
Non-Blocking Raft for High Throughput IoT Data

1st Tian Jiang

Tsinghua University

jiangtia18@mails.tsinghua.edu.cn

2nd Xiangdong Huang

Tsinghua University

huangxdong@tsinghua.edu.cn

3rd Shaoxu Song

Tsinghua University

sxsong@tsinghua.edu.cn

4th Chen Wang

Tsinghua University

wang chen@tsinghua.edu.cn

5th Jianmin Wang

Tsinghua University

jimwang@tsinghua.edu.cn

6th Ruibo Li

Alibaba Group

ruibo.lirb@alibaba-inc.com

7th Jincheng Sun

Alibaba Group

jincheng@apache.org

Abstract—The Raft consensus protocol naturally fits time series
databases, owing to the resemblance between its continuous log
and the time series data. While the serialization of appending en-
tries reduces the state space for ease design and implementation,
it blocks the subsequent requests and thus limits the parallelism
and throughput of Raft. Intuitively, once an entry arrives the
follower, we may notice the leader and the client to unblock
the subsequent as early, rather than waiting for its appending
and committing. In this way, more requests can be processed in
parallel, and thus the throughput increases, essential for IoT
applications often with vast sensors and fast data ingestion.
Of course, with higher parallelism, the risk of persistence for
in-processing entries increases. It is a worthwhile trade-off in
the IoT scenario since tiny data loss during leader failure is
more acceptable than shutting out most data due to a low
throughput. Our Non-Blocking Raft (NB-Raft) is implemented as
the consensus protocol of Apache IoTDB, a commodity time series
database management system, supporting various applications in
Alibaba Cloud. Extensive evaluation shows that the throughput
is improved by about 30% using our NB-Raft compared to the
original Raft, a considerable amount of further data saved.

Index Terms—distributed system, IoT, consensus protocol

I. INTRODUCTION

Consensus protocols are essential in efficiently keeping

replicas consistent in distributed systems. While there are

alternatives, such as the Paxos family [1], [2], [3], [4], [5],

[6], [7], we choose to employ Raft [8] for Apache IoTDB

[9], a time series database for Internet of Things (IoT). The

reason is that Raft models data as a continuous log without

holes. It makes the state space smaller than other protocols,

and thus easier to understand and maintain. Most importantly,

the continuous log naturally resembles time series, where each

log entry with a monotonically increasing index corresponds

to a series point ordered by timestamp.

Unfortunately, the log serialization scheme of Raft limits

its parallelism and consequently the throughput (see the mo-

tivation example below). A typical IoT application manages

thousands of devices, samples millions of time series, and

generates tens of GBs data every second [9], [10]. Directly

applying Raft to IoT scenarios pushes the protocol throughput

to its limits, and thus potentially shut out data from the system.

Shaoxu Song (https://sxsong.github.io/) is the corresponding author.

Fig. 1. Raft in (a) blocks the subsequent entry E3 till the commit of the
preceding E2 from the same client, while our NB-Raft in (b) introduces an
early return to unblock E3 as soon as possible and thus increases throughput.

A. Motivation

Raft introduces serialization by assigning two unique and

monotonically increasing numbers, log index and term, to each

command. Followers must append and apply commands in the

order of index. A term identifies uniquely the generator of a

log entry. Figure 1(a) briefly shows the process of replicating

entries from the leader to a follower. The leader first indexes

a request as a log entry, e.g., E1, and sends it to the follower.

Then, the follower appends the entry locally. After that, the

leader commits the entry (assuming only one follower).

When an entry reaches the follower, some previous entries

may still be appending or even not received yet. It thus cannot

be appended and must wait till the previous entry is appended.

For example, there is a long gap between “Receive E2” and

“Append E2” in Figure 1(a), waiting for “Append E1”. As

a client connection can issue only one request a time, the

subsequent requests are also blocked. For instance, E3 in

Figure 1(a) cannot be issued until the previous E2 from the

same client is committed.

In short, owing to the serialization scheme of Raft log, the

requests of a client are blocked and cannot be processed in

parallel. The out-of-order arrivals of entries make the blocking

time even more serious and severely limit the throughput.

B. Intuition

Note that the availability of commodity distributed systems

is high, for example, Alibaba Cloud provides servers with

availability over 99.99%. In most cases, the delayed entry will

arrive later, and the blocked entry will eventually be appended.

Intuitively, once an entry arrives at enough followers (a

quorum), rather than waiting for other entries, we may first

notify the client so that it can issue the next request. For

example, in Figure 1(b), E2 is cached after “Receive E2”.

Then, a special result (WEAK ACCEPT as introduced below)

is returned and E3 is issued earlier than that in Figure 1(a). The

latter phases (append and commit) of E2 are batched with the

associated phases of E1. In this way, the parallelism increases,

i.e., leading to better throughput, highly demanded in the IoT

applications as previously mentioned.

Of course, since more entries are processed in parallel, the

risk in persistence increases. For the original Raft in Figure

1(a), if the leader crashes before entering the “Commit E1”

phase, then entries E1 and E2 could be lost in the worst case.

However, in Figure 1(b), E3 may also be lost since it is already

initiated at this point. Nevertheless, it is the price to pay for

higher parallelism and throughput, i.e., a worthwhile trade-off.

A detailed discussion is given in Section V-G.

C. Contribution

In this paper, to increase parallelism and throughput of Raft,

we propose a novel adaption, Non-Blocking Raft (NB-Raft).

By introducing a new intermediate state WEAK ACCEPT for

entries, the previously mentioned “Early Return” is enabled.

Rather than blocking the subsequent entries, multiple entries

from the same client can thus be processed in parallel and

cached in a window of the follower, waiting for appending.

Our major contributions are as follows.

(1) We present a thorough analysis of the log replication

process in Raft with the help of Petri Net, a powerful tool for

modeling distributed systems with concurrency [11]. It enables

us to quantitatively identify the performance bottleneck in

the process, due to the previously mentioned log appending

serialization. To the best of our knowledge, this is the first

study on modeling Raft log replication by Petri Net for

efficiency analysis.

(2) We modify the Raft consensus protocol, in client,

leader and follower, to enable WEAK ACCEPT for higher

parallelism and throughput. A sliding window is designed in

the follower to cache and control the number of entries in

the middle state, waiting for log appending. Since multiple

requests could be sent by in parallel, clients also need to main-

tain these in-processing requests, whose number is bounded by

the window size.

(3) We show that the original Raft protocol is indeed

a special case of our NB-Raft with window size zero. It

means no entry having WEAK ACCEPT in cache waiting for

Fig. 2. Interactions among client, leader, and follower in log replication.

Append. We also discuss the trade-off between throughput and

persistence.

(4) We conduct extensive experiments in real systems de-

ployed in both local network and cloud. The results illustrate

the bottleneck of the Raft throughput. NB-Raft achieves about

30% improvement in throughput compared to the original Raft.

Remarkably, the proposed protocol NB-Raft has been de-

ployed in products and industry. It is integrated into a com-

modity time series DBMS, Apache IoTDB [12]. The code

of NB-Raft is available in the official GitHub repository of

Apache IoTDB [13]. The system with NB-Raft is deployed

in centralized or geo-distributed clusters in Alibaba Cloud

for various applications, from workshop monitoring to central

control systems, to satisfy the need of massive time series

ingestion. The customers include China Railway Rolling Stock

Corporation (CRRC), China Tobacco, China National Nuclear

Corporation (CNNC), Tianyuan Technology group, etc.

The remaining of the paper is organized as follows. We

model the log replication procedure of Raft using Petri Net

and identify its bottleneck in Section II. Section III presents

NB-Raft, the proposed consensus protocol. Section IV discuss

the trade-off between throughput and persistence. In Section

V, evaluation of the original protocol and the modified version

is conducted. Section VI discusses related work, and finally

Section VII concludes the paper.

