
3

Efficiently Cleaning Structured Event Logs: A Graph

Repair Approach

RUIHONG HUANG, Tsinghua University and Fujian Normal University

JIANMIN WANG and SHAOXU SONG, Tsinghua University

XUEMIN LIN, Shanghai Jiaotong University

XIAOCHEN ZHU, Tsinghua University

JIAN PEI, Simon Fraser University

Event data are often dirty owing to various recording conventions or simply system errors. These errors
may cause serious damage to real applications, such as inaccurate provenance answers, poor profiling re-
sults, or concealing interesting patterns from event data. Cleaning dirty event data is strongly demanded.
While existing event data cleaning techniques view event logs as sequences, structural information does exist
among events, such as the task passing relationships between staffs in workflow or the invocation relation-
ships among different micro-services in monitoring application performance. We argue that such structural
information enhances not only the accuracy of repairing inconsistent events but also the computation effi-
ciency. It is notable that both the structure and the names (labeling) of events could be inconsistent. In real
applications, while an unsound structure is not repaired automatically (which requires manual effort from
business actors to handle the structure error), it is highly desirable to repair the inconsistent event names
introduced by recording mistakes. In this article, we first prove that the inconsistent label repairing problem
is NP-complete. Then, we propose a graph repair approach for (1) detecting unsound structures, and (2) re-
pairing inconsistent event names. Efficient pruning techniques together with two heuristic solutions are also
presented. Extensive experiments over real and synthetic datasets demonstrate both the effectiveness and
efficiency of our proposal.

CCS Concepts: • Information systems→ Data cleaning;

Additional Key Words and Phrases: Event data, data cleaning, event label repairing

ACM Reference format:

Ruihong Huang, Jianmin Wang, Shaoxu Song, Xuemin Lin, Xiaochen Zhu, and Jian Pei. 2023. Efficiently Clean-
ing Structured Event Logs: A Graph Repair Approach. ACM Trans. Datab. Syst. 48, 1, Article 3 (March 2023),
44 pages.
https://doi.org/10.1145/3571281

This work is supported in part by National Natural Science Foundation of China (62021002, 62072265, 62232005), National

Key Research and Development Plan (2021YFB3300500, 2019YFB1705301, 2019YFB1707001), Beijing National Research Cen-

ter for Information Science and Technology (BNR2022RC01011), and Alibaba Group through Alibaba Innovative Re-

search (AIR) Program.

Authors’ addresses: R. Huang, Fujian Normal University, No. 8 Xuefu South Rd, Fuzhou, Fujian, China, 350117; email:

ruihong@fjnu.edu.cn; J. Wang, S. Song (corresponding author), and X. Zhu, Tsinghua University, 30 Shuangqing Rd,

Haidian District, Beijing, China, 100084; emails: {jimwang, sxsong}@tsinghua.edu.cn, zhu-xc10@mails.tsinghua.edu.cn;

X. Lin, Shanghai Jiaotong University, 800 Dongchuan Rd, Minhang District, Shanghai, China, 200240; email: lxue@cse.

unsw.edu.au; J. Pei, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada, V5A 1S6; email: jpei@cs.sfu.ca.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

0362-5915/2023/03-ART3 $15.00

https://doi.org/10.1145/3571281

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

https://orcid.org/0000-0002-4572-4243
https://orcid.org/0000-0001-6841-7943
https://orcid.org/0000-0002-9503-2755
https://orcid.org/0000-0003-2396-7225
https://orcid.org/0000-0002-5088-7952
https://orcid.org/0000-0002-2200-8711
https://doi.org/10.1145/3571281
https://doi.org/10.1145/3571281
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3571281&domain=pdf&date_stamp=2023-03-13

3:2 R. Huang et al.

1 INTRODUCTION

Event data, logging the execution of business processes or workflows, often vary in precision,
duration, and relevance [33]. In particular, the execution of a business process may be distributed
in multiple companies or divisions, with various event recording conventions or even erroneous
executions. The corresponding event data scattered over a heterogeneous environment involve
inconsistencies and errors [38]. According to the statistics on a real dataset (in Section 7.1.3), about
82% of execution traces of processes are dirty.

The dirty event data lead to wild data provenance answers [42], mislead the aggregation profil-
ing in process data warehousing [11], or obstruct finding interesting process patterns [19]. Indeed,
event data quality is essential in process mining and is known as the first challenge in the Process
Mining Manifesto by the IEEE Task Force on Process Mining [44].

Existing approaches [13, 48] on cleaning event data treat event logs as unstructured sequences.
It is worth noting that structural information exists among events in many application scenarios.
A very common example is the task passing relationships, e.g., the manager assigns the work to
another staff for succeeding operations (see details in Example 1). To give another example, the
application performance management (APM) monitors the performance of software appli-
cations. The invocation relationships among different micro-services are recorded in the event
log [39] (see details in Example 2). We argue that such structural information is not only essential
to obtaining more precise event repairs but also useful in improving the computation efficiency.

Example 1. We illustrate a real example of the part design process in a major bus manufacturer.1

Figure 1(a) illustrates 6 steps (events t1 to t6) of accomplishing a part design, a.k.a., an execution

trace. Each event includes a Name of being processed task, the Operator executing the task, and
the Successors of the follow-up activities being assigned to. The links of Successor and Operator
between events indicate the structural information. For example, the Successor of t2 assigns the
follow-up tasks to J.Zhe and O. Chu (corresponding to Operators in t3 and t4, respectively). It
indicates the links from t2 to t3 and t4 in the graph of Figure 1(a).

The execution of events should follow some process specifications, as shown in Figure 1(c). Fol-
lowing the convention of process management, we represent specifications by the notation of
Petri Net [43], which is a graph with two types of nodes, as illustrated in Figure 1(c). The circles
represent places, while the rectangles represent transitions. For each directed edge, the types of
the adjacent vertexes are different. Each transition denotes an event type, e.g., the first event type
submit in Figure 1(c). Arcs with dependent relationships between transitions and places represent
the control flow. In particular, flows attached to transitions have and semantics, such as and-split
after transition design. It indicates that both flows after design should be executed simultaneously.
On the other hand, transition evaluate involving and-join can be enabled when both the preceding
flows are complete. Moreover, places specify xor semantics, e.g., only one of the flows after place
a (xor-split) will be executed, i.e., either design a new part or revise an existing one. Consequently,
the xor-join, e.g., in place s, indicates the end of xor choices, that is, the execution will proceed
when one of the flows before place s is processed. Likewise, either insulation proof or electrician

proof can appear in an execution trace after design.
It is notable that the events in this part design process are executed by distinct departments

and outsourcing companies. Due to various event recording conventions, a simple proof event
name is reported in t3. It is not clear whether it denotes insulation proof, electrician proof, or proof

check. Such ambiguity leads to violations when checking the conformance between execution and

1It involves about 70 process specifications for product lifecycle management, which are manipulated by more than 100

outsourcing companies.

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

Efficiently Cleaning Structured Event Logs: A Graph Repair Approach 3:3

Fig. 1. Example of structured event data.

specification. Even worse, the event name could be missing in some cases (t4) for various reasons,
such as forgetting to submit when manually recording event logs, or suffering from system failures.

To resolve the inconsistencies, existing repairing techniques [13] may repair the sequence of
events t1, . . . , t6 to either σ1〈submit, design, insulation proof, check inventory, evaluate, archive〉,
σ2〈submit, design, electrician proof, check inventory, evaluate, archive〉 for designing a new part,
or σ3〈submit, revise, proof check, merge, re-evaluate, archive〉 for revising an existing part. Refer-
ring to the structural information, i.e., t2 evoking two parallel events t3 and t4 (by J. Zhe & O. Chu,
respectively), the latter one σ3 is an invalid repair where no parallel tasks exist and contradicts
the structure in Figure 1(b). Instead, the parallel insulation/electrician proof and check inventory

after design in σ1/σ2 exactly match the structure. With the structural information, we are able to

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

3:4 R. Huang et al.

identify the more likely repair σ1/σ2 and discard the irrational σ3, which cannot be distinguished
by existing [13] with sequential information only. (σ1 and σ2 can further be distinguished via the
cost model in Section 2.4.)

To capture structural information and conformance to specification, we also use Petri Net to
represent execution traces, called Causal Net. Figure 1(b) shows the net of the execution trace in
Figure 1(a). It can be simply transformed from the graph in Figure 1(a) by replacing each edge with
a place. Every place in the net is attached with at most one flow (since only one of the alternatives
can be executed in xor-split). The work is accomplished when the flow successfully executes from
start to end exactly following the and/xor constraints on event (type) names specified by the
specification.

With structural information, we can directly ignore the repair candidate σ3 which corresponds
to the revise division without parallel tasks. Repairing efficiency is thus improved compared with
the simple sequence-based approaches.

In general, both the Name labeling and the structural Operator/Successor may involve dirty in-
formation, known as (1) inconsistent labeling and (2) unsound structure. (A structure is said unsound
if it cannot find any labeling conforming to the specification, see Example 4 for instance). The un-
sound structure may be raised due to ad-hoc re-assignment of operators, e.g., a task is assigned
to a successor J. Zhe but actually executed by the operator O. Chu. Such structural inconsistency
needs business actors to manually handle. Inconsistent labeling of event names, however, typi-
cally occurs owing to mistakenly recording. Therefore, it is highly desirable to efficiently detect
unsound structures, and repair the inconsistent labeling with sound structure. According to our
statistics in a real dataset (see details in Table 3 in the experiments), among traces with detectable
inconsistencies,2 about 5.42% are raised by unsound structure, while the others (about 94.58%) are
structurally sound but with inconsistent labeling.

In this article, we study two problems of cleaning event data, (1) detecting unsound structure; or
(2) returning a repair of event names if the structure is sound. That is, while reporting all detectable
inconsistencies, we also try to remedy the majority of inconsistencies as accurate as possible.

1.1 Challenges

The major challenges of detecting and repairing dirty event data originate from coupling of data
and logic. The repairing problem is proved to be np-complete (in Section 3). The hardness of re-
pairing workflow execution logs comes from the spread of inconsistencies, i.e., modifying the task
of one transition often introduces new inconsistencies in other transitions with dependent, and
or xor constraints. In particular, in the workflow execution, repairing one transition by mistake
may lead to complete modification of the following executions.

Existing database repairing techniques [22, 41] cannot handle the complex structural relation-
ships, e.g., t2[Successor]= J. Zhe & O. Chu denoting the follow-up relationships among t2, t3, t4.
Moreover, the constraints specified by process specifications are very different from integrity
constraints in relational data. In particular, data dependencies declare relationships in tuple
pairs, while process specifications indicate constraints on events with flow directions, and/xor
semantics.

Adapting the existing graph relabeling technique [40], by treating execution and specification
as simple graphs, falls short in two aspects: (1) the and/xor semantics are not considered; (2) the
vertex contraction technique in [40] modifies the structure of execution and thus cannot detect
unsound structure. Recent works utilize graph functional dependencies (GFDs) to capture and

2 Other errors, that are consistent w.r.t. the specification, are unlikely to be detected without further knowledge and are

not in the scope of this study.

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

Efficiently Cleaning Structured Event Logs: A Graph Repair Approach 3:5

repair inconsistencies in graph data [28, 29]. However, the graph patterns defined in GFDs cannot
support the and/xor semantics on events very well, since the graph structures of execution and
specification could be different due to the existence of xor branches.

The conformance checking [13, 34, 37] studied in the process mining field also assesses the de-
viations of event data with respect to the expected behavior of the process. However, they work
on a different problem from ours. The commonly used alignment algorithm [13, 34] returns an
alignment between the execution trace and process specification, which consists of a sequence of
moves. Each move relates an event in the trace to the one in the specification. When the event
observed in the trace is allowed according to the specification, it is a synchronous move. Otherwise,
the move is unsynchronized, and is indicated by either a log move (the observed event in the trace
is not allowed by the specification), or a model move (an event should be observed according to
the specification but missing in the trace). For example, the repair candidate σ3 in Example 1 can
be returned by the alignment with two synchronous moves (submit, archive), four model moves
(revise, proof check, merge, re-evaluate), and ignoring the four log moves (do revise, proof, -, evalu-

ate). As a result, the structure of execution could be modified when the unsynchronized model/log
move occurs, and the unsound structure cannot be detected. Since most alignment algorithms
simply regard the execution as a sequence of events [20], we compare the p-alignment [34] in
the experiment part, which also considers the structural information (partial order) among events.
Unfortunately, p-alignment still suffers the aforesaid problems, and its performance is not as good
as our proposal.

1.2 Contributions

While using structure event logs based on structural information has been validated in the con-
ference version [47], we further enhance the study by analyzing the hardness of the problem,
leading to more effective approximation, and showing its optimal solutions in certain datasets. For
the hardness analysis, the np-completeness of the studied problem indicates that the high time
complexity of the exact repairing algorithm is not surprising. Therefore, we turn to more effec-
tive approximate solutions. For a new heuristic method, we show that it indeed returns the exact
solution in a special case of simple path structure. Moreover, the heuristic method can achieve
comparable accuracy to the exact algorithm while keeping relatively lower time costs in practice.
For two more datasets, the newly conducted experiments on the Bank dataset with more nested
and/xor structures in the specification illustrate the significantly higher time cost of the exact
repairing algorithm, and thus the needs for heuristic algorithms. In addition, the experiments on
the Log dataset verify that the new heuristic method can give an exact solution under the special
case of a simple path.

Our major contributions in this article are summarized as follows.

(1) We analyze the complexity of the studied problem in Section 3. We prove that the incon-
sistent labeling repair problem is np-complete by a reduction from the set cover problem
(Theorem 2).

(2) We propose an exact repairing algorithm to either provide the optimal repair of an execution
trace or conclude an unsound structure in Section 4. Branch and bound algorithms are also
devised together with several efficient pruning techniques.

(3) We develop an efficient PTIME transition-oriented heuristic algorithm, by only one pass
through the transitions in the execution trace in Section 5. Although it may generate false
negatives regarding the detection of unsound structure and may not be able to guarantee
the optimal repairing, the performance studies show that it can achieve good accuracy while
keeping time cost extremely low.

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

3:6 R. Huang et al.

(4) We present another place-oriented heuristic algorithm, by enumerating all the possible la-
belings for each place in the execution in Section 6. Besides, we introduce a special case of
simple path structure, which is prevalent in real-world scenarios, and show that the place-
oriented heuristic algorithm can give an exact solution in this special case (Proposition 7).

(5) We report an extensive experimental evaluation to demonstrate the performance of the pro-
posed methods in Section 7. Repairing accuracies of both our exact and heuristic approaches
(greater than 90% in most tests) are significantly higher than the state-of-the-art sequence-
based [34] and graph-based [28, 40] methods. The transition-oriented heuristic algorithm
achieves significant improvement in time performance compared with the exact approach,
while the place-oriented heuristic method shows better approximation results in both real
and synthetic datasets.

The rest of the article is organized as follows. We introduce preliminaries in Section 2. We
show the np-completeness of the studied problems in Section 3. Major results of the exact de-
tecting/repairing algorithms are presented in Section 4. Two heuristic algorithms are presented in
Sections 5 and 6, respectively. Section 7 provides an experimental evaluation. Finally, we discuss
related work in Section 8 and conclude the article in Section 9.

2 PROBLEM STATEMENT

We first formalize syntax and definitions for process specifications and executions. The confor-
mance between specifications and executions is then introduced, which raises the detecting and
repairing problems.

2.1 Preliminary

For a function f and a set A, let f (A) denote { f (x) | x ∈ A}. In this article, we follow the notations
of Petri net [36], also known as a place/transition (PT) net. A transition denotes a task to execute
in a workflow. A token enables the execution of transition. A place holds tokens before a transition
is executed.

Definition 1. A net is a triplet N = (P, T , F), where (i) P is a finite set of places, (ii) T is a finite
set of transitions, P ∩ T = ∅, (iii) F ⊆ (P × T) ∪ (T × P) is a set of directed arcs, namely flow
relation. While the network structure is static, tokens denoted by black dots can flow through the
network. A place, denoted by circle, is used to hold tokens that enable the execution of transition
actions. A transition is called enabled if each of its input places contains a token.

