the disk [1], [4]. The encoding
formats leverage combined encoders that can flush and recover
incrementally when new IoT data points are generated. The
Delta encoder calculates the often slight differences in consec-
utive values [2], [3]. It is used together with other encoders,
such as Run-lengths [2] and Packing [2], [5], [6], to reduce
unnecessary messages, as shown in Table I. While databases
try to compress data effectively, combined encoders challenge
the query performance because query engines need to decode
data serially in the reverse order of applied encoders. Existing
work like FastLanes [7], [8], [9] proposes new encoding
formats to accelerate decoding speeds, but they do not apply
to IoT data, as shown below.

Example 1 (IoT encoding formats). In IoT scenarios, an
industrial device like a Raspberry Pi connects multiple sen-
sors, such as temperature and velocity, to detect real-time
system status. The embedded clock triggers the generation
of time-series records, as shown in Figure 1(a). Devices and
servers encode/compress the records to save I/O and storage.

∗Shaoxu Song (https://sxsong.github.io/) is the corresponding author.

TABLE I: Combined encoders for IoT data, categorized into
Delta, Repeat, and Packing by encoder semantics.

Encoding operators
Method Delta Repeat Packing

RLBE [2] ± Run-length Fibonacci
TS 2DIFF [10] ±2 None Bitpack
Sprintz [11] ± None ZigZag,Bitpack
Chimp [5] XOR None Pattern
Gorilla [6] ±,XOR Flag Pattern
Elf [12] XOR None Pattern

The IoT databases deployed in cloud servers buffer received
data packets of millions of sensors from networks [13]. The
databases encode data incrementally to save the receiving
buffers. When the buffers are filled, each sensor may only
accumulate a short time series, which databases will flush
to disk files. Thus, IoT encoders should be space-efficient and
flexible to apply to real-time IoT data.

• Space efficiency. IoT Encoders, listed in Table I, com-
bine different encoding semantics and use Delta-Repeat-
Packing successively to store with fewer bits.

• Flexibility. Encoders should work incrementally and ap-
ply to various input data sizes to save buffer spaces and
flushing time.

Space efficiency: Figure 1(b) introduces the widely applied
encoding format TS2DIFF for IoT data [4], [14], [15].
Since velocity changes closely over time, a Delta encoder
finds differences between adjacent reads, e.g., velocity [2] −
velocity [1] = 4 (kilo-meters per minute). For the acceleration
process, we use base to reduce the velocity absolute difference,
e.g., D2 = (velocity [2] − velocity [1]) − base = 2. Then,
Bit-packing removes useless leading zeros of Di to combine
with the two Deltas, e.g., 10 bits for each Di. Flexibility:
Figure 1(b) shows that the TS2DIFF encoder writes new bits
incrementally when receiving new data points. It keeps the
latest record, like velocity [1]. When receiving velocity [2], it
writes new bits for D2 and updates the latest as velocity [2].
Once the receiving buffer is filled, the storage engine flushes
encoded blocks in Big-Endian.

Instead, the FastLanes FLMM1024 layout [7] applies
to a fixed-sized data block each time, as shown in Figure
1(c). Compared to TS2DIFF, it provides a virtual 1024-bit
register abstraction to recover more velocity records with

446

2025 IEEE 41st International Conference on Data Engineering (ICDE)

2375-026X/25/$31.00 ©2025 IEEE
DOI 10.1109/ICDE65448.2025.00040

~����}u�����]vP�/}d�À�o}�]�Ç�������Ç���o�����v���]�r���l]vP��v�}�����~d^î�/&&�X

~���K�]P]v�o�/}d�����X

ï ó íí íï íñ Yíó

����� ����� ����� ����� ����� ����� «d]u����u�

s�o}�]�Ç

�� ELWV

~���&���>�v�� &>DDíìîðW�^/D�r(�]�v�oÇ���o����v�}�]vP�o�Ç}µ��X

���ELWV «

�ÙãÜ �ßÝ

>�v��ì�~íìîð �]���

�ÚÛá å �âßÙ �ÜÛ å �ââÛ

pÚãÝ pßÞ

>�v��í�~íìîð �]���

pÚÛâ å pâßÚ pÜÜ å pââÜ å

Y

pÜÚ pâÞ

>�v��òð ~íìîð �]���

pÚÞâ å pââÚ pßÜ å pÚÙÛÜ

ºp����ã sr ����ãÛ �ÙãÚ pÚãÛ pÛãÛ pÜãÙ pÝãÙ å

�� ELWV

���������e�^����

����������i�^���������h��^����

Fig. 1: IoT encoder schemes combine multiple encoders for
storage efficiency and incremental encoding.

a single addition instruction (SIMD-friendly). It groups the
original data and deltas into lanes separated by 1024 bits.
The original data are kept in Lane 0, containing 32 elements
of 32-bit width, velocity [0, 64, 128, . . . , 992], and delta values
are stored in other Lanes like D[1, 65, 129, . . .]. It recovers
velocity [1, 65, 129, . . . , 993] by a simple addition after loading
Lane 0 and Lane 1 into SIMD registers. However, it takes every
1024 velocity record, which asks IoT servers to buffer 1024
data points for each time series. Each data point can consume
32 bits in the buffer.

Thus, our proposal applies IoT encoders and accelerates
IoT query performance. Compared to IoT encoders, FastLanes
FLMM1024 [7] is problematic in IoT scenarios due to its
lower compression ratio, buffer pressure, and inefficiency
in handling short time series. Our approach also combines
aggregation operators with decoders and explores the design
beyond improving the decoders. Specifically, FastLanes stores
more original data to achieve better SIMD performance. The
buffer will be filled quickly when accumulating data points
for each time series. Meanwhile, the number of records may
not be sufficient to form a block, leading to empty values.

We introduce pipeline designs to integrate core/instruction-
level parallelism and operator fusion. For parallelism, ana-
lytical query plans [16], [17] and GPU-based Delta decoding
[18], [19] show effective practices for using multiple threads,
indicating the necessity to design parallel pipelines. However,
while GPU pipelines [18], [19] improve the decoder by
an input sequence of 32-bit-width deltas, we split encoded
data evenly to CPU cores under variable packing widths for
deltas. Also, unlike GPU threads controlled by flexible CUDA
programs, we accelerate each core performance according to
limited instructions for IoT databases on industrial servers.

Operator fusion: Besides decoding IoT data, our pipelines
merge query operators with decoders. The pipeline aims to
avoid applying Delta and Repeat decoders and compute query

hv���l &o����v ���µuµo��� d]u��(]o���

���}���

hv���l &o����v ���µuµo��� ^hD

d]u�

s�o}�]�Ç

�]������Ç

�]������Ç

Zµo��W]���í

W]���î

W�µv]vP

Fig. 2: Query pipelines on encoded IoT data for aggregations.

results directly on unpacked sequences. Thus, our pipelines
will merge more than one decoder, different from the analytic
query engines on fusing a single decoder, such as [20] to join
records on Run-length encoded data and [21] on aggregation.

Example 2 (Pipeline exploration). Figure 2 shows our
pipeline design, including decoders and vectorized query
operators. Consider the following aggregation query.

SELECT AVG(Velocity) FROM Velocity
WHERE Time >= 00:03 AND Time <= 00:05;

The above IoT query filters the velocity series by a time range.
Thus, we can use two decoding pipelines for timestamps and
velocity, as shown in Figure 2, where decoders named unpack,
flatten, and accumulate decode Packing, Repeat, and Delta
encoding semantics, respectively. The pipeline computes the
sum of valid velocities based on valid timestamps.

For core-level parallelism, we could execute the above
pipeline in each core to save I/O. However, when data are
encoded by Repeat or Fibonacci/Pattern Packing, splitting
data to each core could result in a different number of decoded
timestamps and velocities, causing data to broadcast I/O over
cores. We refer to CPU SIMD instructions for instruction-level
parallelism to design decoding layouts to improve efficiency
and share SIMD registers among pipeline operators to reduce
data movement. However, SIMD instructions are ineffective in
unpacking and dealing with dependent Delta accumulation.
For operator fusion, we notice that the sum of velocity between
00:03 and 00:05 can be calculated without decoding Repeat
and Delta (or two Deltas). For the TS2DIFF format in Figure
1(b), the sum is equal to 3X0+3D1+3D2+2D3+D4+12base.
Moreover, it is possible to prune unnecessary data loading and
decoding by filters. For example, we can prune all data de-
coding after observing timestamp =00:05 and velocity =17
because the encoded IoT data are ordered by timestamps.

Contributions and Overviews

We organize this paper with the following contributions.
(1) Section III explores the design space of query pipelines,

including data splitting (core-level), vectorized decoders and
query operators (instruction-level), and discussions for just-in-
time pipeline generation.

(2) Section IV shows our operator fusion techniques for
merging multiple decoders with aggregations.

(3) Section V concludes pruning rules based on (time/value)
filtering results and encoder statistics.

447

(4) Section VI integrates our proposed techniques to execute
complex queries in the Apache IoTDB [22]. Remarkably, in
Section VII, we evaluate our proposed querying pipelines
and compare them to existing approaches, which shows the
advances and efficiency in considering combined encoders by
pipelines instead of optimizing each.

We show the preliminaries, related works, and conclusions
of our work in Section II, VIII, and IX, respectively.

II. PRELIMINARIES

This section introduces the semantics of the IoT time series,
concluded from encoding formats and queries. These basic
operations construct the pipeline for decoding and aggregation
queries. We also introduce useful CPU SIMD instructions for
vectorizing decoders and query operators in each pipeline.

A. Aggregation query expressions

Expressions formalize a query pipeline from encoded IoT
data (bit arrays) to an aggregation result. Thus, an expression
should support operations on sequences of bits and byte-
aligned values like time series.

Definition 1. An IoT time series of schema S(T,A, . . .)
consists of ordered sequences for its columns with t[0] <
t[1] < . . . and {Jt[0], t[1], . . . t[n]K, Ja[0], a[1], . . . a[n]K, . . . }.

Unlike pipelining decoders, query operators work on each
time-series tuple, consisting of a timestamp and values at the
same position. Timestamps and values may have different
packing widths. The schema also records constant packing
widths for reading bits from input sequences like S(Time, A |
ωT , ωA), where ω is the minimum bit length of reading
elements. The IoT expression e is a sequence or,

e ::=Γω→ω′(e) (Bit extension)
| e1 op e2 | op(e) (Arithmetic operations)
| e1 ⋊⋉ e2 | e1 ◦ e2 (Natural join, concatenation)
| e[pos1 : pos2] (Position-based fraction)
| σθ(e) | πX(e) | ρS′(e) (Filter, projection, rename)
| f(e,mask) (Valid value aggregation)
| Gsw(Tmin ,∆T):f (e) (Sliding window Aggregation)

The expression includes operations for a physical query
plan. Unlike relational query plans, it involves sequential
operations like position-based fractions and bit/vector-level op-
erations, such as bit extension and masked value aggregation.

