
23

Grouping Time Series for Efficient Columnar Storage

CHENGUANG FANG, BNRist, Tsinghua University, China

SHAOXU SONG, BNRist, Tsinghua University, China

HAOQUAN GUAN, BNRist, Tsinghua University, China

XIANGDONG HUANG, BNRist, Tsinghua University, China

CHEN WANG, BNRist, Tsinghua University, China

JIANMIN WANG, BNRist, Tsinghua University, China

Columnar storage is now an industry standard design inmost open-source or commercial time series database
products, making them HTAP systems. The time column of a time series serves as the key for identifying the
other value column, namely single-column storage scheme. When multiple time series share a similar set of
timestamps, very likely in a module of multiple sensors, it is natural to group them together, i.e., one time
column identifies multiple value columns in a single-group storage scheme. While multiple value columns
sharing the same time column reduce the space cost of repeating timestamps, it may introduce extra space
cost for recording null values. The reason is that time series may not be exactly aligned on each timestamp,
owing to missing values, distinct data collection frequencies, unsynchronized clocks and so on. The column-

groups storage scheme is thus to divide columns into multiple groups, within which the value columns share
the same time column. Unfortunately, the problem of finding the optimal column groups for the minimum
space cost is highly challenging, NP-hard according to our analysis. Thereby, we propose a heuristic algorithm
for automatically grouping time series for efficient columnar storage. The column groups storage has been
deployed in Apache IoTDB, an open-source time series database. The extensive performance analysis, over
real-world data from our industrial partners, demonstrates that the proposed column groups achieve near
optimal storage, more concise than the storage of single-column or single-group schemes. Interestingly, both
the flushing and querying time costs of column groups are comparable to those of single-column or single-
group, i.e., without incurring extra time cost.

CCS Concepts: • Information systems→ Stream management.

Additional Key Words and Phrases: time series, grouping, columnar storage

ACM Reference Format:

Chenguang Fang, Shaoxu Song, Haoquan Guan, Xiangdong Huang, Chen Wang, and Jianmin Wang. 2023.
Grouping Time Series for Efficient Columnar Storage. Proc. ACM Manag. Data 1, 1, Article 23 (May 2023),
26 pages. https://doi.org/10.1145/3588703

This work is supported in part by National Key Research and Development Plan (2021YFB3300500), the National Natural
Science Foundation of China (62021002, 62072265, 62232005), Civil aircraft research project (MZJ3-2N21), Beijing National
Research Center for Information Science and Technology (BNR2022RC01011), and Alibaba Group through Alibaba Inno-
vative Research (AIR) Program. Shaoxu Song (https://sxsong.github.io/) is the corresponding author.
Authors’ addresses: Chenguang Fang, BNRist, Tsinghua University, Beijing, China, fcg19@mails.tsinghua.edu.cn; Shaoxu
Song, BNRist, Tsinghua University, Beijing, China, sxsong@tsinghua.edu.cn; Haoquan Guan, BNRist, Tsinghua Uni-
versity, Beijing, China, ghq18@mails.tsinghua.edu.cn; Xiangdong Huang, BNRist, Tsinghua University, Beijing, China,
huangxdong@tsinghua.edu.cn; Chen Wang, BNRist, Tsinghua University, Beijing, China, wang_chen@tsinghua.edu.cn;
Jianmin Wang, BNRist, Tsinghua University, Beijing, China, jimwang@tsinghua.edu.cn.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2023 Copyright held by the owner/author(s).
2836-6573/2023/5-ART23
https://doi.org/10.1145/3588703

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 23. Publication date: May 2023.

https://doi.org/10.1145/3588703
https://sxsong.github.io/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3588703

23:2 Chenguang Fang et al.

!! !" !#

" #$ " #% " #&

!" "" !" #" !# $"

!$ "# !% ## !& $#

!% "$

'()*+,-./0123/45- 67389.0

'2)*+,-./01.834: 67389.0*;,7<*(,759:6

'=)*>3/45-1.834:6 67389.0

$! % $"

" #$ #% " #&

!" "" #" !# $"

!$ "# ## !& $#

!% "$

$ %

" #$ #% #&

!" "" #" $"

!# "# ## $#

!$ "$

!&

!%

'9)*+,-./01.834:

&

" #$ #% #&

!" "" #" 1

!# 1 1 $"

!$ "# 1 1

!& 1 1 $#

!% "$ ## 1

Fig. 1. Motivation example of various storage schemes with time column T , value columns V8 , and bitmap

A, the red lines are the positions of the values marked by the bitmap.

1 INTRODUCTION

Most time series database management systems, open source or commercial, such as Apache
IoTDB [3], InfluxDB [6], OpenTSDB [7], Prometheus [8], and TDengine [10], are designed with
columnar storage. Such scheme enables highly efficient hybrid transaction/analytical processing
(HTAP), where each time series is collected, compressed and queried individually. Even for multi-
dimensional analysis, the time-ordered time series could be aligned efficiently with a merge sort.
For example, Figure 1(a) illustrates a multi-dimensional time series, R(T ,V1,V2,V3), where T is the
time column, and V1, V2, V3 are the value columns, corresponding to three unary time series.

1.1 Motivation

To efficiently store the data, for each unary time series, the single-column storage scheme uses
the time column as the key for identifying the other value column. Encoding and compression
techniques [22, 26] are applied to both the time and value columns. For the example in Figure 1(a),
the corresponding single-column scheme is S1(T ,V1), S2(T ,V2), S3(T ,V3). Obviously, the repeated
time column T incurs unnecessary space overhead, as shown in Figure 1(b).
Alternatively, the single-group storage scheme aligns the multiple time series together, for exam-

ple, R(T ,V1,V2,V3) as shown in Figure 1(a), where the value columns V1, V2, V3 share the same
time column T . This design would be effective when multiple time series share a similar set of
timestamps, very likely in a module of multiple sensors. However, one needs to specify this very
carefully, as time series may not be exactly aligned on each timestamp, owing to various issues like
missing values, distinct data collection frequencies, unsynchronized clocks and so on [31]. That
is, there are many null values (denoted by –) as illustrated in Figure 1(a), which also occupy extra
space in value columns compared to the single-column storage scheme. As presented in Figure 1(c),
we use a bitmap A to record the positions of null values, which is not necessary for single-column
storage. In other words, while multiple value columns sharing the same time column reduce the
space cost of repeating timestamps, it may introduce extra space cost for recording null values.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 23. Publication date: May 2023.

Grouping Time Series for Efficient Columnar Storage 23:3

In this sense, the column-groups storage scheme is thus to divide columns into multiple groups.
In each group, the value columns share the same time column. For instance, the time series in
Figure 1(a) could be split into two column groups G1(T ,V1,V2) and G2(T ,V3). Since the data in
each group are compactly aligned without many null values and the time column is shared, as
illustrated in Figure 1(d), its space cost is more efficient than both the aforesaid single-column and
single-group storage schemes.

The query, evaluated on such a representation of the database, indeed returns the exact results.
The bitmap indicates how the value columns should be aligned with the time column in a group,
while different groups are aligned by their time columns. For instance, in Figure 1(d), to query the
entire time series, the bitmap A first indicates that the value 22 in the value column V2 should be
aligned to the row with time 05 in T . Next, the value columns V1 and V2 in group G1 are aligned
with V3 in G2 on the time column T , leading to the query result of multi-dimensional time series
as illustrated in Figure 1(a).

1.2 Solution

Our solution is thus to find the optimal column groups that can minimize space cost. It is worth
noting that the column grouping solution may also output single-column or single-group schemes
as special column groups, depending on the data features.

Efficiently finding the optimal column groups for the minimum space cost, however, is highly
challenging, mainly in two aspects. (i) Deciding a group is difficult. Given the various combinations
of columns as possible groups, it is not surprising that the problem is generally hard, according
to our analysis in Theorem 1 in Section 2.4. Thereby, we propose a heuristic algorithm for auto-
matically grouping time series of efficient columnar storage in Section 3. (ii) Evaluating a group is
also costly. Precisely evaluating the degree of two time series sharing the same timestamps needs
to costly traverse all the points in the series. To this end, we propose to extract the timestamp
features of time series, and evaluate their overlap on timestamps over the constant size features
rather than the entire raw series in Section 4.

Our major contributions are summarized as follows.
(1) We formalize the column-grouping problem to determine the optimal storage strategy for

given time series (Section 2), and analyze NP-hardness of the problem (Theorem 1).
(2) We devise column-grouping algorithm in a bottom-up grouping strategy, greedily merging

column groups (Section 3). Efficient merging pruning strategies are developed based on the bounds
of timestamp overlaps.

(3) We develop an approximate evaluation strategy to efficiently estimate the overlaps on times-
tamps of time series. It is based on the constant size features extracted from the timestamps, thus
avoiding time-consuming traversals of all the points. (Section 4).

(4) We have deployed the column groups storage in Apache IoTDB, an open-source time series
database [33] (Section 5). The source code of automatic grouping is available in the GitHub repos-
itory of Apache IoTDB [9]. Users may add a keyword autoaligned to declare the function in the
SQL statement of creating time series. When the time series is flushed from memory for the first
time, it automatically calls the function of column grouping.

(5)We conduct extensive experiments over real-world data from our industrial partners (Section
6). The results demonstrate that the proposed column groups achieve near optimal storage, more
concise than the storage of single-column or single-group schemes. Interestingly, both the flushing
and querying time costs of column groups are comparable to those of single-column or single-
group, i.e., without incurring extra time cost.

Table 1 lists the frequently used notations. Section 7 discusses related work, and Section 8 iden-
tifies some future directions.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 23. Publication date: May 2023.

23:4 Chenguang Fang et al.

