
85

Time Series Data Validity
YUNXIANG SU, Tsinghua University, China
YIKUN GONG, Tsinghua University, China
SHAOXU SONG, Tsinghua University, China

As a key step of data preparation, it is always necessary to first assert the quality of data before conducting

any data application. Given a set of constraints, the validity measure evaluates the degree of data meeting the

constraints, e.g., whether the values are in the specified range or fluctuate drastically over time in a series.

It is worth noting that simply counting all the data points in violation to the constraints may over claim

the data validity issue. Following the minimum change criteria in data repairing, we propose to study the

minimum number of data points that need to be changed in order to satisfy the constraints, or equivalently,

the maximum rate of data that can be reserved without change, as the validity measure. To our best knowledge,

this is the first study on defining and evaluating time series data validity. We devise algorithms for computing

the validity measure in quadratic time and linear space. Remarkably, the validity measure has been deployed

and included as a function in SQL statements, in Apache IoTDB, an open-source time series database. The

algorithm fully adapts to the LSM-based storage of time series in multiple segments. Extensive experiments

over 8 real-world datasets show up to 4 orders of magnitude improvement in time cost compared to the related

method SCREEN.

CCS Concepts: • Information systems → Data cleaning; Enterprise applications; • Applied computing →
Enterprise data management.

Additional Key Words and Phrases: data quality, time series data, IoT

ACM Reference Format:
Yunxiang Su, Yikun Gong, and Shaoxu Song. 2023. Time Series Data Validity. Proc. ACM Manag. Data 1, 1,
Article 85 (May 2023), 26 pages. https://doi.org/10.1145/3588939

1 INTRODUCTION
Time series data are often found with various data quality issues, especially in the Internet of

Things (IoT), with frequent device and transmission failures [24]. Analysis over the dirty data is

obviously not trusted, e.g., seriously misleading regression [11], classification [16], clustering [23],

etc. Asserting data quality does not only indicate unreliable results, but also has business value,

e.g., giving a signal of device maintenance (see some case studies in Section 6.7).

Constraints are declared to validate time series data. The value constraints specify whether

values are in the specified range, such as temperature range. The speed constraints check whether

values fluctuate drastically over time, e.g., GPS trajectory constrained by walking speed [25, 26].

Given a set of constraints, validity measure evaluates to what extent the data satisfy constraints.

This work is supported in part by National Natural Science Foundation of China (62021002, 62072265, 62232005), National

Key Research and Development Plan (2021YFB3300500), Beijing National Research Center for Information Science and

Technology (BNR2022RC01011), and Alibaba Group through Alibaba Innovative Research (AIR) Program. Shaoxu Song

(https://sxsong.github.io/) is the corresponding author.

Authors’ addresses: Yunxiang Su, Tsinghua University, Beijing, China, suyx21@mails.tsinghua.edu.cn; Yikun Gong, Tsinghua

University, Beijing, China, gyk19@mails.tsinghua.edu.cn; Shaoxu Song, Tsinghua University, Beijing, China, sxsong@

tsinghua.edu.cn.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2023 Copyright held by the owner/author(s).

2836-6573/2023/5-ART85

https://doi.org/10.1145/3588939

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 85. Publication date: May 2023.

https://doi.org/10.1145/3588939
https://sxsong.github.io/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3588939

85:2 Yunxiang Su, Yikun Gong, and Shaoxu Song

60

70

80

90

100

110

120

130

V
a
lu

e

Time

Change Points Observation Points Violation Points

max 100

min 60

max 12.5

min 7.5

Fig. 1. Value constraints [xmin, xmax] and speed constraints [smin, smax] for evaluating data validity

It is worth noting that simply counting all the data points in violation to the constraints may

over claim the data validity issue (see example below). Following the minimum change criteria

in data repairing [7], we propose to study the minimum number of data points that need to be

changed, in order to eliminate violations. That is, the validity measure is defined as the maximum

rate of data points that can be reserved without change, to satisfy the constraints. To the best of

our knowledge, this is the first study on defining and evaluating validity of time series data.

Example 1. Figure 1 presents a segment of time series, monitoring the temperature of water tank in
a vehicle, from our industrial partner (i.e., the TY-Vehicle data in experiments in Section 6.1).
The value constraints of water temperature are [60, 100], denoted by two red lines. It states that

the value of each data point should be within the range. Point at time 12:00:16 is thus detected as a
violation to the constraints.
Moreover, the value fluctuation between two points indicates the speed of their value movement,

e.g., the values fluctuating from 75 at time 12:00:15 to 120 at time 12:00:16 having speed 120−75
16−15 = 45.

Informally, the speed constraints thus specify the maximum and minimum value fluctuations, e.g.,
denoted by two red arrows in Figure 1, respectively. For instance, the speed constraints [−7.5, 12.5],
provided by domain experts, state that the temperature value fluctuation between two points should
not be greater than 12.5 for each time unit, and no less than -7.5. Two consecutive points with slope not
between these two arrows are detected as violations to the speed constraints. Thus, points at 12:00:15
and 12:00:16, whose slope exceeds the range, are violation points.
Simply counting all the data points in violation, i.e., 8 red points from time 12:00:13 to 12:00:20,

may over claim the data quality issue. Indeed, only 3 points need to change, e.g., to the dots at time
12:00:14, 12:00:16 and 12:00:19, to satisfy the value and speed constraints. Hence, we propose to define
the validity as the rate of data points that have no need to change, i.e., 8

11
rather than over claimed 3

11
.

1.1 Background on Time Series Data Store
Consider a time series x of n data points, i.e., n = ∥x∥. Let x𝑖 and t𝑖 denote the value and time of the

𝑖-th point in the time series. By default, t𝑖 serves as the key of the time series, i.e., any two points

(in a segment) should not have the same time.

To support the extremely intensive write loads of IoT data, the Log-Structured Merge-Tree

(LSM-Tree) [20] is often employed, e.g., in Apache IoTDB [4], an open-source time series database

management system. Figure 2 presents an example of LSM-based storage. A time series is segmented

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 85. Publication date: May 2023.

Time Series Data Validity 85:3

!"#$%$"&$'

!"#$(")"

!"#$%$"&$'

!"#$(")"

*)"')+,-$

./&+,-$

0$'#$&!"#$

!"#$%$"&$'

!"#$(")"

!"#$%$"&$'

!"#$(")"

1$'2,3/45-6$'
1$'2,3/

+,-$

!!

!"

!#

!$

Fig. 2. LSM-based storage of time series in multi-segments

into multiple pages, e.g., 𝑃1 to 𝑃4. Each page consists of PageHeader recording necessary metadata

and PageData for time series data (as illustrated in Figure 6 below). The StartTime and EndTime in

the PageHeader of each page denote the timestamps of the start and end points in the segment,

respectively, e.g., t1 and t𝑘 for the segment x[1 : 𝑘] stored in page 𝑃1. Since each page is written at

different time, a unique version number is associated to each page, such as 𝑃4 with version number

4. The larger the version number is, the later the page is written.

It is worth noting that the time intervals, from StartTime to EndTime, of different pages may

overlap. The reason is that the arrival of data points could be out-of-order. For example, the start

point of 𝑃2 has a timestamp smaller than the end point of 𝑃1, since the former is delayed and written

to page 𝑃2 with a higher version number after 𝑃1 stored. Even more complicated, a point in 𝑃1
may be overwritten (updated) by another point in 𝑃2 with the same timestamp. It often occurs in a

situation when the connection to a sensor is interrupted and a default value of the sensor is written

first in 𝑃1. Once the connection is recovered, the true value sent by the sensor arrives and is stored

in 𝑃2 as an update of the point stored in 𝑃1.

1.2 Contribution
Our major contributions in this paper are as follows.

(1) We define the validity measure for time series in Section 2. For LSM-based storage of a time

series in multiple segments (pages) in commodity time series databases, unfortunately, the validity

of multiple segments could not be directly aggregated, owing to their interacting time ranges.

(2) We devise algorithms for computing the validity measure of a single segment, in quadratic

time and linear space, in Section 3. Intuitively, we prove that there must exist one point having no

need to change, unless all the data points violate the value constraints. The computation of validity

thus departs from this fixed point.

(3) We compute the validity of time series stored in multiple segments in Section 4. Remarkably,

it is proved that the validity of segments can be directly aggregated in certain cases, significantly

improving efficiency. Moreover, we propose to re-split the segments of time series to enable more

such direct aggregations.

(4) We have deployed the validity measure in Apache IoTDB [4], an open-source time series

database management system, in Section 5. It is included as a function in SQL statements. We

introduce two types of deployment, fully adapting to the LSM-based storage for write intensive

loads and enabling pre-computation.

(5) We demonstrate the efficiency of our proposal over real-world datasets in Section 6. It verifies

the necessity of data validity assertion for time series.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 85. Publication date: May 2023.

85:4 Yunxiang Su, Yikun Gong, and Shaoxu Song

Table 1. Notations

Symbol Description

x time series of n = ∥x∥ data points
(t𝑖 , x𝑖) time and value of 𝑖-th data point in x

s𝑖 speed of value fluctuation from x𝑖−1 to x𝑖
[xmin, xmax] constraints of minimum and maximum values

[smin, smax] constraints of minimum and maximum speeds

validity(x) validity of time series x

Finally, we discuss related work in Section 7 and conclude the paper in Section 8. Table 1 lists

the frequently used notations.

2 PRELIMINARY
In this section, we first introduce two types of constraints for evaluating time series data validity

in Section 2.1. The validity measure is then formally defined in Section 2.2.

2.1 Constraints for Validity
We consider two types of constraints, on values and speeds, which can either be specified by domain

experts or profiled from data [25].

2.1.1 Value Constraints. As introduced in Section 1, value constraints, specifying the ranges of

values such as temperature, are the most common constraints in practice. The value constraints, in
a form of [xmin, xmax], state that all data points 𝑖 should have

xmin ≤ x𝑖 ≤ xmax.

