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Abstract—While time series data are naturally ordered by
timestamps for efficient storage and query processing, the data
points in a time series often come out-of-order. We identify two
unique features of out-of-order arrivals in Apache IoTDB, i.e.,
delay-only and not-too-distant. It is not surprising that data
points can only be delayed but should never come “earlier”
before the generation of its succeeding ones. Moreover, the system
employs a separation policy to handle those points delayed for
a very long period, and thus only sorts data points delayed to
not-too-distant future. Motivated by such unique features, we
devise a new algorithm for sorting time series data, Backward-
Sort. Intuitively, the delay-only feature leads to the strategy of
moving points backward in sorting. Moreover, the not-too-distant
feature results in blocks of data points, such that moving points
are expected to occur locally inside the blocks. To our best
knowledge, this is the first sorting algorithm specially designed
for out-of-order arrivals in time series. The algorithm becomes a
fundamental component of sorting time series data in Apache
IoTDB. The evaluation is conducted over real and synthetic
datasets, using IoTDB-benchmark.

I. INTRODUCTION

Apache IoTDB1 is an open-source time series data man-

agement system, developed upon our preliminary study [1].

Data points in a time series are naturally ordered by their

timestamps for efficient storage and query processing in the

database. Unfortunately, the data points are often delayed on

arrival, very prevalent in IoT scenarios, e.g., due to network

fluctuations, system failure and so on [2]–[4]. Therefore, or-

dering data points by timestamps is a fundamental component

of Apache IoTDB. While the preliminary study [5] reduces

the write amplification on disk in the system owing to out-of-

order arrivals, in this paper, we propose to optimize the sorting

by timestamps in memory for efficient query processing and

flushing.

We first identify the unique features of out-of-order arrivals

in the IoT scenarios, i.e., (1) delay only (2) in not-too-distant

future. First, note that the time series data are generated in

time order, often by IoT devices. That is, a point is impossible

to come “earlier” than the generation of its succeeding ones,

instead can only be delayed. Moreover, the delay is usually

not very distant. The reason is that Apache IoTDB employs a

separation policy to handle respectively those points delayed

Shaoxu Song (https://sxsong.github.io/) is the corresponding author.
1https://iotdb.apache.org/
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Fig. 1. Example of out-of-order arrivals in Apache IoTDB, where p5 and p9

are delayed points

for a very long period [5]. In other words, a point is probably

delayed to not-too-distant future.

Example 1. Figure 1 illustrates the unique features of out-

of-order arrivals, i.e., delay only, in not-too-distant future.

The points p1, . . . , p10 are labeled referring to their arrival

orders. As shown, the points do not arrive in the order of

their generation timestamps. For instance, p5 with generation

timestamp 10:02 is delayed, as well as p9 with generation

timestamp 10:08. To sort the points by timestamps, we need

to move backward p5 and p9.

Moreover, p5 is not delayed for a long period. It only needs

to swap with p2, p3, p4. Likewise, p9 only needs to swap with

p8 with timestamp 10:09 in a near future.

Motivated by the aforesaid unique features of out-of-order

arrivals, we devise a new algorithm of ordering by timestamps

for time series. (1) Referring to the feature of delay-only, we

propose a backward strategy, i.e., moving points backward in

sorting. (2) For the other feature of not-too-distant, we may

divide the data points in blocks, such that moving points is

expected to occur locally inside the blocks. For instance, for

two blocks of the first 5 points p1, . . . , p5 and the last 5 points

p6, . . . , p10, the swapping on p5 occurs in the first block,

while swapping p9 is in the second. By moving points locally

in blocks, it is not surprising that the sorting cost could be

reduced.



TABLE I
THE NOTATIONS AND EXPLANATIONS

Sym. Explanations

X The Time Series

N The maximum points that TVList can hold in memory

L The block size

τ The delay of the time series

∆τ The delay difference between two points

Θ The threshold that IIR cannot surpass

αL The interval inversion ratio (IIR) with length L

QL The expected overlap length of two adjacent blocks

P The expected times of finding block size loops

To the best of our knowledge, this is the first algorithm

specially designed for sorting time series data. Our major

contributions in this paper are summarized as follows.

(1) We analyze the delay-only, not-too-distant features of

out-of-order arrivals, over real-world time series data.

(2) We devise a new algorithm of time series data sorting,

Backward-Sort, with backward and blocking strategies for

handling the delay-only and not-too-distant features.

(3) We analyze the algorithm performance, where Quick-

sort is indeed the worst case of our proposal.

(4) We implement the algorithm as the time series sorting

component of Apache IoTDB2.

(5) We evaluate the performance over real and synthetic

datasets, using IoTDB-benchmark.

The paper is organized as follows. Section II introduces the

preliminary of out-of-order time series. Section III presents the

design details of the sorting algorithm. Section IV analyzes

the complexity of Backward-Sort. Section V describes the

implementation details in Apache IoTDB. Section VI conducts

the extensive experiments. And finally, Section VII discusses

related studies and Section VIII concludes the paper.

II. FEATURES OF OUT-OF-ORDER ARRIVALS

Out-of-order time series are common in the Internet of

Things due to many reasons, such as network fluctuations

[2], clock skew [6], system failure [7], etc. The common

feature of these disorders is that they all cause data delay.

