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Abstract—Matrix factorization (MF) is widely adopted to learn
from data, e.g., for data representation and recommendation as
well as many database applications such as data imputation and
repairing. While it works for numerical values in general, for
spatial data, without considering the locality w.r.t. the spatial
information, the learned features could vary in spatial distribu-
tion. Even if smoothness in terms of close neighbors could be
considered in the objective function to leverage the spatial infor-
mation, the learned features are still uncontrolled in locations,
and thus do not help much in learning from the data that are
geographically distant. Therefore, in this study, we propose to
introduce landmarks to control the locations of learned features
and make them geographically close to the data observations. The
proposed SMFL, Spatial Matrix Factorization with Landmarks,
benefits from landmarks in more accurate learned features, along
with better interpretability, and reduced computation cost. Our
major contributions include (1) introducing landmarks to guide
the locations of learned features and enhance the performance
as well as the interpretability of the MF model, (2) proposing
the SMFL method that cooperates landmarks with NMF and
spatial regularization, for better utilizing the spatial information,
and (3) devising updating rules with landmarks and proving
the convergence for the proposed method. Experiments on real-
world datasets highlight the advance of our proposal in various
applications.

I. INTRODUCTION

Matrix Factorization (MF) shows a good performance in
learning from numerical data for various applications [48],
[27]. It decomposes the original data matrix X into the
product of two low-rank matrices (V,U) and then recovers
the original matrix from the product. One of the decomposed
matrices V records the latent features learned. The other U

serves as a coefficient matrix for reconstructing the original
matrix by linearly combining the features in V. (See details
in Section II.)

A. Motivation

For spatial data, typical numerical values, related to ob-
jects that occupy space [22], the MF-based method naturally
provides good performance. In particular, we may use the
first 2 columns of the original matrix X to express the
spatial information (such as latitude and longitude illustrated
in Figure 1). Interestingly, following the principle of matrix
multiplication, the first 2 columns in the feature matrix V

could also be interpreted as the latent spatial features, i.e.,
latitude and longitude of the learned latent features.

Fig. 1: Locations of observations and features learned over
a real-world dataset. Points in blue colors denote the fuel
consumption rates of observations. Purple and orange points
are the spatial features learned by NMF [41] and CAMF
[42], respectively, which are all distant from observations
(some extremely distant points are not plotted for better
visualization). We propose to employ landmarks in red points
to control the locations of learned features and make them
geographically close to data observations.

Example 1 (Motivation). Figure 1 visualizes an example
of the fuel consumption rate data collected by our partner
company, a heavy machine maintenance service provider. One
of its objectives is to reduce the fuel consumption rate of the
maintained devices. The data are collected by vehicle sensors
installed by the company. They could be incomplete due to
broken sensors, hardware failures, unsynchronized collection
frequencies, etc. The incompleteness may prevent downstream
applications from performing, e.g., optimize the logistics route
for more efficient fuel consumption rate. In general, the fuel
consumption rates in the east region are higher (dark blue) than
those in the west and northeast, revealing that the east region
in lower altitudes with sufficient oxygen leads to a better fuel
consumption rate. In this sense, as an important application
of MF methods, the imputation of missing data could utilize
such relationships on the spatial information.

The locations of learned features (i.e., the first two columns



TABLE I: An example of the input data

Latitude Longitude Speed Torque Fuel Consumption Rate
45.314585 130.939853 775.750 381.0 7.40
45.315147 130.939788 698.500 322.0 4.40
45.315058 130.939952 700.750 302.0 4.80
45.315058 130.939950 701.125 276.0 4.55

... ... ... ... ...

in V as aforesaid) by the existing methods NMF [41] in purple
and CAMF [42] in orange are also illustrated in Figure 1.
Unfortunately, without considering the locality in spatial data,
the features learned by MF could vary in spatial distribution.
As shown, they could be very distant from the (blue) data
observations, which might not help much in imputing missing
values. Even if smoothness in terms of close neighbors is
considered in the objective function [40], [9], partially lever-
aging the spatial information, the learned features are still
uncontrolled in locations and do not help much in imputing
the missing data that are geographically distant. For instance,
the purple point learned by NMF at the bottom (in the ocean)
would have limited contribution in imputing the distant blue
points at the top (on the continent).

Table I shows the example tabular data of Figure 1. The
first two columns (latitude and Longitude) are the spatial
information, i.e., SI = [SI1,SI2] and L = 2. The last three
columns (Speed, Torque, and Fuel Consumption Rate) are the
additional attributes in X. In such a scenario, each tuple in X

denotes the engine speed, torque and fuel consumption rate of
the vehicle at the specific location. As shown in Figure 1, the
fuel consumption rates are affected by the terrains in different
locations, as well as engine speed and torque. !

B. Intuition

In this study, we propose the Spatial Matrix Factorization
with Landmarks (SMFL) for spatial data. Intuitively, rather
than arbitrarily distributed features, we introduce landmarks
to control the locations of learned features. For instance, red
points in Figure 1 are the landmarks in feature learning, which
are forced to be close to data observations, thus contributing
to more accurate learning.

The benefits of applying the landmarks are in three aspects.
(i) More accurate learned features and applications. Since

the learned features on landmarks are much closer to data ob-
servations, analogous to the rationale of the nearest neighbor-
based methods [18], it contributes to more accurate learned
features, thus benefiting downstream applications, such as data
imputation and data repair, as illustrated in Section IV-B.

(ii) Better interpretability. While the features distant from
observations learned by the existing CAMF and NMF are
difficult to explain, as presented in Figure 1, our learned
features on landmarks are more interpretable. Indeed, as
reported in Figure 5 in Section IV-C, it could also explain why
some (carefully curated) landmarks show better imputation
performance than others.

(iii) Reduced computation cost. It is worth noting that
existing MF methods without fixing the locations of features

TABLE II: Notations

Symbol Description

X,U,V observed matrix, decomposed matrices
xi, ui, vi i-th row of X, U, V

xij , uij , vij j-th element of xi, ui, vi

Ω the set of the observed entries in X

Ψ the set of the unobserved entries in X

Φ the set of the landmark entries in V

O objective function
Tr(·) the trace of a matrix

NNp(xi) p-nearest neighbors of xi

will update all the columns of V, including the columns of
spatial information (e.g., latitude and longitude in Figure 1).
In contrast, by fixing the landmarks, the columns of spatial
information in V have already been given and have no need
to be updated in each iteration, i.e., improved time cost as
evaluated in Section IV-E.