Definition 2 (Operation semantics). Bit extension: Given an
input sequence s with value width ω, the operation extends
every ω bits into ω′ bits. Arithmetic operations: The ex-
pression supports unary or binary element-wise operations,
such as addition e1 + e2. Natural join: Given timestamp
sequences T1 and T2, natural join produces a mask for valid
tuples of each time series, such as mask1 = J−1 if t1[i] =
t2[j] else 0 | ∀i∃jK. Concatenation: Given time series of the
same schema, this operation concatenates the sequences of

!" #$%$&
!"#$%&'(&"&)*+,-./%&0123&4$5/'6

!" !# !$!% !! !& ' () * " # $ % ! &

'(
)
**
+,
-.
/
0
1

!"#$% ! " # $ % & ' () * + , - . / 0

!"#$% 23/ 23/ 22 23 23/ 23/ 4 / 23/ 23/ 5 6 23/ 23/ 7 2

&'()*+

,-(($."

1 1 % $ 1 1) (1 1 - , 1 1 0 /

88 9 .301 :

8 !!" .2701 : 8 9 .601 ::

88 9 .601 :

8!# .2701 : 8 9 .301 ::
88-9-.;01-:-8!$-.2701-:: 88!!-.2701-:-8-9-.;01-::

'%
+<
-.
5
3
0
1 =>")?

.!)?21

88 9 .301 :

8!!" .2701 : 8 9 .601 ::

88 9 .601 :

8!# .2701 : 8 9 .301 ::
88-9-.;01-:-8!$-.2701-:: 88!!-.2701-:-8-9-.;01-::

@(A*? 6 3 7 ;

!)?-3 88 9 .301 : 8!!" .2701 :: 88 9 .601 : 8!# .2701 :: 88-9-.;01-:-8!$-.2701-:: 88!!-.2701-::

$>
B

.5
3
0
1 C$'D .2EE271F2 .2EE271F2 .2EE271F2 .2EE271F2

!)?-5 !!" !#! !$! !!!

7"8&09:((;$&-</$%&-<&0123&.#%/6:5/.'#

7-8&09.(/&-./%&-<&0123&.#%/6:5/.'#&70=!48&('6&:#>"5?.#@&A"/"

Fig. 3: Useful SIMD instructions for unpacking.

the same attribute. We sort the data before applying any op-
erations depending on time orders. Fraction and filter: Given
a time series, the position-based fraction finds slices of each
column, and the filter uses attribute/inter-column predicates to
generate a mask sequence. Valid value aggregation applies
an associative/algebraic function f to the valid values of an
input sequence, such as sum(velocity , 1), which returns the
sum of all velocities. Sliding window aggregation: Given a
time series, sliding window description sw(Tmin ,∆T), and
aggregation function f , this operation applies multiple time-
range filters to the series for aggregation. Each time range is
defined by window instance w(Tmin + k∆T,∆T), standing
for the predicate conjunction T ≥ Tmin + k∆T ∧ T <
Tmin + (k + 1)∆T with k ≥ 0 and Tmin + k∆T < Tmax .

Example 3 (Expressions). Consider the query in Example
2. When the input bit arrays of timestamps and velocities
are encoded by TS2DIFF, we first unpack values by extend-
ing bits Γ10→32(velocity). When velocities and timestamps
are loaded in SIMD registers, the time-range filter gener-
ates a mask mask = σθ(decDelta(Γ10→32(timestamp) +
base)), applicable to velocities to find the sum/average,
sum(decDelta(Γ10→32(velocity) + base),mask). We can
pipeline most operations, but some decoders require a pipeline
design to connect to existing operations.

B. Overview of CPU SIMD Instructions

We show practical SIMD instructions to implement de-
coders and operators to make our design not specific to a
single quantity or one instruction set, like 32 bits/AVX2.
Our decoding and query processing use instructions to shuffle
bytes, shift bits, and perform lane-wise operations, which can
extend to other quantities and instruction sets. As industrial
IoT databases are typically deployed on x86 servers, we
consider SSE, AVX/AVX2, and AVX-512.

First, the instructions for shuffling bytes across lanes can
unpack values in a SIMD register. We assume that data are
encoded by 10-bit packing. Figure 3(a) shows the byte-level
movement in a 128-bit register by a shuffling operation, such
as mm shuffle epi8, based on two input vectors, Input and
Index. In Input vector, each lane of 0− 15 contains one byte
from encoded data in Big-Endian format. The Index vector

448

27-0C?'

"%#!"# $# % D 5 6 2 6 E -

F,$@,% 0 / . - , -

/-0C?'

!!" #$ %"" &' %#" &(%$" (!

GHI,%-23/-0C?'-H*-$-3E;B0C?'-<,J?H%-.&&' ()1
!" !# !$!% !! !& ' () * " # $ % ! &

! " # $ % & ' () * + , - . / 0

1 2 3 45 2 21 65 4 21 3 7 6 8 2 8 4

FCK(,%-23/-0C?'-H*-$-3E;B0C?'-<,J?H%-.&&' ()1
!" !# !$!% !! !& ' () * " # $ % ! &

0, 0- 0. 0/ 00 9 : ; < = > ? @ A B +

7C C1 22 78 2 8C 66 D C 21 4 58 33 71 D 1

GHI,%-23/-0C?'-H*-$-3E;B0C?'-<,J?H%-.&'' ()1

!" !# !$!% !! !& ' () * " # $ % ! &

! " # $ % & ' () * + , - . / 0

FCK(,%-23/-0C?'-H*-$-3E;B0C?'-<,J?H%-.&'' ()1

!" !# !$!% !! !& ' () * " # $ % ! &

!" !#!$!% !! & ' () * + , - . / +

&&' *+

#$JL,@-M$?$

7-8&B0*31CC&A$5'A.#@&>.>$;.#$7"8&B0*31CC&.#>:/&-</$%&7D.@,E#A."#8

758&!'"A&/'&0123&F$5/'6%&!) " !*&7D.@,E#A."#8

:#>"5? $JJ)&)+$?,

3$5'A$6

!"#$%

%23456 %23457 %23458 %23459 %234: %2345; %2345< %23451

!"#$%&'(&"&*GH,-./%&F$5/'6&7!)
+8

& ,!(+ & ,!)+ & ,*+ &+ !"+

7A8&#,-*)./012,!
-34./01$%&'&-<&%9:((;.#@I&J"%?.#@I&"#A&%9.(/.#@

!"#$%&'(&"&*GH,-./%&F$5/'6&7!*
+8

& ,!++ & ,!,+ & ,#+ &+ ,!+

!"#$%&'(&"&*GH,-./%&F$5/'6&7!5
+8

& ,),+ & ,!#+ & ,!!+ &+ ,-+

!

"

Fig. 4: Unpack bit arrays into SIMD vectors for fast decoding.

shuffles bytes from Input lanes to the output vector, where
index value 128 leads to an output value of 0. The last
row shows the pattern of the output vector Out 1, e.g., the
right-most 32-bit lane contains 10 bits of encoded value X1

and 6 uninterested bits. Since there are variable numbers of
uninterested bits in each 32-bit lane of Out 1, Figure 3(b)
applies an operation (srlv) to shift bits according to different
uninterested bits, as shown in the Shift vector. The bit-shifting
output is Out 2. Finally, in the last two rows, a mask vector
selects the 10 bits containing X1, X4, X7, X10 from Out 2.
The above decoding algorithm is easy to extend to other
encoding-widths and instruction sets.

III. ETSQP: ENCODED TIME-SERIES QUERY PIPELINES

Based on basic time-series query operations and existing
advances in decoding data [7], [23], [24], [9], the decoding
and aggregating pipeline can adopt core- and instruction-
level accelerations. Section III-A discusses the techniques
for improving decoders. Sections III-B-III-C further introduce
the Just-in-time compilation and core-level parallelism. We
analyze our pipeline designs in Section III-D.
A. Accelerated Decoding and Query Operators

Motivated by Section II-B, we can vectorize decoding
pipelines and use the decoded vectors in query executions.
We classify our pipeline designs according to the complexity
of decoder SIMD implementations.

1) Vectorized unpacking for constant packing widths: Vec-
torizing the pipeline of constant-width unpacking can speed
up IoT decoders like TS2DIFF with an expression pattern
decDelta(Γ10→32(velocity) + base). Motivated by FastLanes-
Delta layout [7] in Figure 1(c), besides improving data un-
packing, we focus on generating unpacked vectors that are
SIMD-friendly for Delta decoding. Algorithm 1 describes data
unpacking and uses the unpacked layout for further Delta
decoding, illustrated by Figure 4-5, where Figure 4(a) shows
the input byte sequence s and (c) loads 25 Deltas.

%23456 %23457 %23458 %23459 %234: %2345; %2345< %23451

!"#$%&'(&"&*GH,-./%&F$5/'6&7!)
+8

,$(+ ,!'+ ,+)+ ,!(+ ,+"+ ,)+ ,($+ !"+

!"#$%&'(&"&*GH,-./%&F$5/'6&7!*
+8

,$++ ,!*+ ,+#+ ,!++ ,+!+ ,#+ ,(,+ ,!+

!"#$%&'(&"&*GH,-./%&F$5/'6&7!5
+8

,$#+ ,(++ ,$!+ ,!#+ ,+,+ ,!!+ ,(*+ ,,+

!

7"8&3$;/"&;"<':/K&#,-*)./012,!-34./01 %) +,-+#,-*)./012,!-34./01 %*

&

7-8&0';F$&>"6/.";&%:J&.>?@A?BCDE&-<&F$5/'6&"AA./.'#%&!F
+
/ !F

+
0 !FB*

+
+

%23456 %23457 %23458 %23459 %234: %2345; %2345< %23451

!"#$%&'(&"&*GH,-./%&F$5/'6&7!)
++8

,$(+ ,!'+ ,+)+ ,!(+ ,+"+ ,)+ ,($+ !"+

!"#$%&'(&"&*GH,-./%&F$5/'6&7!*
+
/ !)

+
0 !*

+8

-$(-$++ -!'-!*+ -+)-+#+ -!(-!++ -+"-+!+ -)-#+ -($-(,+ !!+

!"#$%&'(&"&*GH,-./%&F$5/'6&7!5
+
/ !)