Moreover, since separation policy is applied in Apache IoTDB,

any timestamp smaller than the current flushing time will be

ingested into the unsequence memtable. Therefore, extreme

delays like system recovery from failure are not what we focus

on.

A. Preliminary

Definition 1 (Time Series). A time series X is a collection of

tuples, X = {p0, p1, ..., pN} where N denotes the current size.

pi = (ti, vi) represents the data point containing a timestamp

and value, with the array index i denoting its arrival order.

2The code of the sorting algorithm is available in the GitHub repository of
Apache IoTDB https://github.com/apache/iotdb/pull/7410

Defining the degree how an array is out-of-order is a more

difficult problem. Inversion(Inv) is widely-used to measure

out-of-order.

Definition 2 (Inversion). Given any two data points, pi, pj , if

i < j and ti > tj , (i, j) is regarded as one inversion.

The number of X’s inversions can measure out-of-order

since it is minimized as X is sorted. However, Inversion

aggregates all counts of inversions with different lengths.

Definition 3 (Interval Inversion). Given an interval L any

data point pi if ti > ti+L, (i, L) is regarded as one interval

inversion with interval L.

Generally, we use the ratio of the interval inversion number

to the total pair number to measure the out-of-order.

Definition 4 (Interval Inversion Ratio (α)). Given an interval

L, the number of interval inversions with interval L equals C.

Then the interval inversion ratio α = C/(N − L).

To simplify the analysis, we treat the equally spaced time

series data as the standard interval of 1, and the corresponding

delay distribution is also based on the interval of 1. In actual

data analysis, the corresponding interval can be enlarged or

reduced proportionally

Definition 5 (Delay). The order of time series is determined

by the generation time t plus the delay time τ where t is evenly

distributed at equal intervals(1). The delay τi, i ∈ {0, 1, ..., n}
follows an independent and identically distribution D.

The distribution D has an absolute dominant effect on the

degree of out-of-order. Intuitively, if the delay is large and

randomly distributed, there must be many out-of-order points.

Definition 6 (Delay Difference). since the delay is IID, the

inversion relation between two data points depends on the

delay time τi, τj . We define delay difference ∆τ = τi − τj .

The distribution of ∆τ depends on the delay time distri-

bution. The delay difference is strongly related to the overlap

length of adjacent blocks.

B. Time Series Characteristics

Before introducing the Backward-Sort algorithm, it is worth

emphasizing the characteristics of the out-of-order situation in

industrial time series scenarios, that the algorithm design is

inspired by.

1) Incrementally Nearly Sorted: Different from traditional

data, in the industrial time series data scenarios, despite

inherent disturbance that may cause out-of-order, all time

series data is incrementally nearly sorted. The reason is that

data are collected over time. Even if there are out-of-orders,

the timestamps must be in an increasing trend as a whole.

As shown in Figure 1, the timestamp in time series data is

incremental naturally, not decremental. Take Quicksort as an

example, if we choose one pivot, then every element will be

compared with the pivot to ensure that the left elements are
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smaller than it. However, in time series, the earlier the times-

tamp, the more likely the pivot is greater than it. Quicksort

compares all data equally with it, which is not optimal and

may introduce unnecessary comparison operations.

2) Delay-Only: Nevertheless, “incrementally nearly sorted”

is not sufficient to fully capture the characteristics of out-of-

order time series in real scenarios.

Besides “nearly sorted”, “delay-only” needs to start from

the cause of out-of-order. As mentioned in Section 2, the

main causes of disorder are network delay, time skew, etc.

Intuitively, most unordered data points will appear in the form

of “delay”, that is, unordered data points can be regarded as

forced to move behind the data “externally”.

Therefore, it is obvious that the data cannot appear “ahead”.

If it does appear in the data ahead of time, it must be the

simultaneous “delay” of many subsequent data points that

causes it to appear “ahead”, which is a slight probability event.

As shown in Figure 1, p5, p9 are delayed with no data

points appearing ahead. The real log datasets (AndroidLog

and CloudLog) [3] both show the nature of the “delay-only”

although they are not available now. “Delay-only” is the

primary characteristic that distinguishes time series from other

nearly sorted data.

III. BACKWARD ALGORITHM

A. Overview

1) Sort by Blocks: : The reason for sorting by blocks is to

reduce unnecessary comparisons.

Example 2. In Figure 1, a comparison between p5 and p1 or

p10 is not as necessary as that between p5 and p6. The reason

is that the arrival order offers some useful information, i.e.,

p5 is more likely smaller than p10, and thus P (p5 < p1) <
... < P (p5 < p6) < ... < P (p5 < p10).

Therefore, dividing the data into blocks and sorting them

all alone can effectively reduce unnecessary comparisons and

ensure that the elements that are far apart and more likely to

be followed by larger elements are not compared.

2) Backward Merge: : In time series, most disorders come

from network delay, system failures, etc. As we mentioned

earlier, the “delay-only” characteristic means that few elements

will be delayed for a long time. Although they are few, this

will proportionally increase the number of move operations in

the merging process.

Example 3. Figure 2 demonstrates the superiority of the

backward merge over the traditional straight merge. As shown,

data points with timestamps 1 and 3 arrive late. Thereby, they

are deferred to the front of the following blocks. Figure 2 I and

II show the process of Straight Merge and Backward Merge,

respectively, and the corresponding number of movement op-

erations. Let M denote the length of the array block.