There are many downstream applications of our proposal.
(1) The application of optimizing the logistics route for more
efficient fuel consumption rate is performed as follows. The
data with spatial locations in the fuel consumption map can
be utilized to simulate the accumulated fuel consumption of
a given route, as shown Figure 1. Vehicles may select the
logistics route with less fuel consumption, thus saving energy.
Incomplete data obviously obstruct the fuel consumption sim-
ulation, while more accurate imputation helps in selecting the
energy-efficient logistics route. (2) Another application is data
clustering with missing values. The learned coefficient matrix
U gives each tuple a weight of belonging to each cluster.
Therefore, matrix factorization-based methods can first impute
the missing values and then perform clustering [37]. In such an
application, the spatial information helps not only in imputing
missing values but also clustering.

C. Contribution

The major contributions of our work are summarized as
follows.

(1) We introduce landmarks to guide the locations of
learned features and enhance the performance as well as the
interpretability of the MF model.

(2) We propose the SMFL method that cooperates land-
marks with NMF and spatial regularization, for better utilizing
the spatial information.

(3) We provide a updating strategy with landmarks for the
proposed algorithm, and remarkably, prove the convergence of
the strategy.

(4) Comprehensive experiments are conducted over different
datasets and applications including data imputation and data
repair. The results demonstrate that our proposed SMFL out-
performs the state-of-the-art methods. Notably, we show that
the proposed landmarks indeed contribute to higher accuracy,
better interpretability and lower time cost.

The code and data of this paper are available at [1].



II. PRELIMINARIES

In this section, we first introduce some notations of our
problem, the NMF algorithm and spatial regularization. We
then define the Spatial Matrix Factorization (SMF) problem
(without landmarks) by combining the NMF algorithm and
spatial regularization for spatial data. Table II lists some
frequently used notations.

A. Notations

We will use bold upper-case letters to refer to matrices, bold
lower-case letters to refer to vectors, and regular font lower-
case letters to refer to entries in the matrix. For instance, X is
a matrix, xi is the i-th row of X and xij is the j-th element
of xi.

Let X ∈ RN×M of N examples and M features be
the target matrix, which is only partially observed. Due to
the applications such as imputation and repair may have
unobserved entries, we use Ω to denote the set of the observed
entries in X, and use Ψ to denote the set of the unobserved
entries in X. A mapping function RΩ : RN×M → RN×M

is thus defined, which serves as a mask function to filter the
observed entries.

[RΩ(X)]ij =

{

xij , if (i, j) ∈ Ω
0, otherwise

In this study, we focus on the spatial data, i.e., the data
related to objects that occupy space [22]. Without loss of gen-
erality, we use the first L columns of X to denote the spatial
information of the samples, i.e., SI = [SI1,SI2, . . . ,SIL] ∈
RN×L, where SIi is the i-th attribute (column) of the spatial
information. For example, in Figure 1, the spatial information
is provided with latitude and longitude, having L = 2, i.e., the
first two columns of X are latitude and longitude, respectively.

An example diagram is also illustrated in Figure 2, where
grey entries are unobserved corresponding to Ω and white
entries are observed corresponding to Ψ. The first two columns
of X in pink are spatial information of the data. In addition,
we use NNp(xi) to denote the p-nearest neighbors of xi on
spatial information.

B. NMF Algorithm

Nonnegative Matrix Factorization (NMF) algorithm has
been shown effective in learning localized features [25], [30],
i.e., different parts of features related to different locations
[28]. For instance, in face analysis tasks, different parts
of faces, including eyes and noses, can be decomposed as
localized features. Given a data matrix X ∈ RN×M , each row
of X is an observed sample. NMF learns a decomposition of
X to two nonnegative matrices U = [u1,u2, ...,un] ∈ RN×K

and V ∈ RK×M with K < min (N,M). The product of U

and V should approximate the original matrix X. A standard
NMF objective function can be defined as,

ONMF (U,V) = ||X−UV||2F , (1)

s.t. uij , vij ≥ 0 (2)

where ||·||F is the Frobenius norm. The nonnegative constraint
on the decomposed matrices U and V allows only additive
linear combinations of the features [29]. The learned features
are thus localized [25]. V is called a feature matrix, where the
rows record the localized features. U is called a coefficient
matrix, which provides a linear combination of features to
reconstruct the original matrix. Following a similar idea, since
features may be related to spatial locations, spatial data can be
potentially decomposed into localized features (e.g., features
of different clusters) for imputation.

C. Spatial Regularization

In addition to NMF, which tries to capture localized fea-
tures, we also introduce spatial regularization into the objective
function. In spatial models, spatial regularization penalizes
the distance between neighboring locations [23] and has been
widely adopted in spatial and geometric models [40], [24].
In a word, the spatial regularization limits the distance of
the neighbors and tries to maintain spatial smoothness in the
objective function.

One of the commonly used spatial regularizers is the graph
Laplacian regularizer [43], [9]. Let D be the similarity matrix
for X. Given p as the number of nearest neighbors, D is
denoted as

dij =

{

1, xi ∈ NNp(xj) or xj ∈ NNp(xi)
0, otherwise

(3)

i.e., dij describes the spatial similarity of xi and xj , where
NNp(xj) denotes the p-nearest neighbors on spatial informa-
tion SI of xj .

If some attribute of SI in a sample is unfortunately missing,
the complete elements in the j-th column will be used for ini-
tializing xij . For example, if xij ∈ Ω (j ∈ {0, 1, . . . , L}), we
may initialize it with xij = average({xtj |(t, j) /∈ Ω}). This
strategy is adopted only for computing the similarity matrix
D, while the precise imputation of xij will be computed later
in our proposal (Section III-A).

The spatial regularization is thus defined as follows:

OSR(U) =
1

2

N
∑

i,j=1

dij ||ui − uj ||
2
2

=
N
∑

i

wiiu
T
i ui −

N
∑

i,j=1

diju
T
i uj

= Tr(UT
LU)

where Tr(·) denotes the trace of a matrix, L is called a graph
Laplacian matrix with L = W −D, where W is a diagonal
matrix, denoted as

wij =

{
∑

t dit, i = j
0, otherwise

(4)

which is called the symmetric similarity matrix.
Intuitively, this regularizer enables the close tuple pairs in

U to have similar features, and thus the spatial smoothness
is maintained. We will explain how to combine the NMF
objective function and spatial regularization when the data are



incomplete, not considered in the existing works. Moreover,
we will introduce landmarks into our proposed algorithm to
further utilize the spatial information in Section III-A.

D. Problem Definition

In this paper, we employ matrix factorization for spatial
data, to learn accurate features and better reconstruction of
the matrix. As introduced in Section II, we will adopt NMF
and spatial regularization to learn from the spatial data. To
impute the entries RΨ(X), we deploy the mask function R to
mask the unobserved entries by RΩ in the objective function.

