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ABSTRACT
Database-native machine learning operators are highly desired for

efficient I/O and computation costs. While most existing machine

learning algorithms assume the time series data fully available and

readily ordered by timestamps, it is not the case in practice. Com-

modity time series databases store the data in pages with possibly

overlapping time ranges, known as LSM-Tree based storage. Data

points in a page could be incomplete, owing to either missing values

or out-of-order arrivals, which may be inserted by the imputed or

delayed points in the following pages. Likewise, data points in a

page could also be updated by others in another page, for dirty data

repairing or re-transmission. A straightforward idea is thus to first

merge and order the data points by timestamps, and then apply the

existing learning algorithms. It is not only costly in I/O but also pre-

vents pre-computation of model learning. In this paper, we propose

to offline learn the AR models locally in each page on incomplete

data, and online aggregate the stored models in different pages with

the consideration of the aforesaid inserted and updated data points.

Remarkably, the proposed method has been deployed and included

as a function in an open source time series database, Apache IoTDB.

Extensive experiments in the system demonstrate that our proposal

LSMAR shows up to one order-of-magnitude improvement in learn-

ing time cost. It needs only about 10s of milliseconds for learning

over 1 million data points.
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ologies → Machine learning.
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1 INTRODUCTION
IoT data are often collected in a preset frequency, e.g., in every

second, leading to time series with regular intervals. However,

the data arrivals are often out-of-order, owing to various network
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Figure 1: Example of imputed, repaired, delayed and re-
transmitted data in LSM-Tree store for learning AR models

delays in the IoT scenarios [11, 16]. Moreover, some points could

be missing and inserted back by data imputation program [21, 25].

Furthermore, dirty values are also detected and updated later by

requesting point re-transmission or data repairing program [26].

To handle the aforesaid out-of-order arrival, point insertion for

imputation, value update for repairing and so on [18], most com-

modity time series databases, such Apache IoTDB [3], employ a

Log-Structured Merge-Tree (LSM-Tree) [20] based storage. As illus-

trated in Figure 1, data points are batched in disk pages referring

to their arrivals. Some points such as the one at time 11:00:07 are

delayed and batched with other data points in page 2. The cor-

responding position in page 1 is thus denoted by a hollow circle.

Likewise, the missing point at time 11:00:02 is imputed, again in

page 2. Moreover, the point at time 11:00:05 with dirty value in

page 1 is repaired later by the one at the same time in page 2, while

the point at time 11:00:09 is updated by data re-transmission.

To learn models over the time series scattered in different pages

with possibly overlapping time ranges, a straightforward idea is to

first load the data in disk pages to memory. Then, they are merged

by inserting the delayed or imputed points, and updating the re-

transmitted or repaired points. Existing learning algorithms [8] can

thus be applied over the merged time series ordered by time. It

is obviously inefficient in I/O cost to read many stale data points

and merge them online. Moreover, the insertion and update of data

points also prevent directly utilizing the pre-computed models in

individual page when it is written to disk.

In this paper, we propose to design efficient schemes for online

aggregating the pre-computed models locally in each page. The

autoregressive (AR) is considered, since it is simple enough to learn

during the flush of the corresponding page to disk in database

ingestion. As illustrated in Figure 1, the model is pre-trained over

the incomplete time series in page 1 and stored. Intuitively, when
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Table 1: Notations

Symbol Description

x time series of n = ∥x∥ data points
(tℎ, xℎ) time and value of ℎ-th data point in x

p the autoregressive model order

𝛾𝑖 the 𝑖-th order auto-covariances validity of time series x
𝜙𝑖 the 𝑖-th autoregressive model coefficient

new data points appear, e.g., in page 2, the pre-computed models

could be fine-tuned rather than learning from scratch.

Our major contributions in this study are as follows.

(1) We devise the learning process of models in a single page in

Section 3, including learning models with imputation, and updating

models with modified points.

(2) We propose the efficient aggregation of models learned in

different pages, with the consideration of inserted and updated

values, in Section 4. For pages with various cases, i.e., adjacent,

disjoint and overlapped in time ranges, we derive the corresponding

model aggregation strategies, respectively. The theoretical results

in Propositions 4.1, 4.3, 4.5 and 4.7 guarantee the correctness of

model aggregation, i.e., equivalent to the baseline of learning over

the merged time series.

(3) We present the algorithm for learning models on time series

scattered in different pages in Section 5. The complexity analysis

illustrates that our proposal is more efficient than the baseline of

learning from scratch over the online merged time series. Moreover,

we provide the details about system deployment, as a function

in Apache IoTDB [3], an open-source time series database. The

document is available in the product website [4], and the code is

included in the product repository by system developers [1].

(4) We conduct extensive experiments for evaluation in Section

6. Our proposal LSMAR shows up to one order-of-magnitude im-

provement in learning time cost, compared to the aforesaid baseline

of online merging data and learning from scratch. It needs only

about tens of milliseconds for learning over 1 million data points,

while the baseline takes hundreds. The experiment code and public

data are available anonymously in [2] for reproducibility.

Finally, we discuss related work in Section 7 and conclude the

paper in Section 8. Table 1 lists the notations used in the paper.

2 PRELIMINARY
For a better comprehension of our proposal, we first introduce the

baseline autoregressive model in Section 2.1, and we present the

structure about LSM-Tree based storage with an example in Section

2.2. Section 2.3 introduces the problem of learning autoregressive

models in LSM-Tree based storage.