II. LOG REPLICATION IN RAFT

Log replication is the key point of consensus efficiency in

Raft. Requests are converted to indexed log entries and sent

to any majority of replicas. We found the throughput of the

original Raft unsatisfying in some of our application cases.

Inspired by [14], we use Petri Net [11] to model the consensus

protocol and identify its performance bottleneck. Specifically,

log replication is modeled as an extended producer-consumer

model using Petri Net. It is intended to (1) present the log

replication process in a more informative way, (2) characterize

and accurately measure the bottleneck, (3) demonstrate how

the modified protocol works intuitively.

A. Replication Process

To explain thoroughly the log replication process, we further

present the interactions among client, leader and follower in

Figure 2. It is an overview of the detailed yet complicated

process in Petri Net in Figure 3.

In short, log replication is in four steps: sending requests

from a client to the leader in Figure 3(a)-(b), converting

requests to indexed log entries in the right part of Figure

Fig. 3. A detailed log replication process of Figure 2. Black lines denote the original protocol, while red lines present the modifications. The identified
bottleneck is marked with blue lines, i.e., a loop enabled when an entry is not appendable and thus waiting. Guard funtions (transition triggering condition)
are italic. The parts corresponding to the index, receive, append and commit phases in Figure 1 are also indicated.

3(b), replicating the entries to followers in Figure 3(b)-(c),

and committing the log in the left part of Figure 3(b).

To precisely measure the time costs of different steps and

identify the bottleneck, we use a three-replica cluster of

Apache IoTDB [9] (server specification is given in Section

V-A). The cluster is evaluated with TPCx-IoT benchmark [15],

using its default settings. By code instrumenting and log pro-

filing, we collected time consumption during log replication,

presented in Figure 4.

B. Step 1 Sending Request

As shown in Figure 3(a), there are Ncli client connections.

Each can generate a request once the leader replies to the

previous one, i.e., a token in the place (circle) of ACK in Petri

Net. The transition Generate Request, denoted by rectangle in

Petri Net, puts it in the place of Client Request. The request

is then sent to Server Request Pool in the leader via network.

This pool is shared among all clients.

The cost of step 1 is mainly in two parts, the time to

generate a request in Client tgen(C) and the time to trans-

mit a request from Client to the Leader ttrans(CL). Given

network latency tlat(CL), request size b, and network band-

width wnet(CL), the cost ttrans(CL) can be represented as

ttrans(CL) = tlat(CL) + b/(wnet(CL)/Ncli), where the band-

width is shared by all clients. The total cost of step 1 is

t1 = tgen(C) + tlat(CL) + b/(wnet(CL)/Ncli).

C. Step 2 Indexing Entry

The right part of Figure 3(b) describes the second step,

corresponding to “Index” in Figure 1 and step 2 in Figure 2.

When the leader receives a request, it is assigned with a unique

index and appended locally in the leader. For each follower i,

the indexed entry is inserted into Queue to Follower[i] to wait

for transmission.

Let tprs(L) and tidx(L) be the time to parse a request

and index an entry. Indexing an entry includes assigning

a unique number and appending the entry to the leader’s

log. The request waits in the queue till it is consumed and

sent to a follower. Each queue of entries is consumed by

Ncsm dispatchers, sending entries to the associated follower

in parallel. Let tqueue(L) denote the queue time. The total cost

of step 2 is t2 = tprs(L) + tidx(L) + tqueue(L).

D. Step 3 Replicating Entry

The step of replicating entry is shown in Figure 3(c).

For each dispatcher, there is an appender thread retrieving

entries in Pending Request. By checking Follower[i] Log, an

appender decides whether an entry is appendable according to

the existence of its precedence. If appendable, it appends the

entry to the log and sends an acknowledgment to the leader’s

(Strongly) Accepted Nodes.

The cost of step 3 includes the time of sending an entry to

a follower ttrans(LF) via network similar to step 1, waiting for

precedent entries twait(F), appending an entry tappend(F). As

each follower has a different twait(F), to reduce the number

of variables, twait(F) here refers to that of the first follower

which receives the entry. The total cost of step 3 is t3 =
ttrans(LF) + twait(F) + tappend(F).

Via network, ttrans(LF) is like ttrans(CL). Moreover,

tappend(F) is efficient, only taking 0.1% to finish in Figure 4.

The protocol-related bottleneck is thus identified as twait(F)
in step 3, as shown in Figure 3(c). Scheduling and fluctuating

delays of connections introduce indetermination, and thus

entries can no longer reach a follower in order. The follower

must wait for previous entries to keep log continuity. Marked

with blue lines in Figure 3(c), there is a loop when entries are

not appendable, introducing twait(F), the second largest part

in Figure 4. twait(F) is affected by concurrency, request size,

network and scheduling. Notice that from the queuing theory,

avg queue time ≈ avg process time ∗ avg queue length .

Therefore, reducing twait(F) also reduces tqueue(L).

In the remaining of Figure 3, places are always single-

directional, which means a token will not be blocked in places

by a loop. Such an anomaly revealed by Petri Net suggests

that this part deserves more attention. Moreover, the Petri

Net’s ability to present concurrency shows the connection

between multi-threading and twait(F). The loop is controlled

by Follower’s Log, which is accessed by multiple appenders.

E. Step 4 Committing Entry

As shown in the left part of Figure 3(b), if acks are collected

from any quorum, the entry is committed by the leader and

inserted into Committed Log. Then, it will be moved into

Applied Log after being applied. When an entry is applied,

an ack is sent to the ACK of the corresponding client in step

1 to enable subsequent requests.

The cost of step 4 includes collecting enough acks, i.e.,

from the first follower appending an entry to a quorum

appending the entry tack(L), committing, and applying an

entry, tcommit(L) and tapply(L). The total cost of step 4 is t4 =
tack(L) + tcommit(L) + tapply(L).

F. Observation in Other System

We observe the measurements in another platform Apache

Ratis [16] and its embedding benchmark, in Figure 4. Apache

Ratis is a highly customizable Raft protocol implementation in

Java [16]. We implement multiple log appenders (dispatchers)

in the system for evaluating high throughput IoT data.

As shown in Figure 4, Ratis has a higher tindex(L), since

it uses heavier lock for synchronization during indexing

than IoTDB. Therefore, its tqueue(L) is partially moved into

tindex(L). Unlike Ratis FileStore that triggers an I/O operation

Fig. 4. Proportions of various time during log replication.

TABLE I
NOTATIONS

Notation Explanation Bottleneck

tgen(C) Time to generate a request by a
client

IoT device sampling
frequency

ttrans(CL) Time to send an entry from the
client to the leader

Network bandwidth

tprs(L) Time to convert a binary string
into a meaningful request

Memory allocation

tidx(L) Time to assign a term and an
index to an entry by the leader

CPU for highly con-
current requests

tqueue(L) Time after being indexed and be-
fore being sent to a follower

CPU and Network
bandwidth

ttrans(LF) Time to send an entry from the
leader to a follower

Network bandwidth

twait(F) Time from receiving an entry to
being appendable in a follower

Out-of-order by high
concurrency

tappend(F) Time to append an entry in a
follower

CPU

tack(L) Time to collect responses for an
entry

No clear bottleneck

tcommit(L) Time to mark an entry as com-
mitted by the leader

CPU

tapply(L) Time to execute the command in
an entry

Determined by appli-
cation

with each request, IoTDB batches data in memory and flushes

latter, having a smaller tapply(L).
Nevertheless, both systems incur large twait(F), the waiting

time among concurrent requests to become appendable. It is

introduced by the out-of-order entry arrivals. The consistently

observed high cost of twait(F) verifies again the necessity of

reducing the waiting time, i.e., the focus of this study.