It is notable that the concept of markings and tokens of Petri nets [36] are omitted for brevity.
A net is a bipartite directed graph, with set F of edges between nodes in P and T . Each (x ,y) ∈ F

is a directed arc from node x to node y. For any x ∈ P ∪ T , let

preF (x) = {y | (y,x) ∈ F },
be the set of all input nodes of x and

postF (x) = {y | (x ,y) ∈ F },
denote the set of all output nodes of x .

Definition 2. A process specification is a Petri net N (P, T , F) such that (i) P contains a source
place having preF (start) = ∅, (ii) P contains a sink place having postF (end) = ∅.

The and-split denotes the multiple outgoing flows of a transition. It means that all the flows af-
ter the and-split transition should be executed in parallel. Likewise, the and-join, corresponding
to the multiple flows before a transition, indicates all the preceding parallel flows are complete.
In contrast, the xor-split denotes the multiple flows after a place. It means the choice execution

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

Efficiently Cleaning Structured Event Logs: A Graph Repair Approach 3:7

that only one of the flows after the xor-split place will be executed. Similarly, the xor-join, cor-
responding to the multiple flows before a place, indicates that the execution can proceed when
one of the flows before the xor-join place is processed. It is notable that the process specification

is also referred to as process model [34] or system net [37] in the work of conformance checking. In
the specification, the and-split is represented by the transition with multiple outward flows, such
as design with two outward flows in Figure 1(c). To clearly mark the structure, we also put text
and-split next to the transition. Likewise, the and-join is denoted as the transition with multiple
inward flows. And similarly, the xor-split (or xor-join) is marked by the place with multiple out-
ward (or inward) flows. It is not surprising that the and-split/join and xor-split/join structures in
the specification complicate the studied problems (as analyzed in Section 2.4). The and-split leads
to various possible correspondences of an event. For example, t4 in Figure 1(b) may correspond to
check inventory, electrician proof, or insulation proof after the and-split in the specification in
Figure 1(c). Likewise, the xor-split also leads to multiple choices, e.g., t2 in Figure 1(b) may either
be design or revise after the xor-split in the specification in Figure 1(c).

Definition 3. A causal net is a Petri net N = (P, T , F) such that for every p ∈ P , |preF (p) | ≤ 1
and |postF (p) | ≤ 1.

It is easy to see that there will be no xor-split or xor-join in a causal net, since only one of the
flows will be executed after a place, i.e., the maximum in/out degree 1 of places. Instead, and-split
and and-join are allowed, since multiple flows could be executed in parallel after a transition, i.e.,
no restriction for the number of the degree of transitions. In addition, cycles are excluded in the
causal net. If we interpret places as edges connecting two transitions, the net is indeed a directed
acyclic graph of transitions [21].

Definition 4. An execution of a process specification Ns (Ps , Ts , Fs) is denoted by (Nσ ,π), where
Nσ (Pσ , Tσ , Fσ) is a causal net and π is a labeling

π : Pσ ∪ Tσ → Ps ∪ Ts ,

such that π (Pσ) ⊆ Ps , and π (Tσ) ⊆ Ts .

We use y : Y to denote π (y) = Y for short, where y is a transition/place in Nσ mapping to a
transition/place Y in Ns via π , e.g., π (t1)=submit denoted by t1:submit in Figure 1.

Definition 5. We say an execution (Nσ ,π) conforms to a process specification Ns , denoted by

(Nσ ,π) � Ns ,

if and only if (i) π (Pσ) ⊆ Ps and π (Tσ) ⊆ Ts ; (ii) for any t ∈ Tσ , π (preFσ
(t)) = preFs

(π (t))
and π (postFσ

(t)) = postFs
(π (t)); (iii) for any p ∈ Pσ , preFσ

(p) = ∅ implies π (p) = start and
postFσ

(p) = ∅ indicates π (p) = end.

That is, there is a bijection between preFσ
and preFs

for each transition t in the execution (Nσ ,π),
and similarly, for postFσ

and postFs
.

Example 2. In addition to the real example in Figure 1 about the part design process in a bus
manufacturer, in this example, we consider another real APM scenario from our industrial partner
Cloudwise, for monitoring the performance of software applications.

Figure 2(a) illustrates parts of the example execution trace, which relates to the process of user
login with QR code. The process starts with the web service generating a key related with the
QR code. Then the redis service records the correspondence between the QR code and the user
who scan the code using a cell phone. After that, the db service queries the user information from
the database, and finally the login service generates a user tokens according to the obtained infor-
mation. The structural information is derived from the invocation relationships among different

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

3:8 R. Huang et al.

Fig. 2. Example structured event data from a distributed system.

micro-services. For example, the event t1 in Figure 2(a) is executed by web service whose IP address
is 10.1.1.114. In addition, the executor of the following event of t1 is also recorded, which is the
redis service. The corresponding causal net of the execution is demonstrated in Figure 2(b), while
the specification for user login process is shown in Figure 2(c). As illustrated, the process specifica-
tion is defined with the xor structure, providing two branches of setting keys or values into redis.
In contrast, the execution model is constrained to acyclic causal nets that can only choose one of
the xor branches, e.g., set value into redis in t2 in Figure 2(b).

Due to the failure of packet parsing, the evolution of log events across versions [51] or prob-
lems with network transmission, the event data generated by the software applications could be
inconsistent with the specification. The corresponding experiment results of the aforesaid APM
scenario are reported in Figure 26 in Section 7.5.

2.2 Execution Trace

In practice, execution is stored as execution trace σ , with schema (Event, Name, Operator, Suc-
cessor,. . .). Each tuple in σ , a.k.a. an event, denotes a transition in execution ti ∈ Tσ , ordered by
execution timestamp, e.g., the ith executed event/transition σ (i) = ti . By the labeling π , each event
ti in Tσ is associated with a name π (ti), which usually corresponds to a type in the specification
Ns , i.e., π (ti) ∈ Ts .

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

Efficiently Cleaning Structured Event Logs: A Graph Repair Approach 3:9

Fig. 3. Example of conformance.

Execution trace also records the net structure of execution. As there is no xor-split or xor-join
in the causal net of an execution, each place pj in preFσ

(ti) corresponds to exactly one transition,
say preFσ

(pj) = {tj }. Combining tj of all pj forms preFσ
(preFσ

(ti)), i.e., the prerequisite of ti .

Proposition 1. For any σ (j) = tj ,σ (i) = ti , j < i in a trace σ , it always has ti � preFσ
(preFσ

(tj))
and tj � postFσ

(postFσ
(ti)).

Proof. According to the execution of transition in the causal net Nσ , event ti is executed after
event tj and cannot be the input node of any nodes in preFσ

(tj). Thus, we have ti � preFσ
(preFσ

(tj)).
Similarly, event tj cannot be the output node of any nodes in postFσ

(ti), i.e., tj � postFσ
(postFσ

(ti)).
�

Thus, no ti can appear before its prerequisite tj in a trace σ .
Conformance of the execution trace can be checked by recovering its corresponding causal net,

i.e., recovering places (and labeling) between a transition and its prerequisite (as places are not
recorded in the execution trace).

Example 3 (Example 1 Continued). Consider another execution trace in Figure 3(a) over the spec-
ification in Figure 1(a). We represent the corresponding causal net in Figure 3(b) as follows. For
the first t1 without any prerequisite, we put a place p0 with π (p0) = start as the pre set. The
second event σ (2) = t2 has prerequisite preFσ

(preFσ
(t2)) = {t1}. We recover the labeling of the

place p1 between t2 and its prerequisite t1 to the place between π (t2) and π (t1) in the specification,
i.e., π (p1) = a. Similarly, considering the prerequisites of t5, preFσ

(preFσ
(t5)) = {t3, t4}, we obtain

π (p3) = c,π (p5) = e. For the last t6, which is not a prerequisite of any others, a place p7 : end is
appended as postFσ

(t6).
Referring to the conformance definition, for any transition, e.g., t1, we have π (preFσ

(t1)) =
π (p0) = {start} = preFs

(submit) = preFs
(π (t1)) and π (postFσ

(t2)) = π ({p2,p4}) = {b,d} =
postFs

(design) = postFs
(π (t2)).

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

3:10 R. Huang et al.

Fig. 4. Example of unsound structure.

We consider two types of inconsistencies, unsound structure and inconsistent labeling, which
harm the conformance.

2.3 Unsound Structure Detection Problem

We say that a causal net Nσ is unsound w.r.t. the specification Ns , if there does not exist any labeling
π such that (Nσ ,π) forms an execution conforming to Ns .

Problem 1. Given an execution (Nσ ,π) over the specification Ns , the unsound structure detection

problem is to determine whether there exists a labeling π ′ such that (Nσ ,π
′) � Ns .

In other words, the structure is sound if there exists at least one labeling π ′ to make the confor-
mance. It is worth noting that the unsound structure detection is different from the conformance
checking problem [13, 34, 37] in the process mining field, which does not consider the repairing of
inconsistent labeling of events. In conformance checking, usually a sequential alignment between
the execution and specification is returned. When the event observed in the execution is not al-
lowed in the specification, an unsynchronized log or model move is recorded in the alignment. An
optimal alignment is the one with minimum deviation (unsynchronized moves). Since the structure
of the execution may be modified when the log/model occurs in the alignment, unsound structure
cannot be detected in this way.

Example 4 (Example 1 Continued). Consider another execution trace in Figure 4 over the speci-
fication in Figure 1(a). As shown in the recovered causal net, the second t2 involves inconsistency
that π (postFσ

(t2)) = π (p2) = {b} � {b,d} = postFs
(design) = postFs

(π (t2)).
To accomplish the work specified in Figure 1(a), at least two transitions should be processed

which take t2 as prerequisites. However, only one transition t3 in the causal net in Figure 4 has pre-
requisite t2. It is impossible to find any labeling π ′ that can make conformance to the specification.

Unsound structures mainly result from business fraud. Such structural inconsistency needs fur-
ther manual handling before repairing the inconsistent labels, such as discarding the execution
or re-executing the workflow. While we can detect unsound structure, as mentioned, handling
unsound structure is not the focus of this study. As illustrated in Theorem 2 below, the repairing
for inconsistent labeling is already hard. While handling inconsistent structures need to further
consider all possible execution structures of the process specification, which makes the problem
even more complex. Therefore, we leave the challenging problem of unsound structure repairing
as the future study.

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

Efficiently Cleaning Structured Event Logs: A Graph Repair Approach 3:11

2.4 Inconsistent Labeling Repair Problem

For an execution trace with sound structure, we can repair the inconsistent labeling of events. Re-
pairing the execution can be viewed as the relabeling of transitions (and places) from Nσ to the
specification Ns . The new labeling, say π ′, should meet the conformance requirement.

As discussed in the introduction, along the same line of database repairing [9], a typical principle
is to find a repair that minimally differs from the original data.

Let (Nσ ,π
′) be a repaired execution of the original (Nσ ,π) by changing the labeling function

from π to π ′ such that (Nσ ,π
′) � Ns . The event repairing cost is given by

Δ(π ,π ′) =
∑

t ∈Tσ

δ (π (t),π ′(t)), (1)

where π ′(t) is the new (type) name of the transition (event) t in the repair (Nσ ,π
′), and

δ (π (t),π ′(t)) denotes the cost of replacing π (t) by π ′(t).
Let conf (t) denote the confidence associated with transition t , as the example illustrated in

Figure 3(a). It is defined as the possibility of the specific event being correctly recorded by the

executor in the historical data, e.g., conf (t) = correct (t)
processed (t) where processed (t) is the total number of

event t processed by the executor in the historical data, while correct (t) represents the number
of the correctly recorded ones. The confidence field is optional and analogous to the confidence
of each tuple in database repairing [9]. The definition of conf (t) can be regarded as the precision of
the event being correctly recorded by the executor in the historical data. It is used to infer whether
t in the current execution should be repaired or not. According to the definition, higher confidence
means that most processing of t in the history is correct. For example, for those events t processed
by reliable executors, e.g., a senior skilled worker, the confidence conf (t) is higher. In this sense, we
tend to not modify such highly confident event t that is probably correct according to the history.
It is achieved by assigning a larger repair cost of t , i.e., more tending to not repair t .

The frequency freq(π (t)) is defined as the ratio of the specific event name π (t) appearing in

the historical data compared to all the event names, i.e., freq(π (t)) = num(π (t))
all where all is the

total number of all the event names appearing in the historical data, while num(π (t)) denotes the
number of the specific name π (t). Frequency is an observation of “user behaviors” and may help
in repairing. For instance, in Figure 1(a), if insulation proof appears much more frequently than
electrician proof in the database of all execution traces, we may repair t3 by insulation proof. The
cost of repairing a high-frequency freq(π (t)) to a low frequency freq(π ′(t)) is large.

Therefore, the cost δ of replacing π (t) by π ′(t) can be defined as

δ (π (t),π ′(t)) = conf (t) · dis(π (t),π ′(t)) · freq(π (t))

freq(π ′(t))
, (2)

where dis(π (t),π ′(t)) denotes the metric distance between two names π (t) and π ′(t), e.g., edit
distance.

The confidence conf (t) and the frequency freq(π (t)) could be estimated from the historical data
in advance. For the unseen labelings in the repairing, we set a fixed value for confidence and
frequency, respectively. The edit distance dis(π (t),π ′(t)) between two strings of event names can
be computed online in an ad-hoc way, i.e., we do not need to pre-define the cost for each pair of
π (t) and π ′(t).

Example 5 (Example 1 Continued). Consider the cost δ of repairing t3 in Figure 1(a) by
<insulation proof>. As illustrated in Figure 3(a), the confidence of the event t3 being correctly
recorded by the executor is conf (t3) = 0.7. That is, according to the historical data, there
are 70 percent of event t3 being correctly recorded by the executor. Moreover, suppose that

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

3:12 R. Huang et al.

<insulation proof> appears 300 times over all the 6,000 events in the historical data, the frequency
of <insulation proof> is given by freq(insulation proof) = 300

6,000 = 0.05. In contrast, the original

erroneous name <proof> of event t3 in Figure 3(a) rarely occurs in the historical data, having
freq(proof) = 0.001. Furthermore, we use edit distance for the metric distance between two names
π (t) and π ′(t), i.e., dis(proof, insulation proof) = 11 for at least 11 character editing operations
including blank. According to Equation (2), the cost of repairing t3 by <insulation proof> is

δ (π (t3),π ′(t3)) = conf (t3) · dis(proof, insulation proof) · freq(proof)

freq(insulation proof)

= 0.7 · 11 · 0.001

0.05
= 0.154.

Consider the cost δ of repairing t3 with an incomplete name <proof> by another irrelevant
<check inventory>. The confidence conf (t3) is still 0.7, while the frequency of <check inventory>
is given by freq(check inventory) = 360

6,000 = 0.06. Furthermore, the edit distance between two

names is dis(proof, check inventory) = 15. According to Equation (2), the cost of repairing t3 by
<check inventory> is

δ (π (t3),π ′(t3)) = conf (t3) · dis(proof, check inventory) · freq(proof)

freq(check inventory)

= 0.7 · 15 · 0.001

0.06
= 0.175.

Even though <check inventory> has a higher frequency than <insulation proof> in the historical
data, the cost 0.154 of repairing the inconsistent event name <proof> to a related value <insulation

proof> is lower.

Let π ∗ be the ground truth of the input labeling π . That is, π ∗ (t) denotes the true name of the
incorrect π (t) in the real-world for event t in the input causal net Nσ . It is true that for constraint-
based data cleaning, a consistent dataset does not mean that it is the ground truth π ∗. Among
many possible repairs that can satisfy the consistency, rather than choosing a random value, we
may use some hints to return the one most likely to be the ground truth. The repair cost function
in Formula 2 thus proposes to consider several aspects of possible hints. (1) The distance metric
dis indicates how distant the repaired name is to the original name. Following the intuition that
the repair should avoid losing information of the original data [23], the modification is expected
to be minimized. For example, in Figure 1(b), it is more reasonable to repair the inconsistent event
name <proof> to a related value such as <insulation proof>, than another arbitrary value such as
<check inventory>, which differs greatly from the original name. (2) The confidence conf provides
the ability to manually adjust the repair cost. It is possible that the ground truth may not be the one
with the minimum modification. Nevertheless, for those ones believed to be true values, we can
set a very large confidence (e.g., infinite value). This large confidence leads to a very large repair
cost, and thus will not be considered and returned as the minimum repair. (3) The frequency freq

denotes the frequency of the event names appearing in the historical data. A repaired name with
higher frequency is preferred, rather than a random value that may rarely occur.