2.1 Autoregressive Model
Autoregressive model fits a point xl by utilizing its past few points,

i.e., xl−1, xl−2, . . . , xl−p , where parameter p determines the number

of the past points used for fitting autoregressive models.

Definition 2.1 (AutoregressiveModel [8]). An autoregressivemodel

of order p, denoted as 𝐴𝑅(p), is defined as

x̂l =
p∑︁
𝑖=1

𝜙𝑖xl−i + 𝜀l,

where 𝜙1, · · · , 𝜙𝑝 are the parameters of models, and 𝜀l denotes the

white noise 𝑁 (0, 𝜎2) at timestamp l.

Given a zero-mean time series x[1 : n], by calculating the auto-

covariances of order 0, 1, 2, . . . , p, denoted by 𝛾0, 𝛾1, 𝛾2, . . . , 𝛾p , i.e.,

𝛾i =
1

n − i

n−i∑︁
l=1

xlxl+i, i = 0, 1, . . . , p, (1)

the coefficients of AR models could be estimated by solving Yule-

Walker Equation [10], which has the following form.
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It is worth noting that not all time series can be modeled by

autoregressivemodels. Generally, autoregressivemodels are applied

on weak stationary time series.

Definition 2.2 (Weak Stationary Time Series [15]). Given a time

series x, by considering the value xl at timestamp l as a continuous
random variable, x is called a weak stationary time series, if

𝐸 (xl) = 𝜇, ∀l,
𝐸 (xl+sxl) = 𝜎2s , ∀l, s,

where 𝜇 is a constant and 𝜎2s only depends upon the lag s.

For simplicity, we consider all time series mentioned in the article

as zero-mean time series. For time series with mean value not equal

to 0, we replace the value xl at timestamp l with xl − 𝜇.

2.2 LSM-Tree Storage
To support frequent and extensive writing and reading of time

series data, the Log-Structured Merge-Tree (LSM-Tree) [20] is often

employed in time series database. We follow the convention of

Apache IoTDB, an LSM-Tree based time series database.

Figure 2 presents an overview of the LSM-Tree storage struc-

ture, where a time series is stored into multiple pages, i.e., P1 to
P6, with possibly overlapped time intervals. Each page consists of

PageHeader (denoted by blue rectangles), recording metadata, e.g.,

StartTime and EndTime, and PageData (denoted by red rectangles),

storing the batched data received in a time period. Note that each

page is associated with a version, and the higher the version is, the

later the batched data points are received. If pages have overlapped

time intervals, e.g., P1 and P2, the page with the higher version

would overwrite the page with the lower version.

Example 2.3. Figure 1 presents a time series stored in two pages,

page 1 and page 2, recording the oil temperatures in the tank of

a sailing ship. The vertical axis denotes the page version, and the

value of each point is suggested by the relative height in the dotted

rectangle with range from 320 to 327. Due to transmission issues,

2062



Learning Autoregressive Model in LSM-Tree based Store KDD ’23, August 6–10, 2023, Long Beach, CA, USA

!"#$"%&'( )*+%&'(

,-($.#//(+01#2(3

4($3&5*67'8($

4($3&5*

%&'(

!!

!"

!#

!$

9+:#;(*"01#2(3

<&3:5&*"01#2(3

!%

!&

1#2(=(#+($

1#2(<#"#

Figure 2: Aggregating models of pages in different cases

some points may be missing or delayed. For instance, the point at

11:00:02 in page 1 is not received on time, while the delayed point

arrives after the data points in page 1 are flushed in disk. Thus, the

delayed point is batched with other points in a page with a higher

version 2, leading to overwriting. Besides, the point at 11:00:07 in

page 1 is a missing point (denoted by hollow circles), imputed by

linear interpolation for model learning when flushing to the disk,

referring to Section 3.1.

Moreover, from the perspective of LSM-Tree storage structure,

the pages in Figure 1 correspond to the overlapped pages P1 and P2
in Figure 2. In addition to the case where pages have overlapped

time intervals, pages may also be disjoint (e.g., the pages P3 and
P4 in Figure 2) or adjacent (e.g., the pages P5 and P6 in Figure 2),

which will be further introduced in Section 4 in detail.

2.3 Learning Models in LSM-Tree based Storage
We are now ready to introduce the model learning process in LSM-

Tree based storage. With considering overwriting mentioned in

Section 2.2, our aim is to efficiently aggregate the models on multi-

ple pages by utilizing the page metadata.

To address the overlapped pages and out-of-order data points, a

straightforward method is to merge all pages into one series, and

then learn model coefficients from scratch. However, by utilizing

the property of LSM-Tree storage, a more efficient method is to

learn the aggregated coefficients from the metadata of each page.

Example 2.4 (Example 2.3 continued). Figure 3 shows the series
stored in two pages, the same as illustrated in Figure 1, while with

the vertical axis denoting the value. The red thick line denotes

the merged series, considering that some points in page 2 may

overwrite that in page 1. Notably, the overwriting only occurs from

11:00:02 to 11:00:09, that is, there is an efficient way to update the

auto-covariances by only considering the influence of the points

from 11:00:02 to 11:00:09. Specifically, given model order p = 1,

we only need to update the auto-covariances of the segment from

11:00:01 to 11:00:13, referring to Formula (1) in Section 2.1. However,

for the baseline method, it merges online the pages, and then learns

the model on the merged series from scratch, which could be costly

when the page size is large.

322

323

324

325

326

327

Merged Series Page 1 Page 2

Time

Value

Figure 3: Merging two pages in Figure 1 as one series

3 LEARNING MODELS IN A PAGE
In this section, we consider two possible cases when learning mod-

els in a page. Section 3.1 elaborates the learning process with miss-

ing points. Section 3.2 introduces the updating process when some

points are modified, which is further utilized to re-calculate the

auto-covariances of updated segments in Section 4.3.