For instance, x5 = 120 at time 12:00:16 in Figure 1 is not in the range of value constraints

[xmin, xmax] = [60, 100], i.e., a violation.
Value constraints are often given by domain experts to specify the value range requirements. For

example, in monitoring the temperature of water tank in a vehicle, the value constraints of water

temperature should be [60, 100]. Exceeding this range will be regarded as an error observation (the

engine is not possible to run). Therefore, we use value constraints to guide validity evaluation.

2.1.2 Speed Constraints. Data fluctuation is another issue to consider, often constrained as well

[25]. Let s𝑖 denote the speed of value fluctuation from point 𝑖 − 1 to 𝑖 , defined by s𝑖 =
x𝑖−x𝑖−1
t𝑖−t𝑖−1 . The

speed constraints [smin, smax] state that for each data point 𝑖 , its speed s𝑖 should be within the range

smin ≤ x𝑖 − x𝑖−1
t𝑖 − t𝑖−1

≤ smax.

For instance, x5 at time 12:00:16 in Figure 1 together with x4 having speed s5 = 120−75
16−15 = 45 violate

the speed constraints [smin, smax] = [−7.5, 12.5].
It is worth noting that the speed constraints are declared on consecutive points 𝑖 − 1 and 𝑖 .

According to [33], they are sufficient to guarantee any two points satisfying the speed constraints,

i.e., ∀𝑖, 𝑗 , smin ≤ x𝑗−x𝑖
t𝑗−t𝑖 ≤ smax. Therefore, the speed constraints declared on consecutive points are

competent for the validity measure.

Speed constraints are also prevalent. For example, consider the traveling miles of a train (not

the speed) as the values in the time series. The speed constraints declare that the values of miles

should not increase faster than the maximum traveling speed of a train.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 85. Publication date: May 2023.

Time Series Data Validity 85:5

0

100

200

300

400

500

600

V
a
lu

e

Time

Observation Points

max 300

min 0

max 10

min 1

Fig. 3. Inconsistent constraints with smin > 0

2.1.3 Consistent Constraints. Unfortunately, the mistakenly specified constraints could be incon-

sistent [8]. That is, there does not exist any time series data instance (of size n ≥ 2 for defining

speed) that can satisfy the constraints, e.g., specifying some speed constraints with smax < smin. It

becomes more complicated when value and speed constraints interact with each other. Evaluating

data validity w.r.t. the inconsistent constraints is obviously meaningless. Therefore, we assume

below the given value and speed constraints having xmin ≤ xmax, smin ≤ 0 ≤ smax, which are always

consistent (a simple instance is x𝑖 = xmin for all points 𝑖).

Note that the assumption smin ≤ 0 ≤ smax is necessary. Without such an assumption, the

constraints could be contradictory, i.e., no data can satisfy the constraints. For instance, in Figure

3, the speed constraints with smin > 0 require the data values always increasing, while the value

constraints need the values not exceeding xmax. For a time series with length larger than the value

domain size, it is impossible to satisfy such constraints, i.e., keep on increasing without exceeding

xmax. Nevertheless, the proposed algorithm, designed for two constraints, can be extended to handle

some other general cases as presented in Section 6.5.

2.1.4 Applicable Scenarios. We consider value and speed constraints, since they are widely ob-

served, e.g., walking speed of GPS trajectory, daily limit of stock prices [25]. Such constraints are

also considered in our industrial partners, e.g., the temperature of water tank in a vehicle (in TY)

should not fluctuate significantly in a short period, the values of miles should not increase faster

than the maximum traveling speed of a train (in CRRC). In short, the constraints are usually appli-

cable to values and speeds with normal distribution, whereas expected sudden increase/decrease

(like sales during holiday season) unfortunately cannot be handled.

2.2 Definition of Validity
As illustrated in Example 1, counting all the data points in violation to the constraints may over

claim the data validity issue. Following the minimum change criteria in data repairing [7], we

propose to study the minimum number of data points that need to be changed in order to satisfy

the constraints of data validity. Let x′ be a possible change of x. We consider the number of data

points that are changed in x′, i.e.,

Δ(x, x′) = ∥{x𝑖 | x𝑖 ≠ x ′𝑖 , 1 ≤ 𝑖 ≤ 𝑛}∥ (1)

where 𝑛 = ∥x∥. The cardinality-minimal cost [7] w.r.t. the value and speed constraints studied in

this paper is as follows.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 85. Publication date: May 2023.

85:6 Yunxiang Su, Yikun Gong, and Shaoxu Song

Definition 1 (Cardinality-Minimal Cost). We denote 𝛿 (x) the minimum number of data
points in x that have to be changed in order to satisfy the value and speed constraints.

𝛿 (x) = min Δ(x, x′)

𝑠 .𝑡 . smin ≤
x ′𝑖 − x ′𝑖−1
t𝑖 − t𝑖−1

≤ smax, 1 < 𝑖 ≤ 𝑛

xmin ≤ x ′𝑖 ≤ xmax, 1 ≤ 𝑖 ≤ 𝑛
2.2.1 Alternatives of Inconsistency Measures. Deletion operation cost IR [18] measures the minimal

deletion operations that make the remaining data satisfy the constraints. Intuitively, deleting all

changed points in x′ will make the remaining points meet the value and speed constraints, i.e.,

equal to the cardinality-minimal cost.

Proposition 1. Given value constraints [xmin, xmax] and speed constraints [smin, smax], for a time
series x, the cardinality-minimal cost 𝛿 (x) is equal to the deletion operation cost IR [18] (a.k.a. the
cost of S-repair [17]) w.r.t. the value and speed constraints.

Moreover, motivated by probabilistic functional dependencies [30], the violation count measures

the number of data points that violate value and speed constraints. Each point violating the value

constraints or each pair of consecutive points violating the speed constraints is indeed a minimal

inconsistent subset, i.e., a problematic fact [18].

Proposition 2. Given value constraints [xmin, xmax] and speed constraints [smin, smax], for a time
series x, the violation count is equal to the problematic inconsistency measure IP [18, 28].
In addition to the aforesaid equivalent measures, we evaluate other alternative inconsistency

measures, such as MI Shapley Inconsistency [18] and distance-minimal cost [9], in Section 6.6.

2.2.2 Validity Measure. The validity is thus defined on 𝛿 (x), considering the maximum number of

data points that do not have to change in order to meet the requirement of the value and speed

constraints.

Definition 2 (Time Series Data Validity). Given value constraints [xmin, xmax] and speed
constraints [smin, smax], the validity measure of a time series x is the maximum ratio of data points
that can be reserved, or equivalently, 1− the minimum ratio of data points that should be changed (not
reserved) to satisfy the constraints.

validity(x) = 1 − 𝛿 (x)
∥x∥

Given the interacting value and speed constraints, determining the minimum number of changed

points (or the maximum number of reserved) could be costly.

Example 2 (Example 1 continued). For the possible change x′ in Figure 1, with points changed at
time 12:00:14, 12:00:16 and 12:00:19, we have cost Δ(x, x′) = 3. It is indeed the minimum change that
can satisfy the constraints. The cardinality-minimal cost is thus 𝛿 (x) = 3, leading to the validity of
this time series validity(x) = 1 − 3

11
= 8

11
.

The satisfaction of value and speed constraints depends on what the values are changed to. For
example, in Figure 1, by changing three points at time 12:00:14, 12:00:16 and 12:00:19 to the blue values,
both constraints are satisfied, i.e., with values in the range of red lines and speeds in the included angle
of red arrows. Indeed, the validity measure counts the minimum number of points whose values need
to be changed. That is, by changing such a number of points, there must exist a changed time series
with values satisfying the constraints. While the validity measure ensures the existence of valid value
changes, it is not the focus of this study to determine the specific values changed to (known as another
data repairing problem [25]).

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 85. Publication date: May 2023.

Time Series Data Validity 85:7

2.3 Validity over LSM-based Store
Let x[1 : 𝑛] be the time series bymerging themultiple segments x[1 : 𝑘1], x[𝑘1+1 : 𝑘2], . . . , x[𝑘𝑚+1 :
𝑛] stored in pages. For those points with the same timestamp in different segments, only the one

with the largest version number will be reserved in x[1 : 𝑛].

Definition 3 (Multi-Segment Time Series Data Validity). Given value constraints [𝑥min, 𝑥max]
and speed constraints [𝑠min, 𝑠max], the validity for multiple segments x[1 : 𝑘1], x[𝑘1+1 : 𝑘2], . . . , x[𝑘𝑚+
1 : 𝑛] is the validity of the corresponding merged time series x[1 : 𝑛], validity(x[1 : 𝑛]).

To compute the validity of multi-segment time series, a natural idea is thus to read all the

segments from disks and merge them as a whole time series in memory. We devise an efficient

algorithm for computing the validity of a time series, in Section 3.

Obviously, loading all data in memory is costly in space, while computing validity of a long

time series is CPU intensive. Intuitively, it will be promising to (pre)compute the validity for each

segment and aggregate directly the validity, rather than merging the data. Unfortunately, the

validity of multiple segments might not be directly aggregated, owing to their interacting time

ranges, such as the aforesaid 𝑃1 and 𝑃2 in Figure 2. Nevertheless, we identify that in certain cases

in Proposition 7, the validity measures of different segments can be computed separately and

aggregated. Therefore, we propose to re-split the segments of time series to enable more such

efficient aggregations, in Section 4. The aforesaid ideas lead to two different deployment ways of

the validity measure, in the LSM-based Apache IoTDB, in Section 5.

3 SINGLE-SEGMENT TIME SERIES VALIDITY
In this section, we focus on the validity of a time series in one segment, as in Definition 2. Intuitively,

when all the data points violate the value constraints and need to change with 𝛿 (x) = ∥x∥, it directly
has validity(x) = 0. Therefore, we only need to study the remaining cases that at least one data

point has no need to change. Remarkably, we can split the time series on the unchanged data point

(Section 3.1) and solve them separately (Section 3.2).