Problem 2. Consider the input of a causal net Nσ and a labeling π as execution, and the speci-
fication Ns . The inconsistent labeling repairing the problem is to find a relabeling π ′ of π , if exists,
such that (i) the execution conforms to the specification (Nσ ,π

′) � Ns and (ii) the repairing cost
Δ(π ,π ′) is minimized.

The input causal net Nσ , as defined in Definition 3, provides both a set of finite places and a set
of finite transitions. The output is a relabeling π ′ of π that conforms to the specification, while the
structure of causal net Nσ is unchanged. Moreover, the repairing cost Δ(π ,π ′) is minimized.

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

Efficiently Cleaning Structured Event Logs: A Graph Repair Approach 3:13

3 HARDNESS ANALYSIS

Before introducing technical details, let us first investigate the hardness of the studied problems.

Theorem 2. Given an execution (Nσ ,π) over the specification Ns , and an integer K , the problem

of determining whether there is a relabeling π ′ such that (Nσ ,π
′) � Ns with the cost Δ(π ,π ′) ≤ K is

np-complete.

The proof is as follows. The problem is clearly in NP. Given any repairing π ′, the conformance
can be verified by checking the pre and post sets of each transition t in Nσ . Meanwhile, the re-
pairing cost is computed by comparing the difference between π ′(t) and π (t) of each t in O (n)
time.

To prove the NP-hardness of the repairing problem, we show a reduction from the set cover
problem, which is one of Karp’s 21 NP-complete problems [32]. By constructing a workflow speci-
fication and an inconsistent execution, we will show that there is a set cover C of size k if and only
if the corresponding execution Nσ has a repairing π ′ with cost Δ(π ,π ′) = K , where K = k +m and
m is the size of the element set U in the set cover instance. To ensure the cost Δ(π ,π ′) = m + k
for the constructed specification and execution, for any two different transitions a,b, we have the

confidence conf (a) = 1 and the frequency ratio
freq(a)
freq(b) = 1, leading to the repairing cost δ (a,b) = 1

in Equation (2). A total cost Δ(π ,π ′) = K =m + k means that there arem + k transitions repaired.

3.1 Transformation

Consider a set of m elements U = {u1, . . . ,um }, and n sets S = {s1, . . . , sn }, such that si ⊆ U
and ∪isi = U . A set cover is a C ⊆ S of sets whose union is stillU . The set cover problem is to
determine whether there exists a set cover C with a size no greater than k .

The transformation is conducted as follows.
(1) As illustrated in Figure 5(a), we construct a workflow specification Ns (Ps , Ts , Fs). Let R be

the first transition in Ts having (start,R) ∈ Fs . For each element uj ∈ U , j = 1, . . . ,m, we add a
place Uj ∈ Ps such that (R,Uj) ∈ Fs . Let

B = {Bji | uj ∈ si , j = 1, . . . ,m, i = 1, . . . ,n},

be a set of intermediate transitions, whose cardinality is exactly
∑n

i=1 |si |. For each element uj

belonging to set si , we put an arc (Uj ,Bji) ∈ Fs .
Moreover, for each si ∈ S, i = 1, . . . ,n, we add two corresponding transitions Si , S

′
i that point

to the sink place, i.e., (Si , end) ∈ Fs , (S
′
i , end) ∈ Fs , i = 1, . . . ,n. As explained later, S ′i is utilized

to denote whether an Si is repaired in the repairing problem. In addition, we introduce a new
transition S0 that connects to the sink place such that (S0, end) ∈ Fs . Let

D = {Di | i = 0, . . . ,n},

be a set of intermediate places. The first intermediate place D0 in the specification connects to S0

and all the S ′i , having (D0, S0), (D0, S
′
1), . . . , (D0, S

′
n) ∈ Fs . This D0 is utilized to denote whether Si

is repaired in the repairing problem. Since D0 only connects to S0 and S ′i , if the transition with
labeling Si has a place with labeling D0 in its pre set, the labeling Si of the transition should be
repaired. For each remaining Di , i = 1, . . . ,n, we add two arcs (Di , Si) and (Di , S

′
i) to Fs .

The places and transitions of Ns are then given as

Ts = {R, S0, S1, S
′
1, . . . , Sn , S

′
n } ∪ B,

Ps = {start,U1, . . . ,Um , end} ∪ D .

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

3:14 R. Huang et al.

Fig. 5. Reduction from SET COVER problem.

Finally, for each intermediate transition Bji ∈ B, we insert at most n arcs to certain intermediate
places, i.e., (Bji ,Dk) such that k = 0, . . . ,n and k � i . In other words, for any j = 1, . . . ,m, it
always has (Bji ,Di) � Fs .

(2) We build a causal net of execution Nσ (Pσ , Tσ , Fσ), as shown in Figure 5(b). Let π (p0) =
start. Similarly, we put the first transition t0 with arc (p0, t0) corresponding to (start,R) in the
specification Ns .

For each place pj : Uj , j = 1, . . . ,m, there is an arc connecting from R, i.e., (t0,pj) corresponding
to (R,Uj) in Ns . Let {X1, . . . ,Xm } be a set of intermediate transitions with no overlap to B, i.e.,
X j � B. We add m arcs (pj , tj) mapping to (Uj ,X j) in Ns , j = 1, . . . ,m. It is easy to see that
tj : X j with preFσ

(tj) = {Uj } are violations, since the pre sets of π (tj) = X j are not defined in the
specification.

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

Efficiently Cleaning Structured Event Logs: A Graph Repair Approach 3:15

Next, for each transition tm+i : Si , i = 1, . . . ,n, we insert m places pim+j : Di , j = 1, . . . ,m
with corresponding arcs (pim+j , tm+i). Moreover, each tm+i : Si points to an individual end place,
pnm+m+i : end. Note that the additional transition S0 is not included in the current execution.

Finally, for each intermediate transition tj : X j , j = 1, . . . ,m, we add n arcs to the corresponding
intermediate places, i.e., (tj ,pim+j), i = 1, . . . ,n. The transformation completes in polynomial time
with (n + 1) (m + 1) places and (n +m + 1) transitions in the causal net Nσ of execution trace, and
(m + n + 3) places and at most (nm + 2n + 2) transitions in the specification net Ns .

3.2 Proof

Without loss of generality, let the repairing cost be evaluated by the modification cost, having
δ (a,b) = 1 for any two different transitions a,b. With regard to the aforesaid transformation,
we will show that there is a set cover C of size k if and only if Nσ has a repairing π ′ with cost
Δ(π ,π ′) =m + k , where k = K −m.

First, let C be a set cover of size k . According to the set cover definition, for each element
uj ∈ U , there must exist a set si ∈ C such that uj ∈ si . In the causal net Nσ , the corresponding
transition tj : X j with π (preFσ

(tj)) = {Uj } is then modified to π ′(tj) = Bji with cost 1, which
has preFs

(Bji) = {Uj } according to the specification Ns . Note that for the n intermediate places
connecting to tj , it has (tj ,pim+j) ∈ Fσ but (Bji ,Di) � Fs in the currently modified execution
(Nσ ,π

′). To eliminate such inconsistency, we can modify the place to π ′(pim+j) = D0, such that
(Bji ,D0) ∈ Fs . Considering all the m elements in U , the total relabeling cost in the first step
is m. By this relabeling, i.e., changing the place pim+j from Di to D0, a new inconsistency over
(pim+j , tm+i) ∈ Fσ is introduced, i.e., D0 � preFs

(Si). Therefore, we further change the transition Si

to S0 if π ′(preFσ
(tm+i)) = {D0}; otherwise, π ′(tm+i) = S ′i . The repairing cost is 1. For all the k sets

in the set cover C, the total cost of the second relabeling step is k . Note that for all the si ∈ S \ C,
the corresponding places pim+j will leave pim+j : Di mapping by the original π unchanged in the
repairing π ′. Thus, the transition tm+i : Si has no violation introduced. Consequently, we produce
a π ′ of π such that (Nσ ,π

′) � Ns and Δ(π ,π ′) =m + k,k = K −m.
Conversely, assume that we have a repairing π ′ with cost Δ(π ,π ′) =m+k,k = K −m. For each

transition tj , j = 1, . . . ,m,which currently maps toX j , it must be modified fromX j to Bji with cost
1, referring to the arcs between Uj and Bji in Fs . Besides the above m transitions modified in π ′,
the remaining repairing with cost k must come from transitions tm+i , i = 1, . . . ,n, with tm+i : Si

in the original mapping π . Obviously, a transition tm+i can only be modified from Si to S ′i or S0

with the cost 1. Let C be the set of transitions tm+i that are modified by π ′. We have |C | = k . By
collecting all si that correspond to tm+i in C , since all the elements uj are covered, it forms a set
cover C with size k .

4 EXACT ALGORITHM

Both detecting and repairing problems can be solved by an algorithm of attempting to find the min-
imum repair. If no valid repair is found, the input execution trace is detected as unsound structure.
In this section, a practical branch and bound algorithm is developed for computing exact solu-
tions. We also propose advanced bounding functions and pruning techniques to further improve
the efficiency.

4.1 Branch and Bound

We first briefly describe the idea of computing repairs. For each transition in a given execution
trace, there may be multiple candidates for repairing. In order to generate the optimal repair, we
should theoretically consider all the repairing alternatives, each of which leads to a branch of
generating possible repairs. The repairing must roll back to attempt the other branches in order to

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

3:16 R. Huang et al.

Fig. 6. Idea of branch and bound.

find the minimum cost one. Intuitively, by trying all the possible branches, we can find the exact
solution.

4.1.1 Overview. Starting from the first transition in the execution trace σ , in each step, we will
consider all the possible repairs for a transition tk , each of which leads to a repairing branch.

The branching graph BG = (V ,E) consists of different σk , the first k transitions in σ that have
been repaired by π ′. Each node v ∈ V in the graph represents a specific σk , while each edge
(v1,v2) ∈ E indicates that the repairing σk of the node v2 is based on that of the node v1. As we
will present soon, a lower bound of least cost for repairing the remaining transitions in σ \ σk can
be computed, to form a valid repair. That is, we can compute a bound of repairing cost LB (σk ,π

′)
for all the possible repairs generated in the branches w.r.t σk . A simple bounding function can be
LB (σk ,π

′) = Δ(π ,π ′), i.e., the cost that has already been paid in the repairing π ′ for the first k
transitions in the trace. It is clear that any repair over the entire trace generated in the branch of
σk must have cost higher than LB (σk ,π

′).
Consequently, if we have found a valid repair in some other branches whose repairing cost is

less than the lower bound LB (σk ,π
′), all the branches on σk can be safely pruned.

Example 6 (Example 1 Continued). Consider the execution trace in Figure 1. Each node in
Figure 6 denotes a state of repairing the trace, i.e., π ′(σk). Initially, the first transition does not
need to change, having π (σ1) = [submit] in node 1©. For the next t2, there are two possible repairs
that lead to two branches π (σ2) = [submit, design] in node 2© or [submit, revise] in node 3©. The
branching continues in the remaining transitions of σ until it forms a valid repair (e.g., node 4©
for all 6 transitions in σ) or no further repairing can be applied such as node 3©. Suppose that the
repairing cost Δ(π ,π ′) of node 4© is 30 (computed by string edit distance on event names). Then,
all the branches on node 5© with bound 31 can be safely pruned.

4.1.2 Algorithm. Algorithm 1 presents the procedure of branch and bound repairing. We main-
tain a priority queue Q, where each element (σk ,π

′) denotes a node or state of branching. As
shown in Line 3, each step fetches an element from Q, say σk−1 together with its repair π ′, which
has the minimum LB (σk−1,π

′). If the current π ′ has already formed a valid repair, in Line 6, we
directly return it as the result. As the remaining nodes in Q must have a lower bound no less than
the current solution, the result is the first valid solution with the minimum cost.

Otherwise, we keep on branching to the next transition tk . According to Proposition 1, it ensures
that all the prerequisites of tk are in σk−1.

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

Efficiently Cleaning Structured Event Logs: A Graph Repair Approach 3:17

ALGORITHM 1: ExactBB(Nσ ,π ,Ns)

Input: An execution (Nσ ,π) and a specification Ns

Output: An optimal repair π ′ with the minimum repairing cost such that (Nσ ,π
′) � Ns

1: Q := {(∅,π)}
2: while Q � ∅ do

3: (σk−1,π
′) := arg min(σi ,π ′)∈Q LB (σi ,π

′)
4: Q := Q \ {(σk−1,π

′)}
5: if (Nσ ,π

′) � Ns then

6: return π ′

7: else

8: tk := σ (k) the kth transition in the execution trace {branch tk to generate π ′(tk)}
9: σk := σk−1 ∪ {tk }

10: for each pi ∈ preFσ
(tk) do

11: Pc
i := all valid labeling π ′(pi) of pi .

12: Λ := Pc
1 × · · · × Pc

|preFσ
(tk) |

13: for each labeling π ′ in Λ on places preFσ
(tk) do

14: Tc := ∩pi ∈preFσ
(tk)postFs

(π ′(pi))

15: for each X ∈ Tc do

16: if π ′(preFσ
(tk)) = preFs

(X) then

17: π ′(tk) := X
18: Q := Q ∪ {(σk ,π

′)}
19: return unsound structure

Lemma 3. For the current branching for each tk , it always satisfies preFσ
(preFσ

(tk)) ⊆ σk−1.

Proof. Suppose that there is an event ti ∈ preFσ
(preFσ

(tk)) and ti � σk−1. Since σk−1 denotes
the first k − 1 events in σ that have been repaired, and ti � σk−1, i � k , we have i > k . According
to Proposition 1, we have ti � preFσ

(preFσ
(tk)) with k < i , which is a contradiction. �

That is, the transitions in σk−1 have already been repaired and will not be modified in the current
branching. As illustrated in Figure 7, the prerequisites of tk determine the possible assignments
of places in preFσ

(tk), i.e., Lines 10–12 in Algorithm 1. The determination of π ′(pi) for each pi ∈
preFσ

(tk) will be presented below. Consequently, for each labeling π ′ on places in preFσ
(tk), we

can enumerate the corresponding possible repairs (Line 14) of tk for branching (Line 18).
Finally, the while iteration terminates when there is no element left in Q. The returned results

can be either the optimal repair or the identification of an unsound structures. The correctness of
the conformance of the returned repair is guaranteed by Line 5 in Algorithm 1.

4.2 Generating Branches

Recall that each branch w.r.t. the current transition tk corresponds to a possible repairing π ′(tk).
As illustrated in Figure 7, to determine π ′(tk), we need to first identify the labeling on the places
in the pre set of tk .

Let us consider any pi ∈ preFσ
(tk). Referring to the definition of the causal net, we have a

unique transition, say ti , in the pre set of pi , denoted as preFσ
(pi) = {ti }. This ti must belong to

σk−1 according to Lemma 3, where the repair π ′(ti) has been given. As illustrated in Line 11 in
Algorithm 1, we can find a set Pc

i of all valid labeling π ′(pi) of pi that are consistent with π ′(ti).
There are several scenarios to consider for determining Pc

i :

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

3:18 R. Huang et al.

Fig. 7. Generating a branch.

Case 1. If postFσ
(postFσ

(ti)) � σk , then we have Pc
i := postFs

(π ′(ti)). That is, there exists at
least one transition, whose prerequisite is ti , but not belonging to σk , e.g., tk+1 following tk−1 in
Figure 7 that has not been repaired in (σk−1,π

′). We can assign any π ′(pi) in postFs
(π ′(ti)) without

introducing inconsistencies to ti in the current stage.