O′
NMF (U,V) = ||RΩ(X−UV)||2F (5)

With the mask function, gradients for those unobserved entries
are not computed. Combining the NMF with spatial regular-
ization, we then propose the objective of our proposed method:

O(U,V) = O′
NMF (U,V) + λOSR(U)

= ||RΩ(X−UV)||2F + λTr(UT
LU)

Hence, we formalize the optimization problem of our Spatial
Matrix Factorization (SMF) as below,

Problem 1. Given an input matrix X, the set of the observed

entries Ω, graph Laplacian matrix L, the Spatial Matrix

Factorization (SMF) tries to minimize the following objective

function:

min
U,V

O(U,V) = min
U,V

(||RΩ(X−UV)||2F + λTr(UT
LU))

(6)

s.t. uij , vij ≥ 0 (7)

Let U∗ and V∗ be the solution to the optimization problem,
X∗ = U∗V∗. We can thus recover unobserved entries in X

with X∗, i.e.,

X̂← RΩ(X) +RΨ(X
∗) (8)

where Ψ denotes the set of the unobserved entries in X. For
repair task, following the same line, we can let Ψ denote the set
of the dirty entries provided by error detection techniques (e.g.,
Raha [33]. The dirty entries are then replaced with learned
values in X∗ according to Formula 8.

III. MATRIX FACTORIZATION WITH LANDMARKS

In this section, we will first introduce landmarks to enhance
the matrix factorization methods for spatial data and propose
the Spatial Matrix Factorization with Landmarks (SMFL) in
Section III-A. Then, we devise updating rules for iteratively
solving the problem in Section III-B. Finally, the convergence
of the updating rules will be proved in Section III-C.

A. Landmarks for Spatial Matrix Factorization

In the formalization of SMF in Problem 1, we propose to
decompose the input matrix X into two matrices U and V.
According to the motivation mentioned above, the NMF objec-
tive function O′

NMF contributes to the localized features in V

and spatial regularization OSR restricts the spatial smoothness.

Moreover, owing to the principle of matrix multiplication, the
first L columns of X are only related to the first L columns
of V, according to the following formula:

xij =
K
∑

k=1

uikvkj , 1 ≤ j ≤ L

This is to say, the spatial information recorded in X is only
reconstructed by the linear combinations of the first L columns
of V. In original matrix factorization problems, the features
matrix V is first randomly initialized and completely learned
by the updating rules. Considering the spatial information of
the data, we propose to utilize the spatial information from
the original matrix X to generate some landmarks and inject
these landmarks into the first L columns of V. During the
updating of U and V for solving the objective function, we
set the gradients of those landmarks in V to 0. Therefore, the
landmarks in V do not update in iteration. This is why we
call it “landmark”.

Definition 1. We denote Φ the set of the landmark entries in

V, i.e., Φ = {(i, j)|1 ≤ i ≤ K, 1 ≤ j ≤ L}.

The next question is how to decide their values. We novelly
propose to set landmarks as the centers of the clusters of
spatial information SI. We use the K-means algorithm to
provide clustering. This is achieved by setting the number of
cluster K ′ in K-means equal to K of the NMF problem. Thus
the landmarks can serve as the bridge to connect the NMF
algorithm and K-means, as illustrated in Figure 2. Moreover,
the features learned in V can represent the features of each
cluster, respectively, due to the characteristics of the NMF
algorithm to learn the localized features.

Specifically, let C = [C1,C2, . . . ,CK ] ∈ RK×L denote
the centers of the K clusters on SI computed by K-means.
We use C as landmark values and inject them into the first L
columns of V, i.e.,

vij = cij , (i, j) ∈ Φ (9)

The gradients of these landmarks in V will be set to 0. Thus
this part of V will not update during the iterations. As stated in
Section I, the benefits of them for spatial matrix factorization
are in three aspects (accuracy, interpretability and efficiency).

Finally, by introducing landmarks into our problem, we
define the optimization problem of our Spatial Matrix
Factorization with Landmarks (SMFL) as below.

Problem 2. Given an input matrix X, the set of clean entries

Ω, graph Laplacian matrix L, the set of landmark entries

Φ, and the landmark matrix C computed by K-means on

SI, the Spatial Matrix Factorization with Landmarks (SMFL)

minimizes the following objective function:

min
U,V

O(U,V) = min
U,V

(||RΩ(X−UV)||2F + λTr(UT
LU))

(10)

s.t. vij = cij , (i, j) ∈ Φ (11)

uij , vij ≥ 0 (12)



Fig. 2: Overall structure of SMFL. O′
NMF (U,V) is the reconstruction error when approximating X by the product of U and

V. OSR(U) denotes the spatial smoothness highlighted in the rows learned in the Coefficient Matrix U, corresponding to the
rows in X. The spatial information SI with N rows and L columns of the original X will be utilized to generate landmarks.
The landmarks C will then be injected into the first L columns of the Feature Matrix V, which will not change during the
learning iterations and thus guide the training of the (green) features in V.

B. Updating Rules

We now discuss the solution to the proposed SMFL prob-
lem. The NP-hardness of the matrix completion with missing
data has been proved in the existing study [19]. Therefore, in
this section, we focus on iteratively obtaining a local minimum
for the SMFL problem. We introduce a multiplicative updating
method with the consideration of landmarks.

1) Gradient Descent Method: To optimize, we exploit
gradient descent which is a classical optimization technique.

uik = uik − θik
∂O(U,V)

∂Uik

= uik + 2θik(RΩ(X)VT −RΩ(UV)VT − λLU)ik

Similarly, we have

vkj =











vkj − δkj(−2(U
TRΩ(X))kj

+ 2(UTRΩ(UV))kj), (k, j) /∈ Φ

ckj , (k, j) ∈ Φ

where θik and δkj are learning rates for updating uik and vkj
respectively. Gradient descent updates U and V iteratively
until convergence to obtain a local minimum for the problem.

2) Multiplicative Updating Method: In the gradient descent
method, there are about (N +M) ∗K learning rates (θik, δki)
to set manually. Too large parameters can increase the loss,
while too small parameters may defer the convergence [7].
Even if learning rate decay is applied to adjust the learning
rate dynamically, it still requires additional settings of hyper-
parameters.

To deal with the challenge, we present our multiplicative
updating method with landmarks, inspired by the updating

rules in NMF [25], [26], [9]. It is exactly a self-adaptive
gradient descent method, addressing the challenge of tuning
parameters for gradient descent methods. We will also analyze
the convergence of the proposed method in Section III-C.