Table 1. Notations

Symbol Description

S a set of time series
(8 the 8-th time series of S
U the space cost of a timestamp
V the space cost of one bit in bitmap
+S the space cost of storing all the values of S
G a set of time series groups in column-groups storage
G a time series group in G with column-groups storage
A a bitmap of size = ×< recording the alignment of S
< the number of distinct timestamps in time series
= the number of time series

%, %̂ exact/approximate overlap evaluation function

2 COLUMN-ORIENTED STORAGE

Let us first introduce the single-column and single-group storage of time serieswith a formal defini-
tion. Column-groups storage is then studied to combine the advantages of both storage strategies.

2.1 Single-Column Storage

Let S = {(1, (2, . . . , (=} be a set of = time series, where each (8 ∈ S has a time column)8 of
timestamps and a value column +8 of data values, i.e., (8 = ()8 ,+8). An example is illustrated in
Figure 1(b).

To serialize the time series, single-column storage stores each time series separately, including
a timestamp column and a value column. The space cost of the single-column storage is thus
composed of serializing the series of timestamps and values.

Definition 1 (single-column storage). Given a set of = time series S, the single-column storage

of S has space cost

2>BC2 (S) =
=∑
8=1

U<(8 ++S (1)

where <(8 denotes the length of (8 , U denotes the space cost of storing a timestamp, +S denotes the

space cost of storing all the values of S.

Note thatU is different with various compression strategies, such as delta-of-delta of timestamps,
which only stores themaximumbit length of the delta-of-delta timestamps for each timestamp [28].
Such a weight could be observed from data. It is also notable that the value storage +S is the same
in various storage schemes studies in this paper, and could be ignored in comparison.

2.2 Single-Group Storage

To share the timestamp column among multiple time series, we can store = time series in one
group, with one common time column, by aligning the timestamps of them.

Therefore, we first give the definition of the aligned time column, which identifies the times-
tamps from aligned time series in a common timestamp column, and shared by all time series in
the group.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 23. Publication date: May 2023.

Grouping Time Series for Efficient Columnar Storage 23:5

Definition 2 (aligned time column). Given a set of time series S, the aligned time column)S
is the union of the time column of each time series (8 ∈ S.

)S =
⋃

(8=()8 ,+8) ∈S
)8 (2)

The length of)S is denoted by<S, i.e.,<S = |)S |. For simplicity, if the context is clear, we will
abbreviate<S as<.
For the set S of = time series, we use an alignment bitmap A = (08 9)<×= that records the align-

ment of the timestamps S (i.e., records the positions for null values), where< is the total aligned
length of all the time series in S, and = is the time series number in S, 08 9 = 1 denote the value of S9
has the corresponding value in the 8-th aligned timestamp. Figure 1(c) illustrates an example for
A, where A has the same shape with S if we align S by timestamps.

Based on the aligned time column, we then introduce the definition of the column group and
the single-group storage. According to the form of the column group, it includes a common time
column, a list of value columns and a bitmap recording the missing values. The single-group stor-
age is thus defined over the column group, which serializes the data of a column group according
to its form. We then discuss the space cost of the single-group storage.

Definition 3 (single-group storage). A column group for a set of = time series S is to group

the time series (8 ∈ S together, to share an aligned time column)S and use a bitmap A to record the

positions of null values, denoted byG = ()S,+1, . . . ,+=,A). The single-group storage of S is to serialize
all the time series according to G. The space cost of G is the sum of the space cost for each part,

2>BC6 (G) = (U + = ∗ V)<S ++S (3)

where U and V denote the space cost of storing a timestamp and a bit in the bitmap, respectively, and

+S denotes the space cost of storing all the values of S.

Note that, the alignment of the timestampsmight result in extra space cost for storing the bitmap
to record missing values owing to the alignment of different time series. It is even worse when the
time series are highly unaligned, i.e., having large differences in timestamps among the time series.
In such a scenario, large disk space is wasted for recording the missing values in bitmap A.

2.3 Column-Groups Storage

As illustrated in Definitions 1 and 3, the space cost +S for storing value columns are the same in
the single-column and single-group storage schemes. Their difference in space cost is between
the duplicated timestamp columns in single-column storage and the extra bitmap A in the single-
group storage. When the time series could be densely aligned with highly similar timestamps, the
single-group storage is preferred. In contrast, if the time series can barely be aligned with distinct
timestamps, i.e., no much sharing, the single-column storage performs. In practice, some time
series may share similar timestamps, while others not. Intuitively, we could divide the time series
into multiple groups, within which timestamps are similar and shared.

Definition 4 (column-groups storage). Given a set of time series groupsG = {G1,G2, · · · ,G }
of size , each with single-group storage, and a time series set R = {'1, '2, · · · , ' |R |} of the other time

series with single-column storage, the column-groups storage serializes the time series in eachG8 with

single-group storage, and each time series '8 ∈ R with single-column storage separately according to

the grouping scheme, Formally, the total space cost is:

2>BC26 (G,R) = 2>BC2 (R) +
∑
G8 ∈G

2>BC6 (G8) (4)

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 23. Publication date: May 2023.

23:6 Chenguang Fang et al.

!"#$%&'(&!"!# "")

!"#$%&' *+&$

(,-.$/0$$!
1 2 3

2 1 12

3 12 1

"! ""

"!

"""! "" "#

% &! % &" % &#

!" "" !" #" !# $"

!$ "# !% ## !& $#

!% "$

"#

"#

1 14

14 1

"#$!

"#

$!

1 4 12

4 1 15

12 15 1

"! ""

"!

""

"#

"#

1 16

16 1

"#$!

"#

$!

!,#$!"#$%&' (,-.7$$

!8&9*-/.$4#

!9#$()&*#+&' (,-.7$

!8&9*-/.$6#

!:#$%&'(&!"!# "")

()&*#+&' *+&$

(,-.$/0$$!

% &! &" % &#

!" "" #" !# $"

!$ "# ## !& $#

!% "$

$! "#

' ($! !

) (*"#+!

' ($! !

) (*"#+!

!"#$% &$%#$%

Fig. 2. A running example of the proposed grouping approaches. (a) The algorithm in Section 3 first com-

putes the gains of possible merging referring to an overlap function % of columns and groups, and prunes

the impossible merges. (b) It then searches for the largest merging gain and iteratively merges the groups till

all the gains are negative. (c) Alternatively, Section 4 presents an approximate approach %̂ to estimate gains,

and then (d) merges the column-groups in the same way as Section 3.

where 2>BC6 and 2>BC2 denote the space costs for single-column storage and single-group storage, re-

spectively.

We will next define the problem of deciding the storage strategy for each time series. Intu-
itively, for time series with highly aligned timestamps, i.e., the timestamps are similar, we choose
single-group storage for them. For the rest of the time series, we serialize themwith single-column
storage.

2.4 Column-Grouping Problem

2.4.1 Problem Definition. In this section, we will give a formal definition of the column-grouping
problem. Following the idea of the column-groups storage in Section 2.3, the problem is to decide
the storage strategy for each time series. That is to say, we need to decide which time series are
stored in the same group with single-group storage, and which time series are stored separately
with single-column storage. We thus formalize the following problem.

Problem 1 (column-grouping problem). Given a set of = time series S = {(1, (2, · · · , (=}, the
column-grouping problem is to find a set of column groups G with single-group storage and a set of

R with single-column storage, such that G1 ∪G2 · · ·G ∪ R = S and the total space cost 2>BC26 (G,R)
is minimized.

As the example illustrated in Figure 2 below, the inputs are the data columns cached in memory,
namely MemTable, to be flushed to disk. The outputs are the identified groups of columns, i.e., the
strategy used to flush the data in disk.

In general, we do not have any assumption about the data. However, the approximate overlap
estimation proposed in Section 4 works better with (nearly) regular time intervals.

In an LSM-tree store, considered in this paper, the updates of time series data will be processed
in MemTable before flushing to disk, or delayed to another new MemTable. One may run the
grouping algorithm again when flushing that new MemTable.

In other words, the streaming sensor data are cached in an active MemTable and flushed when
full. To handle drastic change, one may call the grouping algorithm for each MemTable flush.

2.4.2 Hardness. Unfortunately, the problem is generally hard.

Theorem 1. For a set of = time series, Problem 1 of finding a grouping scheme with the minimum

2>BC26 (G,R) is NP-hard.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 23. Publication date: May 2023.

Grouping Time Series for Efficient Columnar Storage 23:7

Proof sketch. To show NP-hardness, we build a reduction from the :-set packing problem, one of
the Karp’s 21 NP-complete problems [15]. The complete proof of NP-hardness is available in [4].

In practice, a device is often attached with tens or hundreds of sensors (columns). The data
are first cached in memory with a size usually no greater than millions. Before flushing the data
from memory to disk, we determine the grouping scheme. Referring to the NP-hardness w.r.t. the
number of columns (series), we present an evaluation on finding the optimal grouping scheme, to
show the challenging column sizes, in Section 6.3.

2.4.3 Problem Focus and Solution Applicability. Remarkably, for univariate time series that are al-
most time-aligned and are sampled at near-regular intervals, the groupingmethods would perform
better (with more efficient pruning in Section 3.1 and more accurate estimation in Section 4 be-
low). Nevertheless, our proposal is generally applicable to any type of time series, i.e., not limited
to univariate time series.

3 COLUMN-GROUPING ALGORITHM

In this section, we devise the column-grouping algorithm for the problem. Owing to the hardness
of the problem and the infeasibility of enumerating all the possible grouping strategies, we propose
to find the solutionwith a bottom-up structure, following a greedy strategy thatmerges the current
groups with the most reduction of cost (namely merging gains) in each step. Figure 2 illustrates
a running example of performing the column-grouping algorithm. As shown in Figure 2(a), the
merging strategy first computes the gains of possible merging, and prunes the impossible merges.
Next, in Figure 2(b), the algorithm searches for the largest merging gain and iteratively merges the
groups till all the gains are negative.