G. Summary of Observations

Table I presents a summary of assumptions and facts, stated

in multiple places in this section. For instance, tidx(L) is the

time to assign a term and an index to an entry by the leader,

which is limited by the CPU resource for handling the highly

concurrent requests and thus difficult to reduce. In particular,

twait(F) is identified as the time from receiving an entry to

being appendable in a follower. It is introduced owing to the

out-of-order entry arrivals in high concurrency and is expected

to be reduced in this study.

III. NON-BLOCKING RAFT

To avoid blocking, we introduce a new state called

WEAK ACCEPT for entries that are received by not append-

able yet. It notifies the leader as early as entries in the state. To

distinguish, we call the appended entries STRONG ACCEPT.

Fig. 5. State transition of a request in Raft.

Fig. 6. An empty log window of six positions reserved for caching entries.

The overall states and their transitions are presented in Figure

5. In the following, we describe the specific modifications

made to follower, leader, and client to manage the new state

WEAK ACCEPT. The corresponding protocol modifications

for unblocking are also shown in Figure 3 in red.

A. Follower Modification

To cache unappended logs, we introduce a sliding window

for each follower, analogous to Sliding Window in Figure 3(c).

If the index of the follower’s last appended entry is i , then

window position j should store the entry with index i + j .

Non-appendable entries will enter the window and return a

WEAK ACCEPT, in red lines in Figure 3(c).

The window size w is configurable according to the paral-

lelism requirement, i.e., the maximum number of entries that

can be processed in parallel. Entries exceeding the window

size will be blocked till they can be inserted. The larger

the window size is, the higher the parallelism will be. In

contrast, for a small window size, requests are more likely

to be blocked. In this sense, the original Raft can be viewed

as a special case where the window size is zero, i.e., always

blocking subsequent requests.

Figure 6 shows a follower with five appended entries and

an empty log window. The first number in each entry is its

index, the second one is its term, and the last one is its previous

term (term of the previous entry). The previous term is used

to check if the previous entry is generated by the consistent

leader.

The length of the window is six, and its first index is 8 (as

the last entry’s index is 7).

For a new entry arriving at a follower, let diff be the index

difference between the new entry and the last entry in the

follower’s log. There are 3 cases to consider according to diff .

1) New entry before the window: If diff ≤ 0, like the orig-

inal Raft, the new entry should replace an already appended

entry and truncate the following entries. It occurs when a new

Fig. 7. The window moves leftwards as the appended log is modified, for
the case in Section III-A1.

leader generates logs with the same index but a higher term.

The uncommitted logs from the old leader should be replaced.

If the new entry finds the previously appended entry, the fol-

lower moves the window leftward diff positions, and discards

any entries that are no longer in the window or have a term less

than the new entry. It then reports (STRONG ACCEPT, new

entry index, new entry term) to the leader. As messages could

be delayed in an asynchronous system, a follower may receive

entries from old leaders, which will be discarded by this step.

Otherwise, the entry mismatches. The follower discards it and

reports LOG MISMATCH to the leader as Raft does.

In Figure 7, diff is 6− 7 = −1 for the new Entry (6,5,4),

and thus the appended log is truncated. As the last index

in the local log becomes smaller, the sliding window moves

leftwards. Entry (9,4,4) is removed for its term smaller than

five. Entry (13,5,5) is discarded as it exceeds the window.

The follower returns (STRONG ACCEPT, 6, 5) to the leader,

indicating the entry is appended and becomes its last entry.

2) New entry falling into the window: If 0 < diff < w , the

new entry (i ,j ,k) is inserted into position diff of the window.

According to Raft, the term of the entry with index i − 1 is

also sent to the follower together with entry (i ,j ,k), namely

k . We call an entry of the follower the previous entry of entry

(i ,j ,k), if its index is i − 1 and its term is k .

a) Ensure continuity: By checking the predecessor and

successor of the inserting entry (i ,j ,k), continuity is ensured.

If its predecessor at position diff − 1 is not null, and not

the previous entry of the inserting entry (i ,j ,k), then the

predecessor is not continuous with entry (i ,j ,k). We remove

the predecessor at position diff − 1 to ensure log continuity.

If the successor at position diff + 1 is not null, and the new

entry (i ,j ,k) is not its previous entry, then the successor is not

continuous with entry (i ,j ,k). We remove the successor and

all entries following it to ensure log continuity.

Figure 8 shows an example of inserting Entry (11,7,6). Entry

(10,5,4) is thus removed because it is not the previous entry

of Entry (11,7,6). Moreover, Entry (12,5,5) and Entry (13,5,5)

are removed, because the term of them cannot be 5 (terms

are non-decreasing according to Raft). That is, Entry (11,7,6)

is not the previous entry of Entry (12,5,5) and Entry (13,5,5).

b) Determine state: Upon the inserted position and the

previous entries, the follower determines the state to return,

Fig. 8. After insertion Entry (11,7,6), mismatched entries (in blue) are
removed, as introduced in Section III-A2a.

Fig. 9. By inserting in the first position of the window, the non-empty prefix
will be appended to the local log, as introduced in Section III-A2b.

STRONG ACCEPT, LOG MISMATCH, WEAK ACCEPT.

If diff = 1 and the previous entry of the new entry is the

last entry in the local log, then the follower moves the non-null

prefix of the window to the tail of the local log (namely flush).

The reason is that they are now continuous with the local log.

Accordingly, the follower moves the window rightward, and

reports (STRONG ACCEPT, last entry index, last entry term)

to the leader. The step moves entries from the window to the

local log, so that they can be latter committed.

If diff = 1 and the previous entry of the new entry is

not the last entry in the local log, then the follower reports

a LOG MISMATCH to the leader. It informs the leader that

entries with smaller indices should be sent.

Otherwise, diff 6= 1 and the local log is unchanged, it

reports a WEAK ACCEPT to the leader.

As illustrated in Figure 9, when Entry (8,5,4) is inserted

to the first position of the sliding window, Entries (8,5,4),

(9,5,5), (10,6,5) are moved from the window to the local log.

A message (STRONG ACCEPT, 10, 6) will be returned to the

leader as the last entry is (10,6,5), and the leader will know

that entries up to index 10 have been appended.

3) New entry after the window: If diff ≥ w , the follower

will wait and retry as if the entry is newly arrived. If another

entry arrives during the wait and triggers a flush (Section

III-A2b), the window will move rightward. This makes room

for the waiting entry if enough entries are flushed. It thus

controls the length of the window and avoids re-transmission.

B. Leader Modification

In the modification of follower, there are two types of accep-

tances, STRONG ACCEPT and WEAK ACCEPT, denoted

Fig. 10. For Section III-B2, when Node2 returns WEAK ACCEPT to the
leader after it receives an out-of-order Entry 7, the leader records it in
the corresponding tuple (having the same index) in VoteList and replies
WEAK ACCEPT to the client.

by black and red lines in Figure 3(c). STRONG ACCEPT

equals a vote in the original Raft and can be counted to commit

an entry. WEAK ACCEPT only indicates the reception of

entries instead of being appended. The leader modification lies

in two aspects, devising a data structure to manage entry states

and processing different signals accordingly.

To manage entry states, a leader maintains an ordered list

VoteList of tuples on (logIndex, Weakly Accepted Nodes,

Strongly Accepted Nodes) to track what nodes have appended

the entry with logIndex and what nodes have only received

it. VoteList is used in two places in Figure 3(b), i.e., Weakly

Accepted Nodes and Strongly Accepted Nodes. The original

Raft tracks the state of entries similarly, but with only Strongly

Accepted Nodes.

During log replication, a leader sends an entry currLog to

followers in parallel and adds a tuple tp (currLog’s index, ∅,

∅) to VoteList . According to responses from followers, the

leader processes differently as follows.

