
BOS: Bit-packing with Outlier Separation

Jinzhao Xiao

Tsinghua University

xjc22@mails.tsinghua.edu.cn

Zihan Guo

Tsinghua University

gzh23@mails.tsinghua.edu.cn

Shaoxu Song∗

Tsinghua University

sxsong@tsinghua.edu.cn

Abstract—Bit-packing serves as the fundamental operator in
various data encoding and compression methods. The idea is
to use a fixed bit-width to represent all the (processed) values
in a sequence. Some extremely large values, known as outliers,
obviously amplify the bit-width, and thus lead to wasted bits for
most other small values. We notice that not only the large values
(upper outliers) but also the small ones (lower outliers) could
incur wasted bit-width. In this paper, we propose to store both
the upper and lower outliers separately, namely Bit-packing with
Outlier Separation (BOS). While the remaining center values
have a narrow spread, i.e., condensed bit-width, the separated
outliers need some extra cost to denote their positions. The
problem is thus how to determine better thresholds for separating
the upper and lower outliers, yielding smaller storage cost.
Rather than enumerating all the possible values as upper and
lower outlier separators, in O(n2) time, we consider bit-width as
the separators, with O(n log n) search time. Theoretical analysis
illustrates all the possible cases such that the bit-width separation
still returns the optimal solution as the value separation, and
further leads to an approximate separation strategy with both
median and bit-width, in O(n) time. Remarkably, our BOS
is compatible to any existing compression methods using Bit-
packing, and has replaced Bit-packing in Apache IoTDB and
Apache TsFile. The extensive experiments on many real-world
datasets demonstrate that by replacing Bit-packing with the
proposed BOS in various compression methods, the compression
ratio is significantly improved from about 2.75 to 3.25.

Index Terms—series, outlier, compression

I. INTRODUCTION

There are many algorithms proposed to compress series

data [37], [11], [25], [29], [18], [2]. Among them, many

algorithms [37], [11], [2] employ Bit-packing [19] to improve

storage by using the same bit-width for storing values in a

block and removing leading zeros. Take a series of values

X = (3, 2, 4, 5, 3, 2, 0, 8) as an example. Its maximum value

is 8. The bit-width of 8 is 4 after removing leading zero. Thus,

these 8 values can be stored with 4 bits respectively in bit-

packing.

A. Motivation

Note that in the above example series, only the large value 8,

an outlier, needs 4 bits to store, while a bit-width 3 is sufficient

for all the remaining values. That is, the outlier 8 incurs all

the other values wasting 1 bit in Bit-packing.

1) Outlier Separation Strategy: A natural idea is thus to

store the outliers separately, so that the remaining values could

use a smaller bit-width. PFOR [37] and its variations, NewP-

FOR [34], OptPFOR [34], FastPFOR [17] and SimplePFOR

∗Shaoxu Song (https://sxsong.github.io/) is the corresponding author.

450

550

650

750

850

950

0 20 40 60 80 100

Lower outliers !!

Upper outliers !"

Center values !#" #
$

$!

$%&'

$%()

$"

V
a
lu

e

Index

" #
*

" #
+

Fig. 1: A series X could be divided into 3 parts to compress separately the
lower outliers Xl, center values Xc and upper outliers Xu, where α, β, γ
are the bit-widths for storing the corresponding values.

[17], propose to use b bits to store a part of the values, while

separately storing others exceeding 2b − 1. For example, the

aforesaid series can use 3 bits to store all the values except 8,

which is processed separately.

We further notice that not only the large values, such as the

above 8 known as upper outliers, but also the extremely small

ones could amplify the bid width, e.g., value 0 in the series.

By further separating the lower outlier 0, the remaining values

(3, 2, 4, 5, 3, 2) need only a bit-width 2 to store, by subtracting

the minimum value 2 from each value yielding (1, 0, 2, 3, 1, 0)
in storage.

Figure 1 illustrates the outlier separation strategies over a se-

ries of values. The original Bit-packing needs ⌈log(xmax+1)⌉
bits to store all the values, or ⌈log(xmax − xmin + 1)⌉ bits

by subtracting the minimum value xmin from each value.

PFOR separates the upper outliers greater than xu, and uses

⌈log(xu + 1)⌉ bits (or ⌈log(xu − xmin + 1)⌉ bits with xmin

subtraction) to store the remaining values. We propose to fur-

ther separate the lower outliers smaller than xl. The remaining

values thus occupies only ⌈log(xu − xl + 1)⌉ = β bits.

2) Outlier Separation Determination: Note that the sepa-

rated outliers need some extra costs to indicate their indexes

in the series, e.g., index 6 for value 0 and index 7 for value 8

in the example series. In other words, separating outliers may

decrease the space of center values but introduce extra costs of

indicating outlier positions. It thus needs a proper separation

of outliers that would lead to lower total storage cost.

Unfortunately, existing methods use simple heuristics to

determine outliers without considering the actual compression

ratio performance. For example, NewPFOR [34] simply con-

siders top 10% of values as outliers, and thus the storage

1375

2025 IEEE 41st International Conference on Data Engineering (ICDE)

2375-026X/25/$31.00 ©2025 IEEE
DOI 10.1109/ICDE65448.2025.00107

cost of values is not necessarily small. Other algorithms,

such as OptPFOR [34], try to find the outliers with bit-width

distribution of values. Again, the estimation by distribution

does not lead to lower storage cost either.

Even worse, we need to determine both thresholds xu and

xl for separating the upper and lower outliers, respectively,

denoted by two red dashed lines in Figure 1, which are

not considered in the existing studies. Note that a bit-width

β can represent 2β distinct values. Intuitively, rather than

enumerating all the values as possible xl and xu, we may

search the separation in a small space of possible bit-widths

α, β, γ for lower, center and upper values, respectively.

B. Contribution

In this paper, we propose Bit-packing with Outlier Separa-

tion (BOS) to improve Bit-packing, by separating both upper

outliers and lower outliers. It is worth noting that BOS is

complementary to the existing compression methods, such as

RLE [11], SPRINTZ [2] and TS2DIFF [33]. By replacing

their used Bit-packing operator with BOS, we have RLE+BOS,

SPRINTZ+BOS, TS2DIFF+BOS, etc. Our major contributions

in this paper are as follows.

(1) We formalize the optimization problem of outlier sep-

aration for bit-packing (BOS). Rather than simple heuristics,

lower and upper outliers are formally defined with the corre-

sponding data and position storage costs.

(2) We introduce the optimal separation based on values

(BOS-V). It considers all the values from X as possible xl

and xu for separating lower and upper outliers, with O(n2)
search time. We propose proposition to ensure the correctness

of the separation, i.e., with the minimum storage cost. The

solutions based on values from X lead to a more efficient

method on bit-width below.

(3) We devise a bit-width separation method (BOS-B). Note

that we only need to consider the bit-widths β and γ for

center values and upper outliers, in O(n log n) search time.

We provide two propositions to illustrate all the possible cases

such that the bit-width separation still returns the optimal

solution as the value separation. The correctness is ensured

by transforming the solutions based on values from X .

(4) We propose an approximate median separation (BOS-

M). Observing the normal distribution of values, especially

after delta processing, we consider median in separation. To-

gether with the aforesaid bit-width, the approximate separation

can be determined in O(n) time.

(5) We conduct extensive experiments on many real world

datasets. As summarized in the experiments, the compression

ratio is significantly improved from about 2.75 by existing

methods to 3.25 by our BOS-B on average. It is thus highly

suggested to replace bit-packing by the proposed BOS in

practice.

Our method BOS has been adopted in Apache IoTDB [29]

and Apache TsFile [35], to replace Bit-packing. The code of

the compression algorithm is included in the official GitHub

repository of Apache IoTDB [15] and Apache TsFile [27] by

system developers. The experiment related code and data are

available in [10] for reproducibility.

II. RELATED WORK

There are many algorithms to compress series data, includ-

ing some lossy compression algorithms [8], [7], [16], and more

importantly lossless algorithms [31], [32], [33].

A. Compression of Integer and Float

Integer Compression: Lossless compression algorithms of

integer include run-length-based [11] and differential-based al-

gorithms. The storage cost of run-length-based algorithm, such

as RLE [11], is better than that of other algorithms when values

have high repeatability. However, these algorithms perform

worse on values with small consecutive repeat. Differential-

based algorithms, including TS2DIFF [33] and SPRINTZ [2],

perform better on the series of values with small delta. These

algorithms subtract the previous data from the current data and

remove redundant leading zeros with bit-packing to reduce the

storage cost of values. However, when there are several outliers

leading to larger bit-width of values, the storage cost of these

algorithms is very high.