3.1 Splitting into Sub-Problems
While the special case above considers all the data points violating the value constraints, directly

having validity(x) = 0, Lemma 3 below studies its complement, i.e., having at least one point

satisfying the value constraints. It shows that at least one data point does not need to be changed,

to meet the constraints. By this unchanged point, Proposition 4 splits the problem into two sub-

problems for computing the validity.

Lemma 3. For a time series x, if there exists at least one data point with value satisfying the value
constraints, then we have 𝛿 (x) < ∥x∥, validity(x) > 0.

Let𝑚 denote the unchanged point, having x𝑚 = x ′𝑚 . The cost function in Formula (1) can be

rewritten as

Δ(x, x′) = ∥{x𝑖 | 1 ≤ 𝑖 < 𝑚, x𝑖 ≠ x ′𝑖 }∥ + ∥{x𝑗 | 𝑚 < 𝑗 ≤ 𝑛, x𝑗 ≠ x ′𝑗 }∥

on the remaining n−1 points. It splits the time series into two parts. The former one has unchanged

end point𝑚, while the latter one starts with the unchanged point𝑚. In this sense, we further study

two special cases of time series, with unchanged end point and unchanged start point, respectively.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 85. Publication date: May 2023.

85:8 Yunxiang Su, Yikun Gong, and Shaoxu Song

Definition 4 (Fixed-End Cost). We denote 𝛿𝑒 (x) the cardinality-minimal cost without changing
the end point of x.

𝛿𝑒 (x) = min Δ(x, x′)

𝑠 .𝑡 . smin ≤
x ′𝑖 − x ′𝑖−1
t𝑖 − t𝑖−1

≤ smax, 1 < 𝑖 ≤ n

xmin ≤ x ′𝑖 ≤ xmax, 1 ≤ 𝑖 ≤ n

xn = x ′n

For the special case of fixed-end, the end point n of x will not be changed. Likewise, we consider

another special case of fixed-start, where the value x1 of the start point will be unchanged.

Definition 5 (Fixed-Start Cost). We denote 𝛿𝑠 (x) the cardinality-minimal cost without changing
the start point of x.

𝛿𝑠 (x) = min Δ(x, x′)

𝑠 .𝑡 . smin ≤
x ′𝑗 − x ′𝑗−1
t𝑗 − t𝑗−1

≤ smax, 1 < 𝑗 ≤ n

xmin ≤ x ′𝑗 ≤ xmax, 1 ≤ 𝑗 ≤ n

x1 = x ′
1

We are now ready to split the problem into two sub-problems by the unchanged pointm. Lemma

3 only states that there exists one unchanged point without indicating which point it is. Therefore,

we need to traverse all the possible m of unchanged point (satisfying the value constraints).

Proposition 4. For a time series x with at least one data point satisfying the value constraints, its
𝛿 (x) can be computed by solving two sub-problems 𝛿𝑒 (x[1 :𝑚]) and 𝛿𝑠 (x[𝑚 : 𝑛]), i.e.,

𝛿 (x) = min

1≤𝑚≤𝑛
𝛿𝑒 (x[1 :𝑚]) + 𝛿𝑠 (x[𝑚 : 𝑛])

where x[1 :𝑚] is the prefix of x with length𝑚, x[𝑚 : 𝑛] is the suffix of x with length 𝑛 −𝑚 + 1, and
x𝑚 satisfies the value constraints xmin ≤ x𝑚 ≤ xmax.

Therefore, the problem of computing 𝛿 (x) can be split as solving 𝛿𝑒 (x[1 :𝑚]) and 𝛿𝑠 (x[𝑚 : 𝑛])
for all data points m satisfying the value constraints.

Example 3 (Example 2 continued). Let the data point at time 12:00:18 be the unchanged point
m, i.e., x7 in Figure 4 satisfying the value constraints. As illustrated, it splits the time series into two
sub-problems, 𝛿𝑒 (x[1 : 7]) with fixed-end point x7 and 𝛿𝑠 (x[7 : 11]) with fixed-start point x7, which
will be solved in the following examples. Similar split should also be applied to other points satisfying
the value constraints, e.g., data point at time 12:00:17 with m = 6 will also be considered as unchanged
for another split.

3.2 Solving Fixed-End Sub-Problem
To solve 𝛿𝑒 (x[1 : m]) with fixed end point m, we note that all the previous points of m must have

speeds with point m satisfying the speed constraints, referring to the discussion in Section 2.1.2.

Intuitively, we may find another unchanged point u before m, and recursively solve the problem

𝛿𝑒 (x[1 : u]) with fixed end u in Proposition 5. If no point u is found unchanged before m, i.e., the

edge case, we can directly obtain the validity 𝛿𝑒 (x[1 : m]) in Proposition 6.

First, let u be the point closest to m that satisfies the constraints. It is easy to see that all the

data points from u + 1 to m − 1 need to be changed, given the unchanged xm, with cost m − u − 1.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 85. Publication date: May 2023.

Time Series Data Validity 85:9

60

70

80

90

100

110

120

130

V
a
lu

e

Time

Change Points Observation Points

max 100

min 60

7x 1: 7 2 x 7: 11 1

Fig. 4. Example of solving sub-problems

Moreover, for some other u that satisfies the constraints, if all the data points from u+ 1 tom− 1 are

also changed, we still have the cost m − u − 1. Otherwise, for the unchanged point, say u′ between
u and m, it has already been recursively considered as aforesaid. In this sense, by traversing all the

possible u that could be unchanged, we can compute 𝛿𝑒 (x[1 :𝑚]).

Proposition 5. For a time series x[1 :𝑚] with fixed end point𝑚, i.e., xmin ≤ x𝑚 ≤ xmax, if there
exists a point u having

1 ≤ 𝑢 < 𝑚,

xmin ≤ x𝑢 ≤ xmax,

smin ≤ x𝑚 − x𝑢
t𝑚 − t𝑢

≤ smax,

then 𝛿𝑒 (x[1 :𝑚]) can be recursively computed by 𝛿𝑒 (x[1 :𝑚]) = min1≤𝑢<𝑚 (𝛿𝑒 (x[1 : 𝑢]) +𝑚−𝑢−1).

For the edge case that no such unchanged point u exists, we have to change all the points before

m with cost m − 1.

Proposition 6. For a time series x[1 :𝑚] with fixed end point𝑚, i.e., xmin ≤ x𝑚 ≤ xmax, if there
does not exist any point u having

1 ≤ 𝑢 < 𝑚,

xmin ≤ x𝑢 ≤ xmax,

smin ≤ x𝑚 − x𝑢
t𝑚 − t𝑢

≤ smax,

then 𝛿𝑒 (x[1 :𝑚]) can be directly given by 𝛿𝑒 (x[1 :𝑚]) = m − 1.

Referring to Propositions 5 and 6, we devise Algorithm 1, which recursively computes the fixed-

end cost 𝛿𝑒 (x[1 :𝑚]). It first initializes 𝛿𝑒 (x[1 :𝑚]) :=𝑚− 1 according to Proposition 6. For x𝑚 , we

traverse all the possibly unchanged 𝑢, 1 ≤ 𝑢 < 𝑚, in Line 2. If x𝑢 and x𝑚 satisfy the requirements in

Proposition 5, 𝛿𝑒 (x[1 :𝑚]) is updated in Line 6. Line 4 ensures that each 𝛿𝑒 (x[1 : 𝑢]) is computed

at most once. By computing 𝛿𝑒 (x[1 : u]) at most once for each possibly unchanged point u, the
algorithm runs in 𝑂 (n) time and space.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 85. Publication date: May 2023.

85:10 Yunxiang Su, Yikun Gong, and Shaoxu Song

Algorithm 1 Fixed-end cost

Input: time series x[1 :𝑚], value constraints [xmin, xmax] and speed constraints [smin, smax]
Output: fixed-end cost 𝛿𝑒 (x[1 :𝑚])
1: 𝛿𝑒 (x[1 :𝑚]) :=𝑚 − 1

2: for 𝑢 :=𝑚 − 1 to 1 do
3: if xmin ≤ x𝑢 ≤ xmax and smin ≤ x𝑚−x𝑢

t𝑚−t𝑢 ≤ smax then
4: if 𝛿𝑒 (x[1 : 𝑢]) is not computed then
5: recursively compute 𝛿𝑒 (x[1 : 𝑢]) with fixed-end

6: 𝛿𝑒 (x[1 :𝑚]) := min(𝛿𝑒 (x[1 : 𝑢]) +𝑚 − 𝑢 − 1, 𝛿𝑒 (x[1 :𝑚]))
7: return 𝛿𝑒 (x[1 :𝑚])

Example 4 (Example 3 continued). To compute 𝛿𝑒 (x[1 : 7]) for fixed-end point m = 7 at time
12:00:18 in Figure 4, Algorithm 1 recursively considers other possibly unchanged point u. For the edge
cases, we can simply get 𝛿𝑒 (x[1 : 1]) = 0, 𝛿𝑒 (x[1 : 2]) = 0 . For the possibly unchanged point at time
12:00:14, x2 need to be changed, having 𝛿𝑒 (x[1 : 3]) = 1. Following the same line of checking all the
possibly unchanged point u before m, we obtain 𝛿𝑒 (x[1 : 7]) = 𝛿𝑒 (x[1 : 6]) = 𝛿𝑒 (x[1 : 4]) + 1 =

𝛿𝑒 (x[1 : 2]) + 1 + 1 = 2. That is, two points 3 and 5 at time 12:00:14 and 12:00:16 need to change for
the fixed-end point 7.

Following the same line of solving the fixed-end problem, 𝛿𝑠 (x[𝑚 : 𝑛]) for fixed-start problem
can also be recursively computed in the same way.

3.3 Algorithm for Single-Segment Time Series
After solving the two sub-problems, we are now ready to compute 𝛿 (x). Algorithm 2 presents the

pseudo-code for computing 𝛿 (x) and finally validity(x). It considers all the possibly unchanged x𝑚
from Line 3 to 7, and returns the minimum 𝛿𝑒 (x[1 :𝑚]) + 𝛿𝑠 (x[𝑚 : 𝑛]) according to Proposition 4.