3.1 Merging Strategy

As aforementioned, in each step of the grouping algorithm, we aim to merge the groups or the
columns. Recall that the column-groups storage is to balance the repeated timestamps and the
bitmaps for a smaller total cost. We therefore discuss the gain of reducing the space cost when
we merge different groups or columns. Next, we transform the merging gains into the overlaps
to efficiently compute the space cost. Based on the transformation, pruning strategies are further
studied for efficiency. Examples of computing merging gains and pruning are illustrated in Fig-
ure 2(a). In the (gray) gain matrices, the numbers are the computed merging gains, as defined in
Section 3.1.1 below. We denote ‘x’ the merging gain pruned by the merging strategy, and stored
as =D;; values in the implementation.

3.1.1 Merging Gain. To compute the merging gain, i.e., the space cost reduction of merging two
groups or columns, we discuss different scenarios including column-column merging, column-
groupmerging and group-groupmergingwith their corresponding reduction in space costs, namely
merging gain. For column-column merging, let (1, (2 be two columns to be merged, the merging
gain Δ((1, (2) of merging (1 and (2 should be:

Δ((1, (2) = 2>BC2 ({(1}) + 2>BC2 ({(2}) − 2>BC6 ({(1, (2})
= (<(1 +<(2 −< {(1,(2 })U − 2< {(1,(2 }V.

(5)

For column-group merging, let =G denote the number of the time series in group G, and let
(1,G1 be the column and the group to be merged, the merging gain Δ((1,G1) of merging (1 and

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 23. Publication date: May 2023.

23:8 Chenguang Fang et al.

G1 is also related to the number of time series in G:

Δ((1,G1) = 2>BC2 ({(1}) + 2>BC6 (G1) − 2>BC6 ({(1} ∪ G1)
= (<(1 +<G1 −< {(1 }∪G1)U
+ (=G1<G1 − (=G1 + 1)< {(1 }∪G1)V.

(6)

For group-group merging, let G1,G2 be the groups to be merged, the merging gain Δ(G1,G2)
of merging G1 and G2 should be

Δ(G1,G2) = 2>BC6 (G1) + 2>BC6 (G2) − 2>BC6 (G1 ∪ G1)
= (<G1 +<G2 −<G1∪G2)U
+ (=G1<G1 + =G2<G2 − (=G1 + =G2)<G1∪G2)V.

(7)

If the merging gain is great than 0, it indicates the total space cost could be reduced by the
merging, which could guide the merging of the columns and groups. For example, in Figure 2(a),
(1 and (2 have merging gain 2 > 0, whereas merging (2 and (3 leads to negative gain −2.

3.1.2 Overlapping Bounds. The computation cost of the merging gain in Section 3.1.1 mainly
comes from the computation of aligning the timestamps. In this section, we first consider trans-
forming the computation of the merging gain to overlapping, i.e., computing the overlapping of
two time series to efficiently merge the groups. The bounds of the overlaps are given to further
filter the merging candidates.

Let % (G,~) denote the number of the overlapping timestamps of)G and)~ , where G and ~ could
be any group or single time series. The intuition is that, the aligned timestamps of G and~ could be
derived by % (G,~). We could thus transform the merging gains in Section 3.1.1 with the following
lemmas.

Lemma 2 (column-columnmerging). Let (1, (2 denote the columns to bemerged. IfΔ((1, (2) > 0,
we have

% ((1, (2) >
2(<(1 +<(2)V

U + 2V . (8)

The column-column merging deals with the merging of columns, which is the basic scenario. A
more complex scenario is to merge a column and a group, which is related to not only the overlaps
but also the aligned timestamps of the group and the current time series in the group (i.e., =G1).

Lemma 3 (column-group merging). Let (1,G1 denote the column and the group to be merged. If

Δ((1,G1) > 0, we have

% ((1,G1) >
(=G1<(1 +<G1 +<(1)V

U + (=G1 + 1)V
. (9)

For group-group merging, similar bound could be proved.

Lemma 4 (group-group merging). Let G1,G2 denote the groups to be merged. If Δ(G1,G2) > 0,
we have

% (G1,G2) >
(=G1<G2 + =G2<G1)V
U + (=G1 + =G2)V

. (10)

According to the above lemmas, we successfully transform the merging gains into the overlaps
with overlapping bound, which could enable further pruning. A brief summary of the merging
gains and the overlapping functions is shown in Table 2.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 23. Publication date: May 2023.

Grouping Time Series for Efficient Columnar Storage 23:9

Table 2. Merging gains and overlapping bounds

Merging gain Overlapping bound

Δ((1, (2) > 0 % ((1, (2) >
2(<(1+<(2)V

U+2V
Δ((1,G1) > 0 % ((1,G1) >

(=G1<(1+<G1+<(1)V
U+(=G1+1)V

Δ(G1,G2) > 0 % (G1,G2) >
(=G1<G2+=G2<G1)V
U+(=G1+=G2)V

3.2 Bo�om-Up Grouping Algorithm

In this section, we propose the bottom-up grouping algorithm to group the given time series, based
on the merging strategy in Section 3.1. According to Problem 1, the input is a set of = time series
S = {(1, (2, · · · , (=}.

Due to the hardness of the problem introduced in Section 2.4, we devise a greedy strategy to
merge the columns into groups and locallyminimize the overall cost. A collection of column groups
G = {G1,G2, · · · ,G }, and a gain matrix B is maintained to record the current grouping scheme
and the corresponding merging gains. Note that if |G8 | = 1, G8 could be stored with single-column
storage, since there is no need for G8 with size 1 to use bitmap for marking null values.
In the initialization stage, G is initialized by G8 ← {(8 }, 1 ≤ 8 ≤ =. Following Section 3.1, the

algorithm then computes the merging gains of all the pairs of the time series to initialize the gain
matrix B, where 18 9 = Δ(G8 ,G9).
In each iteration, if there exists 18 9 > 0, i.e., a pair with positive merging gain, it indicates that

there is still an opportunity for reducing the space cost by merging. We thereby take the greedy
strategy to merge the pair with the maximal gain. The processing is divided into two phases: the
merging phase and the updating phase. Figure 2 illustrates a running example of the iteration.

(1) Merging phase. The merging phase aims to find the maximal merging gain in the gain matrix
B, and then conduct the merging of the group. The algorithm first seeks for the maximal merging
gain in B, denoted by 1∗8 9 . The corresponding groups or columns G8 ,G9 in G are thus selected for
merging. After determining G8 ,G9 , a new group G=4F is created by merging G8 ,G9 , i.e., including
all the time series of G8 ,G9 . We then replace G8 ,G9 in G with G=4F , and reorganize B.

(2) Updating phase. The updating phase further updates the gainmatrixB afterG8 ,G9 aremerged.
According to the merging phase, in each iteration, only the gains between the updated groupG=4F
and other elements in G should be recomputed, while the other gains are reserved.
Both phases are conducted iteratively until there does not exist 18 9 > 0. Then the algorithm

outputs the current grouping scheme. The number of the groups is exactly the parameter defined
in Problem 1, which could be determined by the algorithm. Algorithm 1 outlines the bottom-up
grouping algorithm.

For instance, Figure 2(a) provides an example of the updating phase, where the gain matrix is
fully computed (or pruned). Figure 2(b) shows an example of the merging phase, where (1 and (2
with the maximal gain are merged into G1 to reduce space cost.

4 APPROXIMATE OVERLAP ESTIMATION

In this section, we propose to approximately evaluate the overlaps without traversing, i.e., estimate
the overlaps, denoted by function %̂ . Rather than going through the whole time series, we propose
to extract a fixed-length feature from the time column, to represent the time column (Section 4.1).

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 23. Publication date: May 2023.

23:10 Chenguang Fang et al.

Algorithm 1: Bottom-Up Grouping (S, =)

Input: a set of time series S = {(1, (2, · · · , (=}
Output: the grouping scheme G

1 : ← 0;

2 G ← {{(}|(∈ S};
3 initialize B=×= with =D;; ;
4 for 8 = 1, 2, · · · , = do

5 for 9 = 8 + 1, 8 + 2, · · · , = do

6 18 9 = Δ((8 , (9);
7 while ∃18 9 > 0 do
8 1∗8 9 = max (B);
9 G ← (G − {G8 ,G9 }) ∪ {G8 ∪ G9 };

10 update B corresponds to G;
11 return G;

In the meantime, we estimate the overlaps approximately based on the extracted features, follow-
ing the probability distribution of the timestamps. Then the estimation of the overlaps between
columns could be conducted efficiently (Section 4.2). Moreover, following the same line, we extend
the estimation for single columns to column-groups (Section 4.3), defining %̂ for all three cases as % .
Such overlap estimation function %̂ could replace % , which significantly reduces the running time
of the algorithm. Figure 2 presents a running example of the approximate method. In Figure 2(c),
the approximate approach %̂ estimates the merging gains, as presented in Sections 4.2 and 4.3. It
then merges the columns in the same way as Section 3 in Figure 2(d).

4.1 Feature Extraction

In this section, we propose the time column feature extraction, which extracts a fixed-length fea-
ture from the time column to represent its characteristics. The extracted features could enable
more efficient overlap estimation.

As we only consider the feature extraction of the time column, i.e., the timestamps, two intu-
itions of the time column are first considered: (1) The time column is monotonically increasing;
(2) In IoT scenarios, the time series are common with regular interval (i.e., collected with fixed or
similar frequencies).

Based on the aforementioned intuitions, the straightforward idea is to model the time column
in the manner of regular interval time series. Let) = (C1, C2, . . . , C=) denote the time column of a
time series with length =, to extract the feature from) , three features of a regular interval time
series are considered first.

4.1.1 Interval. We first consider the interval of a regular interval time series, i.e., the differences
between consecutive timestamps. For a regular interval time series, the interval is constant. Mo-
tivated by the robustness of the median, we take the median of the timestamp differences as the
interval n :

n =<4380=(C2 − C1, C3 − C2, . . . , C= − C=−1) . (11)

4.1.2 Length. The length of the regular interval time series is important to overlap estimation.
We use = (length of)) as the feature.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 23. Publication date: May 2023.