Float Compression: GORILLA [25], CHIMP [20], Elf

[18], and BUFF [21] are compression algorithms designed for

floating-point numbers. GORILLA [25] computes a XOR of

the current and previous float values, and then compresses

these XOR values. CHIMP [20] improves GORILLA with

distribution of leading and trailing zeros, and Elf [18] eases

trailing zeros with precision of floating-point before computing

XOR. However, if there are several larger outliers in float

datasets, these algorithms have to store larger XOR values.

BUFF [21] uses sparse encoding to handle outliers of floats.

Nevertheless, BUFF [21] only splits values into two parts,

outliers and normal values according to frequency, and does

not optimize the outlier separation.

B. Compression in Various Fields

Many research studies in signal processing/speech process-

ing/data compression fields can be applied for the time series

compression task. For example, 7-Zip [24] is a highly effective

and efficient method for handling data compression. It is

based on the LZMA (Lempel-Ziv-Markov chain algorithm)

[23] compression algorithm, using dictionary compression and

range encoding. LZ4 [5], derived from the LZ77 algorithm

[36], searches for the longest matching string using a sliding

window on the input stream. These data compression tech-

niques for byte stream can be directly applied over the data

encoded by bit-packing, i.e., complementary to our proposal,

known as BOS+7-Zip or BOS+LZ4.

For signal and speech processing, frequency-based meth-

ods are often employed [30], e.g., DCT [3] to compress

speech data and FFT [12] to compress signal data. Since

time-frequency transform could be lossy, to enable lossless

compression, the corresponding residuals need to be stored.

Again, our proposal BOS can be applied to improve the storage

of the residuals often with outliers, known as BOS+DCT or

BOS+FFT, i.e., again complementary to the existing methods.

1376

TABLE I: Notations

Notation Description

X a series

n the number of values in a block of series

xl, xu floor value and ceiling value in center values

Xc, Xl, Xu center values, lower outliers and upper outliers

nl, nu the number of lower outliers and upper outliers

α, β, γ the bit-widths of lower, center and upper values

C(xl, xu) storage cost with outlier separation

ci, c
′

i the cumulative count

C. Compression with Outliers

Several previous compression schemes attempt to optimize

the bit-packing algorithm by additionally handling outliers.

Patched Frame-of-Reference, PFOR: Zukowski et al. [37]

propose the compression method to use a small bit-width b

to bit-pack the center value and store outlier separately, but

it does not compress additional outliers. PFOR stores the

positions of outliers by organizing their indexes into lists. This

solution may introduce a large number of compulsory outliers.

NewPFOR and OptPFOR: Two other algorithms are pro-

posed by Yang et al. [34] to obtain better storage. They use a

bit-width for 128 integers, and store low b bits of the outlier

value, so that the compulsory outlier can be avoided. The

difference between these two compression schemes lies in the

strategy to determine b.

FastPFOR and SimplePFOR: To improve the compression

effect of NewPFOR and accelerate it, Lemire and Boytsov

[17] propose two algorithms FastPFOR and SimplePFOR.

SimplePFOR compresses them together using Simple-8b, and

FastPFOR classifies outliers according to the length of their

high bits.

However, this family of PFOR algorithms still had many

problems. The first is that all of these algorithms only consider

upper outliers are shown in Figure 1. In this case, the b used

to pack most of the center values will be greatly affected.

Secondly, bitmap is not considered to store index of outliers.

In some cases, bitmap could save the index storage. Finally,

the value of each outlier point requires at least b bits to store

the low bits. In fact, in our solution, it is very likely that less

than b bits are needed to store the outlier value.

III. PROBLEM STATEMENT

In this section, we give some basic definitions about storage

cost of bit-packing and outlier separation. The optimization

problem of outlier separation is then formalized. Table I lists

the frequently used notations.

A. Bit-packing Encoding

Bit-packing [19] specifies a fixed bit-width for all the values

in a series. The corresponding storage cost is given as follows.

Definition 1 (Storage Cost). For a series X = (x1, . . . , xn),
its storage cost by Bit-packing is

C(X) = n⌈log(xmax − xmin + 1)⌉ (1)

!"#$""%!&%&!#$!&'!'!"()"("!)&

%$*%%**$%%*%*%%

+!
!

,-./01!
!

Fig. 2: Example of using bitmap to indicate the positions of outliers.

where xmax = maxX and xmin = minX are the maximum

and minimum values in the series X .

B. Outlier Separation

As shown in Figure 1, some large or small values increase

storage cost in Definition 1. We propose to separate the outliers

of both large and small values to store them separately, and

thus reduce bit-widths of the remaining center values.

Specifically, we define lower bound of center values as xl,

and upper bound of center values as xu. Based on xl and xu,

all the values are split into 3 parts, including lower outliers,

center values and upper outliers.

Definition 2 (Center Values). Center values Xc are a set of

values which are in the range of spread (xl, xu),

Xc = {xi ∈ X | xl < xi < xu}. (2)

Center values are neither too larger nor too smaller with

reduced bit-width ⌈log(maxXc −minXc + 1)⌉.

Definition 3 (Lower Outliers). Lower outliers Xl are a set of

values which are less than center values,

Xl = {xi ∈ X | xi ≤ xl}. (3)

The bit-width of lower outliers is reduced from ⌈log(xmax−
xmin + 1)⌉ to ⌈log(maxXl − xmin + 1)⌉. Thus, the storage

cost of lower outliers is improved.

Definition 4 (Upper Outliers). Upper outliers Xu are a set of

values which are larger than center values,

Xu = {xi ∈ X | xi ≥ xu}. (4)

The bit-width of upper outliers is decreased from

⌈log(xmax−xmin+1)⌉ to ⌈log(xmax−minXu+1)⌉, Again,

the storage cost of upper outliers is improved.

Let nl and nu be the number of the lower outliers and upper

outliers in the series X , i.e., nl = |Xl| and nu = |Xu|. To

store lower outliers and upper outliers individually, we need

to record the positions of outliers in the original series. Figure

2 gives an example of storing outlier index with bitmap. We

write ‘0’ for the index of center values, ‘10’ for lower outliers,

and ‘11’ for upper outliers. In this case, the storage cost of

index is n+ nl + nu bits.

C. Separation Problem

In the following, we formulate the outlier separation prob-

lem. Let us first introduce the storage cost with outlier sepa-

ration. The storage of index for outliers incurs extra storage

cost. The total cost of values contains index cost and value

cost of lower outliers, upper outliers and center values.

1377

Definition 5 (Storage Cost with Outlier Separation). The cost

C (xl, xu) of storing series X based on outlier separation by

(xl, xu) is

C (xl, xu) = nl(⌈log(maxXl − xmin + 1)⌉+ 1) (5)

+ nu(⌈log(xmax −minXu + 1)⌉+ 1)

+ (n− nl − nu)⌈log(maxXc −minXc + 1)⌉+ n,

where xmin and xmax are the minimum and maximum values

in the series X , having xmin < maxXl < minXc <
maxXc < minXu < xmax.

If maxXl = xmin, the first term of C (xl, xu) is 2nl. If

minXu = xmax, the second term of C (xl, xu) is 2nu. If

maxXc = minXc, the third term of C (xl, xu) is (n − nl −
nu). When xl < xmin or xu > xmax, the number and bit-

width of lower outliers or upper outliers are zero.

The outlier separation problem is to find the optimal range

of center values with the minimum storage cost.

Problem 1 (Outlier Separation Problem). For a given series

X , the outlier separation problem is to find the best (xl, xu)
that minimizes the cost C (xl, xu),

argmin
xl,xu

C (xl, xu). (6)

Example 1. Take the series in Figure 1 as an example. In the

series, we set xl as 620 and xu as 794. Then, nl and nu are

5 and 4. Hence, the value cost is 698 and the cost of bitmap

is 109. As a result, the storage cost is 807.

IV. EXACT VALUE SEPARATION

Since the storage cost with outlier separation only depends

on xl and xu, we could obtain the optimal solution by

considering all the possible xl and xu. However, it takes too

much time to consider each value from xmin to xmax for

xl and xu. Thereby, we propose a separation algorithm by

investigating only a set of values (BOS-V), still finding the

optimal solution of outlier separation problem. The reason of

introducing this baseline is as follows. (1) It illustrates the

rationale of traversing the values in X for the optimal solution.

which motivates the following algorithms. (2) It introduces

some notations such as cumulative count, which are used

in the following algorithms as well. (3) It is used to verify

the correctness of the following advanced algorithm BOS-B,

showing exactly the same compression results.

A. Optimal Separation with Values

According to Definition 5, since the cost of storing series X

only depends on the values in the series, an optimal solution

(xl, xu) must exist such that xl and xu are in the series X .

Proposition 1. There must exist an optimal solution of outlier

separation problem (xu, xl), where xl ∈ X and xu ∈ X .

0

20

40

60

80

100

450 550 650 750 850 950

!!!"#$!"%&!'

C
u
m

u
la

ti
v
e
 C

o
u
n
t

Value

Lower outliers "! Upper outliers "'Center values "(

Fig. 3: Cumulative distribution function of values for outlier separation, where
Xl, Xc, Xu denote the value separation for the series X in Figure 1.