3.1 Learning Models with Imputation
Due to the harsh environment in which the sensors operate, the

sensor sometimes goes off-line, leading to the missing values in the

sensor data stream [17]. It may affect the learning processing of

models, since timestamps are not consecutive. Moreover, transmis-

sion failures may also cause missing values. We follow the similar

convention in [12] to learn model coefficients with imputation in

a single page, that is, utilizing a simple imputation method, linear

interpolation, to fill in missing values for each missing value in

the page. Again, too complicated imputation methods may not be

affordable, since it is done during database ingestion.

With imputation, the timestamps of data points in a page are

consecutive, and we could follow the preliminary in Section 2.1

to learn models. That is, we calculate the auto-covariances of data

points in a page, and store the auto-covariances in the metadata,

e.g., PageHeader in Figure 2. Then we solve Equation (2) to obtain

the model coefficients.

Example 3.1 (Example 2.3 continued). Consider again the exam-

ple in Figure 1. For simplicity, we use xl to denote the value at

timestamp 11:00:l hereinafter, e.g., x3 denotes the value at times-

tamp 11:00:03. During the learning process of each individual page,

the missing points at 11:00:02 and 11:00:07 in page 1 are linearly

interpolated by their temporally nearest points, i.e., x̂2 =
x1+x3
2

and

x̂7 =
x6+x8
2

. Then the model is learnt on the imputed complete series

in page 1, and the same process for page 2.

3.2 Updating Models with Modified Points
Apart from the missing values, due to sensor data re-transmission

or low quality data repairing [26], some points may be modified by

other points with the same timestamps. With one point modified,

the auto-covariances 𝛾i would change accordingly referring to the

following proposition.
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Proposition 3.2. Consider a point h with value xh in segment
x[1 : n], with the auto-covariances of the segment 𝛾0, 𝛾1, . . . , 𝛾p ob-
tained. If the value of the point is modified to x ′h, the auto-covariances
of the segment could be updated by

𝛾 ′i = 𝛾i +
1

n − i
(x ′h − xh) (xh−i + xh+i),

where xh−i would be set to 0 if h − i < 1, and xh+i would be set to 0 if
h + i > n.

Thereby, if some points are modified, the auto-covariances could

be updated individually by applying Proposition 3.2 on each modi-

fied point, instead of from scratch.

Example 3.3. Consider again the merged series in Figure 3. The

point at 11:00:09, is modified from x9 = 323.7 to x ′
9
= 324.1, owing to

the re-transmission as aforesaid. If we only consider the influence of

modifying this point, the first order auto-covariance can be updated

by 𝛾 ′
1
= 𝛾1 + (x ′

9
−x9)/(14−1) (x8 +x10) = 0.197+0.4× (−0.3)/(14−

1) = 0.188.

4 AGGREGATING MODELS OF TWO PAGES
In this section, we consider three different cases for aggregating

models of two pages x[1 : h] and x[g : n], i.e., adjacent pages in
Section 4.1, disjoint pages in Section 4.2 and overlapped pages in

Section 4.3. Overlapped pages refer to two pages with overlapped

time intervals, i.e., the start time of the high-version page is earlier

than the end time of the low-version page. Moreover, if the start

time of the high-version page is much later than the end time of the

low-version page (more than 1 sampling interval), such two pages

are considered as disjoint pages. Otherwise, if the gap between start

time of the high-version page and the end time of the low-version

page is exactly 1 sampling interval, such two pages are adjacent

pages. For instance, Figure 2 presents 6 pages P1 to P6 stored in the

database, covering the three situations mentioned above. Pages P1
and P2 are overlapped pages with overlapped time intervals, pages

P3 and P4 are disjoint pages, and pages P5 and P6 are adjacent pages.
Note that once the auto-covariances are obtained, the model

coefficients could be estimated by solving Equation (2) in O(p2)
time [10]. Thereby, we focus on the time-consuming part, i.e., the

calculation of auto-covariances 𝛾i in Formula (1). We show below

how 𝛾i can be efficiently updated in various scenarios of pages, in

Propositions 4.1, 4.3, 4.8 and so on.

4.1 Aggregation of Adjacent Pages
Two adjacent non-overlapped segments could be aggregated easily,

by calculating the weighted sum of two segments and the auto-

covariances between the tail of the former page and the head of

the latter page. Proposition 4.1 below gives the expression of the

aggregated auto-covariances.

Proposition 4.1. For two adjacent non-overlapped segments x[1 :
h], x[h + 1 : n] , the i-th order auto-covariances of x[1 : n] can be
obtained by

𝛾i =
h − i
n − i

𝛾
(1)
i + n − h − i

n − i
𝛾
(2)
i + 1

n − i

i∑︁
l=1

xh+lxh+l−i,

Page 1 Page 2

1: 1:

Version

Time

-4

1

Value
-1

4

Value

1

2

(a) Time series in adjacent pages

Page 1
, … ,

PageData

Page 2

, … ,

Aggregation

, … ,

PageData

(b) Aggregation process of two adjacent pages

Figure 4: Example for aggregation of adjacent pages

where 𝛾 (1)i denotes the i-th order auto-covariance of x[1 : h], and
𝛾
(2)
i denotes the i-th order auto-covariance of x[h + 1 : n].