+
0 !*

+
010 !5

+8

-$(-$#+ -!'-(++ -+)-$!+ -!(-!#+ -+"-+,+ -)-!!+ -($-(*+ !,+

!

!

Fig. 5: Construct Delta decoding layout for the partial sum.

Lines 1-5 decide the number of used vectors and load bytes
from memory to SIMD registers. We first assume nld = 2 and
nν = 6, which are decided later in Proposition 1. Line 3 loads
bit arrays into nld = 2 vectors V0−1(Figure 4(c)), where the
last byte of every 128 bits stays unused and loaded again in
the next 128 bits because ⌊128/10⌋ = 12. For every 128 bits,
Figure 3 indicates the decoded 12 elements can be shuffled to
3 vectors (with four in each) or 6 vectors (with two in each),
as Figure 4(d) shows. FastLanes-Delta motivates us to put as
many dependent deltas X0, D1, . . . into the same Lane of as
many different vectors nν . Line 8 shuffles nld loaded vectors
V0-V1 based on Figure 3(a) and fills nν vectors, as shown in
Figure 4(d)-5(a). To reduce time costs, instead of shifting bits
and masking each lane of shuffled vectors V

′

i , we use Line
9 to shift and mask after shuffling all loaded vectors (Figure
5(a)). Similar to FastLanes-Delta, Lines 10-12 solve partial
sum Pa−b =

∑b
k=a Dk, while Xb = P0−b =

∑b
k=0 Dk. The

Line 13 finds the prefix vector v′prefsum for P0−a, defined by
[0, P0−23, P0−5, P0−29, P0−11, P0−35, P0−17, P0−41] for Lane
0-7, which is a common vector for all partial sums V ′

[1,2,...nν]
.

Based on v′[6], consider L0 as Lane0 and L0246 as L0+L2+
L4+L6, we have, v′prefsum = [0,L0246,L0,L0246+L1,L0+
L2,L0246+L1+L3,L0+L2+L4,L0246+L1+L3+L5]. We
use three pairs ([log(ωSIMD

ω′)]) of permutevar8x32 and addition
instructions in AVX2 or AVX-512 to solve v′prefsum based on
V

′′

6 . Finally, Line 15 adds prefix sum to partial sum vector as
the decoded data.

We discuss our decisions in detail based on the algorith-
mic structures. Firstly, for Lines 1-2, we derive the number
of vectors nν used in Figure 4(d). When unpacking width
ω′ = 32 bits, each unpacked vector holds ωSIMD/ω′ values,
where ωSIMD is 256 bits in AVX2 devices and 512 bits under
AVX-512. Since we cannot unpack more values than that we
load, we have nν · ωSIMD

ω′ ≤ nld · ωSIMD

ω . For x86 servers,
we have nν ≤ 16 under AVX2 machines and nν ≤ 32
under AVX-512 devices. We estimate the CPU clocks of
Algorithm 1. That is, data loading costs tload · nld (Line
3), Endian conversion costs tshuffle for each loaded vector

449

Algorithm 1 Dynamic layout unpacking and Delta recovery

Input: Byte sequence s, constant packing width ω, extended
value width ω′, base for Delta values base , SIMD vector
width ωSIMD .

Output: Decoded vectors dec(S).
1: Decide the number of loaded vectors nld

2: Decide the number of unpacked vectors nν

3: Loaded vectors v[1, . . . nld]
4: Shuffle loaded vectors v[i] in Little-Endian
5: Prepare namespace for unpacked vectors v′[1, . . . nν]
6: for each loaded data to unpack, i = 1, 2, . . . , nld do
7: for each unpacked vector j = 1, 2, . . . , nν do
8: v′[j] = v′[j] | shuffle(v[i], j)
9: Shift and mask v′[1, 2, . . . , nν] by Figure 3

10: Start Delta decoding on unpacked vectors v′[i]:
11: for unpacked vector index j = 2, 3, . . . , nν do
12: v′[j] = v′[j − 1] + v′[j] (Partial sum)
13: Permute bytes to solve prefix sum v′prefsum
14: for unpacked vector index j = 1, 2, . . . , nν do
15: v′[j] = v′[j − 1] + v′prefsum
16: return v′[1, 2, . . . , nν]

(Line 4), unpacking consumes tunpacknν · nld + (tand +
tshift)nν with tunpack : tshuffle + tor (Figure 3, Line 8-
9). For Delta decoding, Line 12 costs (nν − 1)tadd , Line
13 costs tprefix , and Line 15 costs nνtadd . To optimize
the CPU performance, the average time costs TAVG =
(tload+tshuffle)nld+tunpacknν ·nld+nν(2tadd+tand)+tprefix−tadd

nνωSIMD/ω′ .

Proposition 1. The average time TAVG represents the de-
coding time for each data point and achieves its optimal
value when the number of vectors nν is [

√
ω′

ω
tprefix−tadd

tunpack
],

where ω and ω′ are bit widths of packed and unpacked
data, respectively, and tunpack , tprefix , and tadd are time
costs of Lines 8, 13, and vector addition. The minimum
average time is C +

√
ω′ω

ωSIMD

√
2tunpack · (tprefix − tadd), where

C = ω
ωSIMD

(tload + tshuffle) +
(2tadd+tand+tshift)ω

′

ωSIMD
.

Proof. We compute the average time by estimating the time
costs of each round, divided by the number of decoded values
nνωSIMD/ω′. Since nν · ωSIMD

ω′ ≤ nld · ωSIMD

ω , we have

TAVG ≥ ω

ωSIMD
(tload + tshuffle + tunpacknν)+

ω′

ωSIMD
(2tadd + tand +

tprefix − tadd
nν

).

Thus, for an optimal minimum TAVG , since nν is an integer,
we have the decision in Proposition 1.

Figure 4(a) indicates the vector number nν in (d) for optimal
time is

√
32
10 · 11

2 ≈ 4 according to [25]. We choose 6 vectors
from {[ωSIMD

ωα] | α = 2, 4, 8 . . . , ωSIMD

ω′ } in Figure 4(d) to use
as many loaded data, where α is the number of lanes in V ′

i

filled by each loaded vector.
Secondly, Line 3 loads vectors from memory. Since the

shuffle instruction for unpacking in SSE and AVX2 moves

!" #$%$&
!"#$%&'(&!'L$6&)*+,-./%&.#&"&*GH,-./&0123&4$5/'6

!" !# !$!% !! !& ' () * " # $ % ! &

$%!"! <! <" <# <$ <% <& <' <(<) <* <+ <, <- <. </ <0

$%!&! ;! ;" ;# ;$;% ;& ;' ;(;) ;* ;+ ;, ;- ;. ;/ ;0

$%!'! :! :" :# :$:% :& :' :(:) :* :+ :, :- :. :/ :0

$%!(! 9! 9" 9# 9$ 9% 9& 9' 9(9) 9* 9+ 9, 9- 9. 9/ 90

N
(
)
**
+,

&&
.
' ()-

,+"!

,#-.#/.#0.#12

,("!

,$-.$/.$0.$12

,!"!

,%-.%/.%0.%12

!"!

,!-.!/.!0.!12

&/
.
' ()-

,+!!

,#1.#3.#4.#52

,(!!

,$1.$3.$4.$52

,!!!

,%1.%3.%4.%52

,!!

,!1.!3.!4.!52

&0
.
' ()-

,+(!

,#5.#6.#7.#82

,((!

,$5.$6.$7.$82

,!(!

,%5.%6.%7.%82

,(!

,!5.!6.!7.!82

&1
.
' ()-

,++!

,#8.#9.#:.#;2

,(+!

,$8.$9.$:.$;2

,!+!

,%8.%9.%:.%;2

,+!

,!8.!9.!:.!;2

&2
.
' ()-

,+$!

,#;.#<.#=.#>2

,($!

,$;.$<.$=.$>2

,!$!

,%;.%<.%=.%>2

,$!

,!;.!<.!=.!>2

7"8&!'"A&/'&0123&F$5/'6% "#A&:#>"5?&A"/"&7*G,-./&>"5?.#@8

7-8&0';F$&>"6/.";&%:J&.>?@A?BCDE&-<&F$5/'6&"AA./.'#%&!F
++
/ !F

+
0 !FB*

++
+

6 7 8 9 : ; < 1

!"#$%&'(&"&*GH,-./%&F$5/'6&7!)
++8

,+,+ ,(,+ ,!,+ ,,+ ,+"+ ,("+ ,!"+ !"+

!"#$%&'(&"&*GH,-./%&F$5/'6&7!*
++
/ !)

+
0 !*

+8

-+,-+)+ -(,-()+ -!,-!)+ -,-)+ -+"-+!+ -("-(!+ -!"-!!+ !!+

!"#$%&'(&"&*GH,-./%&F$5/'6&7!M
++
/ !)

+
0 !*

+
010 !M

+8

-+,-+*+ -(,-(*+ -!,-!*+ -,-*+ -+"-+$+ -("-($+ -!"-!$+ !$+

!

Fig. 6: Unpacked vector layout for 25-bit inputs.

bytes within 128-bit lanes, we read one more byte at the header
to shuffle bytes within every 128-bit lane (1 byte+(10 bit)*12)
in Figure 4(c), and there are insufficient bits for the 25th item,
D24.Our algorithm ensures that no register (lane) is left empty
and D24 will be reloaded in the next unpacking vector V1.
Figure 5 shows reloaded vector fills empty lanes for Delta
decoding together with aligned values of V0 in lanes.

Thirdly, since IoT databases use Big-Endian to encode real-
time IoT data, Line 4 shuffles bytes towards Little-Endian. The
shuffle instruction in Figure 3(a) can alter a byte to the desired
destination. We use the shuffle index [0, 1, 2, 3] for Lane 0,
which can similarly apply to other Lanes.

Example 4. Figure 6 shows our unpacking layout when the
packing width is 25 bits (Γω:25b→ω′:32b(s)). Still, Lines 1-2
decide parallelism by Proposition 1 with nν :

√
32
25 · 11

2 ≈
3. We choose nν : 5 vectors from {[ωSIMD

ωα] | α =
2, 4, 8 . . . , ωSIMD

ω′ } = {5, 2, 1} to use as many loaded data
(α = 2) and nld : nνωSIMD

ω′α = 4. For the lower 128 bits,
the loaded bytes of four inputs are shown in each lane of the
shuffle result for better performance of decoding TS2DIFF. As
shown in Figure 6, each loaded vector reserves α : 2 lanes
of registers in target width ω′ : 32b for each unpacked vector,
such as X0, D5 from V0 in V ′

0 .