Proof. For any optimal solution (xl, xu), we can always

construct another solution (maxXl,minXu), which has the

same cost as (xl, xu).

C (xl, xu) = nl(⌈log(maxXl − xmin + 1)⌉+ 1)

+ nu(⌈log(xmax −minXu + 1)⌉+ 1)

+ (n− nl − nu)⌈log(maxXc −minXc + 1)⌉+ n

= C (maxXl,minXu).

Note that the solution (maxXl,minXu) has maxXl ∈ X
and minXu ∈ X . The conclusion is proved.

B. Cumulative Count

To calculate the storage cost C(xl, xu) for each solution,

traversing all the values of the series X to obtain nl and

nu in Definition 5 is very costly. Hence, we maintain a

cumulative count to reduce times of traversing. The definition

of cumulative count of values is as follows.

Definition 6 (Cumulative Count). The cumulative count ci or

c′i of a value is the number of values less than and equal to it

ci = |{xj | xj ≤ xi, 1 ≤ j ≤ n}|,

c′i = |{xj | xj < xi, 1 ≤ j ≤ n}|.

We present an example of cumulative count of values in

Figure 3 for the series X from Figure 1. It is easy to see that

lower outliers are in the left of the red line xl, upper outliers

are in the right of the red line xu. Thus, we could get nl and

nu with cumulative count efficiently.

Then, according to Definition 5, the value cost could be

derived by cumulative count,

C (xl, xu) = cl(⌈log (maxXl − xmin + 1)⌉+ 1) (7)

+ (n− c′u)(⌈log (xmax −minXu + 1)⌉+ 1)

+ (c′u − cl)⌈log (maxXc −minXc + 1)⌉+ n.

C. Value Separation Algorithm

Algorithm 1 presents the pseudo code of finding the optimal

separation (xl, xu) with the minimum storage cost Cmin. First,

we sort values in the series X in Line 1. Then, the cumulative

1378

count of each value in the series is calculated in Lines 2 and

3. Lines 4-10 get storage cost of each solution xl, xu with

Formula 7, and find the one with the minimum storage cost.

Algorithm 1: Value Separation (BOS-V)

Input: Series X = (x1, x2, . . . , xn)
Output: Optimal Solution (x′

l, x
′

u)
1 X = Sort(X) ;

2 for xi ← xmin to xmax do

3 Get ci with Definition 6 ;

4 Cmin = n ∗ ⌈log(xmax − xmin + 1)⌉ ;

5 for xi ← xmin to xmax do

6 for xj ← xmax to xi do

7 Ci = C (xi, xj) with Formula 7 ;

8 if Ci < Cmin then

9 x′

l = xi ;

10 x′

u = xj ;

11 Cmin = Ci ;

12 return (x′

l, x
′

u) ;

Example 2. Consider the series in Figure 1. First, we sort the

series in ascending order and get cumulative count as shown

in Figure 3. In the series, Algorithm 1 enumerates xl from the

minimum value 465 to the maximum 935, and xu from the next

value of xl to the maximum value 935. Lastly, the algorithm

finds the optimal solution (632, 696) with the minimum cost.

D. Complexity Analysis

Algorithm 1 takes a time cost of O(n log n) to sort values,

where n represents the number of values in X . After sorting

values, the time cost of getting cumulative count is O(n). The

search of solution (xl, xu) with the minimum cost enumerates

pairs of values in the series X in O(n2) time. In summary,

the time complexity of Algorithm 1 is O(n2).

V. EXACT BIT-WIDTH SEPARATION

The quadratic time complexity of Algorithm 1 is still costly.

Rather than values from X , we propose to use bit-width

as the separation (BOS-B), reducing the time complexity to

O(n log n). While the improved O(n log n) algorithm BOS-B

is still concise, the foundation behind however is not-trivial. To

find the optimal xu, we need to prove that it is not necessary

to traverse all the values in X in O(n) time for each xl. The

novelty of the proposal is to give the solution determined by

the bit-width β, which takes only O(log n) time. The technical

depth roots in the existence of another better solution based

on bit-width, for each solution (xl, xu) formed by values of

X . The conclusion needs to be proved for two different cases.

The complicated cost functions in Formulas 5 and 7, for center

values, lower outliers and upper outliers, respectively, make

the derivation difficult.

A. Optimal Separation with Bit-width

For any solution (xl, xu) with xl ∈ X and xu ∈ X , let

β = ⌈log(maxXc −minXc + 1)⌉, (8)

γ = ⌈log(xmax −minXu + 1)⌉, (9)

denote the bit-widths of center values and upper outliers.

Proposition 2. For any solution (xl, xu) with β ≤ γ, xl ∈ X
and xu ∈ X , there always exists another solution (xl, x

′

u)
having C (xl, x

′

u) ≤ C (xl, xu), where x′

u = minXc + 2β .

Proof. According to β = ⌈log(maxXc − minXc + 1)⌉ in

Formula 8, we have

log(maxXc −minXc + 1) ≤ β

maxXc −minXc + 1 ≤ 2β

maxXc < x′

u.

(1) For xu > x′

u, it follows maxXc < x′

u < xu = minXu.

Since there is no value between maxXc and minXu in X ,

according to Definitions 2 and 4, we have minX ′

u = minXu.

(2) For xu ≤ x′

u, referring to Definition 4, we have

maxX ′

u ≥ maxXu.

Combining the above two cases, we can conclude that

minX ′

u ≥ minXu.

For nu = |Xu| and n′

u = |X ′

u| introduced after Definition

4, it follows nu ≥ n′

u. Let n∆ = |Xu \X
′

u| be the size of the

increment, having n∆ = nu − n′

u ≥ 0.

Given the same xl and the corresponding identical Xl, nl,

we could get the difference C∆ between C (xl, x
′

u) and

C (xl, xu) defined in Formula 5,

C∆ = C (xl, x
′

u)− C (xl, xu)

= nl(⌈log(maxXl − xmin + 1)⌉+ 1)

+ n′

u(⌈log(xmax −minX ′

u + 1)⌉+ 1)

+ (n− nl − n′

u)⌈log(maxX ′

c −minX ′

c + 1)⌉

− nl(⌈log(maxXl − xmin + 1)⌉+ 1)

− nu(⌈log(xmax −minXu + 1)⌉+ 1)

− (n− nl − nu)⌈log(maxXc −minXc + 1)⌉. (10)

The same xl also infers minX ′

c = minXc. Together with

nu = n′

u + n∆, we have

C∆ = C1 − C2, (11)

where

C1 = (n− nl − nu)⌈log(maxX ′

c −minXc + 1)⌉

+ n∆⌈log(maxX ′

c −minXc + 1)⌉

+ n′

u(⌈log(xmax −minX ′

u + 1)⌉+ 1)

and

C2 = (n− nl − nu)⌈log(maxXc −minXc + 1)⌉

− n∆(⌈log(xmax −minXu + 1)⌉+ 1)

− n′

u(⌈log(xmax −minXu + 1)⌉+ 1)

= (n− nl − nu)β − n∆(γ + 1)− n′

u(γ + 1).

1379

0

20

40

60

80

100

450 550 650 750 850 950

!
!

""
#

"$
#"%

#

#"#&'(#&)*

C
u
m

u
la

ti
v
e
 C

o
u
n
t

Lower outliers "" Upper outliers "$Center values "%

#$
#

$%&"%+
+

#$

!
,

Fig. 4: Improving value separation (xl, xu) by bit-width separation (xl, x
′

u)
using Proposition 2 with β ≤ γ.

(i) Referring to Definition 2, we have maxX ′

c < x′

u =
minXc + 2β . It follows

⌈log(maxX ′

c −minXc + 1)⌉ ≤ β.

(ii) With the aforesaid proved minX ′

u ≥ minXu, we infer

⌈log(xmax−minX ′

u+1)⌉ ≤ ⌈log(xmax−minXu+1)⌉ = γ.

Applying the above two conditions, we further derive

C∆ ≤ (n− nl − nu)β + n∆β + n′

u(γ + 1)

− (n− nl − nu)β − n∆(γ + 1)− n′

u(γ + 1)

= n∆(β − γ − 1) ≤ 0.

Given β ≤ γ and n∆ ≥ 0, the conclusion is proved.

Intuitively, as illustrated in Figure 4, all the points could be

divided into 4 parts, lower outliers Xl, center values Xc, upper

outliers moved from Xu to center values X ′

c, and remaining

upper outliers X ′

u. During moving points, the cost of lower

outliers Xl does not change, the bit-width of center values Xc

is still β, and the bit-width of remaining upper outliers X ′

u

does not get larger. Moveover, the bit-width of upper outliers

Xu moved to center values X ′

c changes from γ to β, i.e.,

getting no larger given β ≤ γ. In summary, the cost of all the

points becomes no greater, having C (xl, x
′

u) ≤ C (xl, xu).