For Straight Merge, it processes the first two blocks and the

last two , separately. There are M +2 moves for each merge,

in which 2 comes from the fact that the 3 is first moved into

the additional space and then moved back into the array. The

last merge needs 2Mmoves, and it is worth noting that the

first block is moved again, causing redundant moves.

For Backward Merge, it processes the blocks backward. The

number of moves, in processing order, is M + 2, M + 1 and

M + 4. The only redundant moves come from 3.

Finally, the total moves in Straight Merge are 4M+4 while

that in Backward is 3M + 7. In other words, the Backward

Merge achieves about a 25% reduction of moves in such a

case.

Previously, the quantitative measurement of out-of-order

data has been well studied [8]–[10], like Inv, Dis, Runs, etc.

Straight Insertion Sort is adaptive with respect to Inv, while

Patience Sort is designed based on the runs.

Interval Inversion Ratio: As defined in Section II-A, the

measures of inversion are extended to interval inversion ratio,

so as to measure the probability that different blocks may

overlap in the case of block division. The interval inversion

ratio α of multi-layer intervals map to the degree of out-of-

orders.

Example 4. In Figure 3, the interval inversion ratios can be

calculated as follows.

α1 =
|{(4, 3), (9, 8), (8, 5), (11, 1), (12, 7), (15, 2)}|

|N − 1|
=

6

14
(1)

α3 =
|{(6, 5), (8, 1), (12, 2), (11, 1)}|

|N − 3|
=

4

12
(2)

α5 =
|∅|

|N − 3|
=

0

10
(3)

3) Set Block Size: The core of the algorithm is to choose

the appropriate block size, which directly determines the

complexity of the algorithm. In the actual algorithm, collecting

that sufficient interval inversion ratio for each block size is

time-consuming. Therefore, down-sampling is used to roughly

determine the size of the interval inversion rate.

Example 5. In Figure 3, the empirical interval inversion ratios

can be calculated as follows.

α̃3 =
|{(12, 2)}|

|{(4, 9), (9, 11), (11, 12), (12, 2)}|
=

1

4
(4)

α̃5 =
|∅|

|{(4, 5), (9, 10), (11, 15), (12, 16)}|
=

0

4
(5)

B. Pseudo-code and Explanation

Figure 4 shows an overview of Backward-Sort in Algorithm

1. The algorithm is mainly divided into three parts: set block

size L, sort in each block, and backward merge of blocks, as

also shown in Figure 4. When the Backward Sort algorithm

merges adjacent blocks, e.g., in the right part of Figure 4, only

the end of the first block (3,4,6,8) and the beginning of the

second block (2,5,7) need to be merged. It needs a certain

amount of extra space to store overlapping points.

Line 1-8 in Algorithm 1 refers to the part “set block size”.

Line 9-12 represents “sort by blocks” where Quicksort is used

3
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Fig. 3. The example of Backward Sort algorithm

Fig. 4. The overall architecture of Backward Sort algorithm.

in default and can be substituted by other algorithms. Line 13-

16 means the “backward merge” needs to find the overlapped

blocks firstly and then merge the overlapped blocks. In order

to minimize k and reduce the number of repeated blocks, L is

better to be larger. However, L is better to be smaller in “sort

by blocks”. Therefore, there is the trade-off between “sort by

blocks” and “backward merge”, which is controlled by “set

block size”.

IV. PERFORMANCE ANALYSIS

We can derive from Algorithm 1 that it runs O(n
L
P +

n logL+ n
L
Q) time, where P is the number of recursions to

Algorithm 1 Backward-Sort

Input: Time series X with size N
Input: Block inversion ratio threshold Θ

1: initial block size L = L0

2: while L <= N do

3: α← getInversionRatioBetweenBlocks(L)

4: if α < Θ then

5: break

6: end if

7: L← updateBlockSizeByRatio(L,α,Θ)

8: end while

9: set block number B = ⌊N/L⌋
10: for i← 1, B do

11: Quicksort(blocki)
12: end for

13: for i← B − 1, 1 do

14: k ← findOverlappedBlock(blocki)
15: BackwardMerge(blocki, block[i+1,...,k])

16: end for

find the appropriate block size, and Q denotes the overlapped

length between the adjacent sorted arrays in average. In

practice, however, it is not easy to directly obtain the specific

sizes of P and Q. Thereby, in this section, we first give

and prove Proposition 2, 3 and 4 to illustrate the relationship

between the delay distribution D and the interval inversion

ratio α. Based on this, we present the time complexity of

Backward Sort algorithm w.r.t. the initial block size L0 in

Proposition 6.

A. Analysis for Delay Difference

Proposition 1. The probability density function of ∆τ , f∆τ (t),
is an even function.

Proof. As indicated in Section II-A, τi, τj represent any two

i.i.d delay. To obtain the f∆τ (t) with given t, if τj is known,

then τi is naturally restricted. Therefore, the integral only

needs to accumulate τj , leading to Equation 6. Likewise,

Equation 7 can be easily obtained by replacing t with −t in

Equation 6.

4



f∆τ (t) =

∫

fτ (τi − τj = t|τj)fτ (τj)dτj (6)

=

∫

fτ (τj + t)fτ (τj)dτj

f∆τ (−t) =

∫

fτ (τi + t)fτ (τi)dτi (7)

The even function property of the probability density func-

tion means that we can analyze only the non-negative part of

∆τ . In practice, when estimating the interval inversion ratio

α, the statistics of non-negative ∆τ is sufficient. Moreover,

∆τ ’s distribution is closely related to the degree of inversion,

because whether two points constitute a reverse order depends

on whether their delay difference ∆τ is greater than their

original interval.