Example 4.2. Consider the adjacent pages in Figure 4(a) with

the aggregation process present in Figure 4(b). The vertical axis

in Figure 4(a) illustrates the version number of each page. Each

page is surrounded by a dotted rectangle, gray for page 1 and blue

for page 2, The arrow on the right side of the rectangle denotes

the value range, and the relative height of each point in the dotted

rectangle illustrates the value of each point. For instance, the point

at 11:00:09 has value -0.3 close to the lower bound of the blue

rectangle denoting -1.

With pre-computed metadata, the first order auto-covariances

of both pages could be directly obtained, i.e., 𝛾
(1)
1

= 0.49 and 𝛾
(2)
1

=

−0.052. Since the point at 11:00:05 has value x5 = 0.2 and the point

at 11:00:06 has value x6 = 0.6, referring to Proposition 4.1, the

aggregated 𝛾1 is equal to (5𝛾 (1)
1

+ 5𝛾
(2)
1

+ x5x6)/(12 − 1) = 0.21.

4.2 Aggregation of Disjoint Pages
In practice, not all pages are adjacent and could be aggregated

by Proposition 4.1 in Section 4.1. Generally, due to the machines

or sensors going-offline in a short period, there may be a piece

of missing values between pages, i.e., pages are disjoint. In this

section, we thus consider the aggregation of two disjoint pages

under different conditions: large disjoint length in Section 4.2.1,

and small disjoint length in Section 4.2.2.

The aggregation result of two disjoint pages x[1 : h], x[g :

n] actually depends upon the imputation methods. For general

imputation methods, it takes O(pd) extra time for aggregation,

in addition to the imputation time, where d denotes the disjoint

length, i.e., d = g − h. However, if we use linear interpolation

for imputation, the aggregation process could be accelerated by

utilizing the properties of linear interpolation.
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4.2.1 Large Disjoint Length. Consider two disjoint pages with dis-

joint length d larger than i + 1, where i is the order of the auto-
covariance, ranging from 1 to p. In such a case, the disjoint length

is large enough to ensure that the tail of x[1 : h] and the head

of x[g : n] will not influence each other. Thus, we only need to

calculate the i-th auto-covariance of the imputed series, and aggre-

gate x[1 : h], x[g : n] and the imputed series as adjacent pages.

The following proposition formalizes the aggregation process and

utilizes the property of linear interpolation for acceleration.

Proposition 4.3. For two disjoint segments x[1 : h], x[g : n],
denoting the disjoint length by d = g − h, if d − i − 1 > 0, then the
i-th order auto-covariances of x[1 : n] can be obtained by

(h + n + d − g − i)𝛾i = (h − i)𝛾 (1)i + (n − g − i + 1)𝛾 (2)i + (d − i − 1)𝛾 ′i

+
i−1∑︁
l=0

xh−l

[
xh + (i − l) Δx

d

]
+

i−1∑︁
l=0

xg+l

[
xh + (d − i + l) Δx

d

]
,

and 𝛾 ′i has the following form,

𝛾 ′i = xhxg +
(d − i)i

2

(
Δx
d

)
2

+ (d − i) (2d − 2i − 1)
6

(
Δx
d

)
2

where 𝛾 ′i denotes the i-order auto-covariances of the imputed series,
and Δx = xg − xh denotes the difference between xg and xh.

Example 4.4. Consider the disjoint pages in Figure 5, with linear

interpolation applied on the missing points between page 1 and

page 2 in Figure 5(a). The imputed points are denoted by red hollow

circles, and for simplicity, we denote the imputed point at 11:00:l
by 𝑥l . The disjoint length between two pages is d = 7 − 3 = 4.

Given i = 1, the formula d − i − 1 = 4 − 1 − 1 > 0 satisfies

the condition in Proposition 4.3, that is, the disjoint length is large

enough to ensure that two pages will not influence each other.

Since x3 = −0.9 and x7 = −0.1, the first auto-covariances of the
imputed series is 𝛾 ′ = x3x7 + 3×1×0.22

2
+ 3×5×0.22

6
= 0.25. With

the pre-computed 𝛾
(1)
1

= 0.887, 𝛾
(2)
1

= −0.05, the aggregated 𝛾1 is
𝛾1 = (3𝛾 (1)

1
+ 4𝛾

(2)
1

+ 2𝛾 ′ + x3𝑥4 + 𝑥6x7)/(12 − 1) = 0.329.

4.2.2 Small Disjoint Length. Proposition 4.3 considers two disjoint

pages with a relatively large disjoint length, i.e., d > i + 1, while

Proposition 4.5 considers its complement, i.e., d ≤ i + 1. In such

case, the disjoint length is so small that the i-th auto-covariance of

the imputed series is 0. Besides, the tail of x[1 : h] and the head of

x[g : n] will influence each other, unfortunately. Proposition 4.5

aggregates disjoint pages by considering the effect between the tail

of x[1 : h], the imputed series and the head of x[g : n]

Proposition 4.5. For two disjoint segments x[1 : h], x[g : n],
denoting the disjoint length by d = g − h, if d − i − 1 ≤ 0, then the

Version

Page 1 Page 2 Imputed Series

1: :
Time

-4

1

Value
-1

4

Value

1

2

(a) Time series in disjoint pages

Page 1
, … ,

PageData

Page 2

Imputed Series

, … ,

PageData

, … ,

Aggregation

(b) Aggregation process of two disjoint pages

Figure 5: Example for aggregation of disjoint pages

i-th order auto-covariances of x[1 : n] can be obtained by

(h + n + d − g − i)𝛾i = (h − i)𝛾 (1)i + (n − g − i − 1)𝛾 (2)i

+
d−1∑︁
l=1

(
xh + l

Δx
d

)
xh−i+l

+
i∑︁

l=1

xg+l−1

{
xh+l+d−i−1 [1 − 𝐼 (l)] +

[
xh + (l − i + d − 1) Δx

d

]
𝐼 (l)

}
,

where 𝐼 (l) is the characteristic function with the following form,

I (𝑙) =
{
0, if l ≤ i − d + 1

1, otherwise
.