Proposition 3. For any solution (xl, xu) with β > γ, xl ∈ X
and xu ∈ X , there always exists another solution (xl, x

′

u)
having C (xl, x

′

u) ≤ C (xl, xu), where x′

u = xmax − 2γ + 1.

Proof. According to γ = ⌈log(xmax − minXu + 1)⌉ in

Formula 9, we have

x′

u ≤ minXu = xu.

(1) For x′

u = xu = minXu, it is exactly the (xl, xu) solu-

tion, having minX ′

u = x′

u = minXu,maxX ′

c = maxXc.
(2) For maxXc < x′

u < xu = minXu, since there is

no value between maxXc and minXu in X , according to

Definitions 2 and 4, we have minX ′

u = minXu, maxX ′

c =
maxXc as well.

0

20

40

60

80

100

450 550 650 750 850 950

!!
"

!#
"!$

"

"!"%&' "%()

C
u
m

u
la

ti
v
e
 C

o
u
n
t

Lower outliers !! Upper outliers !#Center values !$

#$%!$*
* "#

&+

&,

"'#

Fig. 5: Improving value separation (xl, xu) by bit-width separation (xl, x
′

u)
using Proposition 3 with β > γ.

(3) For x′

u ≤ maxXc < xu, referring to Definitions 2 and

4, it follows maxX ′

c < minX ′

u ≤ maxXc < minXu.

Combining the above three cases, we can infer that

minX ′

u ≤ minXu,maxX ′

c ≤ maxXc.

For nu = |Xu| and nu = |X ′

u| introduced after Definition

4, it follows n′

u ≥ nu. Let n∆ = |X ′

u \Xu| be the size of the

increment, having n∆ = n′

u − nu ≥ 0.

Similarly, we could get the difference C∆ according to

Formula 10. The same xl also infers minX ′

c = minXc.

Together with n′

u = nu + n∆, we have

C∆ = C1 − C2,

where

C1 = (n− nl − n′

u)⌈log(maxX ′

c −minXc + 1)⌉

+ n∆(⌈log(xmax −minX ′

u + 1)⌉+ 1)

+ nu(⌈log(xmax −minX ′

u + 1)⌉+ 1)

and

C2 = (n− nl − n′

u)⌈log(maxXc −minXc + 1)⌉

− n∆⌈log(maxXc −minXc + 1)⌉

− nu(⌈log(xmax −minXu + 1)⌉+ 1)

= (n− nl − n′

u)β − n∆β − nu(γ + 1).

Applying two conditions similar to conditions (i) and (ii) in

Proposition 2, we further derive

C∆ ≤ (n− nl − n′

u)β + n∆(γ + 1) + nu(γ + 1)

− (n− nl − n′

u)β − n∆β − nu(γ + 1)

= n∆(γ + 1− β) ≤ 0.

Given β > γ and n∆ ≥ 0, the conclusion is proved.

Intuitively, as illustrated in Figure 5, all the points could

be divided into 4 parts, lower outliers Xl, upper outliers Xu,

center values moved from Xc to upper outliers X ′

u, and the

remaining center values X ′

c. Similar to Proposition 2, the

cost of all parts of the points becomes no greater, having

C (xl, x
′

u) ≤ C (xl, xu).

1380

TABLE II: All possible cases of pruning by separation with bit-width

Proposition Condition Solution

Proposition 2 β ≤ γ (xl,minXc + 2β)
Proposition 3 β > γ (xl, xmax − 2γ + 1)

B. Bit-width Separation Algorithm

According to Propositions 2 and 3, we could get a solution

no worse than value separation, including the optimal solution,

by traversing each value as xl and the corresponding bit-width

β or γ for xu. Table II summarizes all the possible cases of

β ≤ γ and β > γ, as well as their solutions to consider.

Algorithm 2 presents the pseudo code of bit-width sepa-

ration (BOS-B). Firstly, same as Algorithm 1, we calculate

cumulative count of values in Lines 1 - 3. Then, the algorithm

enumerates the cost of each xl and each corresponding β
with β ≤ γ in Lines 5 - 12. The solution to consider is

(xl,minXc + 2β), according to the first case in Table II.

Note that we traverse the bit-width β first. That is, for each

β, the cumulative counts for xl and xu = xl + 2β can be

more efficiently fetched, given the fixed difference 2β . For the

second case in Table II, the algorithm enumerates the cost of

each xl and each γ, under the solution (xl, xmax− 2γ +1) in

Lines 15 - 21.

Algorithm 2: Bit-width Separation (BOS-B)

Input: Series X = (x1, x2, . . . , xn)
Output: Optimal Solution (x′

l, x
′

u)
1 X = Sort(X) ;

2 for xi ← xmin to xmax do

3 Get ci with Definition 6 ;

4 Cmin = n ∗ ⌈log(xmax − xmin + 1)⌉ ;

5 for β ← 1 to ⌈log(xmax − xi+1 + 1)⌉ − 1 do

6 for xi ← xmin to xmax do

7 xu = xi+1 + 2β ;

8 Ci = C (xl, xu) with Formula 7 ;

9 if Ci < Cmin then

10 x′

l = xl ;

11 x′

u = xu ;

12 Cmin = Ci ;

13 for xi ← xmin to xmax do

14 xl = xi ;

15 for γ ← 1 to ⌈log(xmax − xi+1 + 1)⌉ − 1 do

16 xu = xmax − 2γ + 1 ;

17 Ci = C (xl, xu) with Formula 7 ;

18 if Ci < Cmin then

19 x′

l = xl ;

20 x′

u = xu ;

21 Cmin = Ci ;

22 return (x′

l, x
′

u) ;

Example 3. Consider the series in Figure 1. First, we sort the

series in ascending order and get cumulative count, similar to

Algorithm 1. In the series, Algorithm 2 enumerates xl from the

minimum value 465 to the maximum 935. For each xl = xi

450

550

650

750

850

950

0 20 40 60 80 100

!
!

""

"#$%

"#&'

V
a
lu
e

Index

"()*+,-.
.

"/
!
!

Fig. 6: Separation by xmedian with bit-width β in both sides.

and β ≤ γ, i.e., β ≤ ⌈log(xmax−xi+1+1)/2⌉ = ⌈log(935−
xi+1 + 1)⌉ − 1, we consider the cost of xu = xi+1 + 2β as

Figure 4. For each xl = xi and β > γ, i.e., γ ≤ log(xmax −
xi+1 + 1)/2⌉ = ⌈log(935 − xi+1 + 1)⌉ − 1, we consider the

cost of xu = xmax−2
γ + 1 as Figure 5. Finally, the algorithm

finds the optimal solution with xl = 632 and β = 6.

C. Complexity Analysis

In Algorithm 2, the time cost of sorting values and getting

cumulative count is O(n log n), similar to Algorithm 1. Then,

it takes O(n log n) time to calculate cumulative count of

xi+1 + 2β with cumulative count ci, for each xi and β.

With the fixed xmax, the calculation for cumulative count of

xmax−2
γ+1 takes O(n) time. Finally, it takes O(n log n) time

to find the minimum cost by enumerating xl and β as well as

γ. The overall complexity of Algorithm 2 is O(n log n).

VI. APPROXIMATE MEDIAN SEPARATION

Algorithm 2 of bit-width separation still needs to traverse

all possible values as xl. In this section, we further narrow

down the search space of xl to the candidates determined by

the median of X and bit-width β. This is motivated by the

observation that many datasets (after pre-processing) follow a

normal distribution, as illustrated in Figure 8 below.

A. Approximate Separation with Median

Let xmedian be the median of X . As illustrated in Figure

6, the center values are heuristically determined by xl =
xmedian−2β and xu = xmedian+2β , for possible bit-width β.

To efficiently calculate the storage cost in Formula 5, instead

of the cumulative count, we define the count of buckets divided

by median xmedian and bit-width β as follows.

Definition 7 (Bucket Count). The bucket count h(β) is the

number of values exceeding xmedian in bit-width β,

h(β) = |{xi ∈ X | xmedian + 2β−1 ≤ xi < xmedian + 2β}|.

The bucket count h(−β) is the number of values less than

xmedian with bit-width β,

h(−β) = |{xi ∈ X | xmedian − 2β < xi ≤ xmedian − 2β−1}|.

The special bucket count is h(0) = |{xi ∈ X | xi = xmedian}|.

1381

B. Median Separation Algorithm

We present the approximate median separation algorithm

(BOS-M) in Algorithm 3. First, we use a fast approximate

median implementation [14] of QuickSelect algorithm [13] to

find median in Line 1. Then, we divide all the values for bucket

count h(β) in Lines 2-10. Finally, it computes the storage cost

of solution (xmedian−2β , xmedian+2β) for various bid-width

β and finds the minimum.