Proposition 2. The expected value of interval inversion ratio

(IIR) α with interval L equals to the probability of ∆τ ≥ L,

a.k.a F̄∆τ (L), where F̄ denotes the tail distribution.

Proof. Without loss of generality, choose i, j = i + L to

consider their possible inversion relationship.

As Equation 8 shows, the possibility of the interval inversion

between two arbitrary points is equal to the tail distribution

of ∆τ . I{ti > ti+L} is the interval inversion indicator,

whose expected value is the probability of being an interval

inversion. Equation 9 further proves the equivalence between

the expected interval inversion ratio E(αL) and ∆τ ’s tail

distribution F̄∆τ (L).

P (ti >ti+L) = P (i+ τi > i+ L+ τi+L) = P (∆τ > L)

(8)

E(αL) =E(

∑n−L

i=1 I{ti > ti+L}

n− L
) =

∑n−L

i=1 E(I{ti > ti+L})

n− L
(9)

=

∑n−L

i=1 P (ti > ti+L)

n− L
=

∑n−L

i=1 P (∆τ > L)

n− L
=P (∆τ > L) = F̄∆τ (L)

Proposition 2 reveals the correlation between delay distri-

bution and the interval inversion ratio. It provides a theoretical

basis for measuring the degree of disorder by empirical

interval inversion ratio α. To illustrate Proposition 2, the delay

Example 6 of exponential distribution is given. That is, the

interval inversion ratio αL is equivalent to the tail distribution

F̄∆τ (L).

Example 6. Suppose the delay τ follows exponential distribu-

tion E(λ), fτ (t) = λe−λt. We can derive the ∆τ ’ distribution
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Fig. 5. The PDF of ∆τ when τ ∼ E(λ)

as shown below.

f∆τ (t) =

∫

∞

max(0,−t)

fτ (t+ τj)fτ (τj)dτj (10)

=

{

∫

∞

0
λ2e−λ(2τj+t)dτj =

1
2λe

−λt, t ≥ 0
∫

∞

−t
λ2e−λ(2τj+t)dτj =

1
2λe

λt, t < 0

E(αL) =

∫

∞

L

1

2
λe−λtdt =

1

2eL
(11)

The PDF f∆τ is shown in Figure 5. By artificially adding

exponentially distributed delay times for 108 points, we count

α at intervals of 1 and 3 with λ = 2. The empirical and

theoretical results are as follows.

α̃1 = 0.067696, α1 =
1

2e2
= 0.067668, (12)

α̃5 = 2.280× 10−5, α5 =
1

2e5
= 2.270× 10−5 (13)

B. Separate Complexity

1) Set Block Size: The update process of the block size L
can be summarized as an iterative renewal. Recall that Θ is

a customized parameter, indicating the threshold of interval

inversion ratio. Let t represent the number of iterations, and

L(t) be the block size in the t-th iteration. The interval

inversion ratio α(t) is estimated by Equation 14, according

to its definition.

α(t) = P (∆τ > L(t)) (14)

When α(t) > Θ, we update L(t) as Equation 15 shows;

otherwise, the loop terminates.

L(t+1) = 2× L(t) (15)

How many iterations needed depends on how fast α reaches

the desired threshold Θ as Equation 15 shows. Although the

loop times differ for different distributions, it is adequate to

derive the upper bound of the iterative process’s complexity,

which is independent of the distributions

Proposition 3. The complexity of the iterative process is

O( n
L0

) and the maximal number of loops is log( n
L0

).
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Proof. Suppose the loop stops at the T th time, since ∀0 ≤
t < T, α(t) > Θ, it is easy to draw ∀0 < i < T, β ≤ 2, L(t) ≥
2L(t−1). The total number of points to be scanned is limited

as shown in Equation16. When L(0) grows exponentially to

n, it takes at most log( n
L0

) iterations.

T
∑

t=0

n

L(t)
≤

T
∑

t=0

1

2t
n

L(0)
≤ 2

n

L(0)
. (16)

Therefore, the complexity of the process of heuristically

finding the favorable block size is O( n
L0

).

Proposition 3 indicates that the complexity of “set block

size” part is low and the process takes relatively short time.

Since L is exponentially increasing, the while loop ends in

log( n
L0

) times. In other words, the amount of scanned data is

small.

Nevertheless, it is worth noting that there is always an

unavoidable error between the empirical interval inversion

ratio α and the real expected one. Therefore, during the

estimation, there exists a certain error between the optimal

value and the real one.

2) Sort By Blocks: The complexity for sorting blocks is

O(n logL) with no doubt while B denotes the number of

blocks partitioned by L in Equation 17. The actual time of

sorting an array may get lower for nearly-ordered time series.

B
∑

i=1

O(L logL) = O(BL× logL) = O(n logL) (17)

3) Backward Merge: The key point behind Backward

Merge is the overlapped length between adjacent blocks as

shown in Figure 4.

Proposition 4. The expected value of overlapped length Q
between adjacent blocks is less than or equal to the expected

value of non-negative ∆τ , i.e., E(Q) ≤ E(∆τ | ∆τ ≥ 0).