Grouping Time Series for Efficient Columnar Storage 23:11

4.1.3 Start Timestamp. The start timestamp of the regular interval time series should also be a
feature to locate the timestamps. Although C1 could be directly used as the start timestamp, it could
also be erroneous, thus making the whole feature extraction biased. Since we treat the time series
as a regular interval time series, we could first compute virtual timestamps for all timestamps in
) (by subtracting a specific number of intervals), and then take the median. Formally, the start
timestamp CB is computed as follows:

CB =<4380=(C1, C2 − n, C3 − 2n, . . . , C= − (= − 1)n) . (12)

4.1.4 Variance. While the aforesaid three features can represent a regular interval time series,
for an arbitrary time series (i.e., with irregular intervals), they are not sufficient to represent. We
further include a feature to represent how the time series conforms to the extracted regular interval
time series, namely variance.

For an arbitrary time series, as we extract the interval, the length and the start timestamp from
it, we model a regular interval time series from the original time series. The regular time series
) A extracted from) satisfies CA8 = CB + (8 − 1)n . Variance is defined based on the corresponding
timestamps of) A and) , to denote the deviation of the) to its regular representation) A :

f =

√∑=
8=1 (CA8 − C8)2

=
. (13)

If f = 0, it is exactly a regular interval time series, i.e.,) =) A .
In summary, the feature of given) is extracted as [n, =, CB , f].

4.2 Overlap Estimation for Columns

After extracting the features, we discuss the overlap estimation by utilizing the proposed features.
We start from the overlap estimation for columns. Since we abstract the time columns as regular
interval time series, the idea is to model the timestamps as distributions, and estimate the overlaps
based on the distributions. Therefore, we take the following steps to estimate the overlaps for
columns. For instance, in Figure 2(c), the gains of merging pairs of (1, (2, (3 are all estimated in
the gain matrix. It is not surprising that the estimation may be slightly different from the exact
evaluation in Figure 2(a), as in Section 3.

4.2.1 Range Normalization. First, we notice that only overlapping ranges could generate overlap-
ping timestamps. We therefore normalize the ranges of both time series into their overlapping
range, thus filtering the ranges impossible to overlap. Let)0 and)1 be the input time series, and
[n0, =0, CB0, f0], [n1, =1, CB1, f1] be their features, respectively. Let)

A
0 and) A

1
denote the regular inter-

val time series of)0 and)1 , identified by their features (i.e., n, =, C
A). To normalize the ranges, we find

the range of) A0 , i.e., '() A0) = (CB0, CB0+(=0−1)n0), and the range of) A1 , i.e., '()
A
1
) = (CB

1
, CB
1
+(=1−1)n1).

Their overlapping range is denoted by ' = '() A0) ∩ '() A1) = ('BC0AC , '4=3). If ' = ∅, the time series
do not overlap, and the algorithm returns 0 as a result. We then consider the scenarios when ' ≠ ∅.
Let C ′0 is the latest timestamp of) A0 before ', i.e.,

C ′0 = max C, C ≤ 'BC0AC .

Analogously, C ′
1
is the latest timestamp of) A

1
before '. Then, let =′0 be the length of the normalized

range of)0 , having

=′0 = min=, C ′0 + (= − 1)n0 ≥ '4=3 ,
and =′

1
is defined analogously. We thus normalize their ranges into (C ′0, C ′0 + (=′0 − 1)n0) and (C ′1, C

′
1
+

(=′
1
− 1)n1), where they could overlap. Figure 3(a) gives an example.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 23. Publication date: May 2023.

23:12 Chenguang Fang et al.

!!"!!
"

!#

$ %

#! $ &

!#
"

'

(#
$

(!
$

)#
" $ %

)!
" $ *

!#%
$

(#
$

(!
$

!#&
$

!!&
$!!%

$

+,-.## / #!0 $ 1

%

& &

(a) (b)

Fig. 3. An example of estimating the overlaps.

!!
" !#

"

"#!!
"$ %!

$& "#!#
"$ %#

$&

!#
" ' !!

"

"#!!
" ' !!

" $ %!
$ (%

#

$&

)*')*

+,#!!
"$!#

"!

Fig. 4. Computing overlapping area of the distributions

4.2.2 Overlap Estimation. To estimate the overlaps for columns, we model each point of)0 and
)1 with Gaussian distribution. For instance, given any CA0 ∈) A0 , CA1 ∈)

A
1
, their Probability Density

Functions (PDFs) are denoted by 51(G ; CA0, f0) = N(CA0, f20), 52 (G ; CA1 , f1) = N(C
A
1
, f2
1
). For CA0, CA1 , their

probability to be equal is given by the difference of their distributions, which also follows Gaussian
distribution of 5 (G ; CA

1
− CA0, f0, f1) = N(CA1 − C

A
0, f

2
0 + f21). Due to the granularity of the timestamps,

denoted by g (e.g., 1h, 1s, 1ms), if CA
1
−CA0 falls into a discrete range (−_g, _g), we could regard CA0 = CA

1
,

i.e., an overlap, where _ is a constant. Indeed, _ could control the deviations that we tolerate for
overlaps. The probability of CA0 = CA

1
, denoted by %A (CA0, CA1), is thus computed as:

%A (CA0, CA1) =
∫ _g

−_g
5 (G ; CA1 − C

A
0, f0, f1)3G

=

∫ _g

−_g

1√
2c (f20 + f21)

4
− 1

2

(
G−(CA

1
−CA0)√

f2
0+f2

1

)2
3G

=
1

2
erf

©
«
_g − (CA

1
− CA0)√

2(f20 + f21)

ª®®
¬
− 1

2
erf

©
«
−_g − (CA

1
− CA0)√

2(f20 + f21)

ª®®
¬
,

(14)

where

erf (G) = 2
√
c

∫ G

0
4−[

2
3[

is the error function of a normal distribution. Figure 4 illustrates an example of computing over-
lapping area of the distributions.

The formula gives the probability of overlapping, given any two timestamps from) A0 and) A
1
.

Indeed, considering CA0 ∈) A0 , according to the distributions of timestamps in) A
1
, it is true that any

CA
1
∈) A

1
is possible to be equal to) A0 according to Formula 14. However, in terms of the complexity

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 23. Publication date: May 2023.

Grouping Time Series for Efficient Columnar Storage 23:13

of the problem, we simplify the estimation by only considering the probability of CA0 and its nearest
neighbor in) A

1
to be equal. This falls into two scenarios based on the relationship between n0, n1 .

(1) If n0 = n1 , i.e., they have the same frequencies, it is obvious that for CA0 ∈) A0 , the distance
|CA0 − CA1 | between C

A
0 and its nearest neighbor C

A
1
is fixed. Therefore, for each CA0 ∈) A0 , we can directly

find its nearest CA
1
∈) A

1
. The overlaps of)0 and)1 , i.e., %̂ ()0,)1), are thus estimated as

%̂ ()0,)1) = %A (CA0, CA1) ∗min(=′0, =′1) .

(2) If n0 ≠ n1 , i.e., they have different frequencies, the periodicity should be taken into consid-
eration. Intuitively, the least common multiple of n0 and n1 (denoted by ;2<(n0, n1)) should be a
period, where all possible differences of CA0 and CA

1
appear. Without loss of generality, let n0 > n1 ,

i.e.,) A0 contains fewer timestamps. For all timestamps of) A0 in a period, there are ^ =
;2< (n0,n1)

n0
scenarios of the differences between CA0 and its nearest CA

1
. We use {CA01, CA02, · · · , CA0^ } to denote CA0

corresponding to the ^ scenarios, and their corresponding nearest timestamps in) A
1
is denoted

by {CA
11
, CA
12
, · · · , CA

1^
}, respectively. We can compute the overlaps of)0 and)1 according to their

proportions in one period:

%̂ ()0,)1) =
∑̂
8=1

d8 ∗ %A (CA08 , CA18), (15)

where ^ denotes the scenario number in a period, d8 is the number of points following the 8-th
scenario in the overlapping range '.

Example 4.1. Figure 3 illustrates an example of estimating the overlaps, given) A0 and) A
1
with

n0 = 3 and n1 = 2 respectively. Figure 3(a) first normalizes the ranges of) A0 and) A
1
into ', with

=′0 = 3 and =′
1
= 4. Figure 3(b) then illustrates the timestamps in one period, with the length

of ;2<(n0, n1) = 6, and thus ^ =
;2< (n0,n1)

n0
= 2. In the period, CA01, C

A
02 with the interval of 3 are

illustrated, and their corresponding nearest neighbors CA
11
, CA
12

are found, with CA
11
− CA01 = 0 and

CA
12
−CA02 = −1. Following the definition of d8 , CA11−C

A
01 = 0 appears twice in' and CA

12
−CA02 = −1 appears

once, i.e., d1 = 2, d2 = 1. The overlaps are thus estimated by %̂ ()0,)1) = 2%A (CA01, CA11) + %A (C
A
02, C

A
12
),

following Formula 15.

4.3 Overlap Estimation for Column-Groups

In this section, we further discuss how to estimate overlaps for column-groups. When the columns
are merged into one column-group, a set of features for the column-groups will be maintained,
including all the features of the columns in the group. We then propose to estimate the overlaps
between a column and a column-group. That is to say, we do not merge the features directly, which
might lose more information. Instead, we maintain all the features in a set and further propose to
estimate overlaps over a set of features. A range map is first constructed for the column-group, to
store all overlapping ranges for the time columns in the group. For example, in Figure 2(d), the
gain of merging G1 and (3 is estimated by the approximate approach as −4, again, a bit different
from −3 in Figure 2(b) computed by the exact method in Section 3.

4.3.1 Column-Group Estimation. Given a column-group G, let TG = {)1,)2, . . . ,) |G |} denote all
the time columns in G, and let) A8 denote the regular interval time series of)8 ∈ TG. First, we
find all distinct timestamps from all) A8 , denoted as)0;; , and then sort)0;; in time order, denoted
by {C1, C2, . . . , C |)0;; |}. Then, we use R = {'8 |'8 = (C8 , C8+1), C8 ∈)0;; } to denote all the consecu-
tive ranges in G, divided by)0;; . The range map is thus denoted by " = {(' 9 ,T9)} to store
the ranges with their overlapping time columns, where ' 9 ∈ R is a range, and T9 is the set of

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 23. Publication date: May 2023.