Example 7. Consider a part of execution in Figure 8(b) and its related specification in Figure 8(a).
Let t1 in Figure 8(b) be the currently considered kth transition, we have preFσ

(t1) = {p1}, and
preFσ

(p1) = {t0}. Since there exist two transitions (t2 and t3), whose prerequisite is t0, but not belong
to σk , i.e., postFσ

(postFσ
(t0)) = {t1, t2, t3} � σk , we can assign any π ′(p1) in Pc

1 = postFs
(π ′(t0)) =

{a,b, c} without introducing inconsistencies to t0 in the current stage.

Case 2.1. If postFσ
(postFσ

(ti)) ⊆ σk , and

π ′(postFσ
(ti) \ {pi }) = postFs

(π ′(ti)),

then we have Pc
i := postFs

(π ′(ti)). In this (and following 2.x) case, we have all the tran-
sitions, whose prerequisite is ti , belonging to σk . In other words, all the transitions, e.g.,
postFσ

(postFσ
(tk−r)) of tk−r in Figure 7, are repaired in (σk−1,π

′) except tk . Moreover, the condition
π ′(postFσ

(ti) \ {pi }) = postFs
(π ′(ti)) ensures the conformance on ti if we ignore pi . Consequently,

any assignment π ′(pi) in postFs
(π ′(ti)) will not introduce inconsistencies to ti .

Example 8. Consider again the specification in Figure 8(a). Let t4 in Figure 8(c) be the currently
considered kth transition, we have preFσ

(t4) = {p4}, and preFσ
(p4) = {t0}. All the transitions whose

prerequisite is t0 belong to σk , i.e., postFσ
(postFσ

(t0)) = {t1, t2, t3, t4} ⊆ σk . Since π ′(postFσ
(t0) \

{p3}) = {a,b, c} = postFs
(π ′(t0)) = {a,b, c}, we can assign any π ′(p4) in Pc

4 = postFs
(π ′(t0)) =

{a,b, c} without introducing inconsistencies to t0. This is the scenario of multiple instances [45],
i.e., a task may be submitted multiple times as duplicates.

Case 2.2. If postFσ
(postFσ

(ti)) ⊆ σk , and

|π ′(postFσ
(ti) \ {pi }) | = |postFs

(π ′(ti)) | − 1,

then we have Pc
i := postFs

(π ′(ti)) \ π ′(postFσ
(ti) \ {pi }). This case differs from Case 2.1 in the

variance between π ′(postFσ
(ti) \ {pi }) and postFs

(π ′(ti)). It states that there is only one choice of
π ′(pi), i.e., postFs

(π ′(ti)) \ π ′(postFσ
(ti) \ {pi }), in order to make the conformance on ti .

Example 9. Let t3 in Figure 8(d) be the currently considered kth transition, we have preFσ
(t3) =

{p3}, and preFσ
(p3) = {t0}. All the transitions whose prerequisite is t0 belong to σk , that is,

postFσ
(postFσ

(t0)) = {t1, t2, t3} ⊆ σk . Compared to the related specification in Figure 8(a), since
the only difference between π ′(postFσ

(t0) \ {p3}) = {a,b} and postFs
(π ′(t0)) = {a,b, c} is {c}, there

is only one choice for π ′(p3), i.e., Pc
3 = postFs

(π ′(t0)) \ π ′(postFσ
(t0) \ {p3}) = {c}.

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

Efficiently Cleaning Structured Event Logs: A Graph Repair Approach 3:19

Fig. 8. Example of generating a branch.

Case 2.3. If postFσ
(preFσ

(pi)) ⊆ σk , and

|postFs
(π ′(ti)) | − |π ′(postFσ

(ti) \ {pi }) | > 1,

then we have Pc
i := ∅. In this case, the difference between π ′(postFσ

(ti) \ {pi }) and postFs
(π ′(ti))

is at least 2. It is impossible to achieve the conformance on ti by simply repairing one place pi . We
ignore this case by setting Pc

i := ∅.

Example 10. Consider the execution in Figure 8(e), and let t2 in Figure 8(e) be the currently
considered kth transition. We have preFσ

(t2) = {p2}, and preFσ
(p2) = {t0}. All the transitions

whose prerequisite is t0 belong to σk , i.e., postFσ
(postFσ

(t0)) = {t1, t2} ⊆ σk . Since the difference
between π ′(postFσ

(t0) \ {p2}) = {a} and postFs
(π ′(t0)) = {a,b, c} is larger than 1, it is impossible

to achieve the conformance on t0 by simply repairing one place p2. As a result, we have Pc
2 = ∅.

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

3:20 R. Huang et al.

Thus far, we have presented the assignment of each place pi in preFσ
(tk). Considering all the

r = |preFσ
(tk) | places, we can enumerate all the labeling π ′ on places preFσ

(tk), i.e., Λ := Pc
1 ×

· · · × Pc
|preFσ

(tk) | in Line 12 in Algorithm 1. For each labeling π ′ in Λ, there is a set of candidate

repairs for π ′(tk), denoted by Tc := ∩pi ∈preFσ
(tk)postFs

(π ′(pi)) in Line 14. Finally, any π ′(tk) in Tc ,

which satisfies the conformance requirement of π ′(preFσ
(tk)) = preFs

(π ′(tk)), generates a possible
branch (σk ,π

′), and is added into Q in Line 18.

Example 11 (Example 1 Continued). Let t5 in Figure 1 be the currently considered kth transition
in Line 8 of Algorithm 1. Line 11 computes all valid labeling (w.r.t. prerequisites of t5) for the
places in preFσ

(t5), by considering the aforesaid possible cases, i.e., {c} for p3 referring to π ′(t3) =
insulation proof and {e} for p5 referring to π ′(t4) = check inventory. The labeling of places p3,p5

suggests possible candidates for branching t5, in Line 14, having Tc = postFs
(c) ∩ postFs

(e) =
{evaluate}. By considering the next branching step iteratively, on t6, since there is no violation left,
the program returns the result in Line 6.

Algorithm Analysis. Note that pre and post sets of a transition lead to parallel flows. In most
processes, the number of parallel flows of a transition is often small and can be regarded as a
constant3 [35]. Letb andd be the maximum sizes of the pre/post set of any node in the specification
and execution, respectively. We have O (bd) possible labelings in Λ, each of which corresponds to
b repairing candidates in Tc , i.e., total O (bd+1) repairs for tk . Consider the branches of possible
combinations onn transitions. The worst-case complexity of Algorithm 1 isO (b (d+1)n), exponential
to n.

4.3 Pruning Invalid Branches

It is worth noting that not all the branches can eventually generate a valid repair (e.g., node 3© in
Figure 6). We call the branches that cannot form a valid repair invalid branches. The earlier the
algorithm could identify invalid branches, the better the repairing performance will be. However,
the aforesaid repairing method will not terminate branching until the last step, i.e., no further
repairing can be performed on a transition.

The intuition of early termination for invalid branches comes from the scenario of unsound
structure. If the maximum length path from the current transition tk to the end place in the causal
net is shorter than the minimum length path from π (tk) to end in the specification, modifying
transitions after tk will form an invalid repair.

Pruning of invalid branches can be deployed before Line 18 in Algorithm 1. Intuitively, in the
preprocessing, for each transition tj in the specification, we can find a shortest path from tj to
end, denoted by sps (tj). In the causal net of execution, the longest path from any transition ti
to end, say lpσ (ti), can be computed by running a shortest-path finding algorithm with negative
weights, which are obtained by the additive inverse (opposite number) of the original weights [6].
The labeling π ′(tk) having lpσ (tk) < sps (π ′(tk)), i.e., the longest path in execution is shorter than
the shortest path in the specification, is not valid for the current transition tk . In other words, it is
impossible to find a valid repair for such a case.

Proposition 4. A branch (σk ,π
′) with lpσ (tk) < sps (π ′(tk)) is an invalid branch that cannot

form any valid repair with the current labeling π ′ on σk .

3Although a process may theoretically consist of a large number of parallel flows, in practice, techniques are often applied

to keep the process as simple as possible, such as minimize the routing paths per element [35]. According to the survey, the

maximum number of parallel flow is 4 in the dataset from SAP Reference Models [12], which includes 69 typical workflow

specifications.

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

Efficiently Cleaning Structured Event Logs: A Graph Repair Approach 3:21

Proof. Since lpσ (tk) < sps (π ′(tk)), the number of remaining transitions that have not been re-
paired in the branch is less than the least number of transitions to reach the end in the specification.
It is easy to see that the branch cannot generate any repair that will conform to the specification,
which makes it an invalid branch. �

According to the proposition, for any tk in Line 18 in Algorithm 1, if lpσ (tk) < sps (π ′(tk)), we
will not add this (σk ,π

′) to Q. That is, (σk ,π
′) is pruned as an invalid branch.

Example 12 (Example 4 Continued). Consider again the causal net of execution in Figure 4. Let t1
be the current transition with labeling π ′(t1) = submit. By interpreting places as edges connecting
two transitions, the causal net of execution is indeed a directed acyclic graph of transitions. We as-
sign a negative weight −1 for each edge, and run the shortest-path finding algorithm with negative
weights. It returns a shortest-path 〈p1,p2〉 with negative weight −2, from the transition t1 to end,
which corresponds to the longest path with positive weight 1 for each edge, having lpσ (t1) = 2.
Moreover, in the specification in Figure 1(c), we can find a shortest path from submit to end, i.e.,
〈a, d, e, s〉, having sps (submit) = 4. Since lpσ (t1) = 2 < sps (submit) = 4, i.e., the longest path
in execution is shorter than the shortest path in the specification, it is impossible to find a valid
repair for the labeling π ′(t1) = submit.

4.4 Advanced Bounding Function

The lower bound of repairing cost LB (σi ,π
′) is essential in pruning branches. Before introducing

the advanced bounding function LB, we first investigate the lower bound of cost for repairing an
execution. Let LC (Nσ ,π) denote the least cost of repairing (Nσ ,π). As mentioned, a naive bound
is LC (Nσ ,π) = 0, as any repair π ′must have Δ(π ,π ′) ≥ 0. Indeed, as discussed below, such a naive
bound will yield a bounding function LB with weaker pruning power.

To obtain a reasonable bound of least cost for repairing (Nσ ,π), we build a conflict graph G

with transitions in Tσ as vertexes. For any place p ∈ Pσ , let preFσ
(p) = {ti } and postFσ

(p) = {tj }. If
postFs

π (ti) ∩ preFs
π (tj) = ∅, i.e., at least one of the transitions ti , tj needs to be repaired, we put

a conflict edge (ti , tj) in G. Each vertex ti is associated with a weight, w (ti) = minx∈Ts
δ (π (ti), x),

i.e., the minimum cost on all possible repairs of ti .
To eliminate inconsistencies, at least one transition of each edge in G should be repaired. The

minimum weighted vertex cover of G with total weight VC∗ (G) can be interpreted as a lower
bound of least cost LC (Nσ ,π), i.e., VC∗ (G) ≤ Δ(π ,π ′) for any repair π ′. As computing the exact
minimum vertex cover is unlikely to be efficient, we relax the bound as follows. Consider a set
E = ∅ initially. We repeatedly add an edge say (ti , tj) of G into E, and remove ti , tj , and all the
edges incident on ti or tj , until there is no edge left in G. Consequently, no two edges in E share
the same vertex. As each edge should be covered by at least one vertex from the minimum vertex
cover, we have

∑
(ti ,tj)∈E min{w (ti),w (tj)} ≤ VC∗ (G). Considering the relationship between vertex

cover and repairing, it follows:

Lemma 5. For any valid repair π ′, we have
∑

(ti ,tj)∈E
min{w (ti),w (tj)} ≤ VC∗ (G) ≤ Δ(π ,π ′).

Proof. Firstly, although the minimum weighted vertex cover of G contains at least one transi-
tion of each edge in G, it cannot ensure the conformance of the repairs for all the transitions. It is
likely that conflicts still exist after repairing the transitions in the minimum weight vertex cover,
and therefore requires further repair and more cost. As a result, we have VC∗ (G) ≤ Δ(π ,π ′). Sec-
ondly, according to the generation of set E, the edges in E will not overlap in vertexes, i.e., each

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

3:22 R. Huang et al.

vertex appears at most once. The edges in E also exist in G, and should be covered by the vertexes
in the minimum weighted vertex coverVC∗ (G). Note that

∑
(ti ,tj)∈E min{w (ti),w (tj)}, considering

the smaller weight of two vertexes for each edge in E, denotes a lower bound of the cost to cover the
edges in E. Since there are more edges that the minimum weighted vertex cover of G needs to cover,
the lower bound of covering E also applies to G, having

∑
(ti ,tj)∈E min{w (ti),w (tj)} ≤ VC∗ (G). �

Hence, we define the lower bound of the least cost for repairing by

LC (Nσ ,π) =
∑

(ti ,tj)∈E
min{w (ti),w (tj)}.

Note that each (σi ,π
′) divides the transitions into two parts, σi and its complement σ \ σi ,

denoted as σ̄i . We consider Nσ̄i
(Pσ̄i
, Tσ̄i
, Fσ̄i

) as a projection or partition of the net on transitions
Tσ̄i
⊆ Tσ corresponding to the remaining execution trace σ̄i . As π ′ only specifies the repairing of

the current σi , transitions in σ̄i have not been reassigned by π ′ yet.

Lemma 6. We have π ′(t) = π (t),∀t ∈ σ \ σi .

Proof. According to the definition of (σi ,π
′) in Algorithm 1, it is easy to see that the assignment

of the transition in the remaining execution trace σ̄i is the same as its original labeling π , i.e.,
π ′(t) = π (t). �

Finally, the lower bound is defined as

LB (σi ,π
′) = Δ(π ,π ′) + LC (Nσ̄i

,π),

which consists of the repairing cost Δ(π ,π ′) that has been made on σi , and the least cost of re-
pairing the remaining σ̄i . The larger the lower bound is, the higher the power will be in pruning
branches. We call this LB (σi ,π

′) with LC (Nσ ,π) =
∑

(ti ,tj)∈E min{w (ti),w (tj)} the advanced bound-

ing function. It is not surprising that the aforesaid simple bounding function with the naive bound
LC (Nσ̄i

,π) = 0 shows weaker pruning power.

Example 13 (Example 1 Continued). Let σ1 with one transition t1 in Figure 1 be the currently
repaired transitions. Since no transition is changed so far, we have Δ(π ,π ′) = 0. For the remaining
transitions t2, t3, t4, t5, t6, i.e., σ̄1, a conflict graph is constructed with edges (t2, t3), (t2, t4), (t3, t5),
(t4, t5). Suppose that (t2, t3) and (t4, t5) are chosen to E for Lemma 5, and t2, t5 has smaller minimum
cost, sayw (t2) = 3 andw (t5) = 0. By removing (t2, t3) and (t4, t5), there is no edge left in the conflict
graph. We have LB (σ1,π

′) = LC (Nσ̄1 ,π) =w (t2) +w (t5) = 3 higher than the simple bound 0.

It is notable that an annotation/labeling may be verified to be correct/mandatory, or fixed, and
thus do not allowed to be changed in some repairing scenarios, which is common in processes in
manufacturing/medical research. The proposed algorithm can easily extend to such scenarios by
setting a very large confidence (e.g., infinity) in Equation (2) for such annotation/labeling. This
large confidence conf (t) leads to a very large repair cost δ (π (t),π ′(t)), and thus will not be con-
sidered and returned as the minimum repair. In this sense, the fixed annotation/labeling will not
be changed.

5 TRANSITION ORIENTED HEURISTICS

Although several advanced pruning techniques are proposed, the exact algorithm is still too costly
to meet the fast repairing requirement, such as in online/streaming systems. As event data are
continuously generated, the online repairing may only allow one pass through the events (transi-
tions) in executions. In this section, to support fast repairing, we introduce several heuristics for
approximation and present a transition-oriented one-pass algorithm.