Proof. Recall that L denotes the block size and Q is the ex-

pected value of overlap. Given a data point m, the inversions,

represented by indicator I{ti > tm}, from the first point to

the (m − 1)-th points is calculated cumulatively in Equation

18. The derivation in Equation 18 is similar to Equation 9.

E(Q) = E( lim
m→∞

m−1
∑

i=0

I{ti > tm}) (18)

= lim
m→∞

m−1
∑

i=0

P (∆τ > m− i)

= lim
m→∞

m−1
∑

i=0

F̄∆τ (m− i) (19)

= lim
m→∞

m−1
∑

k=0

F̄∆τ (k)

If ∆τ is discrete, the accumulation of tail distribution function

F̄∆τ (k) equals E(∆τ | ∆τ ≥ 0) as shown in Equation 20.

E(Q) =

∞
∑

k=0

F̄∆τ (k) = E(∆τ | ∆τ ≥ 0) (20)

Finally, as indicated in Equation 21, the accumulation for

any tail distribution is less than or equal to E(∆τ | ∆τ ≥ 0).

E(Q) ≤

∫

∞

0

F̄∆τ (t)dt = E(∆τ | ∆τ ≥ 0) (21)

Proposition 4 shows that the overlapped length Q could be

estimated with the interval inversion ratio α, referring to the

relevance between interval inversion ratio α and ∆τ . If Q is

estimated, it can be used to determine the optimal block size L,

and thus optimizing the “backward merge” process. Example

7 illustrates and verifies of the inequality in the Proposition

4, where the overlapping length and interval inversion ratio is

shown under a specific delay distribution.

Example 7. Suppose the delay τ obeys discrete distribution

P (τ = k) = 1
4 , k ∈ {0, 1, 2, 3}, E(∆τ |∆τ ≥ 0) = 10

16 , then

E(Q) is 10
16 , equal to E(∆τ |∆τ ≥ 0) = 5

8 .

E(Q) =

3
∑

j=0

L−1
∑

i=L−3

P (τi − j ≥ L− i)P (τL = j) (22)

=
L−1
∑

i=L−3

F̄∆τ (L− i)
3

∑

j=0

P (τL = j)

= (
6

16
+

3

16
+

1

16
)× 1

=
5

8

Proposition 5. The time complexity of Backward-Sort is

O(n2) when L is set to 1. The time complexity is O(n logL)
when L is set to the optimal.

Proof. Let η denote the proportion under incomplete equiva-

lence between O(n logL) and O(nQ/L). The complexity of

the algorithm can be summed up as O(n logL + ηnQ/L).
The algorithm can be regarded as an optimization problem

and then the objective function of optimization is set to g(L).

g(L) =n(logL+ ηQ/L), L ∈ [L0, n] (23)

g′(L) =n
L− ηQ

L2
(24)

Then it’s easy to deduce the upper and lower bound of the

function.

min
L

g(L) =n(logL+ 1) (25)

max
L

g(L) =max(n log n, n(logL0 + ηQ/L0)) (26)

Proposition 5 shows that Backward-Sort becomes Straight

Insertion-Sort with the worst case complexity O(n2) given

L = 1. When L = N , it becomes Quicksort, as shown in

6



Fig. 6. The relationship between Backward Sort and others

Fig. 7. The structure of IoTDB’s Memtable and TVList

Figure 6. In practice, L is expected to be set to ηQ to achieve

the best performance n logL.

Proposition 6. The time complexity of Backward-Sort is

O(max{n log n, n logL0 + ηnQ/L0}).

Proposition 6 gives the time complexity w.r.t. the initial

block size L0. When the degree of out-of-order is high enough,

i.e., Q is large, Backward Sort will set L close to n and

degenerate to Quicksort with O(n log n). On the contrary,

when the degree is low, i.e., Q is small, L is set close to

L0. The time complexity turns into O(n logL0 + ηnQ/L0).

V. IMPLEMENTATION

A. MemTable

In Apache IoTDB, the memtable is divided into two cat-

egories, the active memtable(working memtable) and im-

mutable memtable(flushing memtable). The former is work-

ing for continuously writing data, and the latter is prepared for

writing data to the disk after the flush condition is triggered.

Each memory table may have multiple chunks, and each

chunk contains one TVList that corresponds to one sensor and

contains the <T,V>data. T is a unified Long type data and V
is an arbitrary type.

Therefore, in the real implementation of IoTDB, in order

to reduce the time-consuming of Java template conversion,

IoTDB implements a separate class for each custom basic type

such as DoubleTVList.

B. TVList

Since time series is generated continuously, every time a

new point comes, a simple and straightforward method is to

allocate a new buffer for it. The biggest disadvantage of this

method is that it costs to allocate memory each time, and

the memory access is slower with non-contiguous memory.

Another method is to allocate memory large enough at one

time. The problem behind this is that it may lead to a waste

of memory. Therefore, a common compromise method in

databases like IoTDB is to allocate contiguous block memory,

similar to the design pattern of Deque, to achieve a trade-off

between memory utilization and memory access.

The TVList design in IoTDB is in the form of List<Array>,

where timestamps and values both maintain a linked ArrayList

to store the TV pair. The size of the array is configurable with

its default value 32.

In the industrial scenarios, the data of each sensor corre-

sponds to one TVList in MemTable. Thereby, the timestamps

T stored in each TVList are different, that is, each TVList

would be sorted separately when flushing or querying.