Algorithm 3: Median Separation (BOS-M)

Input: Series X = (x1, x2, . . . , xn)
Output: Approximate Solution (x′

l, x
′

u)
1 xmedian = FindMedian(X) ;

2 for i← 1 to n do

3 if xi < xmedian then

4 β = ⌈log(xmedian − xi + 1)⌉ ;

5 h(−β) = h(−β) + 1 ;

6 else if xi > xmedian then

7 β = ⌈log(xi − xmedian + 1)⌉ ;

8 h(β) = h(β) + 1 ;

9 else

10 h(0) = h(0) + 1 ;

11 Cmin = n ∗ ⌈log(xmax − xmin + 1)⌉ ;

12 for β ← ⌈log(xmax − xmin + 1)⌉ to 1 do

13 nl = nl + h(−β) ;

14 nu = nu + h(β) ;

15 xi = xmedian − 2β ;

16 xj = xmedian + 2β ;

17 Cβ = C (xi, xj) with nl, nu and Formula 5 ;

18 if Cβ < Cmin then

19 x′

l = xi ;

20 x′

u = xj ;

21 Cmin = Cβ ;

22 return (x′

l, x
′

u) ;

Example 4. Consider the series in Figure 1. First, Algorithm

3 finds the median xmedian = 674. Given the maximum β = 9,

it divides values into 19 buckets. Then, the algorithm searches

the bit-width β with the minimum cost by enumerating β from

9 to 1. It returns the solution (610, 738) with β = 6.

C. Approximation Performance

While it is difficult to bound the approximation ratio in

general, given the various data distributions, we obtain some

theoretical guarantee for the special case of normal distri-

bution. The full proof of Proposition 4 can be found in the

appendix [1].

Let Copt be the storage cost of the optimal solution for

outlier separation problem, and Capprox be the storage cost

of the solution xl and xu returned by the heuristic BOS-M.

Since many real-world datasets follow the normal distribution

as illustrated in Figure 8, we study the theoretical bound of

approximation ratio ρ =
Capprox

Copt
under the normal distribution.

!! "#$%&' ()%'*+,,+-./&01+,"

232443422

5#$%"

33

6&
'()

6$*&
'()

6%
'()

7

6$
'!)

8

6+
',)

9

!,

:#$&
" :#$+

" :#$%
"

!"#$
!""
!"#$

#""

:#$$*&
":#$$

"

7 8 7 7

9

Fig. 7: Storage layout of bit-packing with outlier separation (BOS).

Proposition 4. For normal distribution X ∼ N(µ, σ2), with

probability 0.997, the approximation ratio ρ of BOS-M satisfies

ρ ≤

{

2 if σ ≤ 5
3 ,

⌈log(3σ − 1)⌉ otherwise.

D. Complexity Analysis

In Algorithm 3, it takes O(n) amortized time complexity

for the faster approximate median implementation [14] of

QuickSelect algorithm [13] to find median [13]. Then, the

algorithm takes O(n) time to divide all values into buckets,

and O(log n) time to calculate the storage cost of each

solution with bit-width β. In summary, the time complexity

of approximate median separation is O(n).

VII. SYSTEM DEPLOYMENT

We implement BOS in Apache IoTDB [29] and Apache

TsFile [35], and the code is available in the GitHub repository

of the systems [15] and [27]. In the section, we introduce the

storage layout of data compressed by BOS in the file format.

Figure 7 presents the storage structure of BOS in the file

format. First, a block of values starts with some meta data

of the series, including the number of outliers nl and nu, the

minimum value xmin, the minimum center value minXc and

the minimum upper outlier minXu. It follows the bit-width of

center values β = ⌈log(maxXc −minXc + 1)⌉, bit-width of

lower outliers α = ⌈log(maxXl − xmin + 1)⌉, and bit-width

of upper outliers γ = ⌈log(xmax − minXu + 1)⌉. Then, we

store the index of outliers with bitmap as shown in Figure 2,

where biti is the indicator of i-th value.

The lower outliers, center values and upper outliers are

stored together in the original data order. Their corresponding

bit-widths, α, β, γ, are marked by a bitmap. Consequently,

the decompression process only needs to scan the data once.

In Figure 7, center values ξ
(c)
i stores xi − minXc in the

blue boxes, lower outliers and upper outliers are stored as

ξ
(l)
i = xi − xmin and ξ

(u)
i = xi − minXu in the red and

yellow boxes, respectively.

VIII. EXPERIMENT

In this section, we experimentally compare the compres-

sion ratio and time of our BOS with other algorithms, and

we further validate the motivation, variation evaluation, and

scalability of our method BOS.

1382

0 50000100000150000
value

0

10000

20000

Fr
eq

ue
nc

y
(a) EPM-Education

0 5000 10000
value

0

2500

5000

7500

Fr
eq

ue
nc

y

(b) Metro-Traffic

0 2000
value

0

250

500

750

Fr
eq

ue
nc

y

(c) Vehicle-Charge

0 2000 4000 6000
value

0

20000

40000

60000

Fr
eq

ue
nc

y

(d) CS-Sensors

0 500 1000
value

0

20000

40000

Fr
eq

ue
nc

y

(e) TH-Climate

0 50 100
value

0

5000

10000
Fr

eq
ue

nc
y

(f) TY-Transport

0 10000 20000
value

0

1000

2000

Fr
eq

ue
nc

y

(g) YZ-Electricity

0 300000 600000
value

0

2000

4000

6000

Fr
eq

ue
nc

y

(h) GW-Magnetic

0 10000 20000
value

0

5000

10000

Fr
eq

ue
nc

y

(i) USGS-Earthquakes

0 100000 200000
value

0

2000

4000

Fr
eq

ue
nc

y

(j) Cyber-Vehicle

0 50 100 150
value

0

5000

10000

Fr
eq

ue
nc

y

(k) TY-Fuel

0 25000 50000 75000
value

0

500

1000

1500

Fr
eq

ue
nc

y

(l) Nifty-Stocks

Fig. 8: Value distribution of all datasets after TS2DIFF.

TABLE III: Real-world datasets

Dataset Abbr. Public # Values Data Type

EPM-Education EE [9] 900,000 Integer

GW-Magnetic GM [22] 933,984 Float

Metro-Traffic MT [28] 48,204 Integer

Nifty-Stocks NS [26] 295,193,088 Float

USGS-Earthquakes UE [6] 683,290 Float

Vehicle-Charge VC [4] 3,396 Integer

CS-Sensors CS 100,000 Integer

Cyber-Vehicle CV 35,676,900 Float, Integer

TH-Climate TC 131,747 Integer

TY-Fuel TF 183,556,352 Float, Integer

TY-Transport TT 16,596,252 Integer

YZ-Electricity YE 10,108 Float

A. Experimental Setting

The experiments were conducted on an Apple M1 Pro chip,

featuring 8 CPU cores and 14 GPU cores, complemented by

16GB of unified memory.

1) Baselines: According to Section II of related work,

we select several state-of-the-art algorithms in comparison,

including floating-point compression algorithms (Gorilla [25],

Chimp [20], Elf [18] and BUFF [21]) and integer encoding

algorithms (RLE [11], SPRINTZ [2] and TS2DIFF [29]).

Note that RLE, SPRINTZ and TS2DIFF use bit-packing,

and thus are also denoted as RLE+BP, SPRINTZ+BP and

TS2DIFF+BP.

We compare our algorithms, BOS with value separation

(BOS-V), bit-width separation (BOS-B) and approximate me-

EPM-Education

Metro-Tra
ffic

Vehicle
-Charge

CS-Sensors

TH-Climate

TY-Tra
nsport

YZ-Electric
ity

GW-Magnetic

USGS-Earthquakes

Cyber-Ve
hicle

TY-Fu
el

Nifty-
Stocks

Dataset

0

10

20

30

Pe
rc

en
ta

ge
 (%

)

Lower Outliers Upper Outliers

Fig. 9: Percentage of lower and upper outliers separated by BOS-V

dian separation (BOS-M) with PFOR [37], NEWPFOR [34],

OPTPFOR [34] and FASTPFOR [17], which also handle

outliers in bit-packing. They can cooperate with other com-

pression methods as well, by replacing BOS, e.g., RLE+BOS-

V vs RLE+PFOR.

2) Datasets: Real world datasets utilized in our experimen-

tal evaluation encompass both publicly available data and the

data acquired by our partners in various industries. The full

dataset names in Table III indicate the corresponding domains.

Data types and the number of values in these datasets are

shown in Table III. Some datasets contain only integers, where

all the compression algorithms can be applied directly. There

are also some datasets that contain floating-point numbers.