23:14 Chenguang Fang et al.

!

"!
"

"
#

"

"$
"

#$ %$ # %
&' "!("$

)
* # %

&' "# ("$

)

&' "# ("$

+%("!("#+&("!

+'("#

Fig. 5. Estimating the overlaps with a column-group

the time columns that overlap at ' 9 . Figure 5 shows the example of a range map, where " =

{('1, ()0)) , ('2, ()0,)1)) , ('3, ()1))}.
By storing the features and the range map, the question is how to estimate the overlaps between

a column-group (i.e., a set of features) and a column. Let)G denote the input column, and let
" = {(' 9 ,T9)} denote the range map, following the Range Normalization step in Section 4.2.1, we
find the overlapping ranges of 'G (i.e., the range of)G) and ' 9 , having (' 9 ,T9) ∈ " .

Recall that %̂ ()8 ,)G) denotes the overlaps of)8 and)G , %̂ ()8 ,)G)|)G | thus represents the proportion of
)G that might overlap)8 . The probability of their overlaps could be computed as follows:

%̂ ()G , (' 9 ,T9)) = (1 −
∏
)8 ∈T9

(1 − %̂ ()8 ,)G)|)G |
)) ∗ `G 9 , (16)

where `G 9 is the number of timestamps of)G in the range ' 9 .
Therefore, based on Formula 16, the overlaps between a column-groupG and a column)G could

be estimated by %̂ (G,)G):
%̂ (G,)G) =

∑
' 9 ∈R

%̂ ()G , (' 9 ,T9)),

where ' 9 ∈ R, R is the set of consecutive ranges in G.

Example 4.2. Figure 5 illustrates an example of estimating the overlaps betweenG and)G , where
)G = {)0,)1} . The range map is built as {('1, {)0}), ('2, {)0,)1}), ('3, {)1})}. Given an input time
column)G , which overlaps '2, '3, we could thus estimate the overlaps as:

%̂ (G,)G) = %̂ ()G , ('2, {)0,)1})) + %̂ ()G , ('3, {)1}))

= 3

(
1 −

(
1 − %̂ ()0,)G)

4

)
∗

(
1 − %̂ ()1,)G)

4

))
+ %̂ ()1,)G) .

4.3.2 Group-Group Estimation. Finally, given two column groups G1,G2, we first consider the
points that each) ∈ TG2 overlaps with G1, and sum up them based on the proportions, denoted
by an auxiliary function %̂� (G1,G2):

%̂� (G1,G2) =
∑
) ∈TG2

%̂ (G1,)) ∗
|) |
<̂G2

. (17)

Note that <̂G denotes the estimated length of G, i.e., estimation of<G. We will discuss the evalu-
ation of <̂G later.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 23. Publication date: May 2023.

Grouping Time Series for Efficient Columnar Storage 23:15

!"#$%&'()*&+*'

,+-'(!./"'0

12/,+-'3

4'02%5-' 67'$.()*&+*'

,-7/8(2%/9

1,-7/8(2+0'3

67'$.(:7"#%-+&*';

2+0'(!'$+'/

167'$.(2+0'3

1!<%='(>#/"3

>$'%"'?@*/'$"(

:7"#%-+&*';

2+0'(!'$+'/

A$#7<+*&()*&+*'

A$#7<+*&

1A$#7<(2+0'3

Fig. 6. System architecture for the column-groups storage. The metrics used in evaluations are in blue.

Thereby, %̂ (G1,G2) is defined based on Formula 17. Since the overlaps should be possible in both
groups, we then choose the smaller one of %̂� (G1,G2) and %̂� (G2,G1):

%̂ (G1,G2) = min (%̂� (G1,G2), %̂� (G2,G1)) .
Finally, as for <̂G, it is stored with each column-group during the grouping. In the initialization

stage, for all columns, we set <̂) = <) = |) |. Whenever two column-groups are merged, for
instance G1 is merged with G2, we update it as:

<̂G1∪G2 = <̂G1 + <̂G2 − %̂ (G1,G2) .
In this way, we maintain an estimated length for each G in the processing of grouping, and thus
avoiding traversals of the whole time columns for the length.

5 SYSTEM DEPLOYMENT

The column-groups storage has been included [9] in Apache IoTDB [3], an open-source time series
database. Figure 6 illustrates the architecture of the system related to the column-groups storage.

To enable the column-groups storage strategy in database, a keyword autoaligned is devised
to declare the function in the SQL statement of creating time series and inserting data. The corre-
sponding SQL statement for creating time series is:

create autoaligned timeseries root.sg1.d1(s1 INT32, s2 DOUBLE, s3 FLOAT)

which corresponds to the definition of S = {(1, (2, (3} in Section 2.1. The create statement initial-
izes the autoaligned time series in one MemTable (a sorted buffer in memory [17]) and defines
its schema. The database engine thus maintains the MemTable in memory, till the flush process
is called. All the time series are assigned to one group when initializing. The SQL statement of
inserting data into the autoaligned time series is as follows.

insert into root.sg1.d1(time, s1, s2, s3) autoaligned values(1640966400000,1,2,3)

Flush task is executed when the memory buffer MemTable reaches a certain threshold, to seri-
alize the data into the disk. FlushManager in the storage engine handles the flush task for asyn-
chronous persistence without blocking normal writes.

The system supports metadata tightly coupled with time series data. In short, metadata in time
series database with column-groups include: (1) Group info of time and value columns are new
and stored together with other metadata below. (2) Encoding and compression schemes for each
column are the same as single-column, since they can still be applied to the grouped columns. (3)
Statistics of value columns in column-groups are the same as single-column, while statistics of
timestamps are over the aligned time column.

6 EXPERIMENTS

The experiments are conducted over ten real-world datasets. While the source code of automatic
column-grouping is available in the GitHub repository of Apache IoTDB [9], the experiment re-
lated code and data are in [5].

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 23. Publication date: May 2023.

23:16 Chenguang Fang et al.

Table 3. Dataset summary that counts the number of points (C, E) collected in each time series, and the

number of rows (C, E1, E2, . . .) aligned on timestamps of different time series.

points sensors devices rows null rate

Campus 841,878 10 1 100,000 15.81%
CSSC 2,880,000 48 3 63,977 6.22%
GW 6,100,000 244 2 50,000 50.00%
TY 1,750,000 70 5 123,214 79.71%
WC 1,286,734 16 1 100,000 19.58%
WH 5,963,683 39 1 160,000 4.43%
CRRC 4,935,587 10,000 2 10,000 58.87%
APM 3,031,800 3 2 1,010,626 0.01%
Pistachio [30] 63,785 60 2 2,148 1.02%
Zomato [13] 550,000 22 2 50,000 50.00%

6.1 Experimental Se�ings

6.1.1 Datasets and Pre-Processing. We conduct the experiments over ten datasets. The datasets
are listed in Table 3, and are described in detail as follows respectively.

(1) Campus contains climate data such as wind speed and temperature.
(2) CSSC contains ship engine data such as water temperature and oil pressure.
(3) GW contains data of wind turbines such as wind speed and direction.
(4) TY contains vehicle engine data such as vehicle speed and torque.
(5) WC contains vehicle data such as air input, engine torque and fuel liquid level.
(6) WH contains chemistry data such as high-speed pump operation used for fault diagnosis.
(7) CRRC contains train data such as train working conditions.
(8) APM contains log-type records such as cloud application performance monitoring.
(9) Pistachio [30] contains images (i.e., binary blobs type) of Pistachio and features.
(10) Zomato [13] is a non-time-series dataset of 50k records.

6.1.2 Metrics. Four metrics are employed to evaluate the methods, including space cost, flush
time, group time and query time. Space cost denotes the storage space of time series in the file
system, after they are flushed from MemTable into disk. Flush time is the time for the database to
execute the flush tasks, and group time is the time for computing column-groups by our proposed
grouping algorithms. Note that while the grouping algorithm is conducted during the flush process,
to better evaluate the methods, we record group time and flush time separately. Query time is the
time for querying autoaligned time series. The relationships of the metrics in terms of system
architecture are illustrated in Figure 6.

6.1.3 Methods. We compare our proposed column-groups scheme based on exact evaluation (Sec-
tion 3) and approximate evaluation (Section 4) with single-column and single-group schemes.

6.2 Evaluation over Different Datasets

To test scalability and stability of the proposed column-groups storage, we compare the column-
groups storage with single-column storage and single-group storage on the four metrics intro-
duced in Section 6.1.2. We evaluate the methods in two dimensions of scalability: the data size (i.e.,
number of records) and the time series number (i.e., number of sensors).

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 23. Publication date: May 2023.

Grouping Time Series for Efficient Columnar Storage 23:17

single-column
single-group

column-groups(exact evaluation)
column-groups(approximate evaluation)

 0
 200
 400
 600
 800

 1000
 1200
 1400

10k 20k 50k 80k 100k

Sp
ac

e
co

st
(k

)

Data size

(a)Campus

 0

 1000

 2000

 3000

 4000

10k 20k 50k 80k 100k

Sp
ac

e
co

st
(k

)

Data size

(b)WC

 0
 400
 800

 1200
 1600
 2000
 2400

20k 60k 100k120k160k

Sp
ac

e
co

st
(k

)

Data size

(c)WH

 0
 2000
 4000
 6000
 8000

 10000

10k20k40k50k60k

Sp
ac

e
co

st
(k

)

Data size

(d)CSSC

Fig. 7. Space cost by varying data size

single-column
single-group

column-groups(exact evaluation)
column-groups(approximate evaluation)

 0
 0.05
 0.1

 0.15
 0.2

 0.25

10k 20k 50k 80k 100k

Fl
us

h
tim

e
co

st
(s

)

Data size

(a)Campus

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

10k 20k 50k 80k 100k

Fl
us

h
tim

e
co

st
(s

)

Data size

(b)WC

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35

20k 60k 100k120k160k

Fl
us

h
tim

e
co

st
(s

)

Data size

(c)WH

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

10k 20k 40k 50k 60k

Fl
us

h
tim

e
co

st
(s

)

Data size

(d)CSSC

Fig. 8. Flush time by varying data size

6.2.1 Varying Data Size. Figures 7-10 report the results by varying the data size, i.e., the number
of rows (aligned and unaligned).