According to the given objective function O subject to the
equality constraints uij , vij ≥ 0, vkj = ckj , (k, j) ∈ Φ, by
adopting the method of Lagrange multipliers, we can obtain
the Lagrangian function from the original objective function
and constraints, i.e.,

L(U,V) =||RΩ(X−UV)||2F + λTr(UT
LU)− Tr(µUT )

− Tr(ρVT )− Tr(η(V −C)T )

=Tr(XX
T )− 2Tr(XV

T
U

T ) + Tr(UVV
T
U

T )

+ λTr(UT
LU)− Tr(µUT )

− Tr(ρVT )− Tr(η(V −C)T )

where µik, ρkj , ηkj are lagrangian multipliers, and ηkj =
0, (k, j) ∈ Φ.

By adopting Karush-Kuhn-Tucker (KKT) conditions and
rearranging the formulas, we finally obtain the following
updating rules for U and V.

uik ← uik
(RΩ(X)VT )ik + λ(DU)ik

(RΩ(UV)VT )ik + λ(WU)ik
(13)

vkj ←







vkj
(UTRΩ(X))kj
(UTRΩ(UV))kj

, (k, j) /∈ Φ

ckj , (k, j) ∈ Φ

(14)

An example of applying the multiplicative updating rules is
illustrated in Figure 3.

The whole pipeline of SMFL is outlined in Algorithm 1.



Fig. 3: Procedure of multiplicative updating in an iteration.
In preprocessing, (1) compute D by Formula 3 and (2)
compute W by Formula 4. In each iteration, (3) update U

by Formula 13 and (4) update V by Formula 14.

Proposition 1. The SMFL algorithm runs in O(t1NMK +
N2L + t2KNL) time, where t1 is the iteration number of

updating rules, and t2 is the iteration number of K-means.

Proof sketch. We divide the time cost into three parts:

(1) The iteration of the updating rules is deduced in Sec-
tion III-B (Formulas 13 and 14). The most time-cost operation
is the matrix multiplication of UV and UTX, both of which
are in O(NMK) time. That is, the updating rules run in
O(t1NMK) time, where t1 is the iteration number.

(2) Following Section II-C, SMFL also takes O(N2L) time
to construct the similarity matrix D for X.

(3) The K-means algorithm takes O(t2KNL) time to
perform, where t2 is the iteration number.

To conclude, the time complexity of the SMFL algorithm
is O(t1NMK +N2L+ t2KNL). !

Proposition 1 shows that SMFL runs in O(t1NMK +
N2L+ t2KNL) time. The matrix updating runs t1 iterations.
By default, t1 is set to 500. The updating algorithm will stop
early if it already converges. Likewise, the K-means algorithm
runs t2 iterations. By default, t2 is set to 300. Again, the
clustering algorithm will stop early if it already converges.
We also observe that L is generally small (i.e., with 2 spatial
information columns), while the matrix updating rules indeed
include multiple times of matrix multiplication in O(NMK)
time. That is, in practice, the matrix updating part dominates
the time cost, and the K-means algorithm is not the bottleneck
of the whole algorithm. It also leads to the result that SMFL

Algorithm 1: SMFL (X,Ω,Ψ, L)

Input: N ×M matrix X, observed entries Ω,
unobserved entries Ψ, number of spatial
information attributes (columns) L

Output: imputed matrix X̂

1 initialize U ∈ RN×K , V ∈ RK×M ;
2 D← computed by X according to Formula 3;
3 W← computed by D according to Formula 4;
4 SI← the first L columns of X;
5 C← centers of clusters computed by K-means(SI)

according to Section III-A;
6 Inject C into V according to Formula 9;
7 while not converged do

8 uik ← uik
(RΩ(X)VT )ik+λ(DU)ik

(RΩ(UV)VT )ik+λ(WU)ik
(Formula 13) ;

9 vkj ← vkj
(UT

RΩ(X))kj

(UTRΩ(UV))kj
, (k, j) /∈ Φ (Formula 14)

;
10 U∗,V∗ ← U,V ;
11 X∗ ← U∗V∗;

12 X̂← RΩ(X) +RΨ(X∗) ;

13 return X̂;

runs faster than SMF. Section IV-E reports the experimental
results in detail.

C. Convergence Analysis

In this section, we will show the convergence of the pro-
posed multiplicative updating method. Following the similar
pipeline proposed in [26], we will first design auxiliary func-
tions for the proposed method. Next, by utilizing the auxiliary
functions, we can prove that the objective function is non-
increasing under the given updating rules of U and V, in
Propositions 5 and 7, respectively.

Definition 2. Let A,G be functions and h, h′ be variables,

A(h, h′) is an auxiliary function for G(h) if the conditions

A(h, h′) ≥ G(h), A(h, h) = G(h)

are satisfied.

This auxiliary function would then lead to the below lemma.

Lemma 2. If A is an auxiliary function for G, then G is

non-increasing under the updating rule

h(t+1) = argmin
h

A(h, h(t))

Proof sketch. The updating rule indicates that
A(h(t+1), h(t)) ≤ A(h(t), h(t)). Combining this inference
with Lemma 2, we will have G(h(t+1)) ≤ A(h(t+1), h(t)) ≤
A(h(t), h(t)) = G(h(t)) !

We can also conclude from the proof that, when h(t+1) =
h(t), G(h(t+1)) = G(h(t)). It indicates the convergence of the
updating rule and the function reaches the local minimum.

Next, by utilizing Lemma 2, we will design auxiliary
functions for the updating rule of U and V respectively and



then show the satisfactory of Lemma 2 with the help of the
auxiliary functions.

1) Updating Rule of U: We first show the convergence of
the updating rule of U. According to Formula 6, let

G(U) = ||RΩ(X−UV)||2F + λTr(UT
LU) (15)

and by a little abuse of the notation, let G(uik) denote the
part in G(U) that is just related to uik. Then according to
Formula 15, we define the derivative and the second derivative
of G(uik) as below,

G′(uik) = −2(RΩ(X)VT )ik+2(RΩ(UV)VT )ik+2λ(LU)ik

G′′(uik) = 2
∑

(i,j)∈Ω

vkjvjk + 2λlii (16)

Lemma 3. Function

A(uik, u
(t)
ik ) = G(u(t)

ik ) +G′(u(t)
ik )(uik − u(t)

ik )

+
(RΩ(UV)VT )ik + λ(WU)ik

u(t)
ik

(uik − u(t)
ik )

2

is an auxiliary function for G(uik).