1383

(a) Compression ratio on various datasets

Methods
Datasets without float Datasets with float

EE MT VC CS TC TT YE GM UE CV TF NS

F
lo

at

GORILLA 1.67 2.23 1.94 1.71 6.39 3.14 1.20 1.58 0.96 1.53 2.02 1.19

CHIMP 1.36 1.72 1.47 1.73 4.58 2.17 1.22 1.87 1.07 1.62 1.84 1.39

Elf 1.63 1.80 1.61 1.85 4.47 2.67 1.60 2.10 1.49 2.08 2.15 1.37

BUFF 1.92 2.46 2.66 2.67 3.20 4.44 2.28 1.68 2.04 2.54 2.96 1.56

R
L

E
+

BP 1.92 2.46 2.65 2.66 3.20 4.67 2.13 2.15 1.00 1.74 3.11 1.56

PFOR 2.66 2.39 2.76 2.59 4.31 4.80 1.95 2.06 2.02 2.83 2.89 1.44

NEWPFOR 2.76 2.38 2.86 2.58 4.35 4.78 2.34 2.11 2.05 2.84 2.88 1.46

OPTPFOR 2.81 2.38 2.86 2.59 4.36 4.96 2.38 2.12 2.12 2.92 2.95 1.51

FASTPFOR 2.79 2.40 2.91 2.63 4.40 4.82 2.51 2.22 2.23 2.92 3.04 1.70

BOS-V / B 3.03 2.48 3.16 5.23 4.83 5.67 2.65 2.37 2.41 3.61 3.52 1.74

BOS-M 2.82 2.45 3.15 3.42 4.74 5.50 2.50 2.33 2.37 3.30 3.32 1.72

S
P

R
IN

T
Z

+

BP 2.05 2.36 2.64 2.44 3.94 4.07 2.12 1.67 1.95 2.40 2.76 1.81

PFOR 2.37 2.45 2.60 2.98 4.64 4.17 2.88 2.43 1.97 2.59 2.70 1.91

NEWPFOR 2.42 2.46 2.62 2.45 4.62 4.18 2.78 2.35 1.99 2.63 2.75 1.88

OPTPFOR 2.46 2.47 2.64 2.88 5.46 4.29 2.79 2.68 2.07 2.83 2.86 1.91

FASTPFOR 2.41 2.45 2.60 2.95 4.93 4.10 2.69 2.57 2.09 2.76 2.86 1.92

BOS-V / B 2.67 2.87 2.90 4.67 7.00 4.97 2.95 2.86 2.26 3.34 3.34 2.07

BOS-M 2.51 2.62 2.84 3.57 6.49 4.64 2.83 2.52 2.20 2.89 3.09 2.00

T
S

2
D

IF
F

+

BP 2.05 2.38 2.64 2.44 4.00 4.08 2.15 1.69 1.96 2.41 2.76 1.82

PFOR 2.00 2.42 2.60 2.42 4.29 4.08 2.08 1.66 1.90 2.38 2.68 1.77

NEWPFOR 1.93 2.36 2.47 2.35 4.03 3.85 2.05 1.60 1.84 2.30 2.59 1.72

OPTPFOR 1.93 2.36 2.47 2.36 4.04 3.86 2.05 1.60 1.85 2.30 2.60 1.72

FASTPFOR 1.97 2.32 2.41 2.34 3.96 3.70 2.19 1.63 1.85 2.33 2.65 1.76

BOS-V / B 2.56 2.66 2.83 4.49 7.09 4.86 2.97 2.64 2.19 3.12 3.16 2.04

BOS-M 2.53 2.63 2.80 3.46 6.84 4.73 2.92 2.51 2.17 3.05 3.08 2.03

(b) Average performance of different algorithms

1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25
Compression Ratio

0

100

200

300

400

500

600

700

800

Co
m
pr
es
sio

n
Ti
m
e
(n
s/
po

in
t)

GORILLA
CHIMP
Elf
BUFF
RLE+BP
RLE+PFOR
RLE+NEWPFOR
RLE+OPTPFOR
RLE+FASTPFOR
RLE+BOS-V

RLE+BOS-B
RLE+BOS-M
SPRINTZ+BP
SPRINTZ+PFOR
SPRINTZ+NEWPFOR
SPRINTZ+OPTPFOR
SPRINTZ+FASTPFOR
SPRINTZ+BOS-V
SPRINTZ+BOS-B

SPRINTZ+BOS-M
TS2DIFF+BP
TS2DIFF+PFOR
TS2DIFF+NEWPFOR
TS2DIFF+OPTPFOR
TS2DIFF+FASTPFOR
TS2DIFF+BOS-V
TS2DIFF+BOS-B
TS2DIFF+BOS-M

(c) Compression time and decompression time on various datasets

Methods
Compress datasets without float Compress datasets with float Decompress datasets without float Decompress datasets with float

EE MT VC CS TC TT YE GM UE CV TF NS EE MT VC CS TC TT YE GM UE CV TF NS

F
lo

at

GORILLA 19 15 99 16 8 12 18 17 32 19 14 58 1 1 4 4 1 1 1 1 1 1 1 2

CHIMP 22 23 77 22 16 16 22 22 26 20 20 52 1 1 4 3 1 1 1 1 1 1 1 3

Elf 59 130 59 255 40 42 101 104 142 59 82 65 38 59 37 126 21 29 101 103 148 77 56 45

BUFF 61 63 81 50 31 33 53 78 61 46 47 148 1 2 3 2 1 1 1 2 1 1 1 3

R
L

E
+

BP 12 17 12 19 9 11 14 14 15 12 13 16 10 11 9 12 9 9 10 9 11 8 9 12

PFOR 127 147 121 215 106 97 134 112 144 107 110 154 33 67 33 49 34 35 33 31 34 36 37 37

NEWPFOR 124 160 116 299 100 89 134 112 143 105 115 244 32 50 33 58 33 34 33 36 37 36 41 41

OPTPFOR 312 295 231 471 152 152 186 163 247 221 250 232 32 37 33 65 33 34 44 34 35 44 36 35

FASTPFOR 103 158 103 283 106 82 125 132 122 93 100 197 32 64 35 130 43 35 35 61 41 37 37 90

BOS-V 480 1131 423 82 40 63 957 1106 819 431 381 1801 35 28 28 51 23 23 26 32 33 30 25 37

BOS-B 153 216 118 86 36 44 182 271 205 119 110 568 23 16 13 40 22 17 15 22 21 24 17 14

BOS-M 38 26 32 70 25 28 29 30 43 29 32 26 19 10 14 44 13 15 16 25 27 13 16 13

S
P

R
IN

T
Z

+

BP 15 24 11 24 11 12 13 14 16 12 14 12 14 14 12 20 10 10 12 12 13 11 11 11

PFOR 79 106 62 266 56 49 74 119 92 76 66 82 40 50 38 71 37 39 42 53 40 41 39 40

NEWPFOR 60 93 54 132 37 37 59 67 79 56 55 118 39 52 40 60 39 39 42 46 46 41 42 41

OPTPFOR 232 280 222 373 96 117 181 205 327 200 215 258 40 72 40 117 42 39 48 47 47 50 41 43

FASTPFOR 51 194 51 96 34 43 95 56 78 47 47 92 40 65 42 79 39 39 43 47 57 43 42 44

BOS-V 960 989 769 128 39 137 769 1061 1505 515 554 992 41 101 41 72 33 34 54 43 44 39 40 43

BOS-B 201 212 155 94 32 56 182 311 265 134 134 303 23 44 20 37 18 18 34 22 25 19 22 23

BOS-M 39 45 32 74 19 33 52 31 45 37 40 33 23 25 17 38 14 22 38 20 26 25 24 18

T
S

2
D

IF
F

+

BP 11 24 10 23 10 10 13 11 11 10 10 11 12 14 12 19 12 11 12 12 12 12 11 12

PFOR 95 232 63 213 68 55 77 97 111 78 68 80 37 74 37 81 37 37 47 39 58 35 35 35

NEWPFOR 81 109 63 522 51 40 85 88 131 65 64 551 35 53 37 77 34 35 37 35 41 35 37 43

OPTPFOR 125 201 139 569 93 90 144 142 180 162 115 194 37 58 37 49 36 37 73 40 39 40 37 36

FASTPFOR 72 84 55 145 44 37 57 91 87 54 52 72 35 63 39 61 33 33 44 49 45 38 36 47

BOS-V 929 944 738 74 37 131 722 1016 1452 500 535 927 23 45 27 38 28 24 22 27 30 30 33 25

BOS-B 183 178 136 73 29 49 146 263 248 122 126 256 24 63 27 62 28 28 22 27 31 30 34 25

BOS-M 28 51 27 54 50 30 23 30 31 69 39 28 13 33 12 25 14 19 7 11 17 16 19 11

Fig. 10: Compression ratio and time of applying bit-packing with outlier separation (BOS) in different compression methods.

Algorithms designed for integers, such as RLE, SPRINTZ and

TS2DIFF, first convert float into integer by scaling 10p, where

p is the precision of the original floating-point data [21].