Example 4.6. Consider the disjoint pages in Figure 5 again with

disjoint length d = 4, while given i = 3. Since d− i−1 = 4−3−1 = 0

satisfies the condition in Proposition 4.5, the tail of page 1 and the

head of page 2 will influence each other. Given the pre-computed

𝛾
(1)
3

= 0, 𝛾
(2)
3

= −0.025, the aggregated 𝛾3 is 𝛾3 = (𝛾 (1)
3

+ 2𝛾
(2)
3

+
𝑥6x3 + 𝑥5x2 + 𝑥4x1 + x7𝑥4 + x8𝑥5 + x9𝑥6)/(12 − 3) = 0.17.

4.3 Aggregation of Overlapped Pages
We next consider the aggregation of overlapped segments. For a

time series x[1 : n] stored in two segments x[1 : h], x[g : n] with
overlapping time intervals, we denote the updated segments by

x′ whose points are merged from multiple original segments. For

the non-updated segments, whose points can be directly obtained

from one original segment, we denote such segments by x with

different ending indexes from the original segments. Intuitively, the

overlapped segments x[1 : h], x[g : n] can be split into two non-

overlapped segments x′[1 : h], x[u : n]. Then the auto-covariances

of x[1 : n] can be derived by aggregating the non-overlapped

segments x′[1 : h], x[u : n], referring to the following proposition.
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Figure 6: Example for aggregation of overlapped pages

Proposition 4.7. For two overlapped segments x[1 : h], x[g : n]
with h ≥ g, the i-th order auto-covariance of x[1 : n] is equal to
the aggregated auto-covariance of non-overlapped segments x′[1 :

h], x[u : n], where u is the earliest point in [g : n]with u > h.

In real unordered scenarios, only few points are involved in

the overlap and modified. Thus, we can utilize Proposition 3.2 to

calculate the auto-covariances of the updated segment x′[1 : h], by
considering each modified point in turn.

Moreover, since sensors usually re-transmit values in a short

period, the overlap length is small in general. Therefore, there is

an intuitive way for efficiently calculating the auto-covariances of

the split non-updated segments, that is, eliminating the influence

of the discarding points, referring to the following proposition.

Proposition 4.8. For a non-updated segment x[u : v] ⊂ x[g :

n], with g ≤ u ≤ v ≤ n, its auto-covariances can be obtained by
eliminating the influence of the discarding points, i.e.,

(v − u + 1)𝛾 ′i = (n − g + 1)𝛾i −
u−1∑︁
l=g

xlxl+i −
n∑︁

l=v+1
xl−ixl .

Example 4.9. Consider the overlapped pages in Figure 6, where

the points from 11:00:04 to 11:00:07 in page 2 overwrite those in

page 1. As aforesaid, the overlapped pages could be split into two

non-overlapped segments, i.e., updated segment x′[1 : h], and non-

updated segment x[u : n], split by two dotted red lines in the figure.

For the updated segment x′[1 : h], we only need to consider the

influence of the points from 11:00:04 to 11:00:07 by Proposition

3.2, and calculate the first order auto-covariance 𝛾
(1)
1

′
= 0.359.

For non-updated segment x[u : n], we only need to eliminate the

influence of the points from 11:00:04 to 11:00:07 in page 2, referring

to Proposition 4.8, and we have 𝛾
(2)
1

′
= −0.05 for segment x[u : n].

Algorithm 1: LSMAR, learning autoregressive model on

multi-segment time series

Input: a set X of the segments of time series x, AR model

order p, sampling interval 𝜏

Output: AR model coefficients Φ
1 order the segments in X by the start times

2 foreach pair of consecutive segments x[m : h], x[g : n] do
3 if h ≥ g then // overlapped cases
4 split x[m : h], x[g : n] into x′[m : h], x[u : n] by

Proposition 4.7

5 foreach i := 0 to p do
6 calculate 𝛾

(1)
i

′
of x′[𝑚 : h] by Proposition 3.2

7 calculate 𝛾
(2)
i

′
of x[u : n] by Proposition 4.8

8 X := X\{x[m : h], x[g : n]}
9 X := X ∪ {x′[m : h], x[u : n]}

10 foreach pair of consecutive segments x[m : h], x[g : n] do
11 if g > h + 1 then // disjoint cases
12 d := g − h
13 aggregate 𝛾0, . . . , 𝛾p by Proposition 4.3 and 4.5

14 else // adjacent cases
15 aggregate 𝛾0, . . . , 𝛾p by Proposition 4.1

16 Φ(𝜙0, . . . , 𝜙p) := Yule-Walker(𝛾0, ..., 𝛾p)
17 return Φ

Then by Proposition 4.1, we can aggregate the overlapped pages by

𝛾 ′ = (7𝛾 (1)
1

′
+ 3𝛾

(2)
1

′
+ x ′

7
x8)/(12 − 1) = 0.21.

5 IMPLEMENTATION IN LSM-TREE STORE
In this section, we focus on the implementation of our proposal in

LSM-Tree based database. Section 5.1 proposes the algorithm for

learning models on multi-segment time series. The corresponding

complexity analysis of the algorithm is given in Section 5.2. Besides,

we introduce the system deployment in Section 5.3.