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

Efficiently Cleaning Structured Event Logs: A Graph Repair Approach 3:23

The idea of approximate repairing is to repair one transition at a time, and repeat until all viola-
tions are eliminated or no repairing can be further conducted. As each step of repairing a transition
may introduce inconsistencies to others, we heuristically choose a revision that will have the least
violations to others. Let us first investigate this intuition on how to repair one transition regarding
violation elimination.

5.1 Heuristic for Repairing a Transition

Consider any transition tk ∈ Tσ in an execution (Nσ ,π) whose current labeling π (tk) is inconsis-
tent with the specification Ns , that is, having either π (preFσ

(tk)) � preFs
(π (tk)) or π (postFσ

(tk)) �
postFs

(π (tk)). The repairing is to find a new labeling π ′(tk) that can eliminate the inconsistency
to tk . We consider possible candidates for repairing tk . Intuitively, in order to reduce the repairing
cost, we prefer the repairing of tk with least inconsistencies introduced to other transitions.

Given any labeling π ′, we define the number of violations to a transition tk as follows. Recall
that any place p in a causal net always has |preF (p) | ≤ 1 and |postF (p) | ≤ 1. For any pi ∈ preFσ

(tk),
we have either preF (pi) = ∅ (π ′(pi) = start) or preF (pi) = {ti }, a unique transition (prerequisite) in
the pre set of pi . We count place pi ∈ preFσ

(tk) as one violation to π ′(tk) if π ′(pi) � postFs
(π ′(ti)).

For the case of preF (pi) = ∅, π ′(pi) can only be mapped to start with no violation introduced. By
considering the symmetric violations to the post set of tk , the total violation count introduced by
π ′ on tk is given by

τ (tk ,π
′) = |{pi ∈ preFσ

(tk) | π ′(pi) � postFs
(π ′(ti)),π ′(pi) � start}|

+ |{pj ∈ postFσ
(tk) | π ′(pj) � preFs

(π ′(tj)),π
′(pj) � end}|.

Therefore, we need to find a π ′ such that τ (tk ,π
′) is minimized. If τ (tk ,π

′) = 0, the repair π ′ is a
perfect repairing without introducing any new inconsistencies to others.

Example 14 (Example 1 Continued). Consider t2 in Figure 1 with π (t2) = do revise. For p1 ∈
preFσ

(t2), we cannot find any labeling π ′(p1) such that π ′(p1) ∈ preFs
(π ′(t2)). Thereby, p1 is

counted as a violation towards π (t2). Similarly, p2 and p4 are also counted as having τ (t2,π) = 3.
Suppose that t2 is repaired by π ′(t2) = design. We can assign π ′(p1) = a which belongs to
preFs

(π ′(t2)), i.e., p1 is no longer a violation. It reduces the violation count of t2 to τ (t2,π) = 2.

5.2 One Pass Algorithm

We present a one pass algorithm of repairing one transition at a time from start to end in the
execution trace σ . In each step, we determine the repair π ′(tk) of a transition tk ,k = 1, . . . , |σ |,
and its corresponding π ′(pj) of pj ∈ postFσ

(tk).
Following the order of execution trace, we show that π ′(pi) of all placespi ∈ preFσ

(tk) must have
been assigned. According to Proposition 1, all the prerequisite transitions of the current tk , say
ti ∈ preFσ

(preFσ
(tk)), should have been repaired. When previously repairing ti , the corresponding

pi ∈ postFσ
(ti), having postFσ

(pi) = {tk }, is determined.
Initially, only one place is processed in the causal net, i.e., the start place. In each step of tk , as

shown in Figure 9, all the places pk−r , . . . ,pk−1 in the pre set of tk are already determined. After
repairing the transition tk (if necessary), we assign all the places pk+1, . . . ,pk+s in the post set of
tk . Finally, the program terminates when it reaches the last transition in the execution trace.

Algorithm 2 presents the pseudo-code of one pass repairing. As illustrated in Line 1, we start
from the first transition t1 = σ (1) directly following the start place. In each iteration, Line 5 selects
a transition tk , i.e., the kth transition σ (k) in the execution trace σ . If there is no inconsistency with
respect to tk , we directly move to the next transition (Line 23); otherwise, tk needs to be repaired
(Lines 7–22). As discussed, all the places in the pre set of tk must have been recovered (initially,

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

3:24 R. Huang et al.

Fig. 9. Repairing one transition tk .

ALGORITHM 2: OnePass(Nσ ,π ,Ns)

Input: An execution (Nσ ,π) and a specification Ns

Output: A repair π ′ such that (Nσ ,π
′) � Ns

1: k := 1,π ′ := π
2: while (Nσ ,π

′) � Ns do

3: if k > |Tσ | then

4: return unsound structure
5: tk := σ (k) the k-th transition in the execution trace
6: if π ′(preFσ

(tk)) � preFs
(π (tk)) or π (postFσ

(tk)) � postFs
(π (tk)) then

7: Tc := ∩pi ∈preFσ
(tk)postFs

(π ′(pi))
8: τmin := a large positive integer d
9: for each x ∈ Tc do

10: if π ′(preFσ
(tk)) = preFs

(x) then

11: π ′(tk) := x

12: for each complete labeling πp : postFσ
(tk) → postFs

(x) do

13: π ′(postFσ
(tk)) := πp (postFσ

(tk))
14: if τ (tk ,π

′) < τmin then

15: τmin := τ (tk ,π
′)

16: πmin (tk) := π ′(tk)
17: πmin (postFσ

(tk)) := π ′(postFσ
(tk))

18: if τmin equals to the original value d then

19: return unsound structure
20: else

21: π ′(tk) := πmin (tk)
22: π ′(postFσ

(tk)) := πmin (postFσ
(tk))

23: k++
24: return π ′

the start place in preFσ
(t1) leaves unchanged). Hence, the repairing is to determine two aspects:

π ′(tk) in Line 11 and π ′(postFσ
(tk)) in Line 13. Possible candidates for these two aspects will

be discussed soon. τmin in Line 15 records the repairing π ′ with the minimum τ (tk ,π
′), i.e., the

minimum violations introduced by repairing tk .
Correctness of conformance in the returned π ′ is ensured by the condition for each transition

on pre set in Line 10 and the complete labeling (defined below) for post set in Line 12.

5.2.1 Candidates for Transition π ′(tk). Since the places in pi ∈ preFσ
(tk) have already been

determined, we can only choose candidates for repairing tk without introducing any inconsistency
to pi . For π ′(pi) of each pi ∈ preFσ

(tk), we can find a set of valid post transition, postFs
(π ′(pi)),

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

Efficiently Cleaning Structured Event Logs: A Graph Repair Approach 3:25

in the specification Ns . A candidate x appearing as the valid post transition of all π ′(pi) can be a
possible repairing of tk , which will be consistent with all pi . Hence, the candidates for repairing
tk are given by Tc := ∩pi ∈preFσ

(tk)postFs
(π ′(pi)) as illustrated in Line 7 in Algorithm 2.

Example 15 (Example 1 Continued). Consider the transition t2 in Figure 1(b), p1 is the only place
in the pre set of t2, i.e., preFσ

(t2) = {p1}. Suppose that π ′(p1) = a has already been determined,
the candidates Tc for repairing t2 should be chosen without introducing inconsistency to p1. As a
result, we have Tc := ∩pi ∈preFσ

(t2)postFs
(π ′(pi)) = postFs

(π ′(p1)) = {design, revise}.

5.2.2 Candidates for Places π ′(postFσ
(tk)). Next, given a candidate x ∈ Tc for π ′(tk), we aim

at determining the assignment of places pj ∈ postFσ
(tk) such that τ (tk ,π

′) is minimized. Again,
the assignment of pj should be consistent with tk . For a fixed π ′(tk) = x, it is equivalent to find a
labeling from postFσ

(tk) to postFs
(x), denoted by πp . We say a labeling πp : postFσ

(tk) → postFs
(x)

is complete, if πp (postFσ
(tk)) = postFs

(x). This complete labeling πp , as a candidate labeling of π ′,
ensures the consistency on tk , i.e., π ′(postFσ

(tk)) = postFs
(π ′(tk)).

Example 16 (Example 15 Continued). In Example 15, the repairing candidates for the transition
t2 is given by Tc := {design, revise}. Similarly, the assignment of places pj ∈ postFσ

(t2) should be
consistent with t2. For the repairing π ′(t2) = design, a complete labeling πp could be πp (p2) = b

and πp (p4) = d, for p2,p4 ∈ postFσ
(t2). In contrast, for the repairing π ′(t2) = revise, there does not

exist any complete labeling πp which ensures the consistency on t2, since |π ′(postFσ
(t2)) | = 2 �

|postFs
(π ′(t2)) | = 1.

All the possible complete labeling πp can be enumerated by considering the combination of
postFs

(x) with repetition. Let b and d be the maximum sizes of the pre/post set of any node in the
specification and execution, respectively. Each pi in postFσ

(tk) has b choices of π ′(pi) for repairing.

Considering all d places, the total number of possible labelings πp is bounded by O (bd).

Example 17 (Example 1 Continued). Consider the first transition t1 in Figure 1. Its name submit

is already consistent with p0 : start in preFσ
(t1). For t2, we can find a repairing π ′(t2) = design,

and find a complete labeling πp , e.g., πp (p2) = b and πp (p4) = d, for p2,p4 ∈ postFσ
(t2) such

that the violation count on t2 is minimized. Similarly, for the next t3, we can find a repairing, say
π ′(t3) = insulation proof for example, and its corresponding π ′(p3) = c in the post set, following
the minimum violation count heuristic. Repairing carries on by one pass through the execution
trace, and yields π ′(t4) = check inventory,π ′(p5) = e,π ′(t5) = evaluate,π ′(p6) = s.

5.2.3 Algorithm Analysis. Let b and d be the maximum sizes of the pre/post set of any node
in the specification and execution, respectively. (Note that in most processes, b and d are often
small and can be regarded as constants. As shown in Table 1, the maximum parallel flow of the
datasets used in the experiment is 4. Additionally, techniques are often applied to keep the process
as simple as possible in practice [35].) As each place pi ∈ preFσ

(tk) can suggest |postFs
(π ′(pi)) | (at

most b) repairs for tk , the total number of candidates in Tc is bounded by b. Considering all the
O (bd) possible labelings, we have cost O (bd+1) for repairing one transition. The while iteration
repeats at most n times, n = |Tσ | the number of transitions in the execution. Hence, the complexity
of Algorithm 2 is O (bd+1n).

We select one of the alternatives for repairing a transition in the one pass algorithm, which is
heuristically good but might not be optimal. The repairing results could be possibly bad, i.e., signifi-
cantly differ from the original one compared to the optimal solution, as each transition may lead to
a completely different flow in execution. Nevertheless, the one pass solution offers an alternative
of trading time efficiency from repairing cost. As shown in the experiments, the one pass algorithm
needs extremely low time cost while the observed approximation ratio is still considerable.

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

3:26 R. Huang et al.

6 PLACE ORIENTED HEURISTICS

Although the one pass algorithm excels in time efficiency, it may generate too many false negatives
regarding the detection of unsound structure sometimes due to its greedy selection of repair at each
step. According to our experiments in Section 7, the accuracy of detecting unsound structure may
drop to only 0.2. In this section, we first introduce a special case of simple path, which is prevalent
in real-world scenarios. Then we put forward a place-oriented heuristic algorithm that not only
gives an exact solution in simple path cases, but also outperforms the one pass algorithm in the
previous section in terms of accuracy in general cases.

6.1 Simple Path Cases

Structured event logs as illustrated in Figure 1(a) widely exist in BPM and OA systems such as jBPM
or IBM Lotus Notes. However, more general or simpler event logs often involve only timestamps.
According to our survey among 46 process specifications in the bus manufacturer, 21 (45.6%) of
them are simple path specifications.

A sequence of events is indeed a simple path. That is, each transition in the execution net has
only one input place and one output place. There is no and-split or and-join in the corresponding
specification.

Example 18. Figure 10(c) shows a specification collected from an order processing system. The
first step submits a new order, then check inventory and pay by cash/credit card. Moreover, the
specification requires a task validate when the purchase is done. After the validation, it could
be followed with either a cancel task to cancel an invalid order, or a delivery task to ship all the
ordered goods to customers. Obviously, the specification contains no and-split/join, so that execu-
tion traces can be presented as causal nets which have only one path, as illustrated in Figure 10(a)
and (b).

6.2 Place Mapping Algorithm

Considering that each transition in the execution has at most one previous/post place, the
labeling of the transition can be uniquely determined by the labelings of its neighbor places. In
contrast, there are many possibilities for the labelings of a place given the labelings of its neighbor
transitions. Instead of repairing one transition at a time in the one pass algorithm in the previous
section, the idea of the place mapping algorithm is to enumerate all the possible labelings for each
place in the execution, and greedily merge valid labelings from the start place to the end place. In
particular, since there is no and structure in the simple path cases, no conflict will appear in the
merge.

6.2.1 Valid Labeling with Minimum Cost. Unlike the transitions, places are not recorded in
the execution trace. However, there still exist precedence relationships among the places in the
corresponding recovered causal net. The prerequisite set of a place pre_set (pi) is defined on the
execution net Nσ as

pre_set (pi) = {pj ∪ pre_set (pj) | pj ∈ preFσ
(preFσ

(pi))},

That is, the prerequisite set pre_set (pi) contains all the places that on the path from the first place
p0 to the target place pi , such as pre_set (p3) = {p0,p1,p2} in Figure 1(b). In particular, the pre-
requisite set of a place following an and-join transition should include all the places between the
corresponding and-split and and-join transitions. For example, in Figure 1(b), places {p2,p3,p4,p5},
which are between the and-split transition t2 and the and-join transition t5, are all in the prereq-
uisite set of place p6.

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

Efficiently Cleaning Structured Event Logs: A Graph Repair Approach 3:27

Fig. 10. Example of simple path specification.

Consider any pair (pσ ,ps),pσ ∈ Pσ ,ps ∈ Ps , we define π {pσ ,ps } as a valid labeling with min-
imum repairing cost, where π (pσ) = ps and all the places in pre_set (pσ) are also assigned valid
labelings. Since each place gets its labeling, the transition before that place also gets its labeling,
and we record the corresponding minimum repairing cost as cost {pσ ,ps }.

6.2.2 Generation of π {pσ ,ps }. We present the place mapping algorithm in Algorithm 3.
Breadth-first search is used to traverse all the places in the execution net Nσ (Lines 4–5 and 8–9),
which ensures that each place is processed only after all the places in its prerequisite set have been
assigned valid labelings. In each iteration, we consider all the places in specification as candidates
for π ′(pσ). The generation of π {pσ ,ps } is to find out a valid labeling for pσ with minimum cost
(Lines 11–23). To check if the attempt to assign pσ to ps is valid, we need to further consider the
transition tσ before the place pσ , and the corresponding labeling ts before ps .

There are two conditions as illustrated in Figure 11. If it is not and-join structure (as shown
in Figure 11(a)), only one place exists before tσ and ts . The if-branch of Lines 14–15 will be con-
ducted, and the labeling of current place pσ can be directly merged with the labeling of previ-
ous place to calculate the minimum repairing labeling. Otherwise (like Figure 11(b)), else-branch
of Lines 16–17 will be conducted to calculate a valid merged labeling with minimum cost. Sup-
pose there are r places before the and-join transition, i.e., pk−1, . . . ,pk−r , a valid merged label-
ing means merging all π {pk−1,br }, . . . ,π {pk−r ,b1} without conflicts. In other words, all the same
place/transition of the execution net in π {pk−1,br }, . . . ,π {pk−r ,b1} should be assigned the same

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

3:28 R. Huang et al.