1) Case of LOG MISMATCH: In Section III-A2b, a fol-

lower may return LOG MISMATCH, suggesting missing en-

tries. The leader finds what entries the follower is missing and

re-sends them as the original Raft.

2) Case of WEAK ACCEPT: If a follower f returns a

WEAK ACCEPT, the leader adds f to tp’s Weakly Accepted

Nodes, where tp is the tuple in VoteList having the same

index as the currently processed entry. Moreover, if tp’s

Weakly Accepted Nodes together with tp’s Strongly Accepted

Nodes form a majority, the leader returns (WEAK ACCEPT,

currLog’s index, currLog’s term) to the client. It indicates

that a living quorum has received the entry, which is highly

likely to be committed eventually. Thereby, the response can

be returned to enable the next request.

Figure 10 gives an example of WEAK ACCEPT. When

the leader Node1 receives (WEAK ACCEPT, 7, 2) from a

follower Node2, it inserts 2 (the follower’s node ID) into

Weakly Accepted Nodes of entry 7. As the leader itself is a

strongly accepted node, the union of Weakly Accepted Nodes

and Strongly Accepted Nodes forms a majority (for three

replicas). It sends (WEAK ACCEPT, 7, 2) to the client.

Fig. 11. When Node2 returns STRONG ACCEPT with a higher term, the
leader cleans VoteList and replies LEADER CHANGED to the client. This
example is associated with Section III-B3a.

3) Case of STRONG ACCEPT: If a follower f re-

turns (STRONG ACCEPT, lastIndex , lastTerm), in Section

III-A2b, there are two cases to consider for the leader.

a) Leader changed: If lastTerm is not the current term,

it indicates that a new leader is elected. The leader returns

LEADER CHANGED to the client (for retrying the request

in the new leader) and cleans VoteList for garbage collection.

Figure 11 shows the case of a leadership change. When a

leader receives a reply with higher term (3 > 2), it means that

a new leader of term 3 is elected and this leader is invalid.

The leader cleans VoteList as only a valid leader uses it. Then

a LEADER CHANGED signal is returned to the client, who

can retry with the new leader.

b) Leader valid: Otherwise, lastTerm is the current

term, i.e., the leader is still valid. Thereby, for each tu-

ple in VoteList , if the tuple’s logIndex is smaller than

or equals to lastIndex , the leader adds f to its Strongly

Accepted Nodes. Our window insertion checks in Section

III-A2a assures log continuity. If an entry with index i

becomes STRONG ACCEPT, all its previous entries are

STRONG ACCEPT. This is different from WEAK ACCEPT

in Section III-B2, which only modifies one tuple.

If the tuple’s Strongly Accepted Nodes form a quorum,

the leader commits and removes the tuple since other votes

no longer matter. After examining all tuples, if any entry

is committed, it returns (STRONG ACCEPT, last committed

entry’s index, last committed entry’s term) to the client.

Figure 12 illustrates an example case of non-changed leader.

When a leader receives (STRONG ACCEPT, 5, 2) from a

follower Node2, it knows entries with index ≤ 5 are also

appended by Node2. The follower’s node ID 2 is inserted to the

Strongly Accepted Nodes of the corresponding entries. Finally,

the leader sends (STRONG ACCEPT, 5, 2) to the client.

C. Client Modification

To track weakly accepted requests, a client maintains a

list of tuples on (logIndex, logTerm, request) named opList ,

and a term listTerm , which indicates the newest leader

known by the client. The opList contains requests replied

with WEAK ACCEPT. Since a new leader may overwrite

WEAK ACCEPT entries of the previous leaders, listTerm

is recorded to detect leadership change. In this case, the client

Fig. 12. When Node2 returns STRONG ACCEPT to the leader after it
receives Entry 5, the leader records it in all items in VoteList that have
an index no larger than 5 and replies STRONG ACCEPT to the client. This
example is associated with Section III-B3b.

will retry all requests on the list to ensure that they are either

processed by the old leader or the new leader.

After a client sends a request o to the leader, it may

receive two types of responses if the replication succeeds,

WEAK ACCEPT or STRONG ACCEPT, as in Figure 3(a).

1) Case of WEAK ACCEPT: When (WEAK ACCEPT,

index , term) is returned from the leader in Section III-B2, if

listTerm < term , the client removes and retries all requests

in opList , i.e., fires transition Retry at the top of Figure 3(a).

It updates listTerm to term , i.e., a new token in place Leader

Term, as a newer leader emerges. Moreover, it appends (index ,

term , o) to opList for future retries, i.e., new tokens in

place Weakly Accepted Requests in Figure 3(a). A changed

term indicates a leader failure and previous WEAK ACCEPT

requests may not be finished, i.e., the client retries.

Otherwise, listTerm = term , the client appends (index ,

term , o) to opList for future retries, and transition Retry is

not fired. Since term is monotonically increasing, it is not

possible for a client to detect a term less than listTerm .

2) Case of STRONG ACCEPT: If (STRONG ACCEPT,

index , term) is returned in Section III-B2, and listTerm <
term , the client removes and retries all requests in opList ,

i.e., firing transition Retry in Figure 3(a), and then updates

listTerm to term . The reason is the same as in Section III-C1.

Otherwise, the client removes all elements in opList that

have an index no larger than index . Log continuity assures that

they are also STRONG ACCEPT now, i.e., no need to retry

(remove tokens from place Weakly Accepted Requests). Raft

ensures log continuity and commits entries in order. Within the

same term, STRONG ACCEPT means that the current request

and all the previous WEAK ACCEPT requests are committed.

Therefore, they can be safely removed from the list.

IV. PERSISTENCE

Persistence is satisfied when a request is never lost after

entering the system. Raft provides persistence for committed

entries by two assumptions: the state machine is durable; the

log storage is durable, and each log entry is persisted. NB-

Raft preserves the assumptions so that any strongly accepted

entries and committed entries are durable.

Fig. 13. Entry loss when the old leader fails, and the new leader is elected.

If the leader fails after sending a request from the leader

to followers, similar to the original Raft, the persistence of

the request is indeterminate. If the new leader receives the

request before it is elected and commits the request in its

term, the request is persistent. Otherwise, the request will be

lost permanently. The loss is thus affected follower timeout.

For example, in Figure 13(a), Node1 (the old leader) fails

after sending two entries (E1 and E2). Node2 starts the

follower timeout as soon as the old leader fails. During the

timeout, Node2 receives E2. It is blocked because E1 does not

arrive. When the timeout ends, an election starts and Node2 is

elected. Then, Node2 receives E1 but discards it together with

E2, since they are from an old leader. If the timeout is longer

(covering “Receive E1”), then E1 and E2 can be received and

appended before Node2 is elected. As a result, no entry is

lost. Likewise, decreasing the request size could also make

E1 received before the election, because they take less time

to transmit. In this case, entry loss is eliminated.

However, in Figure 13(b), as blocking is reduced by NB-

Raft, Node1 sends E3 before it fails. E2 and E3 will be

discarded after the election because they are only weakly ac-

cepted and E1 is discarded for a smaller term. As a result, one

more entry is lost compared with Figure 13(a). Nevertheless,

by increasing follower timeout and decreasing the request size,

the entry loss of NB-Raft could be reduced as well.

In the worst case, if there are Ncli client connections when

clients and the leader fail, up to Ncli requests will be lost in

Raft. This is because each connection is blocked till the current

request is committed. As a sliding window of capacity w is

introduced, the potential loss is enlarged to Ncli + w . Again,

when w = 0, NB-Raft becomes Raft.