5.1 Learning Algorithm
Algorithm 1 presents the pseudo-code of our proposed learning

method LSMAR. The segments are first sorted by their start times

in Line 1. For each consecutive segments x[m : h], x[g : n], if
the segments are overlapped, i.e., h ≥ g, they will be split into

two non-overlapped segments by Proposition 4.7 in Line 4. Then

the auto-covariances of the updated segments are calculated in

Line 6, and the auto-covariances of the non-updated segments

are calculated by Proposition 4.8 in Line 7. Lines 8 to 9 replace

original segments x[m : h], x[g : n] with split segments x′[m :

h], x[u : n]. After splitting all overlapped segments, the algorithm

aggregates the auto-covariances of each pair of consecutive disjoint

or adjacent segments. Lines 12 to 13 aggregate disjoint segments by

Propositions 4.3 and 4.5, and Line 15 aggregates adjacent segments

by Proposition 4.1. At last, the model coefficients are obtained by

solving Yule-Walker Equation, i.e., Equation (2), in Line 16.
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Table 2: Dataset statistics and learning settings

Name # Data points Model order p

CRRC-Train 1m 2

CSSC-Ship 1.3m 8

WH-Chemistry 1m 7

KAGGLE-Bitcoin 1.5m 2

UCI-Gas 900k 4

UCI-PAMAP2 370k 7

5.2 Performance Analysis
Consider M segments with N data points in each segment. Among

M segments, suppose there are Q segments overlapped with other

segments with average overlapped length L1, and R segments dis-

joint from other segments with average disjoint length L2.
For each pair of overlapped segments, our proposal takes O(pL1)

for aggregation in average. For each pair of disjoint or adjacent seg-

ments, the i-order auto-covariance𝛾i can be aggregated inO(i) time.

Thus, aggregating all auto-covariances takes O(p2) time. Moreover,

it takes O(p2) time to solve Yule-Walker Equation by utilizing

the Levinson-Durbin algorithm. Thereby, the overall time cost is

O(pL1Q + p2 (M − Q) + p2) = O(pL1Q + p2M).
The baseline learning process takes O(RL2) time for imputation,

and O(p(MN + RL2)) for learning from scratch. The overall time

cost of the baseline is thus O(RL2+p(MN +RL2)) = O(pMN +pRL2).

5.3 System Deployment
The autoregressive model learning measure has been deployed and

included as a function in Apache IoTDB [3], an open-source time

series database management system. The document is available in

thewebsite [4]. By executing the following SQL statement, users can

obtain the learned model coefficients of time series root.test.d0.s0.

select AR(s0, 'p'='3')

from root.test.d0

where time >= 2020 -01 -16 T00 :00:00

and time <= 2020 -01 -16 T23 :59:59

It learns the model coefficients by utilizing the data points in

the time range of [2020-01-16T00:00:00, 2020-01-16T23:59:59] of

the time series root.test.d0.s0, with the user-specified model order

p = 3. The query returns a list of model coefficients with length

p = 3, which can be further utilized for downstream tasks, such as

outlier detection, time series classification as stated in Section 7.1.

6 EXPERIMENTS
In this section, we conduct extensive experiments for evaluating

the efficiency of our proposal, including (1) scalability in data sizes

in Section 6.2, (2) evaluation with different model orders, i.e., query

parameters p in Section 6.3, (3) evaluation under various data loads,

including different page sizes in Section 6.4, different disjoint length

in Section 6.5, and different overlap length in Section 6.6.

6.1 Setup
We implement the baseline autoregressive model for comparison.

The baseline loads all possibly overlapped pages, merges data online,
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Figure 7: Time costs under different data sizes n

and then learns model parameters from scratch, i.e., not utilizing the

pre-computed statistics. Since the result of our proposed LSMAR is

exactly the same as the result of the baseline, the evaluation mainly

focuses on the learning efficiency.

Table 2 lists six datasets used in the evaluation, with the first

three private datasets collected from our industrial partners, and

the last three public datasets. The default model order p is also

listed in Table 2, which is determined by the pattern of the dataset.

The default page size is set to 1024 for the experiments in Section

6.2 and 6.3, and 10240 for the experiments in Section 6.5 and 6.6.

All the experiments run on a machine with Intel Core 8 CPU (2.3

GHz) and 16 GB of memory, with Apache IoTDB v0.13.3 installed.

The algorithm code has been included in the system repository of

Apache IoTDB [1]. The experiment related code is available in [2].

6.2 Scalability in Data Sizes
Figure 7 reports the time cost under different data sizes. For each

dataset, we linearly vary the number of data points involved in

queries and measure the corresponding time costs. When the num-

ber of data points increases, the baseline needs to learn models from

more data points, leading to higher time cost. However, LSMAR

only needs to aggregate more pages. Since the number of pages

is much smaller than the number of data points (1 page contains

1024 data points, as stated in Section 6.1), the time cost of LSMAR

increases much more slowly than the baseline, with the increase

of data size. Our proposal shows great efficiency compared to the

baseline, with 1-2 order of magnitude improvement.
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Figure 8: Time costs under different model orders p

6.3 Evaluation with Different Model Orders
Figure 8 evaluates the algorithm performance under different model

orders in the query. When the model order p increases, the baseline
takes more time to calculate the auto-covariances𝛾0, 𝛾1, . . . , 𝛾p , each

with O(n) time. Thereby, the time cost of the baseline increases

with the model order p increasing. The time cost of our proposal

slightly increases with the model order p increasing, while much

lower than that of the baseline. This is because LSMAR just needs

to aggregate each pair of consecutive pages in O(p2) time, and the

number of pages M is far smaller than that of data points N , which

is consistent with the analysis in Section 5.2.