C. System Design

As shown in Figure 7, we abstract the core part of the

sorting algorithm as interfaces to reuse the code. The core

function of the Backward Sort algorithm, like “sortByBlocks”

discussed in Section IV-B1, is implemented using the common

interface. Thereby, the facilities of TVList can be used directly.

The sort function is called in two situations, flushing, and

querying. For flushing, after the MemTable is full and turning

into a flushing state, the time series needs to be sorted and

then written to the disk. For querying, the search needs to be

based on an ordered time series..

VI. EXPERIMENTS

In this section, we first introduce the testing settings like

IoTDB-Benchmark, which is used for performance tests of

IoTDB. Then, the datasets including synthetic and real-world

would be summarized and analyzed with the interval inversion

ratio. The code and data for experiments are available online3.

After this, the experiments about the algorithm itself

are conducted firstly to evaluate sort time. With IoTDB-

Benchmark, we then test the system optimization influenced

by Backward-Sort. Finally, the identical experiments will be

tested on the two real-world datasets.

A. Experiments Setting

1) Implemented and Tested Algorithms: To compare with

the proposed Backward Sort, several previous sorting algo-

rithms are implemented in Java, using the aforesaid interface

introduced in Section V-C. Patience Sort [3] is implemented

since it is the most recently proposed algorithm for nearly

sorted data. Quicksort is also implemented, where the pivot

is always chosen as the middle element of arrays due to

time series. In addition, CKSort [10], [11] is a hybrid sorting

algorithm of Quicksort, Insertion Sort and Merge Sort. YSort

[12] is a variation of Quicksort. Java’s default sort algorithm

Timsort is also considered, which is a variety of Merge Sort

and sorts small arrays with Insertion Sort.

The performance factors for algorithm evaluations are as

follows. Sort time is the most important metric on evaluating

the performance of sorting algorithms. The Inversion ratio

with different interval length is considered to give an adequate

3https://github.com/thssdb/sort
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quantification of the out-of-order degree. As analyzed at the

beginning of Section IV, block size L is essential in the time

complexity of the algorithm and thus evaluated. Likewise,

array size n is also considered referring to the time complexity.

The standard deviation of delayed time σ is used to control

the degree of out-of-order, which also affects the performance

of sorting algorithms.

The performance factors for system evaluation are as fol-

lows. The query throughput refers to the number of points

queried by IoTDB per second, and the total test latency repre-

sents the average execution time of the test. These two factors

are client side statistics, meaning user-perceived performance

of various sorting algorithms. The flush time refers to the

average flush time of TVList in Memtable, as the system

design illustrated in Figure 7. It is the performance indicator

of different sorting algorithms from the server side.

2) IoTDB-Benchmark: IoTDB-benchmark is a tool for

benchmarking IoTDB against other databases and time series

solutions. It can generate periodic time series data according to

the configuration or load the existed time series file. After data

generation, the Benchmark begins to send the data batch by

batch to IoTDB-Server. It is worth mentioning that the batch

size is configurable and optimal batch size in our experiments

is 500.

Later, if the query command is set, Benchmark will query

data from Server with support of several kinds of queries. In

our test, we choose the basic time range query as our primary

test.

To make use of Benchmark, we install it on a Linux server

with 16G memory and 8 core CPU.

3) Datasets: To evaluate the efficiency of Backward-Sort

algorithm under different out-of-order time series, we generate

two kinds of synthetic datasets, AbsNormal [3] and LogNor-

mal [5], [13], while two real-world datasets CitiBike [14] and

Samsung [15] are chosen.

For algorithm efficiency tests, the experiment use a data

volume from 10 thousand to 10 million while 100 thousand

where 100,000 is the appropriate memory points size in the

IoTDB. For system performance tests, the experiment uses 10

million data volumes to simulate real-world scenarios and test

throughput.

B. Parameter Tuning

As Proposition 6 shows, the block size L determines the

performance of the Backward-Sort algorithm. Given a specific

delay distribution, there exists an optimal block size to reach

minimum complexity. The larger the block size is, the closer

the algorithm is to Quicksort. On the contrary, the closer it is

to the Insertion-Sort.

If the inversions are rare enough and the array is nearly

completely ordered, the Insertion-Sort could perform well. If

the inversions are multiple and IIR becomes large coincidently,

the straight Insertion-Sort shrinks and Quicksort will be the

dominant strategy.

To conduct the parameter tuning test, the array size is set

to 1,000,000 and use IntTVList(<long, int >T-V pair). By
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Fig. 8. Varying interval inversion ratio and block size for different datasets

omitting the first step of the algorithm, we directly set the

block size manually to perform the test.

For real-world Datasets as shown in Figure 8, the Backward-

Sort shows great improvement compared to Insertion-Sort(L =
1) and Quicksort(L = N ). As the interval inversion ratio in

Figure 8(a) indicates that if αL = 0 L ≥ 25 for Samsung and

L ≥ 216 for CitiBike, the overlap of the Samsung datasets

between different blocks is small and that of Citibike is large.

The non-adjacent blocks wouldn’t coincide at all if the block

size is large. In most cases, too small block size is not optimal

since the overlap between non-adjacent blocks will result in

more unnecessary move operations. It is crucial to find the

appropriate block size. It is observed that the optimal block

size roughly corresponds to the interval that the inversion ratio

is truncated at some value between 10−2 and 10−3.