Proof sketch. (1) By setting u(t)
ik = uik, A(uik, uik) = G(uik)

is naturally satisfied; (2) To prove A(u, u′) ≥ G(u), we give
the Taylor series expansion of G(uik). Combining it with
Formula 16, we find A(u, u′) ≥ G(u) is equivalent to

(RΩ(UV)VT )ik + λ(WU)ik

u(t)
ik

≥
∑

(i,j)∈Ω

vkjvjk + λlii (17)

By rearranging the formulas, we can prove that Formula 17
holds, thus proving Lemma 3. (See full proof in [1].) !

Now we have proved that A(uik, u
(t)
ik ) is an auxiliary

function for G(uik). The last step is to show that the updating
rule follows the form of Lemma 2.

Lemma 4. The updating rule of uik and the auxil-

iary function A(uik, u
(t)
ik ) follows the form of u(t+1)

ik =

argminuik
A(uik, u

(t)
ik ) in Lemma 2.

Proof sketch. Let

∂A(u∗
ik, u

(t)
ik )

∂u∗
ik

= 0

We then obtain

u∗
ik = u(t)

ik

(RΩ(X)VT )ik + λ(DU)ik
(RΩ(UV)VT )ik + λ(WU)ik

Since A is convex, u∗
ik is the global minimum. It follows

u(t+1)
ik = u∗

ik = u(t)
ik

(RΩ(X)VT )ik + λ(DU)ik
(RΩ(UV)VT )ik + λ(WU)ik

follows the form u(t+1)
ik = argminuik

A(uik, u
(t)
ik ) in

Lemma 2. !

Finally, we conclude the convergence of the updating rule
of U.

Proposition 5. The objective function O of SMFL in For-

mula 10 is non-increasing under the updating rule of U in

Formula 13.

Proof sketch. (1) The updating rule is element-wise for each
uik; (2) By finding an auxiliary function for G(uik), we prove
that G(uik), the part of objective function O that is related to
uik, is non-increasing under the updating rule of U, with the
combination of Lemma 2 and Lemma 3.

Therefore, we can conclude that the objective function O
of SMFL in Formula 10 is non-increasing under the updating
rule of U in Formula 13. !

2) Updating rule of V: For V, we need to treat two parts
of vkj respectively: (k, j) ∈ Φ and (k, j) /∈ Φ.

When (k, j) ∈ Φ (the landmark entry), the updating rule is

vkj ← ckj , (k, j) ∈ Φ

Since ckj is fixed, we do not update vkj when (k, j) ∈ Φ, i.e.,
the objective function O is non-increasing under the updating
rule of (k, j) ∈ Φ.

When (k, j) /∈ Φ, the updating rule is

vkj ← vkj
(UTRΩ(X))kj
(UTRΩ(UV))kj

, (k, j) /∈ Φ

The convergence of the updating rule can be proved similarly
by designing an auxiliary function like Section III-C1. For
simplicity, we will reuse G and A to denote the original and
auxiliary functions corresponding to the proof of V. Let

G(V) = ||RΩ(X−UV)||2F + λTr(UT
LU)

and let G(vkj) denote the part in G(V) that is just related to
vkj . Then another auxiliary function for vkj is designed.

Lemma 6. Function

A(vkj , v
(t)
kj ) = G(v(t)kj ) +G′(v(t)kj )(vkj − v(t)kj )

+
(UTRΩ(UV))kj

v(t)kj

(vkj − v(t)kj )
2

is an auxiliary function for G(vkj).

Proof sketch. The lemma can be proved similarly by replacing
the roles of uik in Lemma 3. !

With similar steps in Lemma 4, we can finally conclude the
convergence of the updating rule of V.

Proposition 7. The objective function O of SMFL in For-

mula 10 is non-increasing under the updating rule of V in

Formula 14.

Hence, we analyze the convergence of the updating rules of
U and V, in the presence of landmarks.

IV. EXPERIMENTS

In this section, we validate the performance of our proposed
SMFL over several read-world spatial datasets and applica-
tions, including data imputation and data repair. The settings
of the experiments are described in Section IV-A. In the first



set of experiments, we will qualitatively evaluate the accuracy
of SMFL over several datasets, comparing with state-of-the-art
imputation and repair techniques. Next, we conduct ablation
studies to test the effectiveness of our proposed landmarks. We
also analyze the parameter sensitivity of our proposal. Finally,
the efficiency of the proposal is evaluated. In each experiment,
we conduct it five times and take the average of the results.

TABLE III: Dataset summary

Dataset Tuples Columns Examples of additional Columns

Economic [2] 27k 13 Precipitation, Temperature, . . .
Farm [3] 0.4k 13 Nitrogen Fertilizer Application, . . .
Lake [39] 8k 7 Lake Area, Elevation, . . .
Vehicle 100k 7 Speed, Fuel Consumption Rate, . . .

A. Experimental Settings

The experiments run on a machine with 2.1GHz CPU and
Nvidia 1080ti GPU. The code and data are available at [1].

1) Datasets and Pre-Processing: Table III summarizes the
six real datasets used in the experiments.

Economic dataset [2] includes economic data such as cli-
mates and population to analyze economic activities. Close
locations may have similar Precipitation, Temperature, and
so on, resulting in similar economic activities. Farm dataset
[3] dataset records data such as Nitrogen Fertilizer Appli-
cation to study location-specific nitrogen management for
corn production. Fertilize application is various in different
locations, due to climates and other location features. Lake
dataset [39] includes lake information (e.g., Lake Area and
Elevation) to study lake ecology in different places. Vehicle
dataset is collected by our industrial partner with Speed,
Torque, and Fuel Consumption Rate data to analyze vehicle
fuel consumption. The features such as Fuel Consumption
Rate are affected by the terrains in different locations, as the
example illustrated in Figure 1.

There are some existing data quality issues in the original
datasets. For example, Economic [2] is naturally incomplete
without ground truth. We thereby select complete rows of
the dataset. Farm [3] contains a large number of zero values
without any description. Therefore, for each dataset, we first
remove the incomplete tuples, and then choose the complete
tuples without unclear zero values to serve as the ground truth
for conducting experiments.

We devise different error injections for imputation and
repair tasks respectively. For the imputation task, following
[38], errors are injected artificially by randomly removing
values from several columns, controlled by missing rate. For
the repair task, we inject errors into all columns by randomly
replacing the original values with other values in the same
domain, controlled by the error rate. Unless otherwise stated,
both the missing rate and error rate are set to 10%.

Note that, when the missing rate increases, some datasets
with a large number of columns (such as Economic and Farm)
may fail to preserve any complete rows. Due to the reasons
that some baselines require complete rows to perform, we first

randomly extract 100 complete tuples from the dataset for a
fair comparison. Error injection is performed on the remaining
data. Finally, we will conduct min-max normalization on all
datasets and transform them into the range [0, 1] to balance
the influences of the different scales of different columns.