As shown in Figure 7, it is not surprising that, due to the ability of column-groups storage to find
a better grouping strategy for lower space cost, column-groups storage always shows the lowest
space cost, compared to single-column storage and single-group storage. For the datasets that are
highly aligned (e.g., CSSC and WH), column-groups storage has close but no worse performance
than single-group storage. Overall, column-groups storage with approximate evaluation shows
close results to exact evaluation, which demonstrates the accuracy of the overlap estimation.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 23. Publication date: May 2023.

23:18 Chenguang Fang et al.

column-groups(exact evaluation) column-groups(approximate evaluation)

 0.004
 0.005
 0.006
 0.007
 0.008
 0.009
 0.01

 0.011

10k20k50k80k100k

G
ro

up
 ti

m
e

co
st

(s
)

Data size

(a)Campus

 0
 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

10k20k50k80k100k

G
ro

up
 ti

m
e

co
st

(s
)

Data size

(b)WC

 0.01
 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 0.045
 0.05

20k60k100k120k160k

G
ro

up
 ti

m
e

co
st

(s
)

Data size

(c)WH

 0
 0.02
 0.04
 0.06
 0.08
 0.1

10k 20k 40k 50k 60k

G
ro

up
 ti

m
e

co
st

(s
)

Data size

(d)CSSC

Fig. 9. Group time by varying data size

single-column
single-group

column-groups(exact evaluation)
column-groups(approximate evaluation)

 0.004
 0.008
 0.012
 0.016
 0.02

 0.024
 0.028

10k20k50k80k100k

Q
ue

ry
 ti

m
e

co
st

(s
)

Data size

(a)Campus

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14

10k 20k 50k 80k 100k

Q
ue

ry
 ti

m
e

co
st

(s
)

Data size

(b)WC

 0
 0.05
 0.1

 0.15
 0.2

 0.25

20k 60k 100k120k160k

Q
ue

ry
 ti

m
e

co
st

(s
)

Data size

(c)WH

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14

10k 20k 40k 50k 60k

Q
ue

ry
 ti

m
e

co
st

(s
)

Data size

(d)CSSC

Fig. 10. �ery time by varying data size

Figure 8 reports the flush time cost, which is the time for the flush thread to serialize the
MemTable into file system. In all datasets, the flush time costs of the column-groups storage are
comparable to those of single-column or single-group.

Figure 9 illustrates the group time of column-groups storage with exact and approximate eval-
uations. It is not surprising that approximate evaluation always shows lower group time cost.

For query time cost in Figure 10, it is related to the space cost. In most datasets, the column-
groups storage shows comparable results in query time, which verifies the stability of the proposal.

Since WH is multivariate, the grouping algorithm suggests single-group scheme. Moreover, the
dataset is with regular time interval, which can be effectively compressed. Thereby, the timestamps

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 23. Publication date: May 2023.

Grouping Time Series for Efficient Columnar Storage 23:19

single-column
single-group

column-groups(exact evaluation)
column-groups(approximate evaluation)

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000

10 20 40 60 90122

Sp
ac

e
co

st
(k

)

Time series number

(a)GW

 0
 200
 400
 600
 800

 1000
 1200
 1400

2k 4k 6k 8k 10k

Sp
ac

e
co

st
(k

)

Time series number

(b)CRRC

Fig. 11. Space cost by varying time series number

single-column
single-group

column-groups(exact evaluation)
column-groups(approximate evaluation)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

10 20 40 60 90122

Fl
us

h
tim

e
co

st
(s

)

Time series number

(a)GW

 0.004
 0.008
 0.012
 0.016
 0.02

 0.024

2k 4k 6k 8k 10k

Fl
us

h
tim

e
co

st
(s

)

Time series number

(b)CRRC

Fig. 12. Flush time by varying time series number

column-groups(exact evaluation) column-groups(approximate evaluation)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

10 20 40 60 90122

G
ro

up
 ti

m
e

co
st

(s
)

Time series number

(a)GW

 0
 1
 2
 3
 4
 5
 6

2k 4k 6k 8k 10k

G
ro

up
 ti

m
e

co
st

(s
)

Time series number

(b)CRRC

Fig. 13. Group time by varying time series number

single-column
single-group

column-groups(exact evaluation)
column-groups(approximate evaluation)

 0
 0.05
 0.1

 0.15
 0.2

 0.25

10 20 40 60 90122

Q
ue

ry
 ti

m
e

co
st

(s
)

Time series number

(a)GW

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

2k 4k 6k 8k 10k

Q
ue

ry
 ti

m
e

co
st

(s
)

Time series number

(b)CRRC

Fig. 14. �ery time by varying time series number

do not take much space, i.e., the difference between single-column and single-group is not large.
The column-groups scheme thus shows only a slight improvement, as shown in Figure 7(c).

Note that the target of column grouping, as stated in Problem 1, is to reduce the space cost (not
query). The space cost is reduced with more column groups, i.e., lower I/O time as well. However,

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 23. Publication date: May 2023.

23:20 Chenguang Fang et al.

single-column
single-group

column-groups(exact evaluation)
column-groups(approximate evaluation)

 1200

 1600

 2000

 2400

1200
1400

1600
1800

2000

Sp
ac

e
co

st
(k

)

Data size

(a)Pistachio

 0.01

 0.02

 0.03

 0.04

1200
1400

1600
1800

2000

G
ro

up
 ti

m
e

co
st

(s
)

Data size

(b)Pistachio

Fig. 15. Performance over Pistachio (binary blobs) dataset

single-column
single-group

column-groups(exact evaluation)
column-groups(approximate evaluation)

 0

 20000

 40000

 60000

 80000

0.2m
0.4m

0.6m
0.8m

1m

Sp
ac

e
co

st
(k

)

Data size

(a)APM

 0
 0.1
 0.2
 0.3
 0.4
 0.5

0.2m
0.4m

0.6m
0.8m

1mG
ro

up
 ti

m
e

co
st

(s
)

Data size

(b)APM

Fig. 16. Performance over APM (logs) dataset

the corresponding CPU time of aligning more groups may increase in query processing. Thereby,
the exact evaluation (for better space cost in Figure 7) does not necessarily lead to lower query
time than the approximate one, e.g., in WC and CSSC in Figure 10.

6.2.2 Varying Time Series Number. Another dimension of the data is the time series number, i.e.,
the number of sensors. Generally, more time series increase the difficulty for column grouping. We
thus vary the time series number over the datasets in Figures 11-14.

The column-groups storage stably shows the lowest space cost in Figure 11. The time costs of
flushing and querying are also comparable. Since the query selects all time series, the query cost
increases with the number of series, in Figure 14.

In particular, we conduct experiments over CRRC, having a large number of time series (about
10k). The large number of columns brings more opportunities to optimize the grouping schemes.
Therefore, the column-groups scheme shows clearer improvement, compared to single-column
and single-group, in Figure 11(b).

6.2.3 Evaluation on Different Types of Datasets. We also conduct experiments on more diverse
and larger time series data to show the effectiveness of the proposed approaches. For multivariate
data, WH is exactly a dataset of multivariate time series, where a time column is shared by all
value columns. It is not surprising that the grouping algorithm suggests single-group in Figure 7.

For binary blobs, Pistachio [30] is a dataset of Pistachio images. For logs, APM is a dataset
of cloud application performance monitoring, including 1m log-type records. Figures 15 and 16
present the results over the Pistachio and APM datasets. The performances of our proposal over
these datasets are consistent with the results in Figure 7, since it applies to any value type. In
Pistachio, the space costs are dominated by the binary blobs due to their large sizes. Therefore, the
spaces saved by our proposals are not obvious.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 23. Publication date: May 2023.

Grouping Time Series for Efficient Columnar Storage 23:21

column-groups(exact evaluation)
column-groups(approximate evaluation)

enumerated optimum

 200

 250

 300

 350

12 14 16 18 20

Sp
ac

e
co

st
(k

)

Time series number

(a)GW

 0.01

 0.1

 1

 10

 100

12 14 16 18 20

G
ro

up
 ti

m
e

co
st

(s
)

Time series number

(b)GW

Fig. 17. Comparison with the optimum

single-column
single-group

column-groups(exact evaluation)

column-groups(approximate evaluation)
RDF-to-relational

 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

10k 12k 15k 21k 25k

Sp
ac

e
co

st
(k

)

Data size

(a)TY

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

10k 12k 15k 21k 25k

G
ro

up
 ti

m
e

co
st

(s
)

Data size

(b)TY

Fig. 18. Comparison with similar methods

6.3 Comparison with the Optimum

The grouping algorithm in Section 3 locally minimizes the space cost, i.e., a heuristic solution. The
question is how the results of the algorithm are close to the optimal solution. Referring to the
NP-hardness w.r.t. the number of columns (series) in Theorem 1, we implement a method based
on enumeration to find the optimum grouping. The results are reported in Figure 17. Both column-
grouping algorithms show almost the same space cost with the optimal results. The enumeration
method takes about 20s for only 20 columns, i.e., 100× time cost of flush in Figure 12, too costly
for grouping during flushing.

6.4 Comparison with Similar Methods

By interpreting subjects in RDF as timestamps and predicates as time series (columns), the problem
of clustering predicates for transferring RDF to relational schemas [27] is similar to our problem
of grouping columns for aligned time series. However, the unique features of timestamps, such
as numeric with regular intervals, are different from subjects in RDF and not considered in the
RDF-to-relational work. Figure 18 illustrates the comparison results. Owing to the pruning and
estimation by the unique features of timestamps, our proposed column-groups show lower space
cost and time cost than the RDF-to-relational approach.