In the IoT applications, such a trade-off between through-

put and persistence is worthwhile. (1) For the massive data

streaming from sensors, the data loss owing to a low system

throughput would be astonishing compared to the previously

mentioned data loss introduced by leader failure. According

to the experiments in Section V, about 30% more data can

be saved by our NB-Raft compared to the original Raft, in

contrast to 0.00003% data loss owing to a follower timeout

of 0.5s, very unlikely in practice. (2) The data loss in the IoT

1 4 16 64 25
6

51
2

76
8

10
24

#Clients

0
10
20
30
40
50
60

Th
ro
ug

hp
ut
 (K

op
/s
)

(a)

1 4 16 64 25
6

51
2

76
8

10
24

#Clients

100

101

102

La
te
nc

y
(m

s)

(b)

Raft
NB-Raft

CRaft
NB-Raft + CRaft

ECRaft
KRaft

VGRaft

Fig. 14. Varying concurrency with 4KB requests

scenarios is very prevalent. According to our preliminary study

[17], the missing rates are as high as 28.2% and 24.9% in the

real applications of Turbine and Vehicle, respectively. Again,

such high missing rates in the data sources make 0.00003%

data loss by NB-Raft and 0.000015% by Raft negligible. (3)

The missing data can be accurately imputed. For instance, the

accuracy of missing data imputation may reach 0.91 by our

proposals in the preliminary study [18], [19].

V. EVALUATION

In the experiments, we compare our NB-Raft with the

original Raft [8] and show how it cooperates with CRaft [20]

for even higher throughput. In short, the results demonstrate

that the throughput could be improved by about 30% using

our NB-Raft compared to the original Raft. It is a considerable

amount of data saved in contrast to 0.00003% data loss owing

to a follower timeout of 0.5s, which is unlikely in practice.

A. Experimental Settings

We implement the basic Raft protocol and NB-Raft in Java

as the consensus module of Apache IoTDB. In addition, we

also integrate CRaft [20], which fragments entries to reduce

bandwidth usage at the cost of disabling follower read. The

reasons why we choose CRaft in comparison are two-fold:

(1) it also focuses on improving protocol throughput instead

of availability; (2) the method is orthogonal to ours, making

them work together for even higher throughput. For NB-Raft,

we set the window size to 10000 by default. Indeed, it is never

filled up in the experiments.

The system is deployed in 10 servers, each with 4 Intel

Xeon Platinum 8260 CPUs, 756 GB memory, CentOS and

10Gb/s network. Note that in practice, the typical replication

factor is three, i.e., three replicas in a Raft group. Thereby,

in the default configuration, there is a 3-node replication

group and another machine as the client. The client sends

4 KB requests with 1024 threads and measures the system

throughput. The number of dispatchers is the same as clients

to avoid long queues.

In addition to the local network deployment, we also intro-

duce a cloud deployment in Alibaba Cloud in Section V-H.

2 3 4 5 6 7 8 9
#Replicas

10
20
30
40
50
60

Th
ro
ug
hp
ut

 (K
op

/s
)

(a)

2 3 4 5 6 7 8 9
#Replicas

101

La
te
nc
y
(m

s)

(b)

Raft
NB-Raft

CRaft
NB-Raft + CRaft

ECRaft
KRaft

VGRaft

Fig. 15. Varying replication number

B. Concurrency

The experiment varies the number of concurrent clients,

from 1 to 1024. It determines the maximum degree of disorder

and thus impacts the blocking time twait(F) in Figure 3.

In Figure 14, when there is only one client, low parallelism

limits the throughput. By adding clients, the throughput first

increases in Figure 14 (a). Additional clients are served by

different CPU cores in parallel, and network contention is

insignificant, making entry disorder not problematic. However,

when the number of clients grows further, clients contend for

resources. The throughput of NB-Raft is improved by about

30% compared to Raft, e.g., at 1024 clients. When integrated

with CRaft, the improvement is even more significant.

It is not surprising that the throughput of all the methods

decreases by adding even more clients, e.g., greater than 512,

owing to resource competition in higher concurrency. That is,

the throughput cannot be further improved by adding more

clients. NB-Raft drops a bit slower, since it can successfully

reduce the waiting time among highly concurrent requests, a

favored scenario of the proposal. Thereby, the improvement

compared to Raft is consistently observed.

C. Replication Number

Recall that by adding more transitions Send Log between

Figure 3(b) and (c), more replicas introduce heavier traffic

to the network. And two consecutive requests to the same

follower may be interleaved with more requests to other

followers, causing higher waiting time and lower throughput.

When there are two replicas, once the follower is waiting for

previous entries, the leader cannot proceed as there are no

other followers.

As shown in Figure 15(a), the largest gap between NB-

Raft and Raft occurs when #Replica is two. The two-node

configuration is slowed by out-of-order entries most signifi-

cantly. Adding more replicas provides the opportunity to find

a follower where entries are in-order. Thereby, the leader is

less likely to be blocked by out-of-order entries. However, this

also results in more network traffic and a lower throughput.

CRaft does not work with only one follower, as entries cannot

be fragmented.

1 2 4 8 16 32 64 12
8

Payload Size (KB)

0
10
20
30
40
50
60

Th
ro
ug
hp
ut
 (K

op
/s
)

(a)

1 2 4 8 16 32 64 12
8

Payload Size (KB)

102

La
te
nc
y
(m

s)

(b)

Raft
NB-Raft

CRaft
NB-Raft + CRaft

ECRaft
KRaft

VGRaft

Fig. 16. Varying payload size

1 4 16 64 25
6

51
2

76
8

10
24

#Clients

1
2
3
4
5
6
7

Th
ro
ug

hp
ut
 (K

op
/s
)

(a)

1 4 16 64 25
6

51
2

76
8

10
24

#Clients

100

101

102

103

La
te
nc

y
(m

s)

(b)

Raft
NB-Raft

CRaft
NB-Raft + CRaft

ECRaft
KRaft

VGRaft

Fig. 17. Varying concurrency with 128KB requests

D. Payload Size

By increasing the expected time and its variance of transi-

tion Send Log in Figures 3(b) and (c), we can simulate a larger

payload size. A larger payload size will intensify network

congestion, and routers may be forced to choose different

routing paths for consequent requests to avoid congestion. As

a result, there will be more out-of-order arrivals.

Figure 16(a) presents throughput measured by requests per

second. In Raft, when the payload size is small (1KB), there

will be tremendous requests in the network, Entry disorders

become severe, which significantly increases the follower

process time. As the payload size increases to 4KB, the

transmission time can still be shadowed by round trip time

and does not become a bottleneck.

As shown in Figure 16, when the clients send larger size

requests, e.g., larger than 32KB, CRaft can split it and thus

may show higher throughput than NB-Raft. In contrast, by

further splitting small requests, the benefit is limited but

increasing the processing overhead, i.e., worse than NB-Raft.

To observe the performance impact of more/less threads in a

larger request size, Figure 17 varies concurrency with 128KB

requests. When the concurrency is not high, e.g., less than 256

clients, the improvement by CRaft is more significant than

Figure 14 of 4KB requests. Nevertheless, NB-Raft still shows

clearly better throughput in higher concurrency with more than

512 clients, by reducing the waiting time among concurrent

requests. Again, NB-Raft + CRaft has the best performance

in all the settings.

1 4 16 64 25
6

51
2

76
8

10
24

#Dispatcher

0
10
20
30
40
50
60
70

Th
ro
ug
hp
ut
 (K

op
/s
)

(a)

1 4 16 64 25
6

51
2

76
8

10
24

#Dispatcher

101

102

La
te
nc

y
(m

s)

(b)

Raft
NB-Raft

CRaft
NB-Raft + CRaft

ECRaft
KRaft

VGRaft

Fig. 18. Varying dispatcher number

E. Dispatcher Number

Figure 18 shows the results of varying the number of

dispatchers. A small number of dispatchers, e.g., less than 16,

indeed causes the requests to queue up, i.e., tokens in Queue

To Follower in Figure 3 will accumulate. The corresponding

latency (process time) is thus high and the throughput is

low in Figure 18. By further increasing the dispatchers, i.e.,

higher concurrency, similar to Figures 14 and 17, the latency

increases again. Since more dispatchers and clients increase

the concurrency, their trends of throughput are generally

similar, i.e., NB-Raft performs better in higher concurrency

with more dispatchers and clients.