Again, by computing 𝛿𝑒 (x[1 : u]) and 𝛿𝑠 (x[u : 𝑛]) at most once for each possibly unchanged point

u, the algorithm runs in 𝑂 (n2) time and 𝑂 (n) space.

Algorithm 2 Single-segment time series validity

Input: time series x, value constraints [xmin, xmax] and speed constraints [smin, smax]
Output: the validity measure validity(x)
1: 𝑛 := ∥x∥
2: 𝛿 (x) := 𝑛
3: for𝑚 := 1 to 𝑛 do
4: if xmin ≤ x𝑚 ≤ xmax then
5: compute 𝛿𝑒 (x[1 :𝑚]) with fixed-end

6: compute 𝛿𝑠 (x[𝑚 : 𝑛]) with fixed-start

7: 𝛿 (x) := min((𝛿𝑒 (x[1 :𝑚]) + 𝛿𝑠 (x[𝑚 : 𝑛])), 𝛿 (x))
8: return 1 − 𝛿 (x)

𝑛

Example 5 (Example 4 continued). Similar to Example 4, a variation of Algorithm 1 computes
𝛿𝑠 (x[7 : 11]) = 1 for fixed-start pointm = 7 at time 12:00:18 in Figure 4. It follows 𝛿𝑒 (x[1 : 7])+𝛿𝑠 (x[7 :
11]) = 2 + 1 = 3 for unchanged point m = 7. Referring to Proposition 4, Algorithm 2 calculates
𝛿𝑒 (x[1 :𝑚]) + 𝛿𝑠 (x[𝑚 : 11]) for all the possibly unchanged point m, i.e., all the points except x5 not
satisfying the value constraints. The minimum one is 𝛿 (x) = 3, leading to validity(x) = 1 − 3

11
= 8

11
.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 85. Publication date: May 2023.

Time Series Data Validity 85:11

3.4 Arbitrarily Bad Case
Lemma 3 considers the case that there exists at least one data point with value satisfying the value

constraints. Though it may violate the speed constraints, such a point is proved having no need

to be changed, i.e., a lower bound of validity > 0. It leads to the fixed-point solution (without

changing the aforesaid point) in Section 3.2. For the other cases, i.e., all the points violate the value

constraints, they need to be all changed. Algorithm 2 can handle such arbitrarily bad cases, always

false in Line 4 and thus outputting validity 0, i.e., exact solutions (not approximation).

4 MULTI-SEGMENT TIME SERIES VALIDITY
In this section, we consider the more general case of time series stored in multiple segments, i.e.,

x[1 : 𝑘1], x[𝑘1 + 1 : 𝑘2], . . . , x[𝑘𝑚 + 1 : 𝑛] in Definition 3. To compute the validity of the whole time

series, a straightforward idea is to merge all the segments as a whole, introduced in Section 2.3,

and apply the algorithms proposed in Section 3 for single segment time series.

Rather than costly merging the data of segments as a long series for computation, we identify

some special segments whose validity could be computed individually and aggregated directly in

Proposition 7, in Section 4.1. For the segments that cannot be aggregated, we propose to re-split the

time series, so that the efficient aggregation may be applicable to the new segments, in Section 4.2.

4.1 Aggregating Validity of Segments
Intuitively, for those segments without overlapping time intervals and unchanged start/end points,

their changes will not affect each other. In this sense, the validity measures could be directly

aggregated. It is worth noting that this direct aggregation enables not only the segment re-split

solution of a long series, but also the reuse of the pre-computed segment validity, as presented

below.

Proposition 7. For two segments x[1 : 𝑘] and x[𝑘 + 1 : 𝑛], if

t𝑘 < t𝑘+1, (2)

x𝑘 = x ′
𝑘
, (3)

x𝑘+1 = x ′
𝑘+1, (4)

smin ≤ x𝑘+1 − x𝑘
t𝑘+1 − t𝑘

≤ smax, (5)

then validity(x[1 : 𝑛]) can be directly aggregated by

validity(x[1 : 𝑛]) = validity(x[1 : 𝑘])𝑘
𝑛
+ validity(x[𝑘 + 1 : 𝑛])𝑛 − 𝑘

𝑛
, (6)

where x𝑘 = x ′
𝑘
denotes that 𝑘 is a fixed end point in calculating validity(x[1 : 𝑘]), and similarly

x𝑘+1 = x ′
𝑘+1 means a fixed start point for validity(x[𝑘 + 1 : 𝑛]).

In practice, 90% time series segments can be directly aggregated, leading to significantly lower

time cost in Section 6. The reason is that out-of-order arrivals and errors do not occur frequently.

4.2 Re-splitting Segments for Aggregation
For segments that cannot apply Proposition 7, we propose to re-split the segments so that they

can be aggregated efficiently. To use Proposition 7, segments are expected to satisfy two aspects of

conditions, (1) non-overlapping time intervals in Formula 2, and (2) satisfying constraints without

change in Formulas 3-5, i.e., non-violation.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 85. Publication date: May 2023.

85:12 Yunxiang Su, Yikun Gong, and Shaoxu Song

60

70

80

90

100

110

V
a
lu

e

Time

Original Segment 1 Original Segment 2

max 100

min 60

max 12.5

min 7.5

(a) Two original segments of a time series

60

70

80

90

100

110

V
a
lu

e

Time

Violation Points New Segment 1 New Segment 2 New Segment 3

max 12.5

min 7.5

max 100

min 60

(b) Re-split into 3 new segments

Fig. 5. Re-split a time series of two segments into three

First, the segments x[1 : 𝑘1], x[𝑘1 + 1 : 𝑘2], . . . , x[𝑘𝑚 + 1 : 𝑛], with possibly overlapping

time intervals such as t [𝑘1 + 1] < t [𝑘1], should be re-split into segments x[1 : 𝑘 ′
1
], x[𝑘 ′

1
+ 1 :

𝑘 ′
2
], . . . , x[𝑘 ′

𝑚′ + 1 : 𝑛] without overlapping, i.e., t [𝑘 ′
1
] < t [𝑘 ′

1
+ 1], etc.

Intuitively, for two consecutive non-violation points, if they are not changed in computing

validity, the constraints in Formulas 3-5 are satisfied. In this sense, it is a candidate place of splitting

segments for possible validity aggregation. Intuitively, the more the non-violation points appear

together, the more unlikely the points need to change in computing validity. Thereby, we may split

in the middle for every c consecutive non-violation points.

Once the segments are re-split, we compute validity separately on each new segment, calling

the single segment Algorithm 2. The overall validity can be obtained by aggregating (or merging)

consecutive segments, instead of computing validity over the whole series.

Example 6. Figure 5(a) present two segments of time series, where Segment 2 has a higher version
number than Segment 1. To compute the validity of the overall time series, a naive method is to first
merge Segment 1 and Segment 2. As introduced in Section 2.3, for those points with the same timestamp,
e.g., at 12:00:20 or 12:00:21, only the points with the higher version number will be reserved in the

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 85. Publication date: May 2023.

Time Series Data Validity 85:13

merged time series, i.e., the gray ones in Segment 2. Validity is then computed on the merged time
series, similar to Example 5.

To re-split the segments, we consider each place of two consecutive non-violation points, i.e., (12:00:16,
12:00:17) and (12:00:21, 12:00:22) for c = 2. By splitting in the middle of every two consecutive non-
violation points, we obtain 3 new segments in Figure 5(b). After computing the validity of all 3 segments,
Proposition 7 is found applicable, i.e., unchanged points at 12:00:16, 12:00:17, 12:00:21, 12:00:22. The
overall validity is thus aggregated by 0.8×5

14
+ 0.8×5

14
+ 0.75×4

14
= 11

14
.

4.3 Algorithm for Multi-Segment Time Series
With the validity aggregation and segment re-split, we are now ready to efficiently calculate validity

for multi-segment time series in Algorithm 3. It first merges overlapping segments in Line 2, and

re-splits the segments in Line 6, according to Section 4.2. The validity of the new split segment is

of course not pre-computed and needs online computing, by either calling Algorithm 2 or directly

obtained during splitting.

Once the validity of each re-split segment is computed, together with the pre-computed validity

of segments without splitting, the validity of all segments is obtained. Line 8 further merges non-

aggregate segments, which cannot meet the conditions in Proposition 7. Finally, the validity of all

the remaining segments can be directly aggregated, in Line 13.

It takes linear time to merge and re-split segments. Let ^ be the maximum number of segments

and ℓ be the maximum length of a segment. Referring to the complexity of Algorithm 2, the time

and space costs for computing the validity of a segment are O(ℓ2) and O(ℓ). Merging non-aggregate

segments in Line 8 occurs at most ^ times. Algorithm 3 thus runs in O(𝑛 + ℓ2^) time and O(ℓ)
space.

Algorithm 3Multi-segment time series validity

Input: segments of time series x ordered by start time, value constraints [xmin, xmax] and speed

constraints [smin, smax]
Output: the validity measure validity(x)
1: for each pair of consecutive segments x[𝑖 : 𝑘], x[𝑘 + 1 : 𝑗] do
2: if t𝑘 ≥ t𝑘+1 then
3: x[𝑖 : 𝑗] := x[𝑖 : 𝑘] ∪ x[𝑘 + 1 : 𝑗]
4: replace x[𝑖 : 𝑘] and x[𝑘 + 1 : 𝑗] by x[𝑖 : 𝑗] to continue

5: for each segment x[𝑖 : 𝑗] not pre-computed do
6: split x[𝑖 : 𝑗] into segments and compute their validity
7: for each pair of consecutive segments x[𝑖 : 𝑘], x[𝑘 + 1 : 𝑗] do
8: if x𝑘 ≠ x ′

𝑘
or x𝑘+1 ≠ x ′

𝑘+1 or
x𝑘+1−x𝑘
t𝑘+1−t𝑘 < smin or x𝑘+1−x𝑘

t𝑘+1−t𝑘 > smax then
9: x[𝑖 : 𝑗] := x[𝑖 : 𝑘] ∪ x[𝑘 + 1 : 𝑗]
10: compute validity(x[𝑖 : 𝑗])
11: replace x[𝑖 : 𝑘] and x[𝑘 + 1 : 𝑗] by x[𝑖 : 𝑗] to continue

12: for each segment x[𝑖 : 𝑘] do
13: aggregate validity(x[𝑖 : 𝑘]) to validity(x) by Formula (6)

14: return validity(x)

5 SYSTEM DEPLOYMENT
The validity measure has been deployed and included as a function in Apache IoTDB [4], an open-

source time series database management system. Users can call the function in a SQL statement.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 85. Publication date: May 2023.