We draw the value distribution of all datasets after TS2DIFF

in Figure 8. Since TS2DIFF removes trend by differencing

values, most datasets after TS2DIFF follow normal distribu-

tion including datasets EE, MT, VC, TC, TT, UE, CV and

TF. Moreover, owing to the existence of outliers, there are

still some extreme delta values in the intermediate series by

TS2DIFF, e.g., in TH.

As the data distribution illustrated in Figure 8, outliers

commonly exist in real datasets. We count the corresponding

number of lower and upper outliers separated by BOS-V

in each dataset in Figure 9. Even for those datasets with a

relatively small proportion of outliers, by separating them,

the compression ratio could still be significantly improved.

Therefore, the outlier issue is general and worthwhile to

address in compression.

3) Metric: We compare the compression ratio with

other methods, which measures the ratio of uncompressed

1384

data size to compressed data size, compressionRatio =
uncompressedSize
compressedSize

.
We also evaluate the compression and decompression time

per value (ns/points) by different algorithms. Each experiment

is conducted 500 times and report the average.

B. Comparison with Existing Methods

In the section, we compare performance of our proposals

combined and compared with others. The compression ratio

of algorithms is shown in Figure 10a. The corresponding com-

pression time and decompression time are presented in Figure

10c. Figure 10b presents a summary of average compression

ratio and time of each algorithm on all the datasets.

1) Compression Ratio: In Figure 10a, the red compression

ratio is the best for the dataset in each column. As shown,

the compression ratio of algorithms combined with BOS-V or

BOS-B is always the best on all the datasets. In Figure 10b,

BOS-B shows exactly the same compression ratio as BOS-

V, verifying its correctness of returning the optimal solution.

When combined with RLE or SPRINTZ, BOS-M has an

overall performance better than the PFOR baseline and its

variations. Although TS2DIFF+BOS-M might not outperform

some others, its compression ratio is still better than the PFOR

baselines combined with TS2DIFF. The reason is that the

output of TS2DIFF follows normal distribution as described

in Section VIII-A2, where our median separation performs.

For a normal distribution (after TS2DIFF), e.g., Figure

8(c) Vehicle-Charge, the approximate median separation works

well, i.e., the compression ratio of (TS2DIFF+)BOS-M is

similar to that of BOS-V/B in Figure 10a (datasets VC).

However, for other distributions such as skew, e.g., Figure

8(e) TH-Climate, there are a large number of low outliers in a

very small range. It is difficult for BOS-M to find the proper

separation of lower outliers by only enumerating bit-width β.

Consequently, (TS2DIFF+)BOS-M is much worse than BOS-

V/B in Figure 10a (datasets TC).

2) Compression Time and Decompression Time: As shown

in Figure 10c, compression with value separation is very

slow, since the time cost is high to sort all the values and

enumerate value pairs as possible solutions. BOS-B with

bit-width separation has lower time cost than BOS-V. The

result is not surprising, given the time complexity reduced

from O(n2) to O(n log n). Finally, BOS-M with approximate

median separation in O(n) time has comparable compression

time cost as other baselines, while its compression ratio is

better, as illustrated in Figure 10b.

As for decompression time, there is no clear difference

observed between our BOS and the PFOR baselines with

outlier separation. It is due to the same O(n) time cost in

decompression.

3) Trade-off between Compression Ratio and Time: As

illustrated in Figure 10b, the optimal solution BOS-B such

as RLE+BOS-B has much better compression ratio than

other algorithms, but is a bit slower in compression time.

The linear time approximation BOS-M, e.g., RLE+BOS-M,

achieves significantly lower compression time, and slightly

BOS BP

FAS
TPF

OR

NEW
PFO

R
OPT

PFO
R
PFO

R

Operators

0

5

10

St
or
ag
e
Co

st
 (b

yt
e)

(a) Storage Cost

BOS BP

FAS
TPF

OR

NEW
PFO

R
OPT

PFO
R
PFO

R

Operators

0

20

40

60

Qu
er
y
Ti
m
e
(n
s/
po
in
t) (b) Query Time

Decompression Time IO Time

Fig. 11: Storage and query cost by various bit-packing operators in TS2DIFF.

weaker compression ratio (still outperforming baselines), i.e.,

a practical trade-off.

C. Motivation Validation

1) Storage and Query Cost: To demonstrate the advantage

of employing the operator, we perform an experiment to report

the average storage and query processing cost over all datasets.

With a better compression ratio in Figure 10a, our BOS

operator yields lower storage costs as shown in Figure 11.

It leads to lower IO costs and thus query processing time

comparable to the simple bit-packing operator (BP).

2) Lower Outlier Separation: It is true that the number of

lower outliers could be small in some datasets, such as GW-

Magnetic and YZ-Electricity, illustrated in Figure 9. While

the overall storage cost for them may not be significant,

they could affect the storage of other center values if not

separated. The reason is that as illustrated in Figure 1 and

presented in Formula 5, the storage cost is determined by the

minimum value of a set, i.e., lower outliers if not separated.

Figure 12 reports the results of BOS by terminating the loop

early without enumerating possible values for separating lower

outliers, i.e., considering upper outliers only. As shown, even

for those datasets with a relatively small proportion of lower

outliers, such as the aforementioned GW-Magnetic and YZ-

Electricity, considering both upper and lower outliers could

have better compression ratio than separating upper outliers

only (without considering lower outliers).

D. Variation Evaluation

1) Complement to Other Compression Methods: We con-

duct an experiment to compare with the compression tech-

niques in signal processing/speech processing/data compres-

sion fields. BOS as a fundamental bit-packing operator is com-

plementary to these existing compression methods. Therefore,

we compare compression ratio and time of 7-Zip [24], LZ4 [5],

DCT [3], FFT [12] with and without our BOS in Figure 13. As

shown, by combining these four compression algorithms with

our BOS, the compression ratios are all improved, of course

with some extra overhead.

1385

EPM
-Edu

cati
on

Met
ro-T

raff
ic

Veh
icle

-Cha
rge

CS-S
ens

ors

TH-
Clim

ate

TY-T
rans

port

YZ-E
lect

ricit
y

GW
-Ma

gne
tic

USG
S-Ea

rthq
uak

es

Cyb
er-V

ehic
le
TY-F

uel

Nift
y-St

ock
s

Dataset

0

2

4

6
Co

m
pr
es
sio

n
Ra

tio
Upper and Lower Outliers Upper Outliers Only

Fig. 12: Evaluating BOS terminating early without enumerating lower outliers.

LZ4 7-Zip DCT FFT
Compression Methods

0

1

2

3

Co
m
pr
es
sio

n
Ra

tio

(a) Compression Ratio

LZ4 7-Zip DCT FFT
Compression Methods

101

102

103

104

Co
m
pr
es
sio

n
Ti
m
e
(n
s/
po
in
t) (b) Compression Time

With BOS Without BOS

Fig. 13: Combining BOS with general data compression methods.

2) Varying the Parts: We conduct an experiment about

compression ratio and time by varying the number of divided

parts in Figure 14. When the number of parts increases

from 1 to 3, the compression ratio improves significantly.

It verifies the intuition of our proposal in dividing the data

into 3 parts, lower outliers, center values and upper outliers.

However, the improvement is marginal by further dividing

from 3 to 6 parts, given the close center values. Unfortunately,

the corresponding compression time increases considerably.

Therefore, we recommend to divide the space into 3 parts as

shown in Figure 1.

E. Scalability

We conduct an experiment on the average compression time

and decompression time over all datasets of BOS-V, BOS-

B and BOS-M, by varying block size n, in Figure 15. All

the methods increase almost linearly owing to the existence

of duplicate values in the datasets. The advanced BOS-B

increases much slower than BOS-V, while the approximate

BOS-M is the most efficient.

It is not surprising that the decompression time increases

linearly with the block size n, as illustrated in Figure 15b.

BOS-M has less decompression time, since it separates fewer

outliers.

IX. CONCLUSION

In this paper, we propose Bit-packing with Outlier Separa-

tion (BOS), which improves compression ratio of algorithms

1 2 3 4 5 6 7
Parts

2.4

2.6

2.8

3.0

3.2

Co
m

pr
es

sio
n

Ra
tio

(a) Compression Ratio

1 2 3 4 5 6 7
Parts

0

500

1000

Co
m

pr
es

sio
n

Ti
m

e
(n

s/
po

in
t) (b) Compression Time

Fig. 14: Varying the number of divided value parts.