2) Variable widths unpacking and repeat flatten: Unlike
constant-width unpacking, variable-width unpacking and Re-
peat flattening are irregular decoders that generate variable-
length decoded sequences. The decoding pipelines under
variable-width unpacking require the same steps as Algorithm
1 shows, while they have different unpack implementations
at Line 8. Figure 7 unpacks a Fibonacci-encoded sequence
having variable packing widths. We notice that each pair of
1s indicates an Fibonacci encoding termination. The results
of (V ≫ 1)&V in Figure 7(c) separate encoded elements.

450

7-8&A$5'A.#@&>.>$;.#$

7"8&C.-'#"55.,>"5?.#@&.#>:/&-</$%

$./0#"# D 332 27O 226 327 37O D

F,$@,% 0 / . - , D

/-0C?'

758&!'"A&/'&0123&F$5/'6%&"#A&A$5'A$&C.-'#"55.,>"5?$A&A"/"

2272 22727 227 227272 D

1&- 1/- 10- 11- D

#<
G$>,'-H*-$-23/B0C?'-N=PM-Q,J?H%

!" !# !$!% !! !& ' () * " # $ % ! &

!"=&K
! " # $ % & ' () * + , - . / 0

E E E E E 774 722 2DC 2D5 C2 721 7DC 72D 228 2DC 772

! " # $!! E E E E E E E E E E E E E
DDD2

E

DD2D

D2DD

D2DD

D2DD

)*,*>&' '2? '2? ' 2 '2? '2? '2? ' '2? '2? @ ' '2? '2? '2? @

/A$11B+ D D / . D D D / D D 0 / D D D 0

/A71%C*"D !$& !#& !"& !!&

!"#$%#&'! ())*+,

!"#$%"&

!"#$%
-"+$$./

Fig. 7: Unpacking values from variable bit widths.

To unpack values, the shuffle indexes in vector Param 1 is
decided by a dictionary based on the occurrences of 1s in
each byte. Then, we follow Algorithm 1 to unpack values. For
RLE decoders, we refer to [26] that recovers by inserting 0’s
in Lanes according to run-lengths, taking Run-length encoding
as a Delta encoder by XOR operations.

B. Just-in-Time Decoder Generator

Just-in-time compilation can avoid a runtime decision of
SIMD parameters. Line 8 of Algorithm 1 suggests we use JIT
to decide shuffling indexes, shown in Figure 3(a), according
to the packing width of an input data page and the filling
target lanes of the unpacked vectors, in Figure 4(d). When we
have the decisions of vector numbers nν or loaded vectors nld

(Line 1-2), we have only one layout to use as much loaded
data (to save I/O). Thus, it is possible to look up shuffling
index vectors for Line 8, bit-shifting/mask vectors for Line 9,
and permute indexing vectors to solve prefix sum at Line 13.

C. Decoder Pipelines

In IoT databases like IoTDB, each time series is stored as
multiple pages in the file system, each encoded separately with
a private header and packing width. Besides vectorizing de-
coding pipelines, we distribute data to cores and run pipelines
in each core to improve core-level parallelism. Figure 8 applies
decoding pipelines to IoT data pages. Each page is encoded
separately with a header containing the first value.

When we have more encoded pages than CPU cores, each
core will execute a pipeline (Algorithm 1) on several pages;
otherwise, we can split pages based on available cores pc. For
constant packing widths, each page slice has the same bits
for the same number of unpacked elements, such as unpacked
Deltas in TS2DIFF (Figure 5(b)). Page separation can utilize
more cores, but computing prefix sums (Line 13) depends on
decoded data from other CPU cores, as shown in Figure 8.
To avoid separating pages into too many slices, each page
will have at most ⌈#Pages/pc⌉ slices given #Pages as the
remaining pages. Figure 8 shows a split node to distribute
pages or slices to pipelines. For variable packing width like
Fibonacci packing, we separate each page evenly by bits and
extend each page slice by the maximum packing width, like

hv���l &o����v ���µuµo���

���}���

Wí^í

^�o]�

&]o��� �PP��P���

hv���l &o����v ���µuµo��� &]o��� �PP��P���
Wí^î

hv���l &o����v ���µuµo��� &]o��� �PP��P���

Wî

D��P�

Y

�Çv�Z�}v]Ì�

W�P���o]���

W�P�

Wï

Fig. 8: Using multiple threads in a pipeline to decode pages.

32 bits. The decoder can unpack one more value from the end
and drop the bits of an incomplete value in the front.

D. Performance Analysis

Based on extended operators in Section III-A and III-C, we
analyze the costs of executing our pipelines and compare the
costs to serial aggregating.

Theorem 2. Let Tparallel and Tserial denote the estimated
execution time of ETSQP (Algorithm 1) and value-wised
decoding that applies unpacking, flattening, and accumulation
serially to decode a value at a time. Consider instruction- and
core-level parallelism. The acceleration ratio is estimated as,

Tserial

Tparallel
∼ O(

1

ω
2pc·ωSIMD

+
2ω′+

√
ωω′

√
4[log(ωSIMD/ω′)]−1

pc(tvisMem/top+2)

),

where ω and ω′ represent the packing width of input bit arrays
and the quantity of computation.

Proof. When decoding pipelines work parallelly in cores and
share registers to execute query operations based on decoded
vectors, serial decoding needs to unpack each value with a
memory visit overhead, accumulate Deltas, and store decoded
data as a basic data block, as traditional databases do. Unlike
instructions on registers, memory visiting has various time
costs according to cache hits. We use tvisMem for memory ac-
cess and top for the latency of simple operations like additions.
Thus, serial decoding costs 2tvisMem+tshift+tmask+tregSave ,
which represents loading bytes to a register and storing data,
shifting a register to remove trailing garbage bits, masking
to remove heading garbage bits, and saving current value
temporarily. Based on Proposition 1, decoding nν

ωSIMD

ω′ values
costs TAVG · nν

ωSIMD

ω′ , reaching its optimum when nν is

[
√

ω′

ω
tprefix−tadd

tunpack
]. Thus, we have the estimation of Tserial

Tparallel
as

concluded in Theorem 2.
Theorem 2 indicates the acceleration is variable under

different memory access patterns tvisMem/top . Specifically,
when decoding 10-bit packed TS2DIFF data stored in memory
with 16 threads/AVX2 instructions, our decoding pipeline can
achieve approximately 15.3 times improvements.

IV. OPERATOR FUSION: AGGREGATION WITHOUT
DECODING

Motivated by Example 2, after unpacking bit arrays, it
is possible to fuse aggregations with Repeat and Delta de-
coders.When Delta finds differences between adjacent series
values, the fused aggregations can be either associative, like

451

SUM, or algebraic, depending on associative functions like
AVG.

Based on the TS2DIFF format, we can compute the SUM
aggregation by scanning Deltas. When dealing with Delta-
Repeat formatted data, it is possible to scan the sequence
and compute the result using a polynomial. This section
extends the idea of sequential Delta-Repeat pair scan to other
functions, such as

∑
i AiBi and

∑
i A

2
i , to compute more

aggregations like variances and correlations.
For

∑
AiBi, the input contains two sequences of

Delta-Repeat (run-length) pairs ⟨∆A,RLE 1⟩, ⟨∆B,RLE 2⟩,
and the number of valid tuples valid to aggregate, s.t.
valid ≤ min(RLE 1,RLE 2); otherwise, we aggregate
min(RLE 1,RLE 2) valid tuples. We have,

∑n+valid
i=n+1 aibi =∑valid

i=1 (an+i∆A)(bn+i∆B), which is equal to a polynomial
composed of four items, valid ·AnBn+An ·

∑
(i∆B)+Bn ·∑

(i∆A) +
∑

(i2∆A ∗ ∆B). Here, an are decoded values,
updated by an−RLEn−1

+RLEn−1∆An−1 to avoid decoding
each value. The above polynomial is general and can be
transferred to a function that applies each Delta-Repeat pair
and computes incrementally.

Proposition 3. Let f and g denote an associative aggregation
function and a unary function on an attribute A, such that
g(Ah+1) = g(Ah) + g(∆Ah+1) formalizes a Delta decoding
process. Then, the target (f · g) could be aggregated incre-
mentally on unpacked IoT formatted files.

V. ETSQP-PRUNE: PRUNED PIPELINE BY STATISTICS

Motivated by Example 2, we can avoid loading and decod-
ing IoT bit arrays based on filters. This section constructs the
rules concerning time and value filters.

A. Pruning Rules on Time Filters

We construct the heuristic rules to skip decoding by a time
range filter. Each data page contains the encoded timestamps
and values of a part of the time series. As IoT records are gen-
erated evenly over time, timestamps can be encoded efficiently
using the Delta-Repeat-Packing format. Assume that the filter
is a conjunction. Each page header stores statistics in addition
to the first element, including (1) the Packing parameters of
Delta and Repeats, (2) the size of each column, and (3) the
D-R tuple number encoded in the current file. Formally, we
follow the heuristic rule to prune.

Proposition 4. Consider the time series encoded by combining
Packing, Repeat, and a range filter T > t1 ∧ T < t2, t1 < t2.
Given t[k] as a decoded value with position k and n as the
size of the input sequence, we prune the remaining sequence
when (1) t[k] < t1 and DM < c1−a[k]

RM (n−k−1) ; or (2) t[k] >

t2 and Dm > c2−a[k]
RM (n−k−1) , where variables Dm and DM

represent the lower and upper bound of the time intervals,
estimated by the packing width, Dm ≥ minBase and DM ≤
minBase+2ω−1. Also, the variable RM is the upper bounds
of Run-length values, estimated by packing widths ωRLE and
the value of minBaseRLE or dictionary in the header.

Specifically, when the interval D is constant, valid positions
can be found directly based on t1 and t2. When t[0] < t1, we
can compute the prefix sum by SIMD and avoid decoding each
value before reaching a position i with t[i] = t1.

B. Extensive Pruning on Value Filters

When the projection attribute appears in the filter, pruning
rules can also be applied directly to encoded data, thereby
avoiding decoding. Proposition 5 supports pruning on Delta-
encoded data, and Proposition 4 prunes on Delta-Repeat
encoded data. We first estimate the lower and upper bounds of
the remaining attribute values by packing widths or dictionary
(when ZigZag or pattern-based Packing is used to encode
data). These lower/upper bounds are then utilized to test
the filter, helping to determine whether the decoding process
should be terminated.