85:14 Yunxiang Su, Yikun Gong, and Shaoxu Song

!"#$%$"&$'

!"#$(")"

*+,-)

!"#$%$&'

.)"')/01$

$-&/01$

2

*+13'$..$&/01$

*+13'$..$&4"5,$

Fig. 6. Page in TsFile

Table 2. Datasets

Name # series # data points Time intervals

CBMI-Engine 12 162,219 Non-uniform

CRRC-Train 5,746 1,157,062 Non-uniform

CSSC-Ship 78 652,491 Non-uniform

GW-WindTurbine 35 1,254,608 Non-uniform

TY-Vehicle 26 1,162,238 Non-uniform

WH-Chemistry 54 1,100,000 Uniform

UCI-Energy 27 19,735 Uniform

UCI-PAMAP2 52 375,908 Uniform

s e l e c t v a l i d i t y (s0) from r oo t . d0 where time > 2017 −11 −01T00 : 0 8 : 0 0

It returns the validity of time series s0 in the device of root.test.d0, for the specified time range.

Remarkably, we design two ways of deployment for different scenarios, i.e., UDF based deploy-

ment without pre-computation for write intensive loads in Section 5.1 and TsFile based deployment

with pre-computation for efficient query processing in Section 5.2.

5.1 UDF Deployment without Pre-computation
In this deployment, the system merges all the pages of queried time series, e.g., all the 4 pages in

Figure 2 are merged as a whole. Then, Algorithm 2 for single segment time series applies to the

merged time series to compute the validity. This UDF implementation is favored in write intensive

loads, since no additional computation (compared to the TsFile deployment below) is necessary in

the data write phase. However, by merging the whole time series in memory, both the space and

time costs of validity query are high.

5.2 TsFile Deployment with Pre-computation
Another deployment is based on TsFile, the files managed in Apache IoTDB, where the pre-computed

validity measure is stored for reuse. Figure 6 illustrates the structure of a page in TsFile. In addition

to the necessary statistics, such as the aforesaid StartTime and EndTime in Figure 2 as well as count

of data points stored in the page, we also record the validity of the time series segment. Algorithm

3 is then conducted over the multiple segments (pages) with pre-computed validity, to obtain the

validity of the queried time series. Remarkably, the direct validity aggregation of segments not

only reduces the space cost of caching the entire time series in memory, but also improves the

IO cost by reading only the metadata in PageHeader without loading the PageData. Therefore, as

illustrated in the experiments in Section 6, the TsFile deployment with pre-computation shows

orders of magnitude improvement in query time compared to the UDF implementation.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 85. Publication date: May 2023.

Time Series Data Validity 85:15

UDF TsFile OPT-UDF SCREEN

 0.01

 0.1

 1

 10

 100

0.1k
0.5k

1k 5k 10k
50k

100k
150k

T
im

e
 (

s
)

Data points

(a) CBMI-Engine

 0.01

 0.1

 1

 10

 100

0.1k
0.5k

1k 5k 10k
50k

100k
500k

1m

T
im

e
 (

s
)

Data points

(b) CRRC-Train

 0.001

 0.01

 0.1

 1

 10

 100

0.1k
0.5k

1k 5k 10k
50k

100k
500k

600k

T
im

e
 (

s
)

Data points

(c) CSSC-Ship

 0.001

 0.01

 0.1

 1

 10

 100

0.1k
0.5k

1k 5k 10k
50k

100k
500k

1m

T
im

e
 (

s
)

Data points

(d) GW-WindTurbine

 0.001

 0.01

 0.1

 1

 10

 100

0.1k
0.5k

1k 5k 10k
50k

100k
500k

1m

T
im

e
 (

s
)

Data points

(e) TY-Vehicle

 0.001

 0.01

 0.1

 1

 10

 100

0.1k
0.5k

1k 5k 10k
50k

100k
500k

1m

T
im

e
 (

s
)

Data points

(f) WH-Chemistry

 0.001

 0.01

 0.1

 1

 10

 100

0.1k
0.5k

1k 2k 5k 10k
20k

T
im

e
 (

s
)

Data points

(g) UCI-Energy

 0.001

 0.01

 0.1

 1

 10

 100

0.1k
0.5k

1k 5k 10k
50k

100k
300k

T
im

e
 (

s
)

Data points

(h) UCI-PAMAP2

Fig. 7. Validity computation under different data sizes

6 EXPERIMENTS AND CASE STUDIES
In this section, we report the experimental evaluation. The document of the validity measure is

available in the website of Apache IoTDB [5]. The source code of UDF and TsFile implementations

has been deployed and included in the official GitHub repository of Apache IoTDB [2]. The

experiment related code and public data are available at [3]. All these are committed anonymously.

6.1 Experimental Settings
All algorithms are implemented in Java and evaluated on a machine with Intel Core 2 CPU (2.13

GHz) and 8 GB of memory. The experiments run upon Apache IoTDB v0.13, with memory budget

2 GB, page size 1024 and re-split length c = 100 by default.

Table 2 lists the real-world datasets employed. While the first 6 ones are property from our

industrial partners, we employ two other public UCI datasets [1] for evaluation. The constraints

are provided by domain experts of the companies or profiled from data by the three-sigma rule of

thumb [21] for UCI datasets. Note that our solution can handle univariate time series with either

uniform time intervals or not. As indicated in Table 2, the last three datasets used in experiments

are with uniform time intervals.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 85. Publication date: May 2023.

85:16 Yunxiang Su, Yikun Gong, and Shaoxu Song

UDF TsFile OPT-UDF

 0.001

 0.01

 0.1

 1

 10

 100

 1000

512 1024 2048 4096 8192

T
im

e
 (

s
)

Page size

(a) CBMI-Engine

 0.01

 0.1

 1

 10

 100

 1000

512 1024 2048 4096 8192
T

im
e

 (
s
)

Page size

(b) CRRC-Train

 0.001

 0.01

 0.1

 1

 10

 100

 1000

512 1024 2048 4096 8192

T
im

e
 (

s
)

Page size

(c) CSSC-Ship

 0.001

 0.01

 0.1

 1

 10

 100

 1000

512 1024 2048 4096 8192

T
im

e
 (

s
)

Page size

(d) GW-WindTurbine

 0.001

 0.01

 0.1

 1

 10

 100

 1000

512 1024 2048 4096 8192

T
im

e
 (

s
)

Page size

(e) TY-Vehicle

 0.01

 0.1

 1

 10

 100

 1000

512 1024 2048 4096 8192

T
im

e
 (

s
)

Page size

(f) WH-Chemistry

 0.001

 0.01

 0.1

 1

 10

512 1024 2048 4096 8192

T
im

e
 (

s
)

Page size

(g) UCI-Energy

 0.01

 0.1

 1

 10

 100

 1000

512 1024 2048 4096 8192

T
im

e
 (

s
)

Page size

(h) UCI-PAMAP2

Fig. 8. Validity computation under different page sizes

6.2 Comparison to Related Methods
Since this is the first study on time series data validity, no existingmethod is available for comparison.

Thereby, we adapt the existing time series data repairing method SCREEN [25] as the baseline. It

finds a repair with the minimum distance to the original series, by solving as a linear programming

(LP) problem. We count the number of points changed in the repair to compute the validity, which

however may not be exactly the same as Definition 2.

Figure 7 reports the time cost of validity computation. Owing to the extremely high cost of LP

solver, baseline SCREEN performs only with no more than 1,000 points, and thus is omitted in fol-

lowing experiments. Our TsFile based deployment shows up to 4 orders of magnitude improvement

compared to SCREEN.

6.3 Evaluation on Splitting Single Segment
It is notable that the “high validity score” property that exhibits in most time-series. In this sense,

we may also use “optimistic” splitting described in multi-segment scenario in a single-segment.

6.3.1 UDF with Optimistic Splitting. For UDF, we also evaluate the improvement by optimistic

splitting, namely OPT-UDF. As shown in Figure 7, OPT-UDF, splitting the time series into segments,

shows much lower time cost than the original UDF, calling Algorithm 2 directly over the whole

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 85. Publication date: May 2023.

Time Series Data Validity 85:17

UDF TsFile OPT-UDF

 0.001

 0.01

 0.1

 1

 10

 100

 1000

10 50 100 500 1000

T
im

e
 (

s
)

Parameter c

(a) CBMI-Engine

 0.01

 0.1

 1

 10

 100

 1000

10 50 100 500 1000
T

im
e

 (
s
)

Parameter c

(b) CRRC-Train

 0.001

 0.01

 0.1

 1

 10

 100

 1000

10 50 100 500 1000

T
im

e
 (

s
)

Parameter c

(c) CSSC-Ship

 0.001

 0.01

 0.1

 1

 10

 100

 1000

10 50 100 500 1000

T
im

e
 (

s
)

Parameter c

(d) GW-WindTurbine

 0.01

 0.1

 1

 10

 100

 1000

10 50 100 500 1000

T
im

e
 (

s
)

Parameter c

(e) TY-Vehicle

 0.01

 0.1

 1

 10

 100

 1000

10 50 100 500 1000

T
im

e
 (

s
)

Parameter c

(f) WH-Chemistry

 0.001

 0.01

 0.1

 1

 10

10 50 100 500 1000

T
im

e
 (

s
)

Parameter c

(g) UCI-Energy

 0.01

 0.1

 1

 10

 100

 1000

10 50 100 500 1000

T
im

e
 (

s
)

Parameter c

(h) UCI-PAMAP2

Fig. 9. Validity computation under different re-split c

series. Nevertheless, OPT-UDF without utilizing pre-computation is still not as efficient as the

TsFile implementation.