ALGORITHM 3: PlaceMapping(Nσ ,π ,Ns)

Input: An execution (Nσ ,π) and a specification Ns

Output: A repair π ′ such that (Nσ ,π
′) � Ns

1: let p0 and pn be the start and end place in the execution net
2: Initialize a queue Q
3: set π {p0, start} := {p0 : start}, cost {p0, start} := 0
4: for each pnext ∈ postFσ

(postFσ
(p0)) do

5: insert pnext into the queue Q
6: while |Q | � 0 do

7: fetch the first element pσ from the queue Q
8: for each pnext ∈ postFσ

(postFσ
(pσ)) do

9: insert pnext into the queue Q
10: tσ := preFσ

(pσ)
11: for each ps ∈ Ps do

12: costmin := +∞
13: for each ts ∈ preFs

(ps) do

14: if |preFσ
(tσ) | = |preFs

(ts) | = 1 then

15: π ∗ := π {preFσ
(tσ),preFs

(ts)}
16: else

17: let π ∗ be the valid labeling with minimum repairing cost after merging
18: if π ∗ � ∅ and Δ(π ,π ∗) + Δ(π (tσ), ts) < costmin then

19: πmin := π ∗ ∪ {tσ : ts }
20: costmin := Δ(π ,π ∗) + Δ(π (tσ), ts)
21: if costmin � +∞ then

22: π {pσ ,ps } := πmin ∪ {pσ : ps }
23: cost {pσ ,ps } := costmin

24: if π {pn , end} � ∅ then

25: return π {pn , end}
26: else

27: return unsound structure

labeling. The π {pσ ,ps } with minimum cost can be calculated by enumerating all the possible com-
bination labelings (π {pk−i ,bj }, i, j = 1, . . . , r) for these r places.

Finally, π {pn , end} will be returned if it is a valid repair. Otherwise, the unsound structure is
identified.

Example 19 (Example 1 Continued). Consider the first placep0 in Figure 1. We have π {p0, start} =
{p0 : start} and cost {p0, start} = 0. Due to the breadth-first search strategy,p1 is the next considered
pσ . After enumerating all possible labelings, we find only one valid pair (p1, a), and get π {p1, a} =
π {p0, start} ∪ {t1 : submit} ∪ {p1 : a}, cost {p1, a} = cost {p0, start} + 0 = 0. Similarly, we have
cost {p2, b} = 6, cost {p2, d} = 6, cost {p2, f} = 3, cost {p4, b} = 6, cost {p4, d} = 6, cost {p4, f} = 3,
cost {p3, c} = 17, cost {p3, e} = 20, cost {p3, g} = 12, cost {p5, c} = 22, cost {p5, e} = 21, cost {p5, g} = 17.

When considering p6 as pσ , since |preFσ
(preFσ

(p6)) | = 2, only one pair (p6, s) is valid. Merging
π {p3, c} and π {p5, e} will get a non-conflict result with minimum repairing cost cost {p6, s} = 32,
since they have the same labeling of the and-split transition, i.e., {t2 : design}, and the repairing
cost is lower than merging π {p3, e} and π {p5, c}. Finally, we get cost {p7, end} = 32 and return
π {p7, end}.

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

Efficiently Cleaning Structured Event Logs: A Graph Repair Approach 3:29

Fig. 11. Generation of π {pσ ,ps }.

6.2.3 Algorithm Analysis. When considering the labeling of each place pσ , we need to check if
there is a valid labeling of all the previous places and then calculate the merged result. Letb andd be
the maximum sizes of the pre/post set of any node in the specification and execution, respectively.
(Note that in most processes, b and d are often small and can be regarded as constants. As shown
in Table 1, the maximum parallel flow of the datasets used in the experiment is 4. Additionally,
techniques are often applied to keep the process as simple as possible in practice [35].) There are
at most O (bd) valid labelings for the previous places of pσ . Each labeling can suggest at most
b candidates for the transition tσ before pσ . By comparing all these O (bd+1) cases, we get the
π {pσ ,ps } with the minimum cost. The total number of different labelings of all the places is at
most O (n2), where n is the maximum number of places in the specification and execution. Hence,
the complexity of Algorithm 3 is O (bd+1n2).

Proposition 7. The place-oriented heuristic algorithm gives an exact solution when applied to

simple path cases, and runs in O (bn2) time.

Proof. Since there are no and splits/joins, each transition is followed by exactly one place in
the specification. We only need to consider the if-branch (Lines 14–15) in Algorithm 3, without
attempting to merge optimal repairs from different and-split branches, and conflicts will never
occur. Therefore, an exact solution with minimum cost is produced. The inconsistent labeling
repair problem with a simple path case can be solved by Algorithm 3 in O (bn2) time. A place of
xor-split always leads to one and at most one post transition in the execution. Note that b denotes
the maximum size of the pre/post set of any node in the specification, including the maximum
size of the pre/post set of the xor-split nodes. Therefore, for each labeling of pσ , there are at most
b candidates for the transition tσ before pσ . Besides, for each candidate of transition tσ , there is
only one possible labeling for the place before the transition tσ , i.e., the if-branch (Lines 14–15) in
Algorithm 3 applies. For any pair (pσ ,ps),pσ ∈ Pσ ,ps ∈ Ps , we can get the valid labeling π {pσ ,ps },
as defined in Section 6.2.1, with the minimum cost by considering all these O (b) cases. Since the
total number of all the possible pairs (pσ ,ps),pσ ∈ Pσ ,ps ∈ Ps is at most O (n2), where n is the
maximum number of places in the specification and execution, the time complexity for the simple
path case is O (bn2). �

7 EXPERIMENTS

In this section, we first introduce the experimental settings. Then, the performance of the proposed
repairing methods is evaluated on both effectiveness and efficiency. All programs are implemented
in Java, and experiments run on a computer with 2.67 GHz CPU and 16 GB memory.

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

3:30 R. Huang et al.

Table 1. Statistics on Datasets

Dataset # traces max trace size max parallel flow

Workflow 4,540 75 3
Log 1,000,000 48 4
Bank 10,000 59 3
Synthetic 1,000,000 350 3

7.1 Experimental Settings

7.1.1 Data Set. In order to study the accuracy of repairing inconsistent labeling by the proposed
methods, we employ four datasets. Table 1 reports the statistics of datasets.

The real Workflow data set is collected from a bus manufacturer. The event data are extracted
from processes related to the bus design and customization affairs. The specification considered in
the experiments consists of 22 transitions and 24 places with the maximum size of pre/post set 3
(the maximum parallel flows). There are 4,722 traces collected during the execution of the process.
Most of the traces are small in size, in the range of 6 to 20. The maximum size observed in all the
traces is no greater than 75. According to our observation, the maximum size of pre/post set in
the execution is 3 as well. In particular, 3.85% of execution traces are irrelevant to the specification,
i.e., with all the event names not from the specification. The experiments are conducted on the
rest 4,540 traces.

The Log dataset contains a million log traces from a distributed monitoring system, which in-
volves several micro-services such as user login and database query management. The process
specification is built referring to the system design document. The events are parsed from the
original system logs by several predefined templates. Since the service invocation chains are also
traced, structural information among events can be obtained through the invoking relationships.
Each tuple in the trace can be parsed as 〈 Event, Name, Operator, Successor 〉 format, which is
analogous to Figure 2(a). It is noted that all the traces in Log dataset are simple paths with up to
48 events. The maximum size of pre/post set (the maximum parallel flows) is 4, which comes from
the xor structure in the specification.

We also consider a public Bank dataset4 which records the bank transaction processes. Since
the structure information is not provided in this dataset, we first compare the execution trace
to the provided specification, and try to recover the execution in the form of the casual net by
re-executing the trace according the specification. After obtaining the casual net, we can easily
transform the trace to the format shown in Figure 1(a). The Bank dataset consists of 10 thousand
traces with up to 59 events in one execution, and the maximum size of pre/post set is 3.

In addition, to evaluate the scalability of the proposed methods, we generate the synthetic event
data following the method in [42] by using the commonly used workflow patterns, such as parallel,
sequential, and so on. There are 1 million generated traces in total, with the sizes ranging from 50
to 350, and the maximum parallel flows is 3.

We manually confirm the ground truth for the inconsistent labelings which are naturally embed-
ded in the real Workflow dataset collected from our industrial partner, a bus manufacturer. There
are 4,540 traces collected during the execution of the process which are relevant to the specifica-
tion. We label the correct event name of the inconsistent trace or mark it as unsound structure
with the help of the specialist knowledge.

For the other larger datasets, Bank and Log, we do not have the knowledge of ground truth
and they are too large to label manually. Indeed, we assume the data are originally clean, since

4https://data.4tu.nl/articles/dataset/Large_Bank_Transaction_Process/12714395.

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

https://data.4tu.nl/articles/dataset/Large_Bank_Transaction_Process/12714395

Efficiently Cleaning Structured Event Logs: A Graph Repair Approach 3:31

Table 2. Statistics of the Structures in Specification

Dataset xor-split xor-join and-split and-join
Workflow 4.44% 4.44% 4.44% 4.44%
Log 11.54% 11.54% 0 0
Bank 6.41% 6.41% 5.98% 5.98%
Synthetic 1.46% 1.46% 1.46% 1.46%

Table 3. Execution Trace Quality Statistics of Real Workflow Data

Traces # % % inconsistencies
consistent 665 14.08
inconsistent (event name repairable) 3,665 77.62 94.58
inconsistent (unsound structure) 210 4.45 5.42
irrelevant 182 3.85

they all conform to the specification when downloaded. Instead, we manually inject faults by ran-
domly changing the event names in the traces, e.g., for fault possibility 0.1, each event name is
randomly altered with a possibility of 0.1. In order to simulate the scenarios of the noise observed
in real event traces, we alter the event names by (1) randomly deleting/adding some words/letters
or (2) replacing with another event name. The repairing methods are then applied to modify the
execution traces to eliminate violations. We study the accuracy of the repairing results via com-
parison with the truth of faulty data previously replaced. For each trace, we conduct the random
insertion of faults 1,000 times and compute the average accuracy. Meanwhile, the repairing time
performance is also reported.

7.1.2 Criteria. Let truth be the set of original correct events (t ,πo (t)) that are randomly re-
placed in an execution trace. Let found be the set of (t ,π ′(t)) that are repaired in π ′, i.e., the re-
pairing results. To evaluate the accuracy, we use the f-measure of precision and recall [46], given

by precision = |truth∩found |
|found | , recall = |truth∩found |

|truth | , and f-measure= 2 · pr ecision ·r ecall

pr ecision+r ecall
. It is natural

that a higher f-measure is preferred.
To study the difference between optimal and heuristic solutions, we report the relative perfor-

mance (Δ/Δ∗), where Δ and Δ∗ denote the repairing cost of the heuristic and exact approaches.
The closer the relative ratio is to 1, the better the approximation performance.

Recall that the heuristic methods may generate false negatives (FN) regarding the detection
of unsound structure, while the exact approach computes the true positives (TP) and true neg-

atives (TN). It is noted that the heuristic methods will not return false positive (FP), i.e., return
the structure is sound but the truth is unsound, since a valid repairing is already found to make
the execution conforming to the specification. To compare the effectiveness of detecting unsound
structure, we also report the accuracy of the heuristic methods #TP+#TN

#TP+#TN+#FN .

7.1.3 Statistics. Table 2 illustrates some statistics of the structures in the specification of the
datasets used in the experiments. As shown, xor-split and xor-join appear in all the real-world
datasets. The execution traces in the Log dataset are simple paths, i.e., there is no and-split or
and-join in the specification.

Furthermore, to illustrate how the constrained model matches the process specification, Table 3
studies the statistics on the real Workflow dataset with errors naturally embedded and labeled.
As shown, only about 14.08% traces match exactly the process specification. For those execution
traces with inconsistencies, there are 77.62% traces that can be repaired under the constraints of

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

3:32 R. Huang et al.

specification, while the remaining 4.45% traces are identified with unsound structure. In particular,
3.85% of execution traces are even found irrelevant to the specification.

7.2 Comparison with Existing Methods

The approaches in comparison are (1) our proposed exact algorithm (Exact), the transition-oriented
heuristic algorithm (OnePass), and place-oriented heuristic algorithm (PlaceMapping). (2) The par-
tially ordered based trace alignment method [34] (p-alignment). (3) The state-of-the-art graph re-
pair techniques GMend [28], and Graph Relabel [40] (GRelabel). The graph quality rules of GMend

are derived according to the specification of the dataset. Specifically, the and structure is retained
in the graph pattern of the quality rules, while only one of the branches in the xor structure could
be preserved. That is, the obtained graph quality rules cannot express the semantic of xor. The
reason is that the graph pattern used to identify the repairing entity requires an exact matching of
all the nodes in the graph. As a consequence, only the preserved xor branch could be considered
in the repairing while others are ignored by GMend.

We first report the results over the real Workflow dataset. The comparison is performed on
various possibilities of inserted faults in Figure 12 and various trace sizes in Figure 13. The accura-
cies of both the Exact and heuristic algorithms are considerable, with f-measure no less than 0.8,
as illustrated in Figure 12(c). Remarkably, the PlaceMapping approach is comparable to the Exact,
having f-measures as high as 0.9. While the accuracy performance of the OnePass method is not
as stable as the Exact and PlaceMapping. The rationale is that OnePass determines a heuristically
good assignment as the repair of a transition without trying other alternatives like the exact algo-
rithm. Consequently, by choosing an incorrect assignment in a step, the repairing may vary in the
following steps.

The accuracy of p-alignment drops quickly on large fault possibilities. The reason is that the
number of events may be different from the original execution trace after repairing, since the
structure of execution could be modified when the unsynchronized model/log move occurs. The
graph based repairing techniques GMend and GRelabel have lower accuracies compared to our
proposal. The reason lies in that GRelabel is originally designed for repairing simple graphs by
neighborhood constraints, which do not consider and and xor semantics. The graph quality
rules such as graph functional dependencies (GFDs) specified in GMend cannot support the
and/xor semantics on events very well either.

As shown in Figure 13(a), our Exact and heuristic algorithms keep high accuracies when the
size of trace grows up, with f-measure no less than 0.8. Figures 12(d) and 13(b) report the efficiency
evaluation. It is not surprising that the repairing time cost of Exact increases with the increase of
the fault possibility in Figure 12(d). According to our analysis, the Exact algorithm has exponential
complexity in the number of events (transitions). Therefore, its time costs increase heavily with
the increase of trace sizes in Figure 13(b). Nevertheless, OnePass algorithm shows significantly
lower time costs (similar to p-alignment, but with higher accuracy than p-alignment, especially in
large fault sizes and trace sizes). The PlaceMapping algorithm can achieve comparable accuracy to
the Exact while keeping relatively lower time costs.

The experiments over the Bank dataset show similar results. The comparison result over vari-
ous possibilities of inserted faults is presented in Figure 14, while the performance over various
trace sizes is reported in Figure 15. As illustrated in Figures 14(a) and 15(a), our exact and heuristic
methods still achieve very high accuracies with f-measures no less than 0.8. Figures 14(b) and 15(b)
report the efficiency evaluation. The complex specification, with more nested and/xor structures
of Bank dataset, makes the exact method generate much more branches in the repairing, and sig-
nificantly increases the total time cost. Therefore, the more efficient heuristic algorithm is needed.

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

Efficiently Cleaning Structured Event Logs: A Graph Repair Approach 3:33

Fig. 12. Performance of repairing various faults over the Workflow dataset.

Fig. 13. Performance on various trace sizes over the real dataset.

It is noted that p-alignment also shows much higher time cost in larger fault possibility. The reason
is that the complex specification also increases the search space of the A* algorithm in p-alignment.

Figures 16 and 17 evaluate the compared methods over the Log dataset on various possibilities
of inserted faults and various trace sizes, respectively. The f-measure of the proposed exact and

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

3:34 R. Huang et al.

Fig. 14. Performance of repairing various faults over the Bank Dataset.

Fig. 15. Performance on various trace sizes over the Bank dataset.

heuristic methods remain as high as 0.9 with various fault possibilities. The accuracy of OnePass

is not as high as Exact and PlaceMapping in larger trace size. The rationale is that the dataset con-
tains more xor in specification which makes it harder to determine the correct assignment. Lower
accuracy is also observed in larger trace size for p-alignment. Since the standard cost function used
in p-alignment assigns the same cost to different unsynchronized model/log moves without distin-
guishing them, it is more likely to lead to wrong branches with more xor branches. While our
proposal follows the minimum change idea in database repairing [9], as discussed in Section 2.4,
and find a repair that minimally differs from the original data. Figures 16(b) and 17(b) evaluate the
time efficiency. Although all the traces are simple path in Log dataset, the time cost of Exact still
increases quickly with the increase of fault possibilities and trace sizes.