Proposition 5. Consider the time series encoded by combining
Packing and Delta encoders, and a range filter A > c1 ∧A <
c2, c1 < c2. Given a[k] as a decoded value with position k and
n as the size of the input sequence, we prune the remaining
sequence when (1) a[k] < c1 and DM < c1−a[k]

n−k−1 ; or (2)
a[k] > c2 and Dm > c2−a[k]

n−k−1 . The variables Dm and DM

are the lower and upper bounds of delta values, estimated by
packing widths ω and the value of minBase in the header.
Specifically, Dm ≥ minBase and DM ≤ minBase + 2ω − 1.

VI. SYSTEM INTEGRATION AND IMPLEMENTATION

This section details how the different proposed techniques
are combined to execute time-series queries in an open-source
IoT database, Apache IoTDB [22].
A. Technique Integration

Algorithm 2 summarizes how decoding pipelines integrate
with other query operations like aggregation, join, and series
merging [16]. It requires the storage information and logical
query plan e to construct the parallel pipelines. The construc-
tion process is a top-down traversal of query operators. In the
Apache IoTDB, the file system stores each time series into
multiple pages [27], which are bit arrays encoded separately.

Consider data filtering σθ(e
′) at Line 1. When θ conjuncts

single-column and inter-column predicates, we need to sepa-
rate them to push down simple filters to prune decoding,

J = [ei,Pipe(P, σθ\θ′(ei)) | ei ∈ Pipe(P, σθ′(e′))], (1)

where Pipe is invoked recursively to construct series decoding
before generating inter-column filtering pipelines. In addition,
[ei, σ(ei) | ei ∈ Pipe] means to construct a pipeline com-
posed of ei and σ(ei), where ei executes ahead of σ(ei).
For simple filtering on time series (Line 5), we check if
the remaining related pages are enough to apply to cores
by

∑
ts∈P |P (ts)| < pc; otherwise, we split pages down

into slices according to Section III-C. We generate decoding
pipelines in J for timestamps and values on each page with
single-column filters to prune vector loading (Section V),

[dec(pi.T), dec(pi.A), σθ(pi) | pi ∈ P (e′),∃t, a |= θ]. (2)

452

Algorithm 2 Pipe: Combine decoding with operations

Input: Query plan e and disk pages to decode for related time
series P : {tsi → [p1, p2 . . .]}.

Output: Pipeline jobs for threads J : [jobi : ei].
1: if e = σθ(e

′) or e is a time series then
2: if θ contains single-column predicates θ′ then
3: Separate different filters to get J by Eq.1
4: else if e or e′ is a time series then
5: if There are more cores than rest pages then
6: Slice the rest pages by Section III-C
7: Decide decoding pipeline instances J by Eq.2
8: else Apply Inter-column filters by Eq.3
9: else if e = Gsw(Tmin ,∆T):f (e

′), f is associative then
10: Build aggregation jobs by Eq.4
11: else if e = e1 ◦ e2 is a series concatenation node then
12: Prepare pipeline J by Eq.5.
13: else if e = el ⋊⋉ er is a natural join node then
14: Generate natural join pipeline by Eq.6
15: return J

After assigning the pages/slices to a pipeline instance, we
remove consumed pages from information P . For inter-column
filters, we can apply them to decoded vectors,

J = [ei, σθ(ei) | ei ∈ Pipe(P, e′)]. (3)

Line 9 splits aggregation jobs by windows wi(Tmin + i ∗
∆T,∆T), representing a time range Tmin + i ∗ ∆T ≤ T <
Tmin + (i+1) ∗∆T . We construct pipelines J to apply f to
the time range query pipeline σwi

(e′) and collect all results,

[ei, f(ei) | ei ∈ Pipe(P, σwi(e
′))] ∪Merge(J). (4)

Finally, series merging and natural join are binary operators.
The series concatenation el ◦ er constructs J by,

[el,i, er,i, el,i ◦ er,i | el,i.T ∩ er,i.T] ∪Merge(J), (5)

where el,i ◦ er,i applies to overlapped pages el,i.T ∩ er,i.T ,
el,i ∈ Pipe(P, el), and er,i ∈ Pipe(P, er). Unlike series
merging, the natural join el ⋊⋉ er (Line 13) only finds a subset
of tuples sharing equal timestamps. It needs to integrate the
decoding pipelines of multiple attributes, like different series
values. J is composed of

[el,i, er,i, el,i.T ⋊⋉ er,i.T, (el,i.A, er,i.A)mask | el,i, er,i] (6)

together with a merge node Merge(J), where mask is times-
tamp natural join result el,i.T ⋊⋉ er,i.T to apply to vectors.

While filters integrate with decoding pipelines directly, other
operations append new expressions (pipeline nodes) to the tails
of dependent pipelines. To avoid materializing decoded data
to memory, the decoding of timestamps and values is executed
in a round-robin fashion, one series at a time, similar to
vectorized engines like Monet/X100 [28]. In each period, we
load/decode a part of bit arrays into timestamp/value vectors
based on Algorithm 1 and execute pipelines generated by
Algorithm 2. Unlike Monet/X100, for binary operators on

���}��~��í�

���}��~��î� u��P�

dZ����í

dZ����î

���}��~��í�

���}��~��í� u��P�

dZ����ï

dZ����ð

���}��~��î�dZ����ñ

YdZ�����Y

u��P�

u��P�

~���^��]���u��P]vP�]v��P������Á]�Z����}�]vP�

�]��o]v����Ç��Z���]u����vP�X

���µ��

d]u��Ð�ìWììU�íWìì�

d]u��Ð�íWììU�íWîñ�

d]u��Ð�íWîñU�ñWìì�

~���:}]v�}�����}��]v��P������Á]�Z��]��o]v���}(����}�]vP�

uµo�]�o���}oµuv�X

�]u� À�oµ�

��íXd]u�

��îXd]u�

dZ����í

dZ����î

��íXd]u�

��íXd]u�

dZ����ï

dZ����ð

��îXd]u�dZ����ñ

YdZ�����Y

D�^<

D�^<

D�^<

D�^<

D�^<

i}]v

i}]v

i}]v

��íX�

��îX�

��íX�

��íX�

��îX�

YY

u��P�

Fig. 9: Integration of decoding pipelines with query operations.

multiple columns, we separate and group decoding pipelines
by time ranges, controlled by a merge node to combine
multiple attributes. Figure 9 illustrates how query operations
integrate multiple decoding pipelines. In Figure 9(a), each
merge node is responsible for a time range to integrate all
related decoding pipelines, where Thread 1 and 3 decode time-
series ts1 and share the same time range with ts2 in Thread
2. Figure 9(b) shows the join pipeline, where the first three
threads are in the time range [0:00, 1:00) and the mask vectors
are generated within the shared time range. The variable
packing width input will be processed in parallel by cores,
with each core utilizing an equally sized page slice along with
extra bits (Section III-C) instead of randomly seeking offsets.

B. System Setups

The Apache IoTDB executes pipelines by the Java Virtual
Machine, version 17.0. Our vectorized query processing en-
gine consists of a SQL parser for converting SQL queries to
logical plans, a pipeline generator (Algorithm 2) to transfer
plans to pipeline jobs, and a job scheduler to bind pipeline
expressions with CPU threads. We implement decoders and
query operators by the Java Vector API [29], such as un-
packing and filtering. The pipeline of each thread is compiled
Just-in-Time (JIT) to decode each page by specific encoding
parameters (Section III-B) and inline vectorized operators.
Since decoding layouts are decided at runtime, we adjust
vectorized operators to execute on correspondent values. For
instance, the mask vectors from time filtering have the same
layout as timestamp vectors and may differ from series value
layouts, requiring a shuffling operation to adjust masks.

C. Implementation Details

This section discusses the fundamental challenges and de-
tails of implementing our integrations.

Memory management.Since IoT data can accumulate into
long series, loading all queried pages in memory is impossible.
Thereby, for a task with heavy processing time, the Apache
IoTDB will load pages gradually based on memory consump-
tion and pipeline execution. Thus, ETSQP has much lower
memory overhead when loading pages, and the database can
launch multiple pipelines by different cores simultaneously.

Behavior on failures. IoT databases have the risk of com-
puting incorrectly due to overflows. While decoding efficiently

453

TABLE II: Dataset statistics

Name Label #Size #Attr Category

Atmosphere Atm 132K 3 IoT
Climate Clim 8.4M 4 IoT
Gas [30] Gas 925k 19 IoT, Open
Timestamp Time 1B 2 IoT
Sine-function Sine 1B 6 Generated
TPC-H [31] TPCH 24k 4 Generated

in each thread using vector quantities of fewer bits, query oper-
ators also apply to shared decoded registers, causing potential
overflows. Most operators without value changes, such as
filters and joins, have no overflow issues. We explicitly check
the input and output vectors for valid value and sliding window
aggregations. For sums of values, we check lane symbols and
raise an overflow error when two corresponding lanes of the
same symbol are different from the lane in the result vector.
Thus, failure checking also works for negative values, such as
temperatures. We apply a mask to save overflowed input lanes
to aggregate with a larger quantity.

VII. EVALUATION

We evaluate our integrated pipeline engine by the following
questions. (1) Our performance on real-world IoT queries
(Section VII-B-VII-C). (2) The contributions of each encoder
on improving aggregation throughput (Section VII-D). (3)
The efficiency of the integrated IoT database compared to
other traditional analytical engines (Section VII-E). (4) The
effectiveness of our implementation details (Section VII-F).

A. Benchmark Details and Baselines

Execution model: To simulate real-world IoT database de-
ployment, we evaluate the formalized pipelines on a machine
with 2×Intel Xeon(R) E5-2620 v4 CPUs, 128 GB RAM, 20
MB cache on-chip, and AVX2 instructions. We build our
project by the Clang compiler v16.0 with the -O3 flag.

Datasets: Table II lists dataset statistics. Except for the
synthetic datasets Sine and TPCH, other datasets are open-
source or collected from real IoT scenarios.

Baselines: We compare different parallel implementations
by integrating them as operators in our pipeline.

(1) ETSQP is our parallel pipeline without pruning rules.
(2) ETSQP-prune applies the pruning rules in Section V

to improve I/O performance.
(3) Serial applies a serial pipeline to decode and aggregate.
(4) FastLanes [7] is a state-of-the-art SIMD accelerated

decoding approach focusing mostly on a single decoder by
storing data in a SIMD-friendly manner.

(5) SBoost [23] accelerates Delta decoding by SIMD in-
structions and threads without unpacking layout determination
and operator fusion.

Benchmark queries: Based on real-world applications [32],
[33], Table III shows 6 queries in SQL query language [34]
that benchmark our proposed time-series query techniques.
Aggregation queries with time or value range filters (Q1-
Q3) test the performance of decoding and operator fusion.