6.5 Implementation in Other Systems

6.5.1 Implementation in TDengine. To show the applicability of the proposed grouping algorithms,
we implement the proposals in another open-source time series database, TDengine [10]. TDengine
is also based on LSM-tree in a columnar format. We thus build a prototype of our proposals over
TDengine in C, compiled using GCC 9.4.0 in Linux. Analogous to the implementation in Section 5,

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 23. Publication date: May 2023.

23:22 Chenguang Fang et al.

single-column
single-group

column-groups(exact evaluation)
column-groups(approximate evaluation)

 0
 1000
 2000
 3000
 4000
 5000
 6000

10k 12k 15k 21k 25k

Sp
ac

e
co

st
(k

)

Data size

(a)TY

 0
 0.5

 1
 1.5

 2
 2.5

10k 12k 15k 21k 25k

G
ro

up
 ti

m
e

co
st

(s
)

Data size

(b)TY

Fig. 19. Implementation in TDengine [10]

single-column
single-group

column-groups(exact evaluation)
column-groups(approximate evaluation)

 5000
 10000
 15000
 20000
 25000
 30000
 35000

10k20k30k40k50k

Sp
ac

e
co

st
(k

)

Data size

(a)Zomato

 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18
 0.2

10k 20k 30k 40k 50k

G
ro

up
 ti

m
e

co
st

(s
)

Data size

(b)Zomato

Fig. 20. Implementation in HBase [1]

the grouping algorithms are invoked during the procedure of flushing data into disk (namely “com-
mit” in TDengine). The source code of the TDengine implementation is available in [11].

The results are reported in Figure 19, generally consistent with the evaluation in IoTDB in Figure
7. As shown, column-groups storage with exact and approximate evaluations shows lower space
cost than single-column or single-group in TDengine as well. Again, approximate evaluation al-
ways shows lower grouping time costs.

6.5.2 Implementation in HBase. In general, our proposal is applicable to any data types with nu-
merical key columns. Therefore, we implement the method in a more general columnar store,
Apache HBase [1], for non-time-series data platforms. HBase also adopts an LSM-tree structure
for columnar storage. Multi-column tables are also supported with a shared key. We thus imple-
ment the proposals at the stage of flushing regions (the data storage and management unit in
HBase). The source code of the HBase implementation in Java is available in [2]. We conduct ex-
periments over Zomato [13], a non-time-series dataset with numerical keys of 50k tuples. The
results in Figure 20 are generally similar to those in time series databases, such as Figure 16 on the
APM log data.

6.6 Combination with Compression

Note that the compression techniques can still be applied to grouped columns, i.e., complementary
to our grouping algorithm. We evaluate how different grouping strategies work well with the
compression techniques. The widely used encoding and compression methods for time series are
employed, including TS2DIFF (an encoding method based on delta-of-delta [28]) and SNAPPY (a
compression method [29]). For each grouping strategy, we combine it with different compression
schemes, including Plain (without encoding or compression), TS2DIFF (with encoding), SNAPPY
(with compression) and Mixed (with both encoding and compression). The results are reported in

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 23. Publication date: May 2023.

Grouping Time Series for Efficient Columnar Storage 23:23

single-column
single-group

column-groups(exact evaluation)
column-groups(approximate evaluation)

 0
 2000
 4000
 6000
 8000

 10000

Plain
TS2DIFF

SNAPPY
Mixed

Sp
ac

e
co

st
(k

)

Method

(a)TY

 0
 200
 400
 600
 800

 1000

Plain
TS2DIFF

SNAPPY
Mixed

Sp
ac

e
co

st
(k

)

Method

(b)Campus

Fig. 21. Combination with compression

single-column
single-group

column-groups(exact evaluation)

column-groups(approximate evaluation)
Heracles

TimescaleDB

 0
 4000
 8000

 12000
 16000
 20000

10k12k15k21k25k

Sp
ac

e
co

st
(k

)

Data size

(a)TY

 100

 1000

 10000

10k20k50k80k100k

Sp
ac

e
co

st
(k

)

Data size

(b)Campus

Fig. 22. Comparison with alternative systems

Figure 21. It is not surprising that the mixed compression strategy shows the lowest space cost.
Besides, our proposed grouping algorithms cooperate well with all compression and encoding
techniques, showing even lower space costs.

6.7 Comparison with Alternative Systems

Figure 22 compares our proposal with competing systems, including columnar Heracles [35] and
non-columnar TimescaleDB [12].

Heracles [35] is a time series database based on Prometheus [8]. It uses a shared timestamp col-
umn for multiple time series, similar to the idea of our single-group. Heracles uses offset blocks
to skip null values, while single-group scheme employs a bitmap to mark the null values. Remark-
ably, besides the reduced bitmap by grouping columns (not considered in Heracles), a full bitmap
could be omitted for multivariate data with exactly aligned time. Thereby, the space cost of our
single-column is lower than Heracles. By further considering column-groups, the space cost is
even lower.

TimescaleDB [12] is built on PostgreSQL, supportingmultivariate data. Owing to the row-oriented
nature, it is not effective in handling null values, and thereby shows the highest space costs.

In summary, compared to the non-columnar strategy, e.g., in TimescaleDB, the columnar stor-
age supports efficient compression of the series growing over time as illustrated in Figure 21,
thus showing lower space cost in Figure 22. Moreover, compared to the columnar storage alter-
natives such as Heracles, our proposal handles better the null values together with non-null ones
by column-groups, and thereby has less space cost.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 23. Publication date: May 2023.

23:24 Chenguang Fang et al.

7 RELATEDWORK

7.1 Columnar Storage

Columnar storage is an industry standard design in most open-source or commercial time series
database products, making themHTAP systems. Existing studies of columnar storage mainly work
for distributed databases [16, 19, 23], relational databases [21, 24] and graph database systems[20].
In this study, we propose a novel grouping method for efficient columnar storage in time series
database. Concerning the single-column storage and single-group storage in time series databases,
we propose column-groups storage to save the space based on grouping algorithm.

7.2 Similarity Join

To compute the merging gain of merging the groups, the key is to compute the overlapping times-
tamps, which is similar to the idea of similarity join. [14, 18] study the set-similarity join (SSJoin)
by signature-based methods, which mainly rely on the bound of the similarity functions. [34]
proposes prefix-based method for adaptively adjusting the prefix, and employ inverted index for
storing the prefixes. However, these approaches are devised mainly for string sets, due to the prop-
erties of the time series database, the prefixes are hard to define and it is too expensive to construct
the inverted index. For similar reasons, the set-correlation method [32] is not applicable. Inspired
by the properties of the time series, in this study, we devise pruning strategies for evaluating the
merging gains and the overlaps.

7.3 Time Series Matching

As for matching approaches devised for time series, time series similarity matching method [36]
proposes an index structure to deal with subsequence matching problem, which aims to find the
most similar subsequence. While in our column-grouping problem, the overlaps of the complete
time series should be computed. Existing study on matching temporal attributes [25] leverages
timestamps and the values for time series schema matching. However, the method mainly works
for matching the schema, and thus is not applicable to address our problem, which focuses on the
overlaps of timestamps.

8 CONCLUSIONS

Among the design choices of grouping or not for efficiently storing multiple time series, in this
study, we propose to first analyze the space cost of different storage schemes. The problem is thus
to find the proper groups of time series that can minimize the cost, where no-grouping is also
considered as a special column grouping scheme. Recognizing the NP-hardness of the problem,
we turn to a more practical solution of a heuristic algorithm. It achieves near optimal space cost,
without introducing much extra time cost. Indeed, both the flushing and querying time costs of
column groups are comparable to those of single-column or single-group storage schemes. That is,
while leading to more concise space cost, the extra column grouping step does not always increase
the corresponding time cost. As the IO cost could be reduced with a more efficient column-groups
storage, the total cost of flushing and querying may also reduce, as observed in Section 6.

ACKNOWLEDGMENTS

This work is supported in part by National Key Research and Development Plan (2021YFB3300500),
the National Natural Science Foundation of China (62021002, 62072265, 62232005), Civil aircraft
research project (MZJ3-2N21), Beijing National Research Center for Information Science and Tech-
nology (BNR2022RC01011), and Alibaba Group through Alibaba Innovative Research (AIR) Pro-
gram. Shaoxu Song (https://sxsong.github.io/) is the corresponding author.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 23. Publication date: May 2023.

https://sxsong.github.io/

Grouping Time Series for Efficient Columnar Storage 23:25

REFERENCES

[1] Apache HBase. https://hbase.apache.org/.
[2] Apache HBase Implementation. https://github.com/iotdbColumnGroup/HBase.
[3] Apache IoTDB. http://iotdb.apache.org.
[4] Appendix. https://iotdbcolumngroup.github.io/iotdbColumnGroup/appendix.pdf.
[5] Code and Data. https://github.com/iotdbColumnGroup/iotdbColumnGroup.
[6] InfluxDB. https://www.influxdata.com/.
[7] OpenTSDB. http://opentsdb.net/.
[8] Prometheus. https://prometheus.io.
[9] Source Code. https://github.com/apache/iotdb/tree/research/auto-aligned.
[10] TDengine. https://github.com/taosdata/TDengine/.
[11] TDengine Implementation. https://github.com/iotdbColumnGroup/TDengine.
[12] TimescaleDB. https://www.timescale.com.
[13] Zomato Dataset. https://www.kaggle.com/himanshupoddar/zomato-bangalore-restaurants.
[14] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. 2006. Efficient Exact Set-Similarity Joins. In Proceedings

of the 32nd International Conference on Very Large Data Bases, Seoul, Korea, September 12-15, 2006. ACM, 918–929.
http://dl.acm.org/citation.cfm?id=1164206

[15] Esther M Arkin and Refael Hassin. 1998. On local search for weighted k-set packing. Mathematics of Operations

Research 23, 3 (1998), 640–648.
[16] Haoqiong Bian, Ying Yan, Wenbo Tao, Liang Jeff Chen, Yueguo Chen, Xiaoyong Du, and Thomas Moscibroda. 2017.