6.3.2 Optimistic Splitting in Pages. It is true that no matter how time-series are segmented in the

underlying storage, the algorithm can always split a segment for calculating validity. Figure 8

evaluates the page sizes where the splitting performs. When the page size is too small, there are

too many segments split that may not be directly aggregated, leading to high time cost. On the

other hand, if the page size is too large, it is costly to recompute for a page. Thereby, a page size of

4096 or 8192 performs best in most tests.

According to the evaluation, the algorithm can automatically decide when to optimistically split.

Figure 9 evaluates the length c of consecutive non-violation points for re-split in Section 4.2. A

small c leads to many split segments and thus higher processing time. However, a too large c makes

segments fail to split by consecutive non-violation points, and could be worse as well. In Figure 9,

a length about 100 shows good performance to split in most cases, much smaller than the preferred

page size 4096 or 8192 in Figure 8. That is, the algorithm chooses to split all pages.

6.4 Evaluation on Derived Constraints
While some constraints are natural to specify, such as the speed of trains declared on miles, more

others could be learnt from data and confirmed by experts. For example, by the three-sigma rule of

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 85. Publication date: May 2023.

85:18 Yunxiang Su, Yikun Gong, and Shaoxu Song

Derived Constraints Specified Constraints

 0.001

 0.01

 0.1

20k
40k

60k
80k

100k
120k

140k
160k

180k
200k

T
im

e
 (

s
)

Data points

(a) WH-Chemistry

 0.92

 0.94

 0.96

 0.98

 1

20k
40k

60k
80k

100k
120k

140k
160k

180k
200k

V
a

lid
it
y

Data points

(b) WH-Chemistry

 0.0001

 0.001

2k 4k 6k 8k 10k
12k

14k
16k

18k
20k

T
im

e
 (

s
)

Data points

(c) UCI-Energy

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

2k 4k 6k 8k 10k
12k

14k
16k

18k
20k

V
a

lid
it
y

Data points

(d) UCI-Energy

 0.001

 0.01

 0.1

20k
40k

60k
80k

100k
120k

140k
160k

180k
200k

T
im

e
 (

s
)

Data points

(e) UCI-PAMAP2

 0.8

 0.85

 0.9

 0.95

 1

20k
40k

60k
80k

100k
120k

140k
160k

180k
200k

V
a

lid
it
y

Data points

(f) UCI-PAMAP2

Fig. 10. Evaluation on derived constraints

thumb [21], we can obtain a range of speeds from the speed distribution. The idea also applies to

find value constraints.

In particular, for the special case of identical inter arrival time 𝑡 , some speed constraints can be nat-

urally derived from value constraints, i.e., [𝑥min−𝑥max

𝑡
,
𝑥max−𝑥min

𝑡
]. It means that time series satisfying

the value constraints [𝑥min, 𝑥max] will always satisfy the aforesaid derived speed constraints.

Figure 10 evaluates such interesting cases of derived speed constraints, compared to the manually

specified constraints. The experiments are conducted over datasets WH-Chemistry, UCI-Energy

and UCI-PAMAP2 with uniform time intervals, as indicated in Table 2. Referring to the aforesaid

semantics of the derived speed constraints, it only needs to consider the value constraints such

that the derived speed constraints will always be satisfied. Therefore, as shown in Figure 10, the

time cost w.r.t. the derived constraints is much lower than that with the additionally specified

constraints. However, the additional speed constraints specify more strict requirements on value

fluctuations that are not identified by the derived constraints. That is, the validity is indeed not

as high as the one indicated by the derived constraints. The results verify that using only value

constraints (with speed constraints derived) is usually not sufficient.

6.5 Evaluation on More General Constraints
While the proposed algorithm is designed for two constraints, it can be extended to handle more

general cases. Figures 11 and 13 illustrate different constraints on time ranges and sliding windows

in our industrial partners, with experimental evaluation as follows.

6.5.1 Evaluation on different time ranges. If different min/max value/speed constraints are declared

in different time-range, we can divide the time series according to the time-range and apply the

algorithm separately. Since there is no constraint declared between the boundary points of two time

ranges, their changes will not affect each other and thus the validity can be efficiently aggregated.

Figure 11 shows an example of declaring different constraints in two time ranges in CBMI-Engine,

and Figure 12 reports the experimental results on various number of time ranges.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 85. Publication date: May 2023.

Time Series Data Validity 85:19

-1

0

1

2

3

9:00:00 9:15:00 9:30:00 9:45:00 10:00:00 10:15:00 10:30:00 10:45:00 11:00:00

Range 1 Range 2

Fig. 11. Different constraints on two time ranges in Rotational Speed in CBMI-Engine

 0.001

 0.01

 0.1

10 20 50 100 200 500

T
im

e
 (

s
)

Time ranges

(a) FUKM in CBMI-Engine

Separate
Global

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

10 20 50 100 200 500

V
a

lid
it
y

Time ranges

(b) FUKM in CBMI-Engine

Separate
Global

 0.001

 0.01

 0.1

10 20 50 100 200 500

T
im

e
 (

s
)

Time ranges

(c) FUH in CBMI-Engine

Separate
Global

 0.97

 0.975

 0.98

 0.985

 0.99

10 20 50 100 200 500

V
a

lid
it
y

Time ranges

(d) FUH in CBMI-Engine

Separate
Global

Fig. 12. Evaluation on constraints in different time ranges

As shown in Figure 11 , the vehicle engine works from 9 to 10, and becomes idle at 10, waiting

for the next task. For the working and idle stages, validity measures are obtained separately under

different constraints, denoted by red rectangles, and then aggregated. As shown in Figure 12

(a) and (c), the time cost (of TsFile implementation) by separate constraints is much lower than

that with global constraints, since all time ranges can be directly aggregated. With more strict

constraints applied to each time range, the validity by separate constraints is lower than that of

global constraints.

6.5.2 Evaluation on sliding windows. For the constraint, e.g., no drastic change in 24 hours, we may

declare value constraints in a time range of 24 hours, such that values should not change exceeding

the range of [𝑥min, 𝑥max]. Constraints on sliding windows can also be derived as tumbling windows,

as in Figure 13. The experimental results on sliding windows are reported in Figure 14.

Each red rectangle in Figure 13 denotes the value constraints in a window of 24 hours, denoting

the max/min temperature reported by a wind turbine. It is declared in every 12 hours, i.e., slide size

12. The dash area denotes the intersection of the constraints in the overlapped windows, i.e., the

derived constraints that are more strict and satisfy the constraints in both windows. Thereby, in

Figure 14, the validity with sliding windows is lower than that of global constraints. The time cost

(of TsFile implementation) is generally similar to that in different time ranges in Figure 12.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 85. Publication date: May 2023.

85:20 Yunxiang Su, Yikun Gong, and Shaoxu Song

18

22

26

30

34

6/16 0:00 6/17 0:00 6/18 0:00 6/19 0:00 6/20 0:00 6/21 0:00 6/22 0:00

Observation

Fig. 13. Different constraints on sliding windows in Temperature in GW-WindTurbine

 0.001

 0.01

4 8 12 16 24

T
im

e
 (

s
)

Slide size (h)

(a) T10 in GW-WindTurbine

Sliding
Global

 0.9

 0.92

 0.94

 0.96

 0.98

 1

4 8 12 16 20

V
a

lid
it
y

Slide size (h)

(b) T10 in GW-WindTurbine

Sliding
Global

 0.001

 0.01

4 8 12 16 24

T
im

e
 (

s
)

Slide size (h)

(c) WSPD10 in GW-WindTurbine

Sliding
Global

 0.8

 0.85

 0.9

 0.95

 1

4 8 12 16 20

V
a

lid
it
y

Slide size (h)

(d) WSPD10 in GW-WindTurbine

Sliding
Global

Fig. 14. Evaluation on constraints in sliding windows

6.6 Comparison on Inconsistency Measures
We compare the cardinality-minimal cost [7] employed in this paper with alternative inconsistency

measures [9, 18, 28]. Note that for time series with value and speed constraints, the problematic

inconsistency measure IP [18, 28] is equivalent to the violation count [30] (Proposition 2). Moreover,

the cardinality-minimal cost [7] employed in this paper is equivalent to the measure of deletion

operation IR [18] (Proposition 1). Thereby, we compare with other inconsistency measures such

as distance-minimal [9] and MI Shapley Inconsistency [18]. Figures 15, 16 and 17 illustrate the

motivation examples of counting the values that need changes, in the application scenarios of

our industrial partners. To evaluate the inconsistency measures, Figures 18, 19 and 20 report the

experimental comparison in measuring inconsistencies by manually injecting different types of

errors. As shown, the employed cardinality-minimal cost is precise, exactly the number of errors

injected. Table 3 summarizes the application scenarios, where the employed cardinality-minimal

measure is meaningful, while others may over-claim or under-claim data validity issues.

6.6.1 Comparison to Violation Count. Note that violation count may over-claim or under-claim

the data validity issue, i.e., neither a lower bound nor an upper bound. For example, 8 red points are

counted as violations in Figure 1, while only 3 of them need to be changed to satisfy the constraints,

i.e., violation count over-claiming. Similar examples are also observed in Figure 15 of spike errors

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 85. Publication date: May 2023.