TABLE III: Benchmark queries

Query id SQL expressions

Q1 SELECT SUM(A) FROM ts(T, A) SW(Tmin ,∆T);
Q2 SELECT AVG(A) FROM ts(T, A) SW(Tmin ,∆T);

Q3 SELECT SUM(A) FROM
(SELECT * FROM ts WHERE A > a);

Q4 SELECT ts1.A+ts2.A FROM ts1, ts2;
Q5 SELECT * FROM ts1 UNION ts2 ... ORDER BY TIME;
Q6 SELECT * FROM ts1, ts2 ...;

ETSQP
ETSQP-prune

Serial
SBoost

FastLanes

10
-1

10
0

10
1

Sine Time Gas Clim Atm TPCHT
h

ro
u

g
h

p
u

t
(B

ill
io

n
-T

u
p

le
/S

)

Dataset

(Q1) Sum of sliding window

10
-2

10
-1

10
0

10
1

Sine Time Gas Clim Atm TPCHT
h

ro
u

g
h

p
u

t
(B

ill
io

n
-T

u
p

le
/S

)

Dataset

(Q2) Average of sliding window

10
-2

10
-1

10
0

10
1

Sine Time Gas Clim Atm TPCHT
h

ro
u

g
h

p
u

t
(B

ill
io

n
-T

u
p

le
/S

)

Dataset

(Q3) Sum with value filter

10
-2

10
-1

10
0

10
1

Sine Time Gas Clim Atm TPCHT
h

ro
u

g
h

p
u

t
(B

ill
io

n
-T

u
p

le
/S

)

Dataset

(Q4) Average of aligned series

10
-2

10
-1

10
0

10
1

Sine Time Gas Clim Atm TPCHT
h

ro
u

g
h

p
u

t
(B

ill
io

n
-T

u
p

le
/S

)

Dataset

(Q5) Union of all series

10
-3

10
-2

10
-1

10
0

10
1

Sine Time Gas Clim Atm TPCHT
h

ro
u

g
h

p
u

t
(B

ill
io

n
-T

u
p

le
/S

)

Dataset

(Q6) Join all series

Fig. 10: Performance of SIMD approaches over IoT queries.

Based on Section VI-A, complex queries (Q5-Q6) integrate
decoding pipelines with query operations and decode mul-
tiple columns.Specifically, series merge query Q5 integrates
decoding pipelines of overlapped time ranges, and natural join
query Q5 should decode multiple timestamp columns before
exchanging and generating mask vectors. The default filter
selectivity is 0.5. Each sliding window instance has 103 points.

B. Performance of IoT Queries

We use the throughput to compare the efficiency of pro-
posals over different datasets. The throughput evaluates the
number of tuples in loaded pages per second that counts tuples
of pruned pages or page slices.

Figure 10 studies the decoding and querying efficiency over
the widely applied IoT encoder, TS2DIFF. It shows up to
one order-of-magnitude improvement in throughput compared
to serial pipelines and 3-10 times acceleration over existing
approaches (SBoost [23] and FastLanes [7]). It shows our

454

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

1 2 4 8 16T
h

ro
u

g
h

p
u

t
(B

ill
io

n
-T

u
p

le
/S

)

Threads

ETSQP
ETSQP-prune

SBoost
FastLanes

(a) Sine

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

1 2 4 8 16T
h

ro
u

g
h

p
u

t
(B

ill
io

n
-T

u
p

le
/S

)

Threads

ETSQP
ETSQP-prune

SBoost
FastLanes

(b) Timestamp

 0

 1

 2

 3

 4

 5

 6

1 2 4 8 16T
h

ro
u

g
h

p
u

t
(B

ill
io

n
-T

u
p

le
/S

)

Threads

ETSQP
ETSQP-prune

SBoost
FastLanes

(c) Gas

 0

 2

 4

 6

 8

 10

 12

 14

1 2 4 8 16T
h

ro
u

g
h

p
u

t
(B

ill
io

n
-T

u
p

le
/S

)

Threads

ETSQP
ETSQP-prune

SBoost
FastLanes

(d) Climate

 0

 1

 2

 3

 4

 5

 6

 7

1 2 4 8 16T
h

ro
u

g
h

p
u

t
(B

ill
io

n
-T

u
p

le
/S

)

Threads (cores)

ETSQP
ETSQP-prune

SBoost
FastLanes

(e) Atmosphere

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

1 2 4 8 16T
h

ro
u

g
h

p
u

t
(B

ill
io

n
-T

u
p

le
/S

)

Threads

ETSQP
ETSQP-prune

SBoost
FastLanes

(f) TPC-H

Fig. 11: Query performance over varied threads.

efficiency by adopting core- and instruction-level parallelism.
The pruning rules avoid considering unnecessary slices, ex-
amined by comparing ETSQP and ETSQP-prune. Theorem
2 is examined by Q3 in Figure 10, which requires decoding
data before applying value filters. Figure 10(Q5-Q6) shows our
proposed pipeline ETSQP can robustly schedule complex jobs
on multi-column queries. Compared to other baselines like
FastLanes, merging time series with two columns (timestamps
and values) is observed with more significant performance
gaps under larger datasets in Figure 10(Q5), indicating the
effectiveness of time-based merge nodes. Moreover, for inter-
column operations, our pipelines outperform other works on
time-series natural join in Figure 10(Q6) because of the shared
mask vectors to reduce I/O.

C. Micro-benchmark for Pipeline Threads

Our proposed system, ETSQP, and baseline SBoost [23]
support multithreading. SBoost splits the data into slices,
where a thread processes each slice. As shown in Figure 8,
when splitting each page into slices, some threads should keep
waiting for the end of the decoding process of a dependent
slice. For example, page slice P1S2 should wait for P1S1.
The CPU idle time and memory occupation are insignificant
when we have few slices. Thus, our job scheduler splits
pages only when there are insufficient pages to assign to
free cores; otherwise, decoding and query pipelines consume
data pages. This advance makes our work more efficient
in deploying on more threads than SBoost. As shown in
Figure 11, ETSQP can benefit more throughput gains from
threads. Finally, we distribute FLMM1024 formatted pages

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2

1 2 4 8 16 32T
h

ro
u

g
h

p
u

t
(B

ill
io

n
-T

u
p

le
/S

)

Threads

ETSQP
ETSQP-prune

SBoost
FastLanes

(a) Delta (Sine)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

1 2 4 8 16 32T
h

ro
u

g
h

p
u

t
(B

ill
io

n
-T

u
p

le
/S

)

Threads

ETSQP
ETSQP-prune

SBoost
FastLanes

(b) Delta (Timestamp)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 1 2 3 4 5 6 7 8 9T
h

ro
u

g
h

p
u

t
(B

ill
io

n
-T

u
p

le
/S

)

Run-length value

ETSQP
ETSQP-prune

SBoost
FastLanes

(c) Delta-Repeat (Sine)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 1 2 3 4 5 6 7 8T
h

ro
u

g
h

p
u

t
(B

ill
io

n
-T

u
p

le
/S

)

Run-length value

ETSQP
ETSQP-prune

SBoost
FastLanes

(d) Delta-Repeat (Timestamp)

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 2 4 8 16 32T
h

ro
u

g
h

p
u

t
(B

ill
io

n
-T

u
p

le
/S

)
Bitpacking width (bit)

ETSQP
ETSQP-prune

SBoost
FastLanes

(e) Delta-Repeat-Packing (Sine)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 2 4 8 16 32T
h

ro
u

g
h

p
u

t
(B

ill
io

n
-T

u
p

le
/S

)

Bitpacking width (bit)

ETSQP
ETSQP-prune

SBoost
FastLanes

(f) Delta-Repeat-Packing (Timestamp)

Fig. 12: Query performance on micro-benchmark.

or page slices of FLMM1024 blocks to ensure fair thread
utilization. We notice that FastLanes can also benefit from
slicing and parallel processing, but FastLanes performance
gains grow slower, owing to its lower compression ratio and
I/O bottleneck for IoT queries.

D. Micro-benchmark Evaluation of Operators

This section evaluates the parallel performance of each
operator by a more careful micro-benchmark. SBoost [23] does
not change the layouts and is easy to extend to accelerate
combined decoders. We analyze the root causes of the perfor-
mance differences between our proposals and SBoost [23] with
data encoded by Delta, Repeat, and Packing by a full schema
correlation on Sine and timestamp datasets. Specifically, the
Delta-only encoding ensures the same data representation
in both studies for comparison. Together with Repeat and
Packing, we control for specific algorithmic insights (like
pruning parameters) in ETSQP and ETSQP-prune. Figure 12
reports the throughput of different operator parameters. We
benchmark the decoding pipelines by a simple time range
query with a default selectivity of 0.5. ETSQP-prune adopts
time-based pruning rules to prune pipeline processing, while
ETSQP needs to decode and filter assigned pages, which have
time ranges intersecting with the time-range filter.

(1) Delta-only encoding, the same data representation con-
sidered in SBoost [23], is utilized for a fair comparison.
Compared to SBoost, we split pages into slices when there
are not enough pages for cores to avoid thread idle and
synchronization time. Thereby, with the increase of the thread
number, our approaches utilize better CPU resources than

455

SBoost, i.e., more significant throughput improvement by more
threads in Figure 12(a)-(b).

(2) The Delta-Repeat combination evaluates the algorith-
mic decision of directly counting the satisfied tuples without
decoding into the original data. A larger run-length (Repeat)
value means more saved decoding costs by our methods.
In contrast, the larger run-length is, SBoost needs the more
unpacking operations. Therefore, the differences between our
proposals and SBoost are more significant for larger run
lengths in Figure 12(c)-(d).

(3) For the Delta-Repeat-Packing combination, it controls
for the cutoffs by our ETSQP-prune, i.e., the pruning pa-
rameters. Proposition 5 derives the lower and upper bounds
of values, referring to the Bitpacking widths of Delta and
RLE encoded sequences. The ETSQP-prune method prunes
subsequences based on the derived bounds, which cannot
satisfy the query ranges. A smaller Bitpacking width leads to
tighter bounds and thus more effective pruning, as illustrated
in Figure 12(e)-(f).

(4) To compare the new encoding format FastLanes, in
Figure 12(a-b), based on a fair comparison of shared core-
level parallelism, we notice better performance by FLMM1024
layout for SIMD decoding on Delta sequences. In Figure
12(c-d), more repeated deltas mean better compression and
I/O performance of ETSQP based on IoT encoders, while
FastLanes has an I/O bottleneck. In Figure 12(e-f), although
FastLanes FLMM1024 also avoids leading zeros in IoT data,
FastLanes-BitPacking is not space-efficient compared to IoT
encoders and meets the I/O bottleneck when packing widths
grow (meanwhile, data points stay unvaried).