Wide Table Layout Optimization based on Column Ordering and Duplication. In Proceedings of the 2017 ACM Interna-

tional Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017. ACM, 299–314.
https://doi.org/10.1145/3035918.3035930

[17] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Michael Burrows, Tushar
Chandra, Andrew Fikes, and Robert Gruber. 2006. Bigtable: A Distributed Storage System for Structured
Data (Awarded Best Paper!). In 7th Symposium on Operating Systems Design and Implementation (OSDI ’06),

November 6-8, Seattle, WA, USA, Brian N. Bershad and Jeffrey C. Mogul (Eds.). USENIX Association, 205–218.
http://www.usenix.org/events/osdi06/tech/chang.html

[18] Surajit Chaudhuri, Venkatesh Ganti, and Raghav Kaushik. 2006. A Primitive Operator for Similarity Joins in Data
Cleaning. In Proceedings of the 22nd International Conference on Data Engineering, ICDE 2006, 3-8 April 2006, Atlanta,

GA, USA. IEEE Computer Society, 5. https://doi.org/10.1109/ICDE.2006.9
[19] Avrilia Floratou, Jignesh M. Patel, Eugene J. Shekita, and Sandeep Tata. 2011. Column-Oriented Storage Techniques

for MapReduce. Proc. VLDB Endow. 4, 7 (2011), 419–429. https://doi.org/10.14778/1988776.1988778
[20] Pranjal Gupta, Amine Mhedhbi, and Semih Salihoglu. 2021. Columnar Storage and List-based Pro-

cessing for Graph Database Management Systems. Proc. VLDB Endow. 14, 11 (2021), 2491–2504.
http://www.vldb.org/pvldb/vol14/p2491-gupta.pdf

[21] Muon Ha and Yulia A. Shichkina. 2022. Translating a Distributed Relational Database to a Document Database. Data
Sci. Eng. 7, 2 (2022), 136–155. https://doi.org/10.1007/s41019-022-00181-9

[22] Shuai Han, Mingxia Liu, and Jian-Zhong Li. 2022. Efficient Partitioning Method for Optimizing the Compression on
Array Data. J. Comput. Sci. Technol. 37, 5 (2022), 1049–1067. https://doi.org/10.1007/s11390-022-2371-7

[23] Donghe Kang, Ruochen Jiang, and Spyros Blanas. 2021. Jigsaw: A Data Storage and Query Processing Engine for
Irregular Table Partitioning. In SIGMOD ’21: International Conference on Management of Data, Virtual Event, China,

June 20-25, 2021. 898–911. https://doi.org/10.1145/3448016.3457547
[24] Per-Åke Larson, Eric N. Hanson, and Susan L. Price. 2012. Columnar Storage in SQL Server 2012. IEEE Data Eng. Bull.

35, 1 (2012), 15–20. http://sites.computer.org/debull/A12mar/apollo.pdf
[25] Yinan Mei, Shaoxu Song, Yunsu Lee, Jungho Park, Soo-Hyung Kim, and Sungmin Yi. 2020. Representing Temporal

Attributes for Schema Matching. In KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data

Mining, Virtual Event, CA, USA, August 23-27, 2020. ACM, 709–719. https://doi.org/10.1145/3394486.3403115
[26] Jeffrey C. Mogul, Fred Douglis, Anja Feldmann, and Balachander Krishnamurthy. 1997. Potential Benefits of Delta

Encoding and Data Compression for HTTP. In Proceedings of the ACM SIGCOMM 1997 Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communication, September 14-18, 1997, Cannes, France. ACM,
181–194. https://doi.org/10.1145/263105.263162

[27] M. Tamer Özsu. 2016. A survey of RDF data management systems. Frontiers Comput. Sci. 10, 3 (2016), 418–432.
https://doi.org/10.1007/s11704-016-5554-y

[28] Tuomas Pelkonen, Scott Franklin, Paul Cavallaro, Qi Huang, Justin Meza, Justin Teller, and Kaushik Veeraragha-
van. 2015. Gorilla: A Fast, Scalable, In-Memory Time Series Database. Proc. VLDB Endow. 8, 12 (2015), 1816–1827.
https://doi.org/10.14778/2824032.2824078

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 23. Publication date: May 2023.

https://hbase.apache.org/
https://github.com/iotdbColumnGroup/HBase
http://iotdb.apache.org
https://iotdbcolumngroup.github.io/iotdbColumnGroup/appendix.pdf
https://github.com/iotdbColumnGroup/iotdbColumnGroup
https://www.influxdata.com/
http://opentsdb.net/
https://prometheus.io
https://github.com/apache/iotdb/tree/research/auto-aligned
https://github.com/taosdata/TDengine/
https://github.com/iotdbColumnGroup/TDengine
https://www.timescale.com
http://dl.acm.org/citation.cfm?id=1164206
https://doi.org/10.1145/3035918.3035930
http://www.usenix.org/events/osdi06/tech/chang.html
https://doi.org/10.1109/ICDE.2006.9
https://doi.org/10.14778/1988776.1988778
http://www.vldb.org/pvldb/vol14/p2491-gupta.pdf
https://doi.org/10.1007/s41019-022-00181-9
https://doi.org/10.1007/s11390-022-2371-7
https://doi.org/10.1145/3448016.3457547
http://sites.computer.org/debull/A12mar/apollo.pdf
https://doi.org/10.1145/3394486.3403115
https://doi.org/10.1145/263105.263162
https://doi.org/10.1007/s11704-016-5554-y
https://doi.org/10.14778/2824032.2824078

23:26 Chenguang Fang et al.

[29] Horst Samulowitz, Chandra Reddy, Ashish Sabharwal, and Meinolf Sellmann. 2013. Snappy: A Simple Algorithm
Portfolio. In Theory and Applications of Satisfiability Testing - SAT 2013 - 16th International Conference, Helsinki, Finland,
July 8-12, 2013. Proceedings (Lecture Notes in Computer Science, Vol. 7962), Matti Järvisalo and Allen Van Gelder (Eds.).
Springer, 422–428. https://doi.org/10.1007/978-3-642-39071-5_33

[30] Dilbag Singh, Yavuz Selim Taspinar, Ramazan Kursun, Ilkay Cinar, Murat Koklu, Ilker Ali Ozkan, and Heung-No Lee.
2022. Classification and Analysis of Pistachio Species with Pre-Trained Deep Learning Models. Electronics 11, 7 (2022),
981.

[31] Shaoxu Song, Yue Cao, and JianminWang. 2016. Cleaning Timestamps with Temporal Constraints. Proc. VLDB Endow.

9, 10 (2016), 708–719. https://doi.org/10.14778/2977797.2977798
[32] Shaoxu Song and Lei Chen. 2010. Efficient set-correlation operator inside databases. In Proceedings of the 19th ACM

Conference on Information and Knowledge Management, CIKM 2010, Toronto, Ontario, Canada, October 26-30, 2010.
ACM, 139–148. https://doi.org/10.1145/1871437.1871459

[33] Chen Wang, Xiangdong Huang, Jialin Qiao, Tian Jiang, Lei Rui, Jinrui Zhang, Rong Kang, Julian Feinauer, Kevin
Mcgrail, Peng Wang, Diaohan Luo, Jun Yuan, Jianmin Wang, and Jiaguang Sun. 2020. Apache IoTDB: Time-series
database for Internet of Things. Proc. VLDB Endow. 13, 12 (2020), 2901–2904. https://doi.org/10.14778/3415478.3415504

[34] JiannanWang, Guoliang Li, and Jianhua Feng. 2012. Can we beat the prefix filtering?: an adaptive framework for sim-
ilarity join and search. In Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD

2012, Scottsdale, AZ, USA, May 20-24, 2012. ACM, 85–96. https://doi.org/10.1145/2213836.2213847
[35] Zhiqi Wang, Jin Xue, and Zili Shao. 2021. Heracles: An Efficient Storage Model And Data Flushing For Performance

Monitoring Timeseries. Proc. VLDB Endow. 14, 6 (2021), 1080–1092. https://doi.org/10.14778/3447689.3447710
[36] Jiaye Wu, Peng Wang, Ningting Pan, Chen Wang, Wei Wang, and Jianmin Wang. 2019. KV-Match: A Subsequence

Matching Approach Supporting Normalization and Time Warping. In 35th IEEE International Conference on Data

Engineering, ICDE 2019, Macao, China, April 8-11, 2019. IEEE, 866–877. https://doi.org/10.1109/ICDE.2019.00082

Received April 2022; revised July 2022; accepted August 2022

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 23. Publication date: May 2023.

https://doi.org/10.1007/978-3-642-39071-5_33
https://doi.org/10.14778/2977797.2977798
https://doi.org/10.1145/1871437.1871459
https://doi.org/10.14778/3415478.3415504
https://doi.org/10.1145/2213836.2213847
https://doi.org/10.14778/3447689.3447710
https://doi.org/10.1109/ICDE.2019.00082

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Solution

	2 Column-Oriented Storage
	2.1 Single-Column Storage
	2.2 Single-Group Storage
	2.3 Column-Groups Storage
	2.4 Column-Grouping Problem

	3 Column-Grouping Algorithm
	3.1 Merging Strategy
	3.2 Bottom-Up Grouping Algorithm

	4 Approximate Overlap Estimation
	4.1 Feature Extraction
	4.2 Overlap Estimation for Columns
	4.3 Overlap Estimation for Column-Groups

	5 System Deployment
	6 Experiments
	6.1 Experimental Settings
	6.2 Evaluation over Different Datasets
	6.3 Comparison with the Optimum
	6.4 Comparison with Similar Methods
	6.5 Implementation in Other Systems
	6.6 Combination with Compression
	6.7 Comparison with Alternative Systems

	7 Related Work
	7.1 Columnar Storage
	7.2 Similarity Join
	7.3 Time Series Matching

	8 Conclusions
	Acknowledgments
	References