7.3 A Closer Look at Proposed Techniques

We compare our proposed pruning techniques in Figures 18–20, including the Exact algorithm with
the Simple bounding function (ES), the Exact algorithm with the Advanced bounding function (EA),
and the Pruning of Invalid branches for the exact algorithm (PI).

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

Efficiently Cleaning Structured Event Logs: A Graph Repair Approach 3:35

Fig. 16. Performance of repairing various faults over the Log dataset.

Fig. 17. Performance on various trace sizes over the Log dataset.

Fig. 18. Comparison of proposed methods on repairing various faults.

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

3:36 R. Huang et al.

Fig. 19. Comparison of proposed methods on various trace sizes.

Fig. 20. Scalability on Synthetic data.

In Figure 18(a), we demonstrate that the advanced bounding function (EA) can reduce the re-
pairing time significantly compared with the simple one (ES). In order to illustrate the pruning
power of different bounding functions, in Figure 18(b), we show that EA needs fewer elements of
repairing states to be processed (i.e., the total number of nodes in Figure 6). The effectiveness of
pruning on invalid branches is limited, since the traces with sound structure in this experiment
have lower chance to involve invalid branches.

Similarly, as illustrated in Figure 19(a), EA method with the advanced bounding function
can reduce time cost considerably, compared with ES. Indeed, the time cost in Figure 19(a) is
proportional to the size of processed elements of branching states in Figure 19(b). The processed
elements as well as the pruning power may not increase strictly with the trace size, owing to
the structural difference in the process. A sudden rise is observed when the trace size reaches
around 60, because the traces with size larger than 60 have an extra sub-process of and structure.
Since the number of parallel flows after the and-split transition is more than one, there are
more combinations of possible labelings being considered. Referring to the property of bounding
functions, the pruning power of the advanced pruning bound is at least no worse than that of the
simple one, which is also observed in Figure 19(b). It is notable that the pruning method of invalid
branches does not show significant improvement. The reason is that our currently employed real

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

Efficiently Cleaning Structured Event Logs: A Graph Repair Approach 3:37

Fig. 21. Comparison of exact and heuristic repair methods over the Workflow dataset.

Fig. 22. Comparison of the heuristic methods with regard to the unsound structure detection over the Work-

flow dataset.

data set has a small portion of unsound structure traces, i.e., only 4.45% as shown in Table 3. The
opportunity of pruning on invalid branches is thus limited during repairing.

In order to evaluate the scalability of the proposed methods, Figure 20 reports the experiment on
larger synthetic data. Note that we can find a valid repair for most execution traces in the previous
real data. In order to study the performance of unsound structure cases, the synthetic data contains
20% traces that do not exist any valid labeling. As illustrated in the results, the advanced bounding
function (EA) can always show better pruning power and needs much lower time cost than ES.
Remarkably, the pruning method performs well together with both ES and EA, since it can prune
the invalid branches especially in those traces that contain unsound structures.

We evaluate our proposed heuristic techniques in Figures 21–24. Figure 21 shows the relative
performance Δ/Δ∗ of the repairing cost Δ by the heuristic algorithms (OnePass and PlaceMapping)
and the optimal solution Δ∗ by the Exact algorithm. As illustrated, both the repairing costs are very
close to the optimal one , with relative difference no greater than 1.12. Moreover, since the OnePass

algorithm may generate false negatives regarding the detection of unsound structure, we check
the accuracy (defined in Section 7.1.2) of the detection results returned by the heuristic methods.

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

3:38 R. Huang et al.

Fig. 23. Comparison of the heuristic methods with regard to the unsound structure detection over the Bank

dataset.

Fig. 24. Comparison of the heuristic methods with regard to the unsound structure detection over the Log

dataset.

Figures 22(a) reports the evaluation on the real Workflow dataset. As illustrated, the accuracy of
OnePass drops quickly with the increase of fault possibilities, since OnePass is more likely to lead
to a completely different flow with more faults in the trace. The evaluations over Bank dataset
(Figure 23(a)) and Log dataset (Figure 24(a)) show similar results. Owing to the structural difference
in the process, the accuracy of OnePass has no great change with various trace sizes in Figure 23(b).
While in Figures 22(b) and 24(b), the accuracy of OnePass also indicates a decreasing trend with
the increase of trace size. In contrast, the PlaceMapping algorithm makes better approximation by
keeping high accuracy with the increasing of both the fault possibility and trace size. Since all the
traces are simple paths in the Log dataset, the repairing results of PlaceMapping are the same as
the Exact. The results verify the conclusion in Proposition 7 that the PlaceMapping algorithm gives
an exact solution when applied to the special case of simple path.

Figures 22 and 23 show that the place-oriented heuristic algorithm can reach better approxima-
tion ratio, compared with the transition-oriented heuristic algorithm. While this is not guaranteed
theoretically in general, it is always the case for the special case of simple path. Referring to Propo-
sition 7, the place-oriented heuristic algorithm gives an exact solution when applied to simple path
cases, while the transition-oriented heuristic algorithm does not have a theoretical bound due to

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

Efficiently Cleaning Structured Event Logs: A Graph Repair Approach 3:39

its greedy strategy. It is worth noting that simple paths are prevalent and applicable not only in
the data with all execution traces in this special case, such as dataset Log, but also in solving the
sub-problems of execution traces in general. For instance, after processing t5 in Figure 1(b), the
remaining execution trace is indeed a simple path, and thus the place-oriented algorithm returns
the optimal solution in this sub-problem. In this sense, owing to the performance guarantee of
returning the optimal solutions in the (sub)problems, the place-oriented algorithm shows better
results than the transition-oriented one.

7.4 Experiments on Recovery of Missing Events

We compare a baseline using Petri net, namely EventRecovery, which studies the efficient tech-
niques for recovering missing events [49]. Our proposal can also be applied in this similar job.
For example, to recover the missing event name—of t4 in Figure 1(a), we consider a fixed dis 1
between—and any other event name, and a fixed freq 1, when evaluating the repair cost of the spe-
cial (missing) event name—in Equation (2). The labeling repair algorithm will find a repair check

inventory of—for t4 that can satisfy the specification in Figure 1(c) and is with the minimum cost
in total.

To prepare the datasets for evaluation, instead of changing the event names in the traces as
errors, we randomly delete the event names to simulate the missing information in this experi-
ment. A missing rate, for example, 0.1, denotes that 10 percent events are missing in the dataset.
Different from EventRecovery that simply views event logs as sequences, our proposed exact and
heuristic methods leverage the structure information in execution. Following the same setting in
the evaluation of EventRecovery [49], we use the f-measure to evaluate the accuracy of recovery.
Let removed be the set of all the removed events and recovered be the set of all the recovered events.
We have precision = |removed∩recovered |

|recovered | , recall = |removed∩recovered |
|removed | , f-measure= 2 · pr ecision ·r ecall

pr ecision+r ecall
. A

larger f-measure indicates a higher recovery accuracy.
As illustrated in Figure 25, our Exact and heuristic algorithms keep higher accuracies when the

missing rate increases. Since the structure information is not exploited, the minimum recovery
result in EventRecovery may not be as accurate as the proposed methods in this work, especially
when the missing rate is high. Similar to the results in Section 7.2, the time cost of the Exact algo-
rithm grows faster when the missing rate increases. EventRecovery has the lowest time costs due to
its pre-computing recovery path between two events. OnePass algorithm shows similar time costs
to EventRecovery, but with higher accuracy than EventRecovery, especially in large missing rates.
The PlaceMapping algorithm can keep relatively lower time costs while achieving comparable ac-
curacy to the Exact algorithm.

7.5 Experiments on Application Performance Management

While the exact methods are generally efficient as shown in Figures 18(a)–20(a), they may still not
be fast enough for the streaming traces of events, e.g., in the APM for monitoring the performance
of software applications. This experiment demonstrates how the repairing may fall behind the
streaming data generation, in a real APM scenario from our industrial partner Cloudwise.

Figure 26 shows the start time and end time of execution traces being generated and then cleaned
by the proposed methods over a data stream. The red line in Figure 26 illustrates the start time and
end time of each trace, where a new trace comes in every second. The repair starts immediately
when the entire trace arrives and the previous trace finishes repairing. It means every trace is
expected to be cleaned in one second, before the next trace comes. As illustrated in Figure 26, the
two heuristic methods OnePass and PlaceMapping could satisfy the online repairing, i.e., most of the
points are under the red line. In contrast, the Exact method suffers from relatively high repairing

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

3:40 R. Huang et al.

Fig. 25. Event recovery performance on various missing rates over the Log dataset.

Fig. 26. Trace generation and repairing time in a data stream.

delay, since all the subsequent traces are delayed by certain traces with high repairing time. In
addition, as illustrated in Figures 16 and 17, the PlaceMapping heuristic shows higher accuracy
than OnePass, close to the Exact. In this sense, an even more efficient and effective algorithm is
always needed.

8 RELATED WORK

The cooperation of business processes and data management has been emphasized for various
workflow networks involving both data and flow, e.g., in Web applications, e-governance, and
electronic patient records [17]. In particular, workflow techniques are useful for data management
tasks such as data lineage and data provenance [7, 42]. Instead of repairing inconsistencies, the
existing study assumes event data to be clean and is dedicated to improving the execution perfor-
mance, i.e., optimize the execution [30]. As described, repairing event data is highly demanded and
non-trivial.

8.1 Process Data Management

Studies on process data conducted by the data management community mainly focus on processing
queries over workflow executions [5, 14, 15, 18]. A typical query inputs a process specification and

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

Efficiently Cleaning Structured Event Logs: A Graph Repair Approach 3:41

a pattern of execution, and tries to identify all the executions that have the structure specified
by the pattern. Additional conditions may be added in the query, such as type information [14] or
probability [16]. Moreover, as an important application, provenance queries on workflows are well
investigated [2–4, 31]. A typical provenance query calculates the transitive closure of dependencies
of an event in the process data. In particular, Bao et al. [2] studied the difference provenance, i.e.,
computing the structural difference of two executions. Note that the repairing studied in this work
employs the modification of names in events (transitions) without changing the structure. Our
approaches either identify the executions with unsound structures or repair them for conformance.
As the prerequisite of execution is not changed in repairing, the repairing cost is directly computed
by modification count.

The conformance checking [13, 34, 37] studied in the process mining field also assesses the
deviations of event data with respect to the expected behavior of the process. The commonly
used alignment algorithm [1, 13] only considers the sequential information in execution without
utilizing the structural information. Although the partial orders between events are studied in p-
alignment [34], the structure of execution could be modified when the unsynchronized model/log
move occurs. As a result, the alignment-based techniques cannot detect the unsound structure. In
addition, the number of events may be different from the original execution trace after alignment,
which changes the structure of the execution and is not a valid repair in this work. Consequently,
the performance of our proposal demonstrates higher repair accuracy in the experiments.

8.2 Database Repairing

Integrity constraints are often employed to eliminate inconsistencies in databases [22, 41]. Most
previous works consider equality constraints such as inclusion dependencies, functional dependen-
cies or conditional functional dependencies [8]. The repairing aims at modifying a minimum set
of tuple values in order to make the revised data satisfy the given constraints [9, 50]. Although we
adopt the same modification repairing, the constraints are very different between data dependen-
cies and process specifications. In particular, the equality based data dependencies specifies groups
of tuples with equal values, which do not exist among transitions in event data. Approaches are
also proposed that do not follow the minimality, such as fix with master data and edit rules [26],
partial currency orders [24], or accuracy rules [10], and so on. To cooperate with the art techniques,
extra information is often needed, e.g., master data or additional rules.

A variety of dependencies have recently been studied for graph data [25, 28, 29, 40]. GFDs [29]
provide a primitive form of integrity constraints to specify a fundamental part of the semantics
of the schemaless graph-structured data. Numeric graph dependencies (NGDs) [27] extend
GFDs with linear arithmetic expressions and built-in comparison predicates. Graph association

rules (GARs) [25] make an effort to incorporate ML classifiers into logic rules for association
deduction to catch missing links and attributes. Graph quality rules (GQRs) [28] are introduced
to simultaneously repair data, identify objects and deduce entities that do not match. All these
dependencies are specified with a graph pattern, which is different from the process specification,
and cannot support the and/xor semantics on transitions in event data very well. In addition,
the repairing according to these dependencies may involve structure modification [40], and thus
cannot detect the unsound structure. Consequently, as illustrated in the experiments in Section 7.2,
the performance of adapting existing graph repairing techniques is not as good as our proposal.

9 CONCLUSIONS

In this article, we study the problems of efficiently detecting unsound structure and repairing in-
consistent event names. Firstly, to repair event data with inconsistent labeling but sound structure,
we follow the widely used minimum change principle to preserve the original information as much

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

3:42 R. Huang et al.

as possible. We also reveal the np-completeness of the studied repairing problem. Then, we devise
a novel, practically efficient exact algorithm to conduct detection and repairing dirty event data
simultaneously so that it either (1) reports unsound structure or (2) gives the minimum repair of
inconsistent event names. In addition, we present a PTIME transition-oriented heuristic algorithm
to approximately deliver the results. Moreover, considering that the transition-oriented heuristic
algorithm may generate too many false negatives regarding the detection of unsound structure,
we further put forward a place-oriented heuristic algorithm. It not only gives an exact solution in
the special case of simple path, but also makes better approximation in general cases.

Experiments on both real and synthetic data demonstrate the effectiveness and efficiency of the
proposed methods. In particular, the repair accuracy of our proposal is significantly higher than
the existing partially ordered based repair [34] and the direct application of graph repair [28, 40].
The transition-oriented heuristic algorithm is much more efficient than the exact one, while the
place-oriented heuristic algorithm exhibits higher approximation ratios. According to the statis-
tics on real datasets, among the execution traces with detectable inconsistencies (82.07%), most
are structurally sound with repairable event names (77.62%). After detecting unsound structures
by this proposal, an interesting future study is to automatically suggest possible structural expla-
nations during the manual consultation by business owners.

REFERENCES

[1] Arya Adriansyah, Boudewijn F. van Dongen, and Wil M. P. van der Aalst. 2013. Memory-efficient alignment of ob-

served and modeled behavior. BPM Center Report 3 (2013), 1–44.

[2] Zhuowei Bao, Sarah Cohen Boulakia, Susan B. Davidson, Anat Eyal, and Sanjeev Khanna. 2009. Differencing prove-

nance in scientific workflows. In Proceedings of the 25th International Conference on Data Engineering. Yannis E.

Ioannidis, Dik Lun Lee, and Raymond T. Ng (Eds.), IEEE Computer Society, 808–819. DOI:https://doi.org/10.1109/

ICDE.2009.103

[3] Zhuowei Bao, Susan B. Davidson, Sanjeev Khanna, and Sudeepa Roy. 2010. An optimal labeling scheme for workflow

provenance using skeleton labels. In Proceedings of the ACM SIGMOD International Conference on Management of Data.

Ahmed K. Elmagarmid and Divyakant Agrawal (Eds.), ACM, 711–722. DOI:https://doi.org/10.1145/1807167.1807244

[4] Zhuowei Bao, Susan B. Davidson, and Tova Milo. 2011. Labeling recursive workflow executions on-the-fly. In Proceed-

ings of the ACM SIGMOD International Conference on Management of Data. Timos K. Sellis, Renée J. Miller, Anastasios

Kementsietsidis, and Yannis Velegrakis (Eds.), ACM, 493–504. DOI:https://doi.org/10.1145/1989323.1989375

[5] Catriel Beeri, Anat Eyal, Tova Milo, and Alon Pilberg. 2007. Monitoring business processes with queries. In Pro-

ceedings of the 33rd International Conference on Very Large Data Bases. Christoph Koch, Johannes Gehrke, Minos N.

Garofalakis, Divesh Srivastava, Karl Aberer, Anand Deshpande, Daniela Florescu, Chee Yong Chan, Venkatesh Ganti,

Carl-Christian Kanne, Wolfgang Klas, and Erich J. Neuhold (Eds.), ACM, 603–614. Retrieved from http://www.vldb.

org/conf/2007/papers/research/p603-beeri.pdf.