6.4 Evaluation with Different Page Sizes
Figure 9 evaluates the performance under different page sizes. Page

size is a parameter for LSM-Tree based storage configuration, which

determines the number of data points in a page. Note that if the

data size is fixed, the larger the page size is, the smaller the number

of pages is. Therefore, with the increase of page size, the number

of pages M decreases, and the time cost of LSMAR thus decreases.

However, for the baseline method, it merges data online and learns

models from scratch regardless of the configuration. Thereby, its

time complexity is not affected by the page sizes, and the time cost

of the baseline method in Figure 9 keeps constant.

6.5 Evaluation with Different Disjoint Length
Figure 10 varies the disjoint length between two consecutive pages.

The baseline method needs to first impute all the missing values,

and then learn on the imputed time series. However, our proposed

LSMAR can aggregate the disjoint pages directly by Propositions
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Figure 9: Time costs under different page sizes

4.3 and 4.5. It only takes O(p2) time to aggregate each pair of

consecutive disjoint pages, referring to the analysis in Section 5.2

Thus, the time cost of the baseline increases linearly with disjoint

length increasing, while the time cost of LSMAR keeps constant.

6.6 Evaluation with Different Overlap Length
Figure 11 varies the overlap length between two consecutive pages.

When the overlap length increases, the time cost of LSMAR in-

creases, since it takes more time to calculate the auto-covariances

of the updated segments and non-updated segments, as stated in

Section 4.3. However, for the baseline, it always merges all data

points into one series regardless of the overlap length, leading to

constant time cost in Figure 11. Remarkably, though LSMAR takes

more time to handle overlapped pages with the increase of overlap

length, it is still much more efficient than the baseline method due

to the utilization of the metadata.

7 RELATEDWORK
7.1 Autoregressive Model
Autoregressive models [8] are widely applied on forecasting and

detection. There are a lot of extensions and variations based on

autoregressive models, including ARX [13], IMR [26], ARIMA [8],

SARIMA [8], ARFIMA [14] and vector ARIMA [24]. On the base of

AR model, ARX [13] further utilizes exogenous inputs to improve

the performance. ARIMA [8] combines both the autoregressive

process and the moving average process with integration. SARIMA

[8] further considers the seasonal effect. ARFIMA [14] extends the

integration order in ARIMA from integer to fraction, for a better
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Figure 10: Time costs under different disjoint length

forecasting performance on time series with long-range depen-

dency. Vector ARIMA [24] can detect additive outlier, innovational

outlier, level shift, and temporary change from multivariate time

series. As a basic method in machine learning, AR is simply enough

to learn when flushing batched data to disk, and we thus implement

the autoregressive model in Apache IoTDB as a database-native

machine learning operator. We do not implement ARX and IMR for

evaluation, since they both require labeled data, difficult to maintain

in the LSM-Tree based store.

The learned coefficients of autoregressive models can be utilized

for a variety of downstream tasks, such as forecasting, detection

and clustering. STIFF [19] utilizes autoregressive model for local

model construction. Chakraborty et al. [9] consider the extracted

real-world events on ARIMA for forecasting. Toledano et al. [23]

utilize ARIMA for anomaly detection in their anomaly detection

system, Anodot. Bagnall and Janacek [7] propose to cluster time

series based on the coefficients learned from ARIMA.

7.2 LSM-Tree based Storage
The Log-Structured Merge-Tree (LSM-Tree) [20] can handle exten-

sive writing workloads for time series, especially for IoT data. Thus

it is often employed in the time series database, such as InfluxDB

[5], Apache IoTDB [3]. Database-native machine learning operators

on LSM-Tree based storage aim to accelerate the learning process

by utilizing the properties of LSM-Tree. Absalyamov et al. [6] pro-

pose a novel lightweight approach for data synopses, including

histograms and wavelets. LDI [22] learns the data distribution in

LSM storage to improve insertion performance. However, machine

learning operators for forecast and detection are rarely investigated
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Figure 11: Time costs under different overlap length

in the previous studies, and our work thus focuses on the basic

machine learning operator, i.e., autoregressive model, which can

be applied both on forecast and detection.

8 CONCLUSION
In this paper, we propose an efficient method LSMAR for learning

AR models in LSM-Tree based store. Data points are batched into

different pages in such storage, and the later received points may

overwrite the previously received points, owing to the out-of-order

transmission, missing value imputation, data repairing and so on.

Thereby, the straight-forward method is to online merge the scat-

tered data and learn from scratch, while our LSMAR proposes to

utilize the pre-computed information in the LSM-Tree based store.

We derive several propositions to ensure the aggregation of pre-

learned models in different pages. Remarkably, the algorithm for

learning models on multi-segment time series has been deployed

and become a function of Apache IoTDB, an LSM-Tree based time

series database. We conduct extensive experiments in the system,

where our proposal shows high efficiency in every evaluation of

different aspects compared to the baseline.
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A APPENDIX
A.1 Proof of Proposition 3.2

Proof. According to Formula (1), if the value xh of point h is

modified to xh, only two terms will change, i.e.,
1

n−i xhxh−i and
1

n−i xhxh+i . Thus, the updated auto-covariances have value

𝛾 ′i = 𝛾𝑖 −
1

n − i
(xhxh−i + xhxh+i) +

1

n − i
(x ′hxh−i + x ′hxh+i)

= 𝛾i +
1

n − i
(x ′h − xh) (xh−i + xh+i). □

A.2 Proof of Proposition 4.1
Proof. The aggregated auto-covariances of x[1 : n] have the

form

𝛾i =
1

n − i

n−i∑︁
l=1

xlxl+i .