Fixed Parameter: We choose Θ̃ = 0.04 as our empirical

interval inversion ratio threshold which is configurable. In

practice, the program estimates the empirical interval inversion

ratio as indicated in SetBlockSize part. In fact, Θ̃ could be

deliberately chosen to be a little smaller and the block size

controlled by it is always a little greater than the found optimal

size. The idea behind this is that the empirical value estimates

may be smaller, which results in the block size being smaller

as well. However, the small block size will make the algorithm

degenerate into insertion sort, whose complexity is too high to

stand. Therefore, a larger block size is acceptable relatively.

The Backward Sort algorithm can be seen as a “block in-

sertion” sorting process that inserts the sorted black backward.

Thereby, its sorting performance is affected by the block size

L. As illustrated in Figure 6, the algorithm degenerates to

Insertion Sort when L is set to 1, or Quicksort for L = N . The

optimal block size Loptimal is usually in between. Thereby,

we search from an initial size L0 and increase it to find a

proper block size. To avoid degenerating into Insertion-Sort,

L0 is expected to be larger than 1. On the other hand, to avoid

missing Loptimal and sacrificing performance, L0 should not

be too large. As the results shown in Figure 8(b), we can

find that Loptimal is almost always greater than 4. Therefore,

setting L0 to 4 will not miss the optimal block size in most

cases and avoid degradation in a certain degree.

C. Algorithm Comparison

After finding the fixed parameter, then it is indispensable to

compare different sort algorithms.

8



��� ���	 ������ ����� ������	� ��	���


������� ��� ��� ��� ���
σ

�
���
���
���
���

��


�
�

��

�����	����������σ�

������� ��� ��� ��� ���
σ

�
���
���
���
���
���
���

��


�
�

��

�	���	����������σ�

Fig. 9. The sort time of AbsNormal datasets with varying σ
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Fig. 10. Sort time of LogNormal datasets with varying σ

1) Varying Inversions: The degree of out-of-order is the

main factor influencing the performance of algorithms. Since

σ has a greater impact on the inversions, we set µ = 1 or

µ = 4 and then vary the standard deviation σ to change the

degree of out-of-order.

As Figure 9 and 10 show, the greater σ is, the longer sorting

time is. Moreover, Figure 8 shows that CitiBike is more out-of-

order and costs more to sort. Therefore, the higher the degree

of out-of-order of time series is, the more time sorting algo-

rithms consume. The performance of Timsort and Quicksort is

stable, slowly growing as σ increases. The Patience Sort is not

stable, especially in LogNormal Datasets, since the original

paper only conducted experiments on AbsNormal Datasets.

The reason is that the cost of moves (TV pairs) is higher in

IoTDB than that in general arrays. Thereby, the constructions

of sorted runs consume more time. Backward-Sort outperforms

all other algorithms on the whole and improves performance

by about 30% to 100% compared to Quicksort.

Figure 11 shows that YSort performs well when the degree

of out-of-order is small like Samsung-D5. However, it is not

effective when the out-of-order degree gets large such as in

the CitiBike-201808 dataset. CKSort performs stably in most

datasets, but still worse than our Backward Sort.

2) Varying Array Size: We choose AbsNormal(0,1), Log-

Normal(0,1), CitiBike-1808 and Samsung-S10 and vary the

array size to test the sort algorithms. Since the sorting time

is less than 1ms when the array size is 10000, the error is

larger than that with greater array size. Figure 12 shows that

Backward-Sort outperforms other algorithms under various

datasets in different scales.
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Fig. 11. Sort time of real-world datasets
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Fig. 12. Varying the array size on different datasets

D. System Comparison

Since write operations are more frequent than query ones

in industrial IoT scenarios, the scenarios where the write

percentage is higher than 0.5 are mainly considered. Therefore,

we choose 25%, 50%, 75%, 90%, 95%, 99% and 100% as

our testing write percentage. It is worth noting that when the

write percentage is 1, there is no query operation; when the

write percentage is 0, that is, no data is written, the querying

and sorting processes are not used. Therefore, there is no

corresponding query throughput in both cases.

As for query operations in our test, we choose the time

range query as our main query statement, which is one of the

simplest query and the basis of the aggregation functions. To

avoid querying data in the disk which leads to additional I/O

cost, we limit the window of the query to the neighborhood of

the latest timestamp (current) The query statement is formatted

as follows:

SELECT *

FROM data

WHERE time > current - window

1) Query Throughput: The query process in IoTDB takes

the lock and blocks the write process. Thereby, the syn-

chronous query will take the whole time to process query,
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Fig. 13. The query throughput for AbsNormal datasets
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Fig. 14. The query throughput for LogNormal datasets

which firstly sorts the data.

As shown in Figure 15, when the writing percentage is

small, the difference between the sorting algorithms is not

significant. The reason is that there are fewer write operations,

and thus less data needs to be sorted. With the increase of

writing percentage, throughput drops in all methods, since

less query points are returned due to less query operations.

Nevertheless, our proposal Backward sort shows improvement

in query throughput in most tests by accelerating sorting

for query operations. We add the aforesaid discussion of

experiment results on various write percentage at the end of

Section VI-D1.