Time Series Data Validity 85:21

Table 3. Inconsistency measures

Measure Spike Error [25] Consecutive Error [13] Shift Error [13]

Violation Count [30] over-claim over-claim under-claim

MI Shapley Inconsistency [18] over-claim over-claim under-claim

Distance-minimal [9] precise over-claim over-claim

Cardinality-minimal [7] precise precise precise

500

700

900

1100

1300

1500

1700

6:36:00 6:37:30 6:39:00 6:40:30 6:42:00 6:43:30 6:45:00 6:46:30 6:48:00
Observation Violation Count Cardinality-minimal

Distance-minimal MI Shapley Inconsistency

max

min

Fig. 15. Spike errors in Rotational Speed in CBMI-Engine

40

60

80

100

120

0:15 0:45 1:15 1:45 2:15 2:45
Observation Violation Count Cardinality-minimal

Distance-minimal MI Shapley Inconsistency

max

min

Fig. 16. Consecutive errors in Water Depth in CSSC-Ship

0

5

10

15

20

14:38:15 14:38:45 14:39:15 14:39:45 14:40:15 14:40:45 14:41:15
Observation Violation Count Cardinality-minimal

Distance-minimal MI Shapley Inconsistency

max

min

Fig. 17. Shift errors in Sealing Pressure in WH-Chemistry

[25] and Figure 16 of consecutive errors (a.k.a. sequence outliers [13]). Consequently, the violation

count is larger than the number of spike and consecutive errors injected in the data, as shown in

Figures 18 and 19 of experiments with manually injected errors.

On the other hand, for the case of shift error [13], i.e., a segment of consecutive points integrally

shifting values for an amount by mistake, as illustrated in Figure 17, only the start and end points

of the shifted segment are detected as violations. However, we need to change all the points in

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 85. Publication date: May 2023.

85:22 Yunxiang Su, Yikun Gong, and Shaoxu Song

Real Error Count
Distance-minimal

Violation Count
Cardinality-minimal

MI Shapley Inconsistency

10
2

10
3

10
4

10
5

C
BM

I

C
R
R
C

C
SSC

G
W

TY W
H

Energy

PAM
AP2

C
o
u
n
t

Dataset

(a) Measure

 0.8

 0.85

 0.9

 0.95

 1

C
BM

I

C
R
R
C

C
SSC

G
W

TY W
H

Energy

PAM
AP2

V
a
lid

it
y

Dataset

(b) Validity

Fig. 18. Inconsistency measures for spike errors

Real Error Count
Distance-minimal

Violation Count
Cardinality-minimal

MI Shapley Inconsistency

10
2

10
3

10
4

C
BM

I

C
R
R
C

C
SSC

G
W

TY W
H

Energy

PAM
AP2

C
o
u
n
t

Dataset

(a) Measure

 0.92

 0.94

 0.96

C
BM

I

C
R
R
C

C
SSC

G
W

TY W
H

Energy

PAM
AP2

V
a
lid

it
y

Dataset

(b) Validity

Fig. 19. Inconsistency measures for consecutive errors

Real Error Count
Distance-minimal

Violation Count
Cardinality-minimal

MI Shapley Inconsistency

10
2

10
3

10
4

C
BM

I

C
R
R
C

C
SSC

G
W

TY W
H

Energy

PAM
AP2

C
o
u
n
t

Dataset

(a) Measure

 0.9

 0.92

 0.94

 0.96

 0.98

 1

C
BM

I

C
R
R
C

C
SSC

G
W

TY W
H

Energy

PAM
AP2

V
a
lid

it
y

Dataset

(b) Validity

Fig. 20. Inconsistency measures for shift errors

the shifted segment to obtain a time series satisfying both constraints, i.e., violation count under-

claiming. As presented in Figure 20, the violation count is smaller than the number of shift errors

injected in the data. Such under-claiming of shift error may not be prevalent, e.g., not observed

largely in Section 6.7.

6.6.2 Comparison to MI Shapley Inconsistency. The MI Shapley Inconsistency [18] measures the

number of minimal inconsistent subsets, i.e. , the number of pairs violating the speed constraints

and points violating the value constraints for time series. It may also over-claim or under-claim the

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 85. Publication date: May 2023.

Time Series Data Validity 85:23

Violation Count Distance-minimal MI Shapley Inconsistency Cardinality-minimal

10
2

10
3

10
4

C
BM

I

C
R
R
C

C
SSC

G
W

TY W
H

Energy

PAM
AP2

C
o
u
n
t

Dataset

(a) Measure

 0.92

 0.94

 0.96

 0.98

 1

C
BM

I

C
R
R
C

C
SSC

G
W

TY W
H

Energy

PAM
AP2

V
a
lid

it
y

Dataset

(b) Validity

Fig. 21. Validity by various inconsistency measures

data validity issue. As illustrated in Figure 15 of spike errors, four subsets each with two points

(denoted by the light blue lines) are counted as minimal inconsistent subsets, while only 2 points

need to be changed. Similar over-claiming is also observed in Figure 16 of consecutive errors.

Thereby, in Figures 18 and 19, the MI Shapley Inconsistency count is larger than the number of

spike and consecutive errors injected.

For shift errors, though a large number of points shift in Figure 17, only two subsets are considered

as minimal inconsistent subsets. One subset consists of the start point of shifted segment and its

preceding neighbor, and the other contains the end point of shifted segment and its succeeding

neighbor. That is, the MI Shapley Inconsistency under-claims shift errors. As shown in Figure 20,

its count is smaller than the number of shift errors injected.

6.6.3 Comparison to Distance-minimal Cost. The distance-minimal cost [9] follows the principle

that the total difference between the original points and the changed points is minimized. For spike

errors in Figure 15, the distance-minimal criteria also needs only 1 point (marked with red cross) to

be changed to satisfy the constraints, the same as the cardinality-minimal cost. That is, both are

precise for measuring spike errors. Consequently, in Figure 18, they are equal to the number of

spike errors injected in the data.

However, the distance-minimal cost cannot always promise the cardinality of changed points is

minimal. For example, 9 points with red cross in Figure 17 need to be changed, to minimize the

distance cost, whereas only 6 points are shift errors. Similar over-claiming is also observed for

consecutive errors in Figure 16. Hence, in Figures 19 and 20, the distance-minimal cost is larger

than the number of consecutive and shift errors injected in the data.

6.7 Case Studies
To better demonstrate the usefulness of the validity measure, we present several case studies on

how the validity measure is used in our 6 industrial partners and likewise on 2 public datasets.

Figure 21(a) reports the cardinality-minimal cost and other alternative inconsistency measures,

while Figure 21(b) compares the validity measures computed by using the aforesaid violation and

change costs as 𝛿 (x) in Definition 2. A large number of data points in violation are over claimed

with data quality issues, which may not need change. The computed validity is much lower. The

large gaps verify the motivation of this study, considering the cardinality-minimal cost for validity.

7 RELATEDWORK
Data errors are prevalent and detectable by various methods [6]. Data validity considers the assuring

ones, violating the constraints.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 85. Publication date: May 2023.

85:24 Yunxiang Su, Yikun Gong, and Shaoxu Song

7.1 Violation Detection
To evaluate the validity of data, integrity constraints are often employed to detect the violations or

inconsistencies [12]. In addition to the widely used functional dependencies [14], Chandel et al.

[10] propose to validate collections of user defined constraints on a number of relational tables.

These methods for detecting violations in relational databases are not directly applicable to the

time series data considered in this study.

Besides the cardinality-minimal cost [7] employed in this paper, the S-repair [17] proposes to

delete a minimum number of tuples such that the remaining tuples can satisfy the constraints.

Rather than minimizing the deletions, Sun et al. [27] propose to maximize the density of the

remaining data. Note that the deletion makes the time series incomplete and it is thus not adopted.

7.2 Outlier Detection
In addition to constraint violation, outliers are also considered in error detection [31]. Outliers are

some data points dramatically different than the rest of the data [22]. While violation detection

is supervised by constraints, outlier detection over temporal data [13] is often unsupervised. The

Distance-based Outlier Detection in Data Streams (DODDS) [29] is to detect data point that has

less than 𝐾 neighbors within a distance of 𝑅, for a sliding window.

Autoregressive model is also employed to detect the anomalies in data streams [15, 19]. The

outliers could either be errors or abnormalities, such as anomalous behavior of moving objects in

trajectory streams [32]. In contrast, the violations to constraints must be errors, e.g., engine torque

values should not be negative, and thereby considered in the validity of data.

8 CONCLUSION
To our best knowledge, this is the first study on defining, evaluating, implementing and deploying

the data validity measure in a time series database. (1) We identify that simply counting violations

of constraints may over claim the time series data quality issue. It motivates us to consider the

minimum number of data points that need to be changed in order to satisfy the constraints, or

equivalently, the maximum rate of data that can be reserved without change, as the validity measure.

(2) We prove in Proposition 4 that there must exist one point having no need to change, unless

all the data points violate the value constraints. It leads to efficient algorithms for computing the

validity measure in quadratic time and linear space. (3) For a time series stored in multiple segments,

we show in Proposition 7 that the validity of two segments could be directly aggregated in certain

cases. By re-splitting the time series, more segments are able to directly aggregate on validity.

(4) The validity measure has been deployed as a function of Apache IoTDB, an open-source time

series database. Two deployments, UDF based and TsFile based, without/with pre-computation, are

designed for different scenarios. The experiments show up to 4 orders of magnitude improvement

in time performance by our proposal.

ACKNOWLEDGMENTS
This work is supported in part by National Natural Science Foundation of China (62021002, 62072265,

62232005), National Key Research and Development Plan (2021YFB3300500), Beijing National

Research Center for Information Science and Technology (BNR2022RC01011), and Alibaba Group

through Alibaba Innovative Research (AIR) Program. Shaoxu Song (https://sxsong.github.io/) is the

corresponding author.

REFERENCES
[1] https://archive.ics.uci.edu/.

[2] https://github.com/apache/iotdb/tree/research/quality-validity.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 85. Publication date: May 2023.

https://sxsong.github.io/
https://archive.ics.uci.edu/
https://github.com/apache/iotdb/tree/research/quality-validity

Time Series Data Validity 85:25

[3] https://github.com/iotdbValidity/validity-exp.

[4] https://iotdb.apache.org.