E. Evaluations of System Deployment

Comparing IoTDB to IoTDB-SIMD, we notice a 10-40%
acceleration of simple queries (Q1-Q4) among datasets and a
30-40% improvement of complex queries (Q5-Q6). Without
vectorized decoders and query operations, IoTDB should un-
pack data by reading each byte sequentially and sharing data
blocks with cache coherence. In contrast, IoTDB-SIMD adopts
round-robin vectorized loading/decoding, which shares vectors
to avoid materializing data in memory. Comparing IoTDB-
SIMD to MonetDB, IoT encoders reduce the I/O latency, and
merging nodes on shared time ranges avoids materializing and
broadcasting decoded data across threads. Comparing IoTDB-
SIMD to Spark/HDFS, we share common in generating query
execution codes at query time (JIT). The HDFS compressor
is not efficient enough to reduce I/O, which is a bottleneck in
executing IoT queries.

F. Parameter Studies

Figure 14 shows our parameter studies on fused decoders,
staged time consumptions, and the effect of synchronization
when splitting pages. Figure 14(a) shows our advances in
fusing as many decoders as possible to avoid dependency
resolutions. Figure 14(b) shows memory I/O is one of the
bottleneck stages in IoT databases with 40%-50% processing
time, which includes the time for distributing pages to each

IoTDB IoTDB-SIMD MonetDB Spark/HDFS

10
0

10
1

10
2

Sine Time Gas Clim Atm TPCH

L
a

te
n

c
y
 (

M
S

)

Dataset

(Q1) Sum of sliding window

10
0

10
1

10
2

Sine Time Gas Clim Atm TPCH

L
a

te
n

c
y
 (

M
S

)

Dataset

(Q2) Average of sliding window

10
0

10
1

10
2

10
3

Sine Time Gas Clim Atm TPCH

L
a

te
n

c
y
 (

M
S

)

Dataset

(Q3) Sum with value filter

10
0

10
1

10
2

Sine Time Gas Clim Atm TPCH

L
a

te
n

c
y
 (

M
S

)

Dataset

(Q4) Average of aligned series

10
0

10
1

10
2

Sine Time Gas Clim Atm TPCH

L
a

te
n

c
y
 (

M
S

)

Dataset

(Q5) Union of all series

10
0

10
1

10
2

10
3

Sine Time Gas Clim Atm TPCH

L
a

te
n

c
y
 (

M
S

)

Dataset

(Q6) Join all series

Fig. 13: Performance comparison of answering time and value
range queries deployed on the Apache IoTDB.

core and collecting results. For page slice inputs, Figure 14(c-
d) suggests avoiding idles will reduce execution time, whereas
materializing decoded results can cost significantly more than
idle time. Splitting the query pipeline into two tasks and letting
the threads pick the tasks without waiting for the prefix sum
reduces idle time. When generating more slices, it is possible
to reduce execution time by avoiding idles. Nevertheless,
splitting pipelines fails to share vectors and materializes more
unpacked data in memory, leading to more I/O, which is the
bottleneck of most IoT queries.

VIII. RELATED WORK

In this section, we discuss the widely used time series
encoding schemes and methods for improving decoding per-
formance. Existing works also construct query plans to con-
sider encoder schemes as query optimizations for selective
aggregations.

A. Time Series Encoding

The introduction (Section I) indicates the SIMD-friendly
layouts extended from existing encoders can not be combined
to encode IoT data effectively, such as the FastLanes [7].
As surveyed in [1], existing mainstream databases have long
supported time series encoding schemes like Delta-Repeat-
Packing [15], [35], [22] to compress and save the I/O band-
width [4]. Delta encoding subtracts the previous data from
the current data to reduce the bit-widths and has motivated

456

10
-1

10
0

10
1

Delta RLE Delta-RLET
h

ro
u

g
h

p
u

t
(B

ill
io

n
-T

u
p

le
/S

)

Fused operator(s)

SUM
AVG

(a) Analytical efficiency

10
-2

10
-1

10
0

10
1

10
2

Sine Time Gas Clim Atm TPCH

L
a

te
n

c
y
 (

M
S

)

Datasets

Decode
Memory

Aggregate

(b) Memory management

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

Sine Time Gas Clim Atm TPCHT
h

ro
u

g
h

p
u

t
(B

ill
io

n
-T

u
p

le
/S

)

Datasets

ETSQP
Task-Split

(c) Task splitting performance

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

1 2 4 8 16T
h

ro
u

g
h

p
u

t
(B

ill
io

n
-T

u
p

le
/S

)

Slices

ETSQP
Task-Split

(d) Apply page slices to pipelines

Fig. 14: Ablation study of our parallel pipeline designs.

the studies including TS2DIFF [22], [15] and Gorilla [6].
Gorilla also observes constant increases in IoT timestamps
and applies two Deltas on the time dimension. When there
are many repeat values in the time series, run-length encoder
[36] uses one of the consecutive repeated values and its repeat
times to reduce space usage. The Repeat encoder is applied
in RLBE [2] and Gorilla [6] encoders. While RLBE applies
a run-length encoder as described above, the Gorilla uses a
bit (setting as 1) to indicate redundancy, which reduces the
space needed to store run lengths. Since IoT data (differences)
have limited precision and absolute value, the Packing encoder
removes leading zeros. The constant-width Packing encoders
can reduce the leading zeros. For example, the Packing method
in Sprintz [11] uses ZigZag and BitPacking to convert negative
values to positive codings. The pattern-based variable width
Packing notices the trailing zeros of IoT data in floating
number formats such as Elf [12]. The Fibonacci representation
also packs data with variable widths but has the acceleration
method to decode in parallel (Figure 7).

B. Time Series Decoders

Observing the hardness of decoding data, existing works
propose multi-threading and instruction-based accelerations
such as [37] for BitPacking, SBoost [23] and FastLanes [7] for
Delta, run-length, and BitPacking. Using more threads requires
splitting input data into slices, which relies on easy separation
of elements, e.g., constant packing widths. The SIMD methods
use instructions over vectors of 128/256/512 bits to decode
multiple attribute values simultaneously.

Some of the decoding approaches also improve the layouts
of encoding schemes to generate SIMD-friendly codings, such
as FastLanes [7] and Lemire [8] on Frame-Of-Reference.
While existing encoders compress data by elements, they keep
a group of data to encode. For example, FastLanes-Delta keeps
each frame i of four elements at positions 0+i, 4+i, 8+i, 12+i
and finds the differences of consecutive frames (every four
elements). They focus on better layouts for a single encoder,

but IoT data apply combined encoders, asking for compatible
layouts. For example, FastLanes-BitPacking keeps elements at
positions 0 and 128 together to shift and construct unpacked
vectors. Thus, the proposed Delta and Bitpacking layouts can
not form combined encoders for IoT data.

C. Query Accelerations on Encoding Schemes

Our approach constructs query pipelines concerning existing
encoding schemes. Existing works have exploited sufficiently
in implementing relational SIMD operators [38] and generate
query plans based on compression methods [21], [39], [20].
Instead of using the dictionary and run-length encoders on
the raw data, IoT data is encoded by consecutive differences,
leading to different implementations of operators. BitWeaving
[40] also considers the Bitpacking schemes to reduce data
loading, while our work focuses on the Delta-based encoding
that has the dependency of decoding and filtering. IoT data
pages comprise bit arrays encoded from time-ordered tuples,
making it possible to prune a page or a slice directly on filters.

D. System Comparisons

Our proposal, ETSQP, improves IoT decoder performance
by altering the layout of unpacking, which resolves Delta
recovery dependency and shares data in registers between
decoders. Instead, existing analytical engines encode data by
single encoders and decompress data by blocks, causing higher
I/O among disks, memory, and cores. Moreover, our pipelines
support operator fusion on multiple decoders, such as Repeat
flattening (RLE) and Delta accumulation. Finally, based on
ordered time-series data, we create merge nodes on each time
range to execute inter-column operations like natural joins,
whereas other general systems do not make such assumptions.

IX. CONCLUSIONS

We observe the differences between IoT encoders and the
encoders for relational data. That is, IoT data is an ordered
sequence typically encoded by combined encoders, formatted
as Delta-Repeat-Packing. This paper formalizes the pipeline
models to execute selective aggregation queries over encoded
data. We identify the basic operators to decode, filter, and
aggregate for serial pipelines. The parallel pipeline contains
new operators formally defined by SIMD instructions and data
splitting to decode more efficiently. We also notice the chances
of aggregation without decoding and pruning unnecessary
aggregations. Remarkably, our systemic evaluations show vast
improvements in the efficiency of selective aggregations over
existing works. Additionally, our evaluations could help to
choose better existing encoders for IoT data.

Acknowledgement: This work is supported in part
by the National Key Research and Development Plan
(2021YFB3300500), the National Natural Science Foundation
of China (92267203, 62021002, 62072265, 62232005), State
Grid 5700-202435261A-1-1-ZN, and Beijing Key Laboratory
of Industrial Big Data System and Application. Shaoxu Song
(https://sxsong.github.io/) is the corresponding author.

457

REFERENCES

[1] G. Chiarot and C. Silvestri, “Time series compression survey,” ACM
Comput. Surv., vol. 55, no. 10, pp. 198:1–198:32, 2023. [Online].
Available: https://doi.org/10.1145/3560814

[2] J. Spiegel, P. Wira, and G. Hermann, “A comparative experimental
study of lossless compression algorithms for enhancing energy
efficiency in smart meters,” in 16th IEEE International Conference
on Industrial Informatics, INDIN 2018, Porto, Portugal, July
18-20, 2018. IEEE, 2018, pp. 447–452. [Online]. Available:
https://doi.org/10.1109/INDIN.2018.8471921

[3] A. Kamilaris, Y. Tofis, C. Bekara, A. Pitsillides, and E. Kyriakides,
“Integrating web-enabled energy-aware smart homes to the smart grid,”
International Journal On Advances in Intelligent Systems, vol. 5, no. 1,
pp. 15–31, 2012.