F. Latency

We also compared the latency of protocols in Figures 14-18.

In general, higher throughput leads to lower latency, when the

concurrency is fixed, e.g., in Figures 15 and 16. By varying

concurrency in Figures 14, 17 and 18, if the concurrency is

small, the system maximum parallelism is not reached. Both

throughput and latency are low. With the increase of con-

currency, the latency becomes higher. The throughput drops

after reaching the maximum, owing to resource contention.

Nevertheless, our NB-Raft shows lower latency and higher

throughput, by reducing the waiting time of highly concurrent

requests, e.g., with 1024 clients or dispatchers.

G. Persistence Loss

As discussed in Section IV, follower timeout affects the

persistence loss when a leader fails. To simulate failures, after

30s ingestion, we kill the leader and clients simultaneously.

After a new leader is elected, we compare the number of

entries of the new leader with the number of requests that

clients have issued.

We first perform an experiment on varying the time for

terminating the leader and clients to simulate failures, in

Figure 19(a). When the system just starts and runs for a very

short period, only a small number of requests are issued and

processed in concurrently. If a failure occurs, the data loss is

not large either. After about 30s, the system becomes stable.

The concurrency reaches its maximum, and the data loss does

not increase further. Thereby, to simulate failures, we kill the

leader and clients simultaneously after 30s ingestion, in the

following experiments.

10 20 30 60 90 12
0

15
0

18
0

Run Time Before Failure (s)

0
1
2
3
4
5
6

Da
ta
 lo
ss
 (%

)

×10−5

(a)

0.5 1.0 1.5 2.0 2.5
Follower Timeout (s)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Da
ta
 lo

ss
 (%

)

×10−5

(b)

Raf)/CRaf)/ECRaf)/VGRaf)/KRaf) NB-Raft / NB-Raft + CRaft

Fig. 19. Data loss in failure under various settings

0
10
20
30
40
50

Th
ro

ug
hp

ut
 (k

R
eq

/s
)

Non-Geo-Distributed
(a)

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Th
ro

ug
hp

ut
 (k

R
eq

/s
)

Geo-Distributed

 Raft CRaft ECRaft VGRaft
 NB-Raft ECRaft + NB-Raft KRaft

(b)

Fig. 20. Non-Geo-Distributed vs. Geo-Distributed in Alibaba Cloud

In Figure 19(b), as the follower timeout increases, there is

a higher probability that the newly elected leader will receive

more entries, and the entry loss is reduced. Even the follower

timeout is noticeably short (0.5s), the persistence loss is always

kept under 0.00003%. For sensors working around 1Hz, the

loss is extremely minor compared with the entire time-series

and can be easily imputed [19]. Such a short follower timeout

is hardly used in real applications, because it causes frequent

elections and reduces the system availability.

H. Cloud Deployment

The system, Apache IoTDB with NB-Raft, has also been

deployed in Alibaba Cloud, providing IoT data services. We

evaluate the service in a 5-node cluster and change the

distribution of nodes to examine how the proposed proto-

col responds to geo-distribution. Each node is an ecs.s6-

c1m2.2xlarge instance. When enabling geo-distribution, the

nodes are in Beijing, Guangzhou, Shanghai, Hangzhou, and

Chengdu, respectively; otherwise, they are all in Beijing. The

experiments use 64 client threads and 1KB size (censored data

from real applications) since cloud servers are less powerful.

The result is presented in Figure 20. NB-Raft is at an

advantage in both configurations. But CRaft is no longer

effective as the cloud servers have limited CPU resources, and

computing parity introduces a new bottleneck. Moreover, geo-

distribution makes latency more vital than bandwidth, and thus

saving bandwidth by CRaft does not benefit much.

I. Comparison with Existing Methods

In this section, we compare with the state-of-the-art methods

in the experiments, including (I) KRaft [21], (II) VGRaft [22]

and (III) ECRaft [23], e.g., in Figures 14, 15, 16, etc.

0
5

10
15
20

Th
ro

ug
hp

ut
 (k

R
eq

/s
)

1 Failing Replica
(a)

0
5

10
15
20
25

Th
ro

ug
hp

ut
 (k

R
eq

/s
)

 Raft CRaft ECRaft VGRaft
 NB-Raft NB-Raft + CRaft KRaft

2 Failing Replicas
(b)

Fig. 21. Varying the number of failing replicas in a 5-replica setting

KRaft [21] chooses a subset of nodes (K-Bucket) for the

leader to replicate logs directly and let K-Bucket nodes relay

logs to other nodes. In this way, the leader’s workload can be

reduced by sending less messages directly. However, it is less

likely for KRaft to find the fastest quorum, leading to higher

latency and lower throughput, e.g., as illustrated in Figures 14-

16. Note that when there are only two replicas in Figure 15,

KRaft also has only one follower to replicate without further

relay, and thus shows similar results as the original Raft.

VGRaft [22] proposes to resist byzantine fault in Raft, by

hash and digital signature verification, which is computation-

ally expensive. Also, VGRaft selects a new verification group

for each consensus process, introducing heavy overhead. It

is not surprising that such heavy overhead results in higher

latency and lower throughput. Therefore, VGRaft performs the

worst e.g., in Figures 14-16.

ECRaft [23] improves throughput of CRaft after a failure.

When no failure occurs, e.g., in Figures 14-16, ECRaft shows

almost the same results as CRaft. Thereby, we compare the

methods with failing nodes in a 5-replica setting in Figure 21.

As shown, ECRaft improves the throughput slightly compared

to CRaft. Note that having failing nodes is similar to reducing

the replica number in Figure 15, where the throughput of Raft

may increase, as also presented in [23]. Consequently, our

NB-Raft by further reducing the waiting time of concurrent

requests shows better performance than ECRaft.

J. Comparison and Complement to CRaft

It is notable that CRaft is better than NB-Raft in certain

cases when compared separately, while the combination of

NB-Raft and CRaft is the best. The reason is that NB-Raft

targets on reducing the waiting time of concurrent requests,

while CRaft splits large requests, improving the performance

in two different directions.

Figure 22 summarizes the cases where different methods

may perform better. As shown, NB-Raft handles well the

highly concurrent requests by reducing the waiting time, while

CRaft prefers low concurrency in Figure 14. Moreover, CRaft

can split large requests and show better throughput than NB-

Raft when the payload size is large in Figure 16. For the

same reason, by splitting into more replicas, e.g., 9, CRaft

may exceed NB-Raft in Figure 15. Nevertheless, NB-Raft +

CRaft achieves the best throughput in various conditions.

Fig. 22. Summary of throughput in various conditions

K. Preferred Conditions of NB-Raft

Table II summarizes the conditions and IoT deployments

where one would expect NB-Raft to perform. In short, NB-

Raft shows better throughput in high concurrency, less replicas

and small requests, whereas CRaft prefers low concurrency,

more replicas and large requests. Moreover, NB-Raft performs

with limited CPU resources and supports follower read, while

CRaft suffers lower data loss in failure. In this sense, NB-Raft

is applicable for higher concurrency with tolerance to a bit

more data loss in failure. In addition, NB-Raft + CRaft could

be applied for even higher throughput in the IoT deployments

with more CPU resources and no need on follower read.

Specifically, the major idea of NB-Raft is to reduce the

waiting time of concurrent requests owing to out-of-order

arrivals. The higher the concurrency is, the more the out-

of-order arrivals as well as the waiting time would be. The

improvement by NB-Raft, compared to Raft or CRaft, is thus

more significant, e.g., in higher concurrency of more clients in

Figures 14 and 17 or more dispatchers in Figure 18. Thereby,

as summarized in Table II, NB-Raft favors high concurrency,

prevalent in IoT scenarios with a large number of sensors.