2) Criteria: To evaluate the application accuracy, we com-
pare the imputed or repaired matrix RΨ (X∗) to the corre-
sponding ground truth RΨ (X#) with root-mean-square error:

RMS =

√

||RΨ (X∗ −X#)||2F
|Ψ|

3) Implementation Details: The major competitors of our
proposal are implemented as below.

(1) Neighbor-based kNN Ensemble (kNNE) [16] builds a
NN classifier on each subset of complete columns for the
incomplete tuples. Then, the NN classifiers will be collected
to obtain the final results.

(2) Value regression model-based LOESS [13] learns re-
gression models among nearest neighbors for imputation.
Incomplete attributes are taken as the dependent attributes,
while complete attributes are the determinants of the models.

(3) Individual regression model-based IIM [47] learns an
individual regression model for each tuple together with its
neighbors.

(4) Matrix-completion-based method MC [10] aims to com-
plete a data matrix from a sampling of its entries. The impu-
tation problem is formed as a convex optimization program,
which can be solved by finding the matrix with the minimum
nuclear norm.

(5) Distance-based DLM [38] learns a statistical model over
the distances of a tuple to its neighbors. It determines the most
likely filling by maximizing the distance likelihood.

(6) GAN-based GAIN [46] proposes to impute missing
values by adapting Generative Adversarial Nets (GAN) frame-
work. The generator (G) completes the data matrix according
to the complete entries. The discriminator (D) learns to
identify which entries were imputed or observed.

(7) Matrix Factorization-based SoftImpute [5], [35] it-
eratively replaces the missing elements by applying soft-
thresholded SVD.

(8) Clustered Adversarial Matrix Factorization CAMF [42]
combines matrix factorization and the structure of GAN to
enhance the spatial data imputation.

(9) Iterative is IterativeImputer from the machine learning
toolkit scikit-learn devised for multiple imputation [4].

(10) HoloClean [36] is a data repairing system driven by
probabilistic inference. Due to the lack of integrity rules, we
ran HoloClean with statistical signals to fix errors holistically.

(11) Baran [32] is an error correction system that fixes
data errors with respect to their value, vicinity, and domain
contexts. Following the default setting of Baran, we set the
number of labels as 20.

(12) Nonnegative Matrix Factorization NMF is introduced
in Section II-B, trying to impute missing values in data using
NMF with the form of Formula 1. It is also studied in [41] to
impute missing values with NMF.



TABLE IV: Imputation RMS error of our proposals compared to the existing methods on various datasets (missing rate 10%).
OOT: Out of time error (take more than 24h). OOM: Out of memory error (take more than 128GB).

Dataset kNNE LOESS IIM MC DLM GAIN SoftImpute Iterative CAMF NMF SMF SMFL
Economic 0.101 0.097 0.069 0.135 0.032 0.076 0.055 0.043 0.137 0.135 0.042 0.028
Farm 0.243 0.487 0.137 0.215 0.082 0.259 0.067 0.058 0.253 0.221 0.066 0.051
Lake 0.141 0.280 0.511 0.083 0.060 0.085 0.064 0.053 0.122 0.086 0.057 0.048
Vehicle 0.221 0.256 OOT 0.301 0.163 0.204 0.161 0.150 OOM 0.224 0.067 0.055

TABLE V: Imputation RMS error of our proposals compared to the existing methods when spatial information is also missing.
OOT: Out of time error (take more than 24h). OOM: Out of memory error (take more than 128GB).

Dataset kNNE LOESS IIM MC DLM GAIN SoftImpute Iterative CAMF NMF SMF SMFL
Economic 0.232 0.231 0.314 0.311 0.135 0.198 0.161 0.153 0.231 0.243 0.133 0.126
Farm 0.311 0.791 0.158 0.286 0.136 0.255 0.163 0.071 0.322 0.227 0.068 0.058
Lake 0.181 0.602 0.168 0.193 0.116 0.174 0.190 0.110 0.179 0.125 0.117 0.096
Vehicle 0.208 0.213 OOT 0.366 0.175 0.214 0.172 0.132 OOM 0.363 0.096 0.090

(13) Spatial Matrix Factorization (SMF) and Spatial Ma-
trix Factorization with Landmark (SMFL) are introduced in
Section II and Section III, respectively.

B. Comparison with Existing Approaches

In this section, we compare our proposal with the state-of-
the-art methods both in imputation and repair, to verify the
effectiveness of the proposed SMFL.

1) Imputation on Various Datasets: Table IV reports the
imputation comparison results under the 10% missing rate.
First, we observe that SMFL outperforms all the baselines over
all datasets. This is not surprising due to the effectiveness of
the MF methods and the guidance of the landmarks in SMFL.

Among all the baselines, distance-based DLM and statistic-
based Iterative Imputer show better results. DLM tries to im-
pute incomplete values via distance likelihood maximization.
The procedure of maximizing the distance likelihood indeed
leverages the spatial smoothness potentially. IterativeImputer
predicts a column value by other columns, thus leveraging the
spatial information during prediction. However, it (1) does not
fully utilize the spatial information as SMFL and (2) cannot
perform if many other columns are also missing. Nevertheless,
they both account for the effectiveness of our SMFL by using
smoothness and spatial information.

GAN-based methods GAIN and CAMF do not perform
on spatial data. It is not surprising due to the difficulty of
training the generative adversarial networks. In the meantime,
the structure of the Generator and Discriminator does not
include the usage of the spatial information.

Regression model-based IIM and LOESS do not show stable
performance over the datasets. Both rely on the regression
relationships among the tuples and columns, while the spatial
information is not considered. The regression model relies on
complete tuples and does not consider the spatial distribution.

Compared to NMF and SMF, it is apparent that SMFL
outperforms both methods with lower RMS error. This demon-
strates the advance of the landmarks again.

For time-consuming IIM and memory-consuming CAMF,
the data size of Vehicle is too large to perform, with either
out of time error (take more than 24h) or out of memory error
(take more than 128GB). Our proposed SMFL still performs

TABLE VI: Repair RMS error of our proposals compared to
the existing methods (error rate 10%)

Dataset Baran HoloClean NMF SMF SMFL
Economic 0.163 0.065 0.133 0.040 0.037
Farm 0.227 0.194 0.257 0.083 0.057
Lake 0.135 0.078 0.110 0.067 0.064
Vehicle 0.266 0.188 0.261 0.151 0.137

and shows the best performance among all the competitors.
This again verifies the efficacy of the proposed SMFL.