[5] https://iotdb.apache.org/UserGuide/Master/UDF-Library/Data-Quality.html#validity.

[6] Z. Abedjan, X. Chu, D. Deng, R. C. Fernandez, I. F. Ilyas, M. Ouzzani, P. Papotti, M. Stonebraker, and N. Tang. Detecting

data errors: Where are we and what needs to be done? Proc. VLDB Endow., 9(12):993–1004, 2016.
[7] G. Beskales, I. F. Ilyas, and L. Golab. Sampling the repairs of functional dependency violations under hard constraints.

Proc. VLDB Endow., 3(1):197–207, 2010.
[8] G. Beskales, I. F. Ilyas, L. Golab, and A. Galiullin. On the relative trust between inconsistent data and inaccurate

constraints. In C. S. Jensen, C. M. Jermaine, and X. Zhou, editors, 29th IEEE International Conference on Data Engineering,
ICDE 2013, Brisbane, Australia, April 8-12, 2013, pages 541–552. IEEE Computer Society, 2013.

[9] P. Bohannon, M. Flaster, W. Fan, and R. Rastogi. A cost-based model and effective heuristic for repairing constraints

by value modification. In F. Özcan, editor, Proceedings of the ACM SIGMOD International Conference on Management of
Data, Baltimore, Maryland, USA, June 14-16, 2005, pages 143–154. ACM, 2005.

[10] A. Chandel, N. Koudas, K. Q. Pu, and D. Srivastava. Fast identification of relational constraint violations. In R. Chirkova,

A. Dogac, M. T. Özsu, and T. K. Sellis, editors, Proceedings of the 23rd International Conference on Data Engineering,
ICDE 2007, The Marmara Hotel, Istanbul, Turkey, April 15-20, 2007, pages 776–785. IEEE Computer Society, 2007.

[11] Y. Chen and C. Caramanis. Noisy and missing data regression: Distribution-oblivious support recovery. In Proceedings
of the 30th International Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, volume 28 of

JMLR Workshop and Conference Proceedings, pages 383–391. JMLR.org, 2013.

[12] W. Fan, F. Geerts, S. Ma, and H. Müller. Detecting inconsistencies in distributed data. In F. Li, M. M. Moro, S. Ghande-

harizadeh, J. R. Haritsa, G. Weikum, M. J. Carey, F. Casati, E. Y. Chang, I. Manolescu, S. Mehrotra, U. Dayal, and V. J.

Tsotras, editors, Proceedings of the 26th International Conference on Data Engineering, ICDE 2010, March 1-6, 2010, Long
Beach, California, USA, pages 64–75. IEEE Computer Society, 2010.

[13] M. Gupta, J. Gao, C. C. Aggarwal, and J. Han. Outlier Detection for Temporal Data. Synthesis Lectures on Data Mining

and Knowledge Discovery. Morgan & Claypool Publishers, 2014.

[14] S. Kolahi and L. V. S. Lakshmanan. On approximating optimum repairs for functional dependency violations. In

R. Fagin, editor, Database Theory - ICDT 2009, 12th International Conference, St. Petersburg, Russia, March 23-25, 2009,
Proceedings, volume 361 of ACM International Conference Proceeding Series, pages 53–62. ACM, 2009.

[15] N. Laptev, S. Amizadeh, and I. Flint. Generic and scalable framework for automated time-series anomaly detection. In

L. Cao, C. Zhang, T. Joachims, G. I. Webb, D. D. Margineantu, and G. Williams, editors, Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia, August 10-13, 2015,
pages 1939–1947. ACM, 2015.

[16] P. Li, X. Rao, J. Blase, Y. Zhang, X. Chu, and C. Zhang. Cleanml: A study for evaluating the impact of data cleaning on

ML classification tasks. In 37th IEEE International Conference on Data Engineering, ICDE 2021, Chania, Greece, April
19-22, 2021, pages 13–24. IEEE, 2021.

[17] E. Livshits, B. Kimelfeld, and S. Roy. Computing optimal repairs for functional dependencies. In J. V. den Bussche and

M. Arenas, editors, Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
Houston, TX, USA, June 10-15, 2018, pages 225–237. ACM, 2018.

[18] E. Livshits, R. Kochirgan, S. Tsur, I. F. Ilyas, B. Kimelfeld, and S. Roy. Properties of inconsistency measures for databases.

In G. Li, Z. Li, S. Idreos, and D. Srivastava, editors, SIGMOD ’21: International Conference on Management of Data,
Virtual Event, China, June 20-25, 2021, pages 1182–1194. ACM, 2021.

[19] I. Melnyk, A. Banerjee, B. L. Matthews, and N. C. Oza. Semi-markov switching vector autoregressive model-based

anomaly detection in aviation systems. In B. Krishnapuram, M. Shah, A. J. Smola, C. C. Aggarwal, D. Shen, and

R. Rastogi, editors, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, San Francisco, CA, USA, August 13-17, 2016, pages 1065–1074. ACM, 2016.

[20] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil. The log-structured merge-tree (lsm-tree). Acta Informatica,
33(4):351–385, 1996.

[21] F. Pukelsheim. The three sigma rule. The American Statistician, 48(2):88–91, 1994.
[22] D. Samariya and J. Ma. A new dimensionality-unbiased score for efficient and effective outlying aspect mining. Data

Sci. Eng., 7(2):120–135, 2022.
[23] S. Song, C. Li, and X. Zhang. Turn waste into wealth: On simultaneous clustering and cleaning over dirty data. In

L. Cao, C. Zhang, T. Joachims, G. I. Webb, D. D. Margineantu, and G. Williams, editors, Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia, August 10-13, 2015,
pages 1115–1124. ACM, 2015.

[24] S. Song and A. Zhang. Iot data quality. In M. d’Aquin, S. Dietze, C. Hauff, E. Curry, and P. Cudré-Mauroux, editors,

CIKM ’20: The 29th ACM International Conference on Information and Knowledge Management, Virtual Event, Ireland,
October 19-23, 2020, pages 3517–3518. ACM, 2020.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 85. Publication date: May 2023.

https://github.com/iotdbValidity/validity-exp
https://iotdb.apache.org
https://iotdb.apache.org/UserGuide/Master/UDF-Library/Data-Quality.html#validity

85:26 Yunxiang Su, Yikun Gong, and Shaoxu Song

[25] S. Song, A. Zhang, J. Wang, and P. S. Yu. SCREEN: stream data cleaning under speed constraints. In T. K. Sellis, S. B.

Davidson, and Z. G. Ives, editors, Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, pages 827–841. ACM, 2015.

[26] S. Sun, S. Ma, J. Song, W. Yue, X. Lin, and T. Ma. Experiments and analyses of anonymization mechanisms for trajectory

data publishing. J. Comput. Sci. Technol., 37(5):1026–1048, 2022.
[27] Y. Sun and S. Song. From minimum change to maximum density: On s-repair under integrity constraints. In 37th IEEE

International Conference on Data Engineering, ICDE 2021, Chania, Greece, April 19-22, 2021, pages 1943–1948. IEEE, 2021.
[28] M. Thimm. On the expressivity of inconsistency measures. Artif. Intell., 234:120–151, 2016.
[29] L. V. Tran, M. Mun, and C. Shahabi. Real-time distance-based outlier detection in data streams. Proc. VLDB Endow.,

14(2):141–153, 2020.

[30] D. Z. Wang, X. L. Dong, A. D. Sarma, M. J. Franklin, and A. Y. Halevy. Functional dependency generation and

applications in pay-as-you-go data integration systems. In 12th International Workshop on the Web and Databases,
WebDB 2009, Providence, Rhode Island, USA, June 28, 2009, 2009.

[31] P. Wang and Y. He. Uni-detect: A unified approach to automated error detection in tables. In P. A. Boncz, S. Manegold,

A. Ailamaki, A. Deshpande, and T. Kraska, editors, Proceedings of the 2019 International Conference on Management of
Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019, pages 811–828. ACM, 2019.

[32] Y. Yu, L. Cao, E. A. Rundensteiner, and Q. Wang. Detecting moving object outliers in massive-scale trajectory streams.

In S. A. Macskassy, C. Perlich, J. Leskovec, W. Wang, and R. Ghani, editors, The 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’14, New York, NY, USA - August 24 - 27, 2014, pages 422–431.
ACM, 2014.

[33] A. Zhang, S. Song, and J. Wang. Sequential data cleaning: A statistical approach. In F. Özcan, G. Koutrika, and

S. Madden, editors, Proceedings of the 2016 International Conference on Management of Data, SIGMOD Conference 2016,
San Francisco, CA, USA, June 26 - July 01, 2016, pages 909–924. ACM, 2016.

Received July 2022; revised October 2022; accepted November 2022.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 85. Publication date: May 2023.

	Abstract
	1 Introduction
	1.1 Background on Time Series Data Store
	1.2 Contribution

	2 Preliminary
	2.1 Constraints for Validity
	2.2 Definition of Validity
	2.3 Validity over LSM-based Store

	3 Single-segment Time Series Validity
	3.1 Splitting into Sub-Problems
	3.2 Solving Fixed-End Sub-Problem
	3.3 Algorithm for Single-Segment Time Series
	3.4 Arbitrarily Bad Case

	4 Multi-Segment Time Series Validity
	4.1 Aggregating Validity of Segments
	4.2 Re-splitting Segments for Aggregation
	4.3 Algorithm for Multi-Segment Time Series

	5 System Deployment
	5.1 UDF Deployment without Pre-computation
	5.2 TsFile Deployment with Pre-computation

	6 Experiments and Case Studies
	6.1 Experimental Settings
	6.2 Comparison to Related Methods
	6.3 Evaluation on Splitting Single Segment
	6.4 Evaluation on Derived Constraints
	6.5 Evaluation on More General Constraints
	6.6 Comparison on Inconsistency Measures
	6.7 Case Studies

	7 Related Work
	7.1 Violation Detection
	7.2 Outlier Detection

	8 Conclusion
	Acknowledgments
	References