NB-Raft chooses to achieve higher throughput by more

potential data loss in failure. The trade-off is worthwhile

in the IoT scenarios as discussed in Section IV. Moreover,

IoT applications like real-time monitoring also incur heavy

query loads. Unfortunately, follower read is not supported

in CRaft, which seriously limits its query capacity, potential

optimization [24], and thus application scope in the IoT

scenarios, again summarized in Table II.

NB-Raft + CRaft outperforms NB-Raft as well as CRaft

in different settings, since they improve the performance in

two different directions. First, recall that NB-Raft outperforms

CRaft in high concurrency by reducing the waiting time of

concurrent requests. Thereby, NB-Raft + CRaft outperforms

CRaft more clearly with more clients in Figures 14 and 17

or more dispatchers in Figure 18. On the other hand, the

improvement of NB-Raft + CRaft compared to NB-Raft is

more significant in Figure 17 of larger payload size (128KB)

than Figure 14 of 4KB requests, since CRaft can split large

requests. In this way, NB-Raft + CRaft achieves the best

throughput in various conditions.

To verify that CRaft needs heavy computation of parity frag-

0
5

10
15
20
25
30

Th
ro

ug
hp

ut
 (k

R
eq

/s
)

Enable CPU-Turbo
(a)

0
5

10
15
20
25

Th
ro

ug
hp

ut
 (k

R
eq

/s
)

 Raft CRaft ECRaft VGRaft
 NB-Raft NB-Raft + CRaft KRaft

Disable CPU-Turbo
(b)

Fig. 23. Throughput under different CPU conditions.

TABLE II
PREFERRED CONDITIONS

Protocol Concurrency Replica
number

Request
size

Persistence Follower
read

CPU
usage

Raft Low Few Small High Yes Low

NB-Raft High Few Small Low Yes Low

CRaft Low Many Large High No High

NB-Raft
+ CRaft

High Many Large Low No High

ECRaft Low Many Large High No High

KRaft Low Few Small High Yes Low

VGRaft Low Few Small High Yes High

ments, we conduct an experiment of changing CPU resources

via disabling CPU-Turbo. As shown in Figure 23, reducing

CPU resources (disabling CPU-Turbo) lowers the throughput

of all protocols, while CRaft suffers more from the limited

CPU resources. We also summarize this condition in Table II.

L. Summary

In short, NB-Raft shows better throughput in high concur-

rency, since it reduces the waiting time of concurrent requests.

CRaft handles large request size by splitting it, but with higher

CPU cost and no follower read. Nevertheless, the combination

of NB-Raft and CRaft achieves the best throughput in most

experiments, with various request size and concurrency.

VI. RELATED WORK

A. Raft Analysis

In this study, we use Petri Net [11] to demonstrate log

replication in Raft and identify the throughput bottleneck. [25]

can be used to estimate model parameters. Other methods have

been proposed to explore different properties of the protocol.

To study the response time and availability, Raft is modeled

with Stochastic Activity Networks [26] in the context of

an SDN controller cluster [14]. We concern more about the

throughput instead of the single request response time, as for

streaming IoT data, ingestion is often batched and concurrent.

Most others focus on leader election and follower timeout.

Markov chain is used to model the state transitions during

leader election and follower timeouts [27] to investigate how

network packet loss increases elections. Leadership uniformity

[28] uses common measurements like Std, Var, MAE, and

MSE to quantify how leadership distributes in a cluster with

different follower timeouts. In addition, network topology has

a significant impact on the protocol [29] concerning election

time. In this paper, we also focus on the log replication instead

of the fail-over and election process.

B. Raft Optimization

While NB-Raft focuses on blocking, other work optimizes

Raft from different perspectives and is orthogonal to NB-

Raft. In addition to CRaft [20], KRaft [21], VGRaft [22] and

ECRaft [23] compared in experiments, Pirogue [30] boosts

the performance of Raft by reducing the number of followers

needed to commit an entry and introducing a stricter election

rule to ensure safety. It reduces liveness, making a cluster more

vulnerable to rack or data center failures. Also, less followers

to commit means less followers available for read.

C. Other Consensus Protocol

Besides Raft, another important class of consensus protocol

is the Paxos family [1], [2], [3], [4], [5], [6], [7], [31], [32]. Our

proposed NB-Raft can be viewed as an advantageous position

between Paxos and Raft. Paxos allows arbitrary holes in the

instance sequence and Raft allows no holes, while NB-Raft

allows holes in the suffix using a sliding window. It enables

parallel entries processing and thus increases throughput.

To remove heavy synchronization point introduced by in-

dexing, E-Paxos [2] and SD-Paxos [4] build multiple Paxos

groups to increase parallelism and determine the order of

instances across groups by either a decentralized graph-based

conflict resolution or a centralized sequencer. These designs

can be applied to Multi-Raft and generate similar variants.

Canopus [33] builds a tree over Raft super-leaves to avoid

the single leader bottleneck. Its underlying Raft implementa-

tion can be replaced by almost any variant, including NB-Raft.

VII. CONCLUSION

In this paper, we first notice the bottleneck of log replication

in Raft, i.e., waiting for others to append and thus blocking

the subsequent requests. In addition to the qualitative analysis,

we propose to model the Raft log replication process by Petri

Net, which enables a quantitative evaluation of the bottleneck.

Upon the analysis, we present Non-Blocking Raft (NB-Raft),

a variant of Raft that introduces a WEAK ACCEPT state to

enable fast replies and unblock subsequent requests as early as

possible. In this way, the parallelism and throughput increase,

essential to the IoT applications with vast sensors constantly

generating data. The proposed NB-Raft is implemented as

the consensus protocol of Apache IoTDB, a commodity time

series database management system, and deployed in Alibaba

Cloud for various applications. Extensive experiments demon-

strate that the throughput is improved by about 30% using our

NB-Raft compared to the original Raft. It is a considerable

amount of data saved in contrast to the 0.00003% data loss

owing to a follower timeout of 0.5s (very unlikely in practice).

Acknowledgement: This work is supported in part by Na-

tional Key Research & Development Plan (2021YFB3300500,

2019YFB1705301, 2019YFB1707001), National Natural Sci-

ence Foundation of China (62072265, 62021002, 62232005),

Beijing National Research Center for Information Science and

Technology (BNR2022RC01011), and Alibaba Group through

Alibaba Innovative Research (AIR) Program. Shaoxu Song

(https://sxsong.github.io/) is the corresponding author.

REFERENCES

[1] L. Lamport, “The part-time parliament,” in Concurrency: the Works of

Leslie Lamport, 2019, pp. 277–317.

[2] I. Moraru, D. G. Andersen, and M. Kaminsky, “There is more consensus
in egalitarian parliaments,” in Proceedings of the Twenty-Fourth ACM

Symposium on Operating Systems Principles, 2013, pp. 358–372.

[3] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and D. R. Ports,
“Just say no to paxos overhead: Replacing consensus with network
ordering,” in 12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 16), 2016, pp. 467–483.

[4] H. Zhao, Q. Zhang, Z. Yang, M. Wu, and Y. Dai, “Sdpaxos: Building
efficient semi-decentralized geo-replicated state machines,” in Proceed-

ings of the ACM Symposium on Cloud Computing, 2018, pp. 68–81.

[5] A. Charapko, A. Ailijiang, and M. Demirbas, “Pigpaxos: Devouring the
communication bottlenecks in distributed consensus,” in Proceedings of

the 2021 International Conference on Management of Data, 2021, pp.
235–247.

[6] L. Lamport, “Fast paxos,” Distributed Computing, vol. 19, no. 2, pp.
79–103, 2006.