[4] J. Xiao, Y. Huang, C. Hu, S. Song, X. Huang, and J. Wang, “Time series
data encoding for efficient storage: A comparative analysis in apache
iotdb,” Proc. VLDB Endow., vol. 15, no. 10, pp. 2148–2160, 2022.
[Online]. Available: https://www.vldb.org/pvldb/vol15/p2148-song.pdf

[5] P. Liakos, K. Papakonstantinopoulou, and Y. Kotidis, “Chimp: Efficient
lossless floating point compression for time series databases,” Proc.
VLDB Endow., vol. 15, no. 11, pp. 3058–3070, 2022. [Online].
Available: https://www.vldb.org/pvldb/vol15/p3058-liakos.pdf

[6] T. Pelkonen, S. Franklin, P. Cavallaro, Q. Huang, J. Meza, J. Teller,
and K. Veeraraghavan, “Gorilla: A fast, scalable, in-memory time series
database,” Proc. VLDB Endow., vol. 8, no. 12, pp. 1816–1827, 2015.
[Online]. Available: http://www.vldb.org/pvldb/vol8/p1816-teller.pdf

[7] A. Afroozeh and P. A. Boncz, “The fastlanes compression layout:
Decoding >100 billion integers per second with scalar code,” Proc.
VLDB Endow., vol. 16, no. 9, pp. 2132–2144, 2023. [Online]. Available:
https://www.vldb.org/pvldb/vol16/p2132-afroozeh.pdf

[8] D. Lemire and L. Boytsov, “Decoding billions of integers per second
through vectorization,” Softw. Pract. Exp., vol. 45, no. 1, pp. 1–29,
2015. [Online]. Available: https://doi.org/10.1002/spe.2203

[9] W. X. Zhao, X. Zhang, D. Lemire, D. Shan, J. Nie, H. Yan, and
J. Wen, “A general simd-based approach to accelerating compression
algorithms,” ACM Trans. Inf. Syst., vol. 33, no. 3, pp. 15:1–15:28,
2015. [Online]. Available: https://doi.org/10.1145/2735629

[10] https://iotdb.apache.org/UserGuide/Master/Data-
Concept/Encoding.html.

[11] D. W. Blalock, S. Madden, and J. V. Guttag, “Sprintz: Time series
compression for the internet of things,” Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol., vol. 2, no. 3, pp. 93:1–93:23, 2018.
[Online]. Available: https://doi.org/10.1145/3264903

[12] R. Li, Z. Li, Y. Wu, C. Chen, and Y. Zheng, “Elf: Erasing-
based lossless floating-point compression,” Proc. VLDB Endow.,
vol. 16, no. 7, pp. 1763–1776, 2023. [Online]. Available: https:
//www.vldb.org/pvldb/vol16/p1763-li.pdf

[13] R. Kang and S. Song, “Optimizing time series queries with versions,”
Proc. ACM Manag. Data, vol. 2, no. 3, p. 159, 2024. [Online].
Available: https://doi.org/10.1145/3654962

[14] C. Wang, X. Huang, J. Qiao, T. Jiang, L. Rui, J. Zhang, R. Kang,
J. Feinauer, K. Mcgrail, P. Wang, D. Luo, J. Yuan, J. Wang, and
J. Sun, “Apache iotdb: Time-series database for internet of things,”
Proc. VLDB Endow., vol. 13, no. 12, pp. 2901–2904, 2020. [Online].
Available: http://www.vldb.org/pvldb/vol13/p2901-wang.pdf

[15] https://www.influxdata.com/.
[16] G. Graefe, “Encapsulation of parallelism in the volcano query processing

system,” in Proceedings of the 1990 ACM SIGMOD International
Conference on Management of Data, Atlantic City, NJ, USA, May 23-25,
1990, H. Garcia-Molina and H. V. Jagadish, Eds. ACM Press, 1990,
pp. 102–111. [Online]. Available: https://doi.org/10.1145/93597.98720

[17] V. Leis, P. A. Boncz, A. Kemper, and T. Neumann, “Morsel-driven
parallelism: a numa-aware query evaluation framework for the many-
core age,” in International Conference on Management of Data,
SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014, C. E. Dyreson,
F. Li, and M. T. Özsu, Eds. ACM, 2014, pp. 743–754. [Online].
Available: https://doi.org/10.1145/2588555.2610507

[18] “Nvidia official document on prefix sum,” pp. part–vi–
gpu–computing/chapter–39–parallel–prefix–sum–scan–cuda. [Online].
Available: https://developer.nvidia.com/gpugems/gpugems3/

[19] D. Merrill and M. Garland, “Single-pass parallel prefix scan with
decoupled look-back,” NVIDIA, Tech. Rep. NVR-2016-002, 2016.

[20] D. J. Abadi, S. Madden, and M. Ferreira, “Integrating compression
and execution in column-oriented database systems,” in Proceedings of
the ACM SIGMOD International Conference on Management of Data,
Chicago, Illinois, USA, June 27-29, 2006, S. Chaudhuri, V. Hristidis,
and N. Polyzotis, Eds. ACM, 2006, pp. 671–682. [Online]. Available:
https://doi.org/10.1145/1142473.1142548

[21] J. Li, D. Rotem, and J. Srivastava, “Aggregation algorithms for
very large compressed data warehouses,” in VLDB’99, Proceedings
of 25th International Conference on Very Large Data Bases,
September 7-10, 1999, Edinburgh, Scotland, UK, M. P. Atkinson,
M. E. Orlowska, P. Valduriez, S. B. Zdonik, and M. L. Brodie,
Eds. Morgan Kaufmann, 1999, pp. 651–662. [Online]. Available:
http://www.vldb.org/conf/1999/P61.pdf

[22] C. Wang, J. Qiao, X. Huang, S. Song, H. Hou, T. Jiang, L. Rui, J. Wang,
and J. Sun, “Apache iotdb: A time series database for iot applications,”
in ACM SIGMOD International Conference on Management of Data,
SIGMOD, 2023.

[23] H. Jiang and A. J. Elmore, “Boosting data filtering on columnar
encoding with SIMD,” in Proceedings of the 14th International
Workshop on Data Management on New Hardware, Houston, TX, USA,
June 11, 2018, W. Lehner and K. Salem, Eds. ACM, 2018, pp.
6:1–6:10. [Online]. Available: https://doi.org/10.1145/3211922.3211932

[24] F. Zhang, W. Wan, C. Zhang, J. Zhai, Y. Chai, H. Li, and X. Du,
“Compressdb: Enabling efficient compressed data direct processing
for various databases,” in SIGMOD ’22: International Conference on
Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022,
Z. Ives, A. Bonifati, and A. E. Abbadi, Eds. ACM, 2022, pp. 1655–
1669. [Online]. Available: https://doi.org/10.1145/3514221.3526130

[25] Intel, “Intel intrinsic guide.” pp. intrinsics–guide/index.html, 2023.
[Online]. Available: https://www.intel.com/content/www/us/en/docs

[26] F. Lemaitre, A. M. Hennequin, and L. Lacassagne, “How to speed
connected component labeling up with SIMD RLE algorithms,” in
WPMVP@PPoPP ’20: Sixth Workshop on Programming Models for
SIMD/Vector Processing lolocated with the 25th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming,
San Diego, CA, USA, February 22, 2020, J. Eitzinger and
L. Lacassagne, Eds. ACM, 2020, pp. 2:1–2:8. [Online]. Available:
https://doi.org/10.1145/3380479.3380481

[27] X. Zhao, J. Qiao, X. Huang, C. Wang, S. Song, and J. Wang,
“Apache tsfile: An iot-native time series file format,” Proc. VLDB
Endow., vol. 17, no. 12, pp. 4064–4076, 2024. [Online]. Available:
https://www.vldb.org/pvldb/vol17/p4064-song.pdf

[28] P. A. Boncz, M. Zukowski, and N. Nes, “Monetdb/x100: Hyper-
pipelining query execution,” in Second Biennial Conference on
Innovative Data Systems Research, CIDR 2005, Asilomar, CA, USA,
January 4-7, 2005, Online Proceedings. www.cidrdb.org, 2005, pp.
225–237. [Online]. Available: http://cidrdb.org/cidr2005/papers/P19.pdf

[29] “Java vector api.” [Online]. Available: https://openjdk.org/jeps/338
[30] “Gas dataset (uci),” pp. Gas+sensors+for+home+activity+monitoring.

[Online]. Available: https://archive.ics.uci.edu/ml/datasets/
[31] TPC-H. [Online]. Available: https://www.tpc.org/tpch/
[32] A. Khelifati, M. Khayati, A. Dignös, D. Difallah, and P. Cudré-Mauroux,

“Tsm-bench: Benchmarking time series database systems for monitoring
applications,” Proc. VLDB Endow., vol. 16, no. 11, p. 3363–3376, aug
2023. [Online]. Available: https://doi.org/10.14778/3611479.3611532

[33] R. Liu and J. Yuan, “Benchmark time series database with iotdb-
benchmark for iot scenarios,” CoRR, vol. abs/1901.08304, 2019.
[Online]. Available: http://arxiv.org/abs/1901.08304

[34] S. J. Cannan and G. A. M. Otten, SQL - The Standard Handbook.
McGraw-Hill Book Company, 1993.

[35] https://www.timescale.com/.
[36] S. W. Golomb, “Run-length encodings (corresp.),” IEEE Trans. Inf.

Theory, vol. 12, no. 3, pp. 399–401, 1966. [Online]. Available:
https://doi.org/10.1109/TIT.1966.1053907

[37] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier, and
J. Schaffner, “Simd-scan: Ultra fast in-memory table scan using on-chip
vector processing units,” Proc. VLDB Endow., vol. 2, no. 1, pp.
385–394, 2009. [Online]. Available: http://www.vldb.org/pvldb/vol2/
vldb09-327.pdf

[38] J. Zhou and K. A. Ross, “Implementing database operations
using SIMD instructions,” in Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data, Madison,
Wisconsin, USA, June 3-6, 2002, M. J. Franklin, B. Moon, and

458

A. Ailamaki, Eds. ACM, 2002, pp. 145–156. [Online]. Available:
https://doi.org/10.1145/564691.564709

[39] Z. Chen, J. Gehrke, and F. Korn, “Query optimization in compressed
database systems,” in Proceedings of the 2001 ACM SIGMOD
international conference on Management of data, Santa Barbara, CA,
USA, May 21-24, 2001, S. Mehrotra and T. K. Sellis, Eds. ACM,
2001, pp. 271–282. [Online]. Available: https://doi.org/10.1145/375663.
375692

[40] Y. Li and J. M. Patel, “Bitweaving: fast scans for main memory
data processing,” in Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2013, New York,
NY, USA, June 22-27, 2013, K. A. Ross, D. Srivastava, and
D. Papadias, Eds. ACM, 2013, pp. 289–300. [Online]. Available:
https://doi.org/10.1145/2463676.2465322

459