26 27 28 29 210211212213
Block Size

10
4

10
6

C
om

pr
es

si
on

 T
im

e
(n
s/
bl
oc

k) (a) Compression Time

26 27 28 29 210211212213
Block Size

10
3

10
4

10
5

D
ec

om
pr
es

si
on

 T
im

e
(n
s/
bl
oc

k)

(b) Decompression Time

BOS-V BOS-B BOS-M

Fig. 15: Compression and decompression time by varying block size n.

using bit-packing, by storing the outliers separately. It sepa-

rates not only the upper outliers, occupying a large bit-width,

but also the lower outliers, which waste the bit-width of center

values as well. In order to determine a proper separation of

outliers for better compression ratio, we devise an optimal

separation strategy by enumerating the values in O(n2) time,

known as the value separator (BOS-V). With Propositions 2

and 3, the efficiency is improved by considering bit-width

as the separator (BOS-B), still returning the optimal solution

but taking only O(n log n) search time. To further reduce

the time cost, we propose an approximate median separation

(BOS-M) in O(n) time. Experiments on real world datasets

demonstrate that BOS-B with bit-width separation shows

significantly higher compression ratio than existing methods,

and lower compression time than the value separation BOS-

V. As summarized in Figure 10b, together with RLE, BOS-M

with approximate median separation achieves relatively high

compression ratio and low compression time. In short, our

proposal BOS is highly suggested to replace bit-packing in

compression algorithms, which indeed has been adopted in

Apache IoTDB and Apache TsFile.

ACKNOWLEDGMENT

This work is supported in part by the National Key Re-

search and Development Plan (2021YFB3300500), NSFC

(92267203, 62021002, 62072265, 62232005), State Grid

5700-202435261A-1-1-ZN, and Beijing Key Laboratory of

Industrial Big Data System and Application. Shaoxu Song

(https://sxsong.github.io/) is the corresponding author.

1386

REFERENCES

[1] Appendix. https://github.com/thssdb/encoding-outlier/blob/main/append
ix.pdf, 2024.

[2] Davis W. Blalock, Samuel Madden, and John V. Guttag. Sprintz: Time
series compression for the internet of things. Proc. ACM Interact. Mob.

Wearable Ubiquitous Technol., 2(3):93:1–93:23, 2018.

[3] Din-Yuen Chan, Jar-Ferr Yang, and Chun-Chin Fang. Fast implemen-
tation of MPEG audio coder using recursive formula with fast discrete
cosine transforms. IEEE Trans. Speech Audio Process., 4(2):144–148,
1996.

[4] Charge. https://www.kaggle.com/datasets/michaelbryantds/electric-
vehicle-charging-dataset, 2024.

[5] Yann Collet. Lz4: Extremely fast compression algorithm.
https://lz4.github.io/lz4/, 2013. Available online.

[6] Earthquakes. https://www.kaggle.com/datasets/thedevastator/uncovering-
geophysical-insights-analyzing-usgs-e, 2024.

[7] Frank Eichinger, Pavel Efros, Stamatis Karnouskos, and Klemens Böhm.
A time-series compression technique and its application to the smart
grid. VLDB J., 24(2):193–218, 2015.

[8] Hazem Elmeleegy, Ahmed K. Elmagarmid, Emmanuel Cecchet,
Walid G. Aref, and Willy Zwaenepoel. Online piece-wise linear
approximation of numerical streams with precision guarantees. Proc.

VLDB Endow., 2(1):145–156, 2009.

[9] EPM. https://doi.org/10.24432/C5NP5K, 2024.

[10] Experiment. https://github.com/thssdb/encoding-outlier, 2024.

[11] Solomon W. Golomb. Run-length encodings (corresp.). IEEE Trans.

Inf. Theory, 12(3):399–401, 1966.

[12] Jinmoo Heo, Yongchul Jung, Seongjoo Lee, and Yunho Jung. FPGA
implementation of an efficient FFT processor for FMCW radar signal
processing. Sensors, 21(19):6443, 2021.

[13] C. A. R. Hoare. Algorithm 65: find. Commun. ACM, 4(7):321–322,
1961.

[14] C. A. R. Hoare. Quicksort. Comput. J., 5(1):10–15, 1962.

[15] Apache IoTDB. https://github.com/apache/iotdb/tree/research/encoding-
outlier, 2024.

[16] Iosif Lazaridis and Sharad Mehrotra. Capturing sensor-generated time
series with quality guarantees. In Umeshwar Dayal, Krithi Ramam-
ritham, and T. M. Vijayaraman, editors, Proceedings of the 19th Inter-

national Conference on Data Engineering, March 5-8, 2003, Bangalore,

India, pages 429–440. IEEE Computer Society, 2003.

[17] Daniel Lemire and Leonid Boytsov. Decoding billions of integers per
second through vectorization. Softw. Pract. Exp., 45(1):1–29, 2015.

[18] Ruiyuan Li, Zheng Li, Yi Wu, Chao Chen, and Yu Zheng. Elf:
Erasing-based lossless floating-point compression. Proc. VLDB Endow.,
16(7):1763–1776, 2023.

[19] Yinan Li and Jignesh M. Patel. Bitweaving: fast scans for main memory
data processing. In Kenneth A. Ross, Divesh Srivastava, and Dimitris
Papadias, editors, Proceedings of the ACM SIGMOD International

Conference on Management of Data, SIGMOD 2013, New York, NY,

USA, June 22-27, 2013, pages 289–300. ACM, 2013.

[20] Panagiotis Liakos, Katia Papakonstantinopoulou, and Yannis Kotidis.
Chimp: Efficient lossless floating point compression for time series
databases. Proc. VLDB Endow., 15(11):3058–3070, 2022.

[21] Chunwei Liu, Hao Jiang, John Paparrizos, and Aaron J. Elmore. De-
composed bounded floats for fast compression and queries. Proc. VLDB

Endow., 14(11):2586–2598, 2021.

[22] Magnetic. https://doi.org/10.24432/C5DW43, 2024.

[23] Igor Pavlov. Lzma sdk (software development kit).
https://www.7-zip.org/sdk.html, 2008. Available online.

[24] Igor Pavlov. https://www.7-zip.org/, 2024.

[25] Tuomas Pelkonen, Scott Franklin, Paul Cavallaro, Qi Huang, Justin
Meza, Justin Teller, and Kaushik Veeraraghavan. Gorilla: A fast, scal-
able, in-memory time series database. Proc. VLDB Endow., 8(12):1816–
1827, 2015.

[26] Stocks. https://www.kaggle.com/datasets/tadakasuryateja/nifty-50-
stocks, 2024.

[27] Apache TsFile. https://github.com/apache/tsfile/tree/research/encoding-
outlier, 2024.

[28] UCI. https://archive.ics.uci.edu, 2024.

[29] Chen Wang, Jialin Qiao, Xiangdong Huang, Shaoxu Song, Haonan Hou,
Tian Jiang, Lei Rui, Jianmin Wang, and Jiaguang Sun. Apache iotdb:
A time series database for iot applications. Proc. ACM Manag. Data,
1(2):195:1–195:27, 2023.

[30] Haoyu Wang and Shaoxu Song. Frequency domain data encoding in
apache iotdb. Proc. VLDB Endow., 16(2):282–290, 2022.

[31] Tianrui Xia, Jinzhao Xiao, Yuxiang Huang, Changyu Hu, Shaoxu Song,
Xiangdong Huang, and Jian-min Wang. Time series data encoding
in apache iotdb: comparative analysis and recommendation. VLDB J.,
33(3):727–752, 2024.

[32] Jinzhao Xiao, Wendi He, Shaoxu Song, Xiangdong Huang, Chen Wang,
and Jianmin Wang. REGER: reordering time series data for regression
encoding. In 40th IEEE International Conference on Data Engineering,

ICDE 2024, Utrecht, The Netherlands, May 13-16, 2024, pages 1242–
1254. IEEE, 2024.

[33] Jinzhao Xiao, Yuxiang Huang, Changyu Hu, Shaoxu Song, Xiangdong
Huang, and Jianmin Wang. Time series data encoding for efficient
storage: A comparative analysis in apache iotdb. Proc. VLDB Endow.,
15(10):2148–2160, 2022.

[34] Hao Yan, Shuai Ding, and Torsten Suel. Inverted index compression
and query processing with optimized document ordering. In Juan
Quemada, Gonzalo León, Yoëlle S. Maarek, and Wolfgang Nejdl,
editors, Proceedings of the 18th International Conference on World Wide

Web, WWW 2009, Madrid, Spain, April 20-24, 2009, pages 401–410.
ACM, 2009.

[35] Xin Zhao, Jialin Qiao, Xiangdong Huang, Chen Wang, Shaoxu Song,
and Jianmin Wang. Apache tsfile: An iot-native time series file format.
Proc. VLDB Endow., 17(12):4064–4076, 2024.

[36] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential
data compression. IEEE Trans. Inf. Theory, 23(3):337–343, 1977.

[37] Marcin Zukowski, Sándor Héman, Niels Nes, and Peter A. Boncz.
Super-scalar RAM-CPU cache compression. In Ling Liu, Andreas
Reuter, Kyu-Young Whang, and Jianjun Zhang, editors, Proceedings of

the 22nd International Conference on Data Engineering, ICDE 2006,

3-8 April 2006, Atlanta, GA, USA, page 59. IEEE Computer Society,
2006.

1387