[7] L. Lamport and M. Massa, “Cheap paxos,” in International Conference

on Dependable Systems and Networks, 2004. IEEE, 2004, pp. 307–314.

[8] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in 2014 USENIX Annual Technical Conference (USENIX

ATC 14), 2014, pp. 305–319.

[9] C. Wang, X. Huang, J. Qiao, T. Jiang, L. Rui, J. Zhang, R. Kang,
J. Feinauer, K. A. McGrail, P. Wang et al., “Apache iotdb: time-series
database for internet of things,” Proceedings of the VLDB Endowment,
vol. 13, no. 12, pp. 2901–2904, 2020.

[10] C. Adams, L. Alonso, B. Atkin, J. Banning, S. Bhola, R. Buskens,
M. Chen, X. Chen, Y. Chung, Q. Jia et al., “Monarch: Google’s
planet-scale in-memory time series database,” Proceedings of the VLDB

Endowment, vol. 13, no. 12, pp. 3181–3194, 2020.

[11] W. Reisig, A primer in Petri net design. Springer Science & Business
Media, 2012.

[12] “https://iotdb.apache.org.”

[13] “https://github.com/apache/iotdb/tree/research/nb-raft.”

[14] E. Sakic and W. Kellerer, “Response time and availability study of
raft consensus in distributed sdn control plane,” IEEE Transactions on

Network and Service Management, vol. 15, no. 1, pp. 304–318, 2017.

[15] M. Poess, R. Nambiar, K. Kulkarni, C. Narasimhadevara, T. Rabl,
and H.-A. Jacobsen, “Analysis of tpcx-iot: The first industry standard
benchmark for iot gateway systems,” in 2018 IEEE 34th International

Conference on Data Engineering (ICDE). IEEE, 2018, pp. 1519–1530.

[16] “https://ratis.apache.org/.”

[17] C. Fang, S. Song, and Y. Mei, “On repairing timestamps for regular
interval time series,” Proc. VLDB Endow., vol. 15, no. 9, 2022.

[18] S. Song and Y. Sun, “Imputing various incomplete attributes via
distance likelihood maximization,” in KDD ’20: The 26th ACM

SIGKDD Conference on Knowledge Discovery and Data Mining,

Virtual Event, CA, USA, August 23-27, 2020, R. Gupta, Y. Liu,
J. Tang, and B. A. Prakash, Eds. ACM, 2020, pp. 535–545. [Online].
Available: https://doi.org/10.1145/3394486.3403096

[19] A. Zhang, S. Song, Y. Sun, and J. Wang, “Learning individual
models for imputation,” in 35th IEEE International Conference

on Data Engineering, ICDE 2019, Macao, China, April 8-

11, 2019. IEEE, 2019, pp. 160–171. [Online]. Available:
https://doi.org/10.1109/ICDE.2019.00023

[20] Z. Wang, T. Li, H. Wang, A. Shao, Y. Bai, S. Cai, Z. Xu, and D. Wang,
“Craft: An erasure-coding-supported version of raft for reducing storage
cost and network cost,” in 18th USENIX Conference on File and Storage

Technologies (FAST 20), 2020, pp. 297–308.

[21] R. Wang, L. Zhang, Q. Xu, and H. Zhou, “K-bucket based raft-like
consensus algorithm for permissioned blockchain,” in 2019 IEEE 25th

International Conference on Parallel and Distributed Systems (ICPADS).
IEEE, 2019, pp. 996–999.

[22] S. Zhou and B. Ying, “Vg-raft: An improved byzantine fault tolerant
algorithm based on raft algorithm,” in 2021 IEEE 21st International

Conference on Communication Technology (ICCT). IEEE, 2021, pp.
882–886.

[23] M. Xu, Y. Zhou, Y. Y. Qiao, K. Xu, Y. Wang, and J. Yang, “Ecraft: A
raft based consensus protocol for highly available and reliable erasure-
coded storage systems,” in 2021 IEEE 27th International Conference on

Parallel and Distributed Systems (ICPADS). IEEE, 2021, pp. 707–714.

[24] H. Lan, Z. Bao, and Y. Peng, “A survey on advancing the DBMS query
optimizer: Cardinality estimation, cost model, and plan enumeration,”
Data Sci. Eng., vol. 6, no. 1, pp. 86–101, 2021. [Online]. Available:
https://doi.org/10.1007/s41019-020-00149-7

[25] J. Yang, J. Wang, Y. Zhang, W. Cheng, and L. Li, “A heuristic sampling
method for maintaining the probability distribution,” J. Comput. Sci.

Technol., vol. 36, no. 4, pp. 896–909, 2021. [Online]. Available:
https://doi.org/10.1007/s11390-020-0065-6

[26] W. H. Sanders and J. F. Meyer, “Stochastic activity networks: formal
definitions and concepts,” in School organized by the European Educa-

tional Forum. Springer, 2000, pp. 315–343.
[27] D. Huang, X. Ma, and S. Zhang, “Performance analysis of the raft

consensus algorithm for private blockchains,” IEEE Transactions on

Systems, Man, and Cybernetics: Systems, vol. 50, no. 1, pp. 172–181,
2019.

[28] E. Iosif, K. Christodoulou, M. Touloupou, and A. Inglezakis, “Lead-
ership uniformity in raft consensus algorithm,” in European, Mediter-

ranean, and Middle Eastern Conference on Information Systems.
Springer, 2020, pp. 125–136.

[29] H. Howard, “Arc: analysis of raft consensus,” University of Cambridge,
Computer Laboratory, Tech. Rep., 2014.

[30] J.-F. Pâris and D. D. Long, “Pirogue, a lighter dynamic version of the
raft distributed consensus algorithm,” in 2015 IEEE 34th International

Performance Computing and Communications Conference (IPCCC).
IEEE, 2015, pp. 1–8.

[31] L. Lamport et al., “Paxos made simple,” ACM Sigact News, vol. 32,
no. 4, pp. 18–25, 2001.

[32] D. R. Ports, J. Li, V. Liu, N. K. Sharma, and A. Krishnamurthy,
“Designing distributed systems using approximate synchrony in data
center networks,” in 12th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 15), 2015, pp. 43–57.
[33] S. Rizvi, B. Wong, and S. Keshav, “Canopus: A scalable and massively

parallel consensus protocol,” in Proceedings of the 13th International

Conference on emerging Networking EXperiments and Technologies,
2017, pp. 426–438.

https://iotdb.apache.org
https://github.com/apache/iotdb/tree/research/nb-raft
https://ratis.apache.org/
https://doi.org/10.1145/3394486.3403096
https://doi.org/10.1109/ICDE.2019.00023
https://doi.org/10.1007/s41019-020-00149-7
https://doi.org/10.1007/s11390-020-0065-6

	Introduction
	Motivation
	Intuition
	Contribution

	Log Replication in Raft
	Replication Process
	Step 1 Sending Request
	Step 2 Indexing Entry
	Step 3 Replicating Entry
	Step 4 Committing Entry
	Observation in Other System
	Summary of Observations

	Non-Blocking Raft
	Follower Modification
	New entry before the window
	New entry falling into the window
	New entry after the window

	Leader Modification
	Case of LOG_MISMATCH
	Case of WEAK_ACCEPT
	Case of STRONG_ACCEPT

	Client Modification
	Case of WEAK_ACCEPT
	Case of STRONG_ACCEPT

	Persistence
	Evaluation
	Experimental Settings
	Concurrency
	Replication Number
	Payload Size
	Dispatcher Number
	Latency
	Persistence Loss
	Cloud Deployment
	Comparison with Existing Methods
	Comparison and Complement to CRaft
	Preferred Conditions of NB-Raft
	Summary

	Related Work
	Raft Analysis
	Raft Optimization
	Other Consensus Protocol

	Conclusion
	References