It can be further split into

𝛾i =

∑h−i
l=1 xlxl+i
n − i

+
∑h
l=h−i+1 xlxl+i

n − i
+
∑n
l=h+1 xlxl+i
n − i

. (3)

Note that the auto-covariances of x[1 : h] and x[h + 1 : n] have the
following form, respectively,

𝛾
(1)
i =

1

h − i

h−i∑︁
l=1

xlxl+i, (4)

𝛾
(2)
i =

1

n − h − i

n∑︁
l=h+1

xlxl+i . (5)

By combining (3), (4) and (5), the proposition holds. □

A.3 Proof of Proposition 4.3
Proof. Given d and Δx, the interpolated series is {xh + Δx

d , xh +
2
Δx
d , . . . xh + (d − 1) Δxd }, the auto-covariances of the interpolation

series could be calculated by

𝛾 ′i =
1

d − i − 1

d−i−1∑︁
l=1

(
xh + l

Δx
d

) [
xh + (l + i) Δx

d

]
=

1

d − i − 1

d−i−1∑︁
l=1

[
x2h + (2l + i)xh

Δx
d

+ (l + i)l
(
Δx
d

)
2

]
= xhxg +

(d − i)i
2

(
Δx
d

)
2

+ (d − i) (2d − 2i − 1)
6

(
Δx
d

)
2

.

The aggregated auto-covariances is equal to the aggregated covari-

ances of x[1 : h], the interpolated series and x[g : n]. Similar to

Proposition 4.1, we obtain the aggregated auto-covariances. □

A.4 Proof of Proposition 4.5
Proof. Note that d − i − 1 ≤ 0 suggests that the interpolation

series (as shown in the proof of Proposition 4.3) has no more than i
points, that is, the auto-covariances of the interpolation series is

0. To obtain the aggregated auto-covariances, we first aggregate

x[1 : h] and the interpolated series into {x1, x2, . . . , xh, xh + Δx
d , xh +

2
Δx
d , . . . , xh + (d − 1) Δxd }. And then aggregate the following series

and x[g : n] referring to Proposition 4.1. □

A.5 Proof of Proposition 4.7
Proof. We denote the points in the low-version segment as x(1)

and the points in the high-version segment as x(2) . We denote the

merged segment as x′′, which has the following form,

x ′′l =


x (2)l , if x (2)l ∈ x(2) [g : n]

x (1)l , otherwise

.

Thus the merged auto-covariances can be represented by

𝛾i =
1

n − i

n−i∑︁
l=1

x ′′l x
′′
l+i .

Since u is the earliest point in [g : n] with u > h, the points from u
to n in x′′ must be the same as those in x(2) , and we thus have

(n − i)𝛾i =
h−i∑︁
l=1

x ′′l x
′′
l+i +

u−1∑︁
l=h−i+1

x ′′l x
′′
l+i +

n−i∑︁
l=u

x ′′l x
′′
l+i

=

h−i∑︁
l=1

x ′′l x
′′
l+i +

u−1∑︁
l=h−i+1

x ′′l x
′′
l+i +

n−i∑︁
l=u

x (2)l x (2)l+i

= (h − i)𝛾 (1)i
′
+

u−1∑︁
l=h−i+1

x ′′l x
′′
l+i + (n − u − i + 1)𝛾 (2)i

′
, (6)

where 𝛾
(1)
i

′
in (6) is the auto-covariances of the segment x′′[1 : h],

i.e., the updated segment x′[1 : h], and𝛾 (2)i
′
is the auto-covariances

of the segment x(2) [u : n], i.e., the non-updated segment x[u : n].
Note that if u = h + 1, the middle term in (6) has the form

u−1∑︁
l=h−i+1

x ′′l x
′′
l+i =

h∑︁
l=h−i+1

x ′′l x
′′
l+i =

i∑︁
l=1

xh+lxh+l−i,

which is the same as Proposition 4.1. In such case, the aggregated

auto-covariances𝛾i is thus equal to the aggregated auto-covariances

of adjacent segments x′[1 : h] and x[u : n].
On the other hand, if u > h + 1, there are missing values from h

to u. In such case, the middle term in (6) can be further split into

two or three parts, the same as Propositions 4.3 or 4.5. Following

the similar method of the proofs for Propositions 4.3 and 4.5, the

aggregated auto-covariances 𝛾i is also equal to the aggregated auto-

covariances of disjoint segments x′[1 : h] and x[u : n].
In summary, the aggregated auto-covariances 𝛾i is equal to the

aggregated auto-covariances of non-overlapped segments x′[1 :

h] and x[u : n], regardless of whether there are missing values

between u and h. □

A.6 Proof of Proposition 4.8
Proof. Following the definition of auto-covariances, we have

(n − g + 1)𝛾i =
n−i∑︁
l=g

xlxl+i =
u−1∑︁
l=g

xlxl+i +
v−i∑︁
l=u

xlxl+i +
n−i∑︁

l=v−i+1
xlxl+i .

The auto-covariances of the segment x[u : v] is

𝛾 ′i =
1

v − u + 1

v−i∑︁
l=u

xlxl+i .

By combining the equations above, the proposition holds. □
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