Table V provides the results when the spatial information
is also incomplete. Due to the importance of the spatial infor-
mation, in most cases, the performances of these methods are
worse than those with complete spatial information (Table IV).
Nevertheless, SMFL still outperforms all the competitors.

2) Repair on Various Datasets: Table VI reports the re-
pair RMS error of SMFL against repair methods Baran and
HoloClean. Analogously, SMFL outperforms all baselines over
all datasets, and SMF also shows satisfying repair results
compared to baselines. Existing data repair techniques such
as Baran and HoloClean are difficult to learn from the spatial
information, thus do not perform in these datasets.

3) Application in Vehicle Route Planning: To evaluate the
imputation results in the vehicle route planning application,
we use different imputation methods to impute vehicle routes
with missing fuel consumption rate, and then compute the
accumulated fuel consumption of the route based on the im-
puted fuel consumption rate. The computed fuel consumption
is then compared to the truth fuel consumption collected by our
partner company. Figure 4(a) reports the absolute accumulated
fuel consumption error of different methods. SMFL shows the
lowest error of 0.0136L. It indicates that SMFL is more precise
and effective when used for vehicle route planning.

4) Application in Clustering: We also analyze the matrix
factorization-based methods in clustering applications over
Lake dataset, since these methods all provide unsupervised
clustering results. Following [8], the results are evaluated by
accuracy. Given n tuples, we have

Accuracy = max
σ

(

∑n
i=1 δ(truth[i],σ(pred[i]))

n
),



Fig. 4: Results of downstream applications. (a) Accumulated
fuel consumption error of different approaches in the vehicle
route planning application. (b) Clustering accuracy of different
approaches in the clustering application.

TABLE VII: Imputation RMS error of NMF, SMF and SMFL
over six datasets with different missing rates

Dataset Algorithm
Missing Rate

10% 20% 30% 40% 50%

Economic
NMF 0.131 0.133 0.133 0.135 0.136
SMF 0.037 0.037 0.042 0.041 0.044
SMFL 0.028 0.028 0.031 0.032 0.033

Farm
NMF 0.221 0.219 0.219 0.221 0.222
SMF 0.066 0.079 0.093 0.106 0.120
SMFL 0.051 0.062 0.078 0.091 0.101

Lake
NMF 0.086 0.088 0.088 0.091 0.090
SMF 0.057 0.062 0.063 0.066 0.069
SMFL 0.048 0.052 0.055 0.062 0.064

where δ(x, y) = 1 if x = y and otherwise 0, truth[i] and
pred[i] denote the i-th clustering label of ground truth and
predicted data, respectively, and σ is a permutation mapping
function from the predicted labels to the truth labels. The σ
function aims to find a mapping to maximize the accuracy,
which is determined by Kuhn-Munkres algorithm [31]. The
results are provided in Figure 4(b). PCA [44] is a popular MF-
based clustering method based on SVD. It is not surprising that
SMFL still outperforms other baselines, since it fully utilizes
the spatial data with landmarks.

C. Ablation Studies

We conduct ablation studies on SMFL to test the effective-
ness of the proposed landmarks. In Section III-A, we propose
landmarks to guide the generation of the latent features. The
generation and injection of the landmarks are introduced, and
SMFL is proposed in Problem 2. This experiment mainly
evaluates two aspects: (1) do the landmarks truly improve the
imputation performance; (2) do the generation and injection of
the landmarks indeed improve the rationality and interpretabil-
ity of the learned spatial locations?

Table VII presents the imputation results over several
datasets with different missing rates. Compared to SMF,
SMFL provides more accurate and robust results over different
datasets.

According to the results in Table VII, spatial regularization
(i.e., SMF) is truly effective, which motivates us to improve
SMF by further investigating the spatial information such as
landmarks. Although the further improvement by landmarks

Fig. 5: Visualization of feature locations over a dataset, with
L = 2 and K = 5. The dashed box is the region of all data
observations. Some extremely distant features are not plotted
in the figure for better visualization.

may not be as significant as spatial regularization, such an
improvement is clearly observed and essential to beat some
competitors. (1) Landmarks indeed improve the results of SMF
in all the cases, as illustrated in Table VII. (2) SMFL outper-
forms all the baselines, while SMF fails in some datasets,
according to Table IV. For instance, SMFL is the best in
all the datasets of Table IV, while SMF shows worse results
than DLM and Iterative in the Economic and Lake datasets,
respectively.

Following the motivation that landmarks will enhance the
rationality and interpretability of the matrix factorization, we
attempt to visualize the learned spatial features of SMFL
and SMF in the first L dimensions of feature matrix V. As
shown in Figure 5, we visualize the learned spatial locations
of matrix V learned by SMF and SMFL over one dataset
(L = 2). Owing to the two updating methods (introduced in
Section III-B) for SMF will lead to different matrix V, we
illustrate the matrix V learned by gradient descent (SMF-GD)
and multiplicative updating rules (SMF-Multi), respectively.
The x-axis and y-axis represent the locations of the first
dimension and the second dimension of the spatial information
SI. Locations that represent spatial information in original
matrix X are also shown in light blue.

According to Figure 5, features learned by SMF-GD (in
dark blue) and SMF-Multi (in green) might be very distant
from the observations. However, landmarks (in red) gener-
ated by SMFL control the locations of learned features, to
make them geographically closer to the data observations. To
conclude, compared to SMF, SMFL controls the locations of
learned features by landmarks, thus providing more accurate
and interpretable results. Similar to Figure 1, it also explains
why the existing MF-based methods such as CAMF and NMF
do not perform.
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Fig. 6: Varying the regularization parameter λ

D. Parameter Sensitivity

We conduct additional experiments to evaluate the param-
eter sensitivity of our proposal. Although the multiplicative
updating rules are proposed in Section III-B to eliminate
difficulties of tuning learning rates, parameters of the objective
function still affect the performance of the proposed SMFL
and SMF, including λ, p, and K.

1) Varying the Regularization Parameter λ: The regular-
ization parameter λ is used to control the weight of the
spatial regularization in the objective function of SMF and
SMFL. We vary λ from 0.001 to 10 to test the effect of λ on
performance. The results are reported in Figure 6. In general,
a moderately small λ (0.05-0.1) is preferred since too large λ
will overemphasize the spatial smoothness while ignoring the
reconstruction of the original matrix. However, a too small λ
may also neglect the spatial smoothness, thus restricting the
performance of SMF and SMFL, also illustrated in Figure 6.
Nevertheless, SMFL outperforms SMF almost over all datasets
with various λ, demonstrating the robustness and effectiveness
of the landmarks.