2) Flush Time: The flush time records the range from

when the table state transitions(working to flushing) to the
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Fig. 15. The query throughput for real-World datasets
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Fig. 16. The flush time for AbsNormal datasets

completion of writing to the disk. In IoTDB’s implementation,

it is asynchronously awaited, including processes such as

sorting, encoding, and I/O, which may be affected by other

higher priority processes.

The asynchronous flushing time statistics include two parts,

the sorting time and the other, as shown in the Figure 16 17 and

18 by overlay with the corresponding error bars. The higher the

write percentage is, the smaller the flush time is. The reason

is that write processes are blocked due to more queries and

release their resources that flushing takes advantage of.

The results also show that Backward Sort has a huge

advantage in flushing time. The improvement comes from

two aspects. One is the improvement of the algorithm time;
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Fig. 17. The flush time for LogNormal Datasets
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Fig. 18. The flush time for real-world datasets

Backward Sort further optimizes the sorting time compared

with YSort and Quicksort. The other is the reduction of system

memory usage. For CKSort and Patience, a little extra space

is required for Backward.

3) Total Test Latency: The total test latency mainly consists

of preprocessing, query and flush, which could indicate the

whole performance of the IoTDB system.

Figure 21 shows that when the querying operations gradu-

ally dominate, the difference gradually becomes apparent. It is

not surprising that owing to the higher sorting costs of CKSort

and YSort, their overall test latency is higher than our proposed

Backward Sort.
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Fig. 19. The total test latency for AbsNormal datasets
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Fig. 20. The total test latency for LogNormal datasets

E. Downstream Application

Almost all the downstream applications require time series

ordered by time [16], [17]. For example, in time series

analytics such as computing the average speed of an engine

in every minute, the disordered data points obviously lead to

incorrect statistics. Without ordering by time, adjacent points

with non-consecutive timestamps may fluctuate on values, as

the disordered example illustrated in Figure 22(a). It is not

surprising that such fluctuation also affects the deep learning

models to some extent.

We apply the deep network LSTM [18] to forecast the time

series. Again, multiple out-of-order datasets are prepared by

adding the delay time of LogNormal(1, σ). The larger the

variance σ is, the higher the degree of out-of-order is. The
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Fig. 21. The total test latency for real-world datasets
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Fig. 22. The downstream application of ordered and disordered time series

first 70% data are used for training, with the last 30% for

testing. The input size and hidden size are set to 10 and 2,

while other parameters are default.

The train and test MSE loss is reported in Figure 22(b).

LogNormal(1,0) with variance σ = 0 means no delayed points,

i.e., exactly ordered by time. As shown, with the increase of

the disordered degree σ, it is generally harder to train and the

application performance degrades. The results indicate that the

downstream applications indeed benefit from the ordered time

series.

VII. RELATED WORK

A. In-memory Structure

Traditional relational databases use classical data structures

in memory to store sorted data. For example, RocksDB [19]

maintains a probabilistic data structure SkipList, which allows

search and insertion with O(log n) complexity. RocksDB

implements Skiplist to maintain sorted data. There is no best

choice of the design, but for the specific situation. With the

tremendous development of IoT, the demand for industrial data

process and storage arises. Some time series databases like

InfluxDB [20], TimescaleDB [21] and so on use B-tree to

maintain the in-memory data in order. Apache IoTDB makes

use of a list-array structure, similar to the deque, to buffer the

streaming time series.

B. Out-of-Order

Out-of-order has been well studied especially in the sliding

window. Since the aggregation should be executed during the

latest window, there is always a trade-off between accuracy

and latency.

Timsort, a variety of Merge-Sort, is used everywhere due to

its stability. The Apache IoTDB’s current method is Timsort.

Quicksort does not use extra space for sorting, which is

very friendly to system performance [12], [22]. Many sort

algorithms are designed for almost-sorted data and gain great

performance [8], [23].

CKSort [10], [11] is based on three sorting algorithms:

Quicksort, Insertion Sort and Merge Sort. It extracts the

unordered pairs into another array, then sorts and merges the

two arrays. The downside of CKSort is that it requires O(n)
extra space and may bring multiple redundant moves. YSort

[12], a variation of Quicksort, ensures that the minimum and

maximum elements of each sublist are located on the left and

right. Therefore, it requires fewer partitioning steps.

Smoothsort [24] is inspired by heapsort, and maintains a pri-

ority queue to extract the maximum. Though its upper bound

is O(n log n), it is unstable. Patience Sort [3], Impatience-

Sort [25], are state-of-the-art algorithms specifically designed

for nearly sorted data, where Impatience also takes advantage

of some modern processors. Patience Sort makes full use of

the characteristics of little runs in the nearly sorted data, and

achieves further optimization through some memory tricks,

such as ping-pong.

VIII. CONCLUSION

In this paper, we first analyze the unique features of out-of-

order arrivals in Apache IoTDB, i.e., delay-only and not-too-

distant. Referring to such features, a new algorithm Backward-

Sort is then devised for sorting time series data by their times-

tamps. While the idea of moving points backward is motivated

by the feature of delay-only, we further propose to divide

data points in blocks, referring to the non-too-distant feature,

such that moving points is expected to occur locally inside

blocks. To the best of our knowledge, this is the first sorting

algorithm specially designed for time series. We show that

Quicksort is indeed the worst case of the proposed algorithm.

Remarkably, the algorithm has been a fundamental component

of sorting time series data in Apache IoTDB. The experimental

evaluation is conducted, using IoTDB-benchmark, over real

and synthetic datasets.
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