[6] Richard Bellman. 1958. On a routing problem. Quarterly of Applied Mathematics 16, 1 (1958), 87–90.

[7] Olivier Biton, Sarah Cohen Boulakia, Susan B. Davidson, and Carmem S. Hara. 2008. Querying and managing

provenance through user views in scientific workflows. In Proceedings of the 24th International Conference on Data

Engineering. Gustavo Alonso, José A. Blakeley, and Arbee L. P. Chen (Eds.), IEEE Computer Society, 1072–1081.

DOI:https://doi.org/10.1109/ICDE.2008.4497516

[8] Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. 2007. Conditional functional

dependencies for data cleaning. In Proceedings of the 23rd International Conference on Data Engineering. Rada Chirkova,

Asuman Dogac, M. Tamer Özsu, and Timos K. Sellis (Eds.), IEEE Computer Society, 746–755. DOI:https://doi.org/10.

1109/ICDE.2007.367920

[9] Philip Bohannon, Michael Flaster, Wenfei Fan, and Rajeev Rastogi. 2005. A cost-based model and effective heuris-

tic for repairing constraints by value modification. In Proceedings of the ACM SIGMOD International Conference on

Management of Data. Fatma Özcan (Ed.), ACM, 143–154. DOI:https://doi.org/10.1145/1066157.1066175

[10] Yang Cao, Wenfei Fan, and Wenyuan Yu. 2013. Determining the relative accuracy of attributes. In Proceedings of the

ACM SIGMOD International Conference on Management of Data. Kenneth A. Ross, Divesh Srivastava, and Dimitris

Papadias (Eds.), ACM, 565–576. DOI:https://doi.org/10.1145/2463676.2465309

[11] Fabio Casati, Malú Castellanos, Norman Salazar, and Umeshwar Dayal. 2007. Abstract process data warehousing. In

Proceedings of the 23rd International Conference on Data Engineering. Rada Chirkova, Asuman Dogac, M. Tamer Özsu,

and Timos K. Sellis (Eds.), IEEE Computer Society, 1387–1389. DOI:https://doi.org/10.1109/ICDE.2007.369018

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

https://doi.org/10.1109/ICDE.2009.103
https://doi.org/10.1145/1807167.1807244
https://doi.org/10.1145/1989323.1989375
http://www.vldb.org/conf/2007/papers/research/p603-beeri.pdf
https://doi.org/10.1109/ICDE.2008.4497516
https://doi.org/10.1109/ICDE.2007.367920
https://doi.org/10.1145/1066157.1066175
https://doi.org/10.1145/2463676.2465309
https://doi.org/10.1109/ICDE.2007.369018

Efficiently Cleaning Structured Event Logs: A Graph Repair Approach 3:43

[12] Thomas Curran, Gerhard Keller, and Andrew Ladd. 1998. SAP R/3 Business Blueprint: Understanding the Business Process

Reference Model. Prentice-Hall, Inc., Upper Saddle River, NJ.

[13] Massimiliano de Leoni, Fabrizio Maria Maggi, and Wil M. P. van der Aalst. 2012. Aligning event logs and declarative

process models for conformance checking. In Proceedings of the International Conference on Business Process Manage-

ment. Alistair Barros, Avigdor Gal, and Ekkart Kindler (Eds.), Lecture Notes in Computer Science, Vol. 7481, Springer,

82–97. DOI:https://doi.org/10.1007/978-3-642-32885-5_6

[14] Daniel Deutch and Tova Milo. 2008. Type inference and type checking for queries on execution traces. Proceedings of

the VLDB Endowment 1, 1 (2008), 352–363. DOI:https://doi.org/10.14778/1453856.1453898

[15] Daniel Deutch and Tova Milo. 2009. Evaluating TOP-K queries over business processes. In Proceedings of the 25th

International Conference on Data Engineering. Yannis E. Ioannidis, Dik Lun Lee, and Raymond T. Ng (Eds.), IEEE

Computer Society, 1195–1198. DOI:https://doi.org/10.1109/ICDE.2009.199

[16] Daniel Deutch and Tova Milo. 2009. TOP-K projection queries for probabilistic business processes. In Proceedings of

the 12th International Conference on Database Theory. Ronald Fagin (Ed.), Vol. 361, ACM, 239–251. DOI:https://doi.

org/10.1145/1514894.1514923

[17] Daniel Deutch and Tova Milo. 2011. A quest for beauty and wealth (or, business processes for database researchers).

In Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. Maurizio

Lenzerini and Thomas Schwentick (Eds.), ACM, 1–12. DOI:https://doi.org/10.1145/1989284.1989286

[18] Daniel Deutch, Tova Milo, Neoklis Polyzotis, and Tom Yam. 2010. Optimal top-k query evaluation for weighted

business processes. Proceedings of the VLDB Endowment 3, 1 (2010), 940–951. DOI:https://doi.org/10.14778/1920841.

1920960

[19] Luping Ding, Songting Chen, Elke A. Rundensteiner, Jun’ichi Tatemura, Wang-Pin Hsiung, and K. Selçuk Candan.

2008. Runtime semantic query optimization for event stream processing. In Proceedings of the 24th International Con-

ference on Data Engineering. Gustavo Alonso, José A. Blakeley, and Arbee L. P. Chen (Eds.), IEEE Computer Society,

676–685. DOI:https://doi.org/10.1109/ICDE.2008.4497476

[20] Sebastian Dunzer, Matthias Stierle, Martin Matzner, and Stephan Baier. 2019. Conformance checking: A state-of-the-

art literature review. In Proceedings of the 11th International Conference on Subject-Oriented Business Process Manage-

ment. Stefanie Betz (Ed.), ACM, 4:1–4:10. DOI:https://doi.org/10.1145/3329007.3329014

[21] Joost Engelfriet. 1991. Branching processes of petri nets. Acta Informatica 28, 6 (1991), 575–591. DOI:https://doi.org/

10.1007/BF01463946

[22] Wenfei Fan. 2008. Dependencies revisited for improving data quality. In Proceedings of the 27th ACM SIGMOD-SIGACT-

SIGART Symposium on Principles of Database Systems. Maurizio Lenzerini and Domenico Lembo (Eds.), ACM, 159–170.

DOI:https://doi.org/10.1145/1376916.1376940

[23] Wenfei Fan. 2018. Constraint-driven database repair. In Proceedings of the Encyclopedia of Database Systems, Second

Edition. DOI:https://doi.org/10.1007/978-1-4614-8265-9_599

[24] Wenfei Fan, Floris Geerts, and Jef Wijsen. 2011. Determining the currency of data. In Proceedings of the 30th ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. Maurizio Lenzerini and Thomas Schwentick

(Eds.), ACM, 71–82. DOI:https://doi.org/10.1145/1989284.1989295

[25] Wenfei Fan, Ruochun Jin, Muyang Liu, Ping Lu, Chao Tian, and Jingren Zhou. 2020. Capturing associations in graphs.

Proceedings of the VLDB Endowment 13, 11 (2020), 1863–1876. Retrieved from http://www.vldb.org/pvldb/vol13/p1863-

fan.pdf.

[26] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Wenyuan Yu. 2010. Towards certain fixes with editing rules and

master data. Proceedings of the VLDB Endowment 3, 1 (2010), 173–184. DOI:https://doi.org/10.14778/1920841.1920867

[27] Wenfei Fan, Xueli Liu, Ping Lu, and Chao Tian. 2020. Catching numeric inconsistencies in graphs. ACM Trans. Database

Syst. 45, 2 (2020), 9:1–9:47. DOI:https://doi.org/10.1145/3385031

[28] Wenfei Fan, Ping Lu, Chao Tian, and Jingren Zhou. 2019. Deducing certain fixes to graphs. Proceedings of the VLDB

Endowment 12, 7 (2019), 752–765. DOI:https://doi.org/10.14778/3317315.3317318

[29] Wenfei Fan, Yinghui Wu, and Jingbo Xu. 2016. Functional dependencies for graphs. In Proceedings of the 2016 Interna-

tional Conference on Management of Data. Fatma Özcan, Georgia Koutrika, and Sam Madden (Eds.), ACM, 1843–1857.

DOI:https://doi.org/10.1145/2882903.2915232

[30] Daniela Grigori, Fabio Casati, Umeshwar Dayal, and Ming-Chien Shan. 2001. Improving business process quality

through exception understanding, prediction, and prevention. In VLDB 2001, Proceedings of the 27th International

Conference on Very Large Data Bases. Peter M. G. Apers, Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, Kotagiri

Ramamohanarao, and Richard T. Snodgrass (Eds.), Morgan Kaufmann, 159–168. Retrieved from http://www.vldb.org/

conf/2001/P159.pdf.

[31] Thomas Heinis and Gustavo Alonso. 2008. Efficient lineage tracking for scientific workflows. In Proceedings of the ACM

SIGMOD International Conference on Management of Data. Jason Tsong-Li Wang (Ed.), ACM, 1007–1018. DOI:https:

//doi.org/10.1145/1376616.1376716

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

https://doi.org/10.1007/978-3-642-32885-5_6
https://doi.org/10.14778/1453856.1453898
https://doi.org/10.1109/ICDE.2009.199
https://doi.org/10.1145/1514894.1514923
https://doi.org/10.1145/1989284.1989286
https://doi.org/10.14778/1920841.1920960
https://doi.org/10.1109/ICDE.2008.4497476
https://doi.org/10.1145/3329007.3329014
https://doi.org/10.1007/BF01463946
https://doi.org/10.1145/1376916.1376940
https://doi.org/10.1007/978-1-4614-8265-9_599
https://doi.org/10.1145/1989284.1989295
http://www.vldb.org/pvldb/vol13/p1863-fan.pdf
https://doi.org/10.14778/1920841.1920867
https://doi.org/10.1145/3385031
https://doi.org/10.14778/3317315.3317318
https://doi.org/10.1145/2882903.2915232
http://www.vldb.org/conf/2001/P159.pdf
https://doi.org/10.1145/1376616.1376716

3:44 R. Huang et al.

[32] R. M. Karp. 1972. Reducibility among combinatorial problems. In Proceedings of the Complexity of Computer Compu-

tations. Plenum Press, 85–103.

[33] Ann Langley. 1999. Strategies for theorizing from process data. The Academy of Management Review 24, 4 (1999),

691–710. Retrieved from http://www.jstor.org/stable/259349.

[34] Xixi Lu, Dirk Fahland, and Wil M. P. van der Aalst. 2014. Conformance checking based on partially ordered event data.

In Proceedings of the International Conference on Business Process Management. Fabiana Fournier and Jan Mendling

(Eds.), Lecture Notes in Business Information Processing, Vol. 202. Springer, 75–88. DOI:https://doi.org/10.1007/978-

3-319-15895-2_7

[35] Jan Mendling, Hajo A. Reijers, and Wil M. P. van der Aalst. 2010. Seven process modeling guidelines (7PMG). Infor-

mation and Software Technology 52, 2 (2010), 127–136.

[36] T. Murata. 1989. Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77, 4 (1989), 541–580.

DOI:https://doi.org/10.1109/5.24143

[37] Marco Pegoraro, Merih Seran Uysal, and Wil M. P. van der Aalst. 2021. Conformance checking over uncertain event

data. Information Systems 102 (2021), 101810. DOI: https://doi.org/10.1016/j.is.2021.101810

[38] Anne Rozinat and Wil M. P. van der Aalst. 2008. Conformance checking of processes based on monitoring real behavior.

Information Systems 33, 1 (2008), 64–95.

[39] Benjamin H. Sigelman, Luiz Andre Barroso, Mike Burrows, Pat Stephenson, Manoj Plakal, Donald Beaver, Saul Jaspan,

and Chandan Shanbhag. 2010. Dapper, a large-scale distributed systems tracing infrastructure. (2010).

[40] Shaoxu Song, Hong Cheng, Jeffrey Xu Yu, and Lei Chen. 2014. Repairing vertex labels under neighborhood constraints.

Proceedings of the VLDB Endowment 7, 11 (2014), 987–998. DOI:https://doi.org/10.14778/2732967.2732974

[41] Shaoxu Song, Fei Gao, Ruihong Huang, and Chaokun Wang. 2022. Data dependencies extended for variety and

veracity: A family tree. IEEE Transactions on Knowledge and Data Engineering 34, 10 (2022), 4717–4736. DOI:https:

//doi.org/10.1109/TKDE.2020.3046443

[42] Peng Sun, Ziyang Liu, Susan B. Davidson, and Yi Chen. 2009. Detecting and resolving unsound workflow views for

correct provenance analysis. In Proceedings of the ACM SIGMOD International Conference on Management of Data.

Ugur Çetintemel, Stanley B. Zdonik, Donald Kossmann, and Nesime Tatbul (Eds.), ACM, 549–562. DOI:https://doi.

org/10.1145/1559845.1559903

[43] Wil M. P. van der Aalst. 2011. Process Mining - Discovery, Conformance and Enhancement of Business Processes. Springer.

I–XVI, 1–352 pages.

[44] Wil M. P. van der Aalst et al. 2011. Process mining manifesto. In Proceedings of the Business Process Management

Workshops. 169–194.

[45] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek Kiepuszewski, and Alistair P. Barros. 2003. Workflow

patterns. Distributed Parallel Databases 14, 1 (2003), 5–51. DOI:https://doi.org/10.1023/A:1022883727209

[46] C. J. van Rijsbergen. 1979. Information Retrieval. Butterworth.

[47] Jianmin Wang, Shaoxu Song, Xuemin Lin, Xiaochen Zhu, and Jian Pei. 2015. Cleaning structured event logs: A graph

repair approach. In Proceedings of the 31st IEEE International Conference on Data Engineering. Johannes Gehrke, Wolf-

gang Lehner, Kyuseok Shim, Sang Kyun Cha, and Guy M. Lohman (Eds.), IEEE Computer Society, 30–41. DOI:https:

//doi.org/10.1109/ICDE.2015.7113270

[48] Jianmin Wang, Shaoxu Song, Xiaochen Zhu, and Xuemin Lin. 2013. Efficient recovery of missing events. Proceedings

of the VLDB Endowment 6, 10 (2013), 841–852. DOI:https://doi.org/10.14778/2536206.2536212

[49] Jianmin Wang, Shaoxu Song, Xiaochen Zhu, Xuemin Lin, and Jiaguang Sun. 2016. Efficient recovery of missing events.

IEEE Trans. Knowl. Data Eng. 28, 11 (2016), 2943–2957. DOI:https://doi.org/10.1109/TKDE.2016.2594785

[50] Jef Wijsen. 2005. Database repairing using updates. ACM Transactions on Database Systems 30, 3 (2005), 722–768.

[51] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang, Chunyu Xie, Xinsheng Yang, Qian Cheng,

Ze Li, Junjie Chen, Xiaoting He, Randolph Yao, Jian-Guang Lou, Murali Chintalapati, Furao Shen, and Dongmei Zhang.

2019. Robust log-based anomaly detection on unstable log data. In Proceedings of the ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software Engineering. Marlon Dumas, Dietmar

Pfahl, Sven Apel, and Alessandra Russo (Eds.), ACM, 807–817. DOI:https://doi.org/10.1145/3338906.3338931

Received 4 December 2021; revised 22 September 2022; accepted 2 November 2022

ACM Transactions on Database Systems, Vol. 48, No. 1, Article 3. Publication date: March 2023.

http://www.jstor.org/stable/259349
https://doi.org/10.1007/978-3-319-15895-2_7
https://doi.org/10.1109/5.24143
https://doi.org/10.1016/j.is.2021.101810
https://doi.org/10.14778/2732967.2732974
https://doi.org/10.1109/TKDE.2020.3046443
https://doi.org/10.1145/1559845.1559903
https://doi.org/10.1023/A:1022883727209
https://doi.org/10.1109/ICDE.2015.7113270
https://doi.org/10.14778/2536206.2536212
https://doi.org/10.1109/TKDE.2016.2594785
https://doi.org/10.1145/3338906.3338931