2) Varying the Number of Spatial Nearest Neighbors p:

The parameter p controls the number of the spatial nearest
neighbors to be considered in matrix D and graph Laplacian
matrix L. We vary p from 1 to 10 to test the impact of p on
accuracy. The experimental results are illustrated in Figure 7.
It is observed that a moderately small p is better for the
algorithm. When p increases, the performance of both SMFL
and SMF decreases. This is not surprising since a too large
p will introduce tuples with low relevance into the graph
Laplacian matrix and try to maintain the spatial smoothness
over a large distance, which is unreasonable. In addition, a too
small p could make the performance worse. Intuitively, a small
p might prevent the model from learning from neighbors, thus
lowering the performance. In our experiments, we find p = 3,
i.e., the 3-nearest neighbor shows the best performance.

3) Varying the Number of Landmarks K: The parameter K
is not only the number of the latent features in V, but also the
number of clusters for generating landmarks. The results are
presented in Figure 8. According to the results, a moderately
large K may potentially contribute to better performance. This
is not surprising that too small K limits the ability of the
matrix factorization model to learn the features, thus resulting
in low accuracy results. Therefore, it is recommended to set a
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Fig. 7: Varying the number of spatial nearest neighbors p
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Fig. 8: Varying the number of landmarks K

moderately large K.

E. Efficiency Evaluation

As explained in Section III-A, by fixing the landmarks dur-
ing iterations, the time cost of updating landmark locations in
matrix V can be saved. Compared to SMF, in implementation,
the landmarks in V (vkj , (k, j) ∈ Φ) are computed once
and reserved for each iteration. Therefore, V is divided into
two parts and only one of them is updated during iterations.
According to Formula 14, the saving computation is related to
data size, i.e., the efficiency of SMFL is affected by the data
size. We thereby conduct efficiency evaluation by measuring
the running time while varying the size of the data.

Figure 9 illustrates the time performance results of different
methods over two datasets. Overall, SMFL is more efficient
than neighbor-based methods (KNNE), GAN-based methods
(GAIN and CAMF) and statistics-based methods (DLM). This
is because neighbor-based and statistics-based methods may
consider complex relationships among multiple columns, thus
requiring higher time. GAN-based methods are also time-
consuming in model training.

SMFL shows comparable efficiency among MF-based meth-
ods (MC, SoftImpute and SMF) and Regression-based meth-
ods (IterativeImputer). IterativeImputer and SoftImpute are
faster in Lake dataset (with 7 columns), while slower in
Economic dataset (with 11 columns). In other words, SMFL
is more scalable in higher dimension of data.

It is notable that SMFL also shows slightly better efficiency
than SMF, due to the following reasons. (1) While K-means
clustering is not a low-overhead approach, it does not dom-
inate in terms of time complexity in SMFL, as analyzed in
Propositions 1. (2) Landmarks could reduce computation cost
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Fig. 9: Time cost of the proposed methods over two datasets
while varying the number of tuples

in the matrix updating process, according to Section III-B,
where the reduced part is related to the data size.

V. RELATED WORK

A. Matrix Factorization

Matrix Factorization (MF) aims to decompose an original
matrix into the product of two or three matrices and then tries
to utilize the decomposed matrices for downstream applica-
tions such as graph mining [21], recommender systems [49],
and data imputation [35].

MC [10] and SoftImpute [35] are both based on Singular
Value Decomposition (SVD), which decomposes the original
matrix into three matrices, including two unitary matrices and
one singular value matrix. The benefit is that they provide
exact factorization of the original matrix and learn the eigen-
values. However, for spatial data imputation, SVD fails to
consider the spatial information.

Another widely used matrix factorization algorithm is Non-
negative Matrix Factorization (NMF) [25]. NMF attempts to
factorize the original matrix into the product of two non-
negative matrices. [9] utilizes NMF and graph Laplacian
regularizer for data representation and benefits downstream
clustering tasks. However, it does not take missing values into
consideration. [41] is a matrix completion method that adopts
the original NMF algorithm.

B. Missing Data Imputation

As discussed in Section IV-A3, existing missing data impu-
tation methods that support numerical data can be categorized
as follows.

1) Neighbor-based Methods: kNN [6] imputes an in-
complete tuple according to its top-K nearest neighbors.
kNNE [16] builds a set of kNN models over various sub-
sets of attributes, and combines their results. Owing to the
dependency of complete neighbors, neighbor-based methods
are limited by data redundancy, especially when the missing
rate is high.

2) Regression-based Methods: LOESS [13] learns a regres-
sion model over the complete neighbors for imputation rather
than simply aggregating candidates returned by neighbors.
IIM [47] proposes to learn a regression model individually

for each tuple together with its neighbors. Analogously, It-
erativeImputer [4] also employs regression models to learn
from other attributes. These methods rely on the regression
relationships among the tuples and attributes, thus not stable
and robust when applied to various spatial data, especially with
high missing rates.

3) Statistics-based Methods: ERACER [34] models the
probabilistic correlations between attributes. DLM [38] learns
a statistical model over the distances of a tuple to its neighbors,
which indeed leverages the spatial smoothness potentially.
Both methods determine the imputation values which maxi-
mize the likelihood referring to the statistical models.

4) GAN-based Methods: GAIN [46] leverages the structure
of Generative Adversarial Nets (GAN) [20] for imputation.
CAMF [42] combines matrix factorization and GAN to impute
missing data. Moreover, in CAMF, spatial information is
regarded as the prior knowledge to evaluate the distance and is
used in the reconstruction component. However, since spatial
smoothness and hidden guidance of the spatial information are
not considered, CAMF does not perform.

C. Data Repairing

There exist a variety of data repairing methods. SCARE [45]
repairs errors with clean values based on their statistical like-
lihood. Holistic [11], NADEEF [15] and IncRep [14] leverage
integrity rules to clean data. KATARA [12] and eRs [17] fix
the data errors by considering external data sources. Baran [32]
trains multiple corrector models and then combines them into
a final correction for each data error. HoloClean [36] leverages
integrity constraints, matching dependencies and statistical
properties for data repairing.

VI. CONCLUSION

In this paper, to fully utilize the spatial information, we
propose a novel approach of Spatial Matrix Factorization with
Landmarks (SMFL). Intuitively, we interpret the learned fea-
tures in terms of locations. Rather than arbitrarily distributed
features in the general MF learning, we use landmarks to
ensure the learned features are geographically close to the
data observations and thus better guide the training of the
features. The landmarks not only enhance the imputation and
repair accuracy but also improve the interpretability of the
features and reduce the computation cost. Towards the iterative
optimization problem, updating rules are devised together
with convergence analysis. Finally, we conduct comprehensive
experiments to demonstrate the superiority of our proposal
SMFL over real-world datasets.
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