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Abstract—Editing rules specify the conditions of applying high
quality master data to repair low quality input data. Discovering
editing rules, however, is challenging, since it considers not only
the well curated master data but also the large-scale input data,
an extremely large search space. A natural baseline, namely
EnuMiner, costly enumerates the rules with possible conditions
from both master and input data. Although several pruning
strategies are enabled, the algorithm still takes a long time
when the enumeration space is large. To avoid enumerating
all candidate rules during mining, we argue to model the rule
discovery process as a Markov Decision Process. Specifically, we
discover editing rules by growing a rule tree where each node
corresponds to a rule. The algorithm generates a new rule from
the current node as a child node. We propose a reinforcement
learning-based editing rule discovery algorithm, RLMiner, which
trains an agent to wisely make decisions on branches when
traversing the tree. Following the idea of evaluating rules, we
design a reward function that is more in line with rule discovery
scenarios and makes our algorithm perform effectively and
efficiently. The experimental results show that our proposed
RLMiner can mine high-utility editing rules like EnuMiner and
scale well on the datasets with many attributes and large domains.

Index Terms—Editing Rule, Rule Discovery, Master Data,
Reinforcement Learning, Data Repairing

I. INTRODUCTION

Due to various errors introduced by humans and machines,

data quality issues including inconsistency, conflict and vio-

lation are widely observed [11]. Low-quality data not only

require more time to maintain [15] but also prevent us from

discovering the potential value in the data. There are many

studies in data cleaning, constraint-based [12], [29], rule-

based [42], or learning-based [44]. Compared to ML-based

approaches, constraint and rule-based approaches are easier

to interpret and thus helpful for users to understand the data.

Most data cleansing methods fix errors based solely on input

data. However, in many cases, it is insufficient to fix errors

with input data alone. For example, assuming that we have a

functional dependency (FD) ZIP → AC, we still do not know

how to fix t3 in Figure 1(a). With the external data as shown

in Figure 1(b), we can find the fix for t3[AC], i.e., “571”.

For this reason, editing rules (eR) [18] are designed to make

use of relational master data for cleaning, where master data

(a.k.a. reference data) is a repository of high-quality data.

With the development of master data management (MDM)

[25], [47], many enterprises such as IBM, SAP, Microsoft, and

Shaoxu Song (https://sxsong.github.io/) is the corresponding author.
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Fig. 1: Example of (a) input data D and (b) master data Dm

Oracle maintain master data [18]. KATARA [13] and detective

rules [20] design graph-based rules to leverage the knowledge

base as external data. Note that a knowledge base can also

be extracted as relational master data [30]. For simplicity and

universality, we choose to study editing rules in this work.

Example 1 (editing rules). Consider two tables in Figure 1.1

To prevent the spread of COVID-19, the local tourism depart-

ment asks passengers who have been infected with COVID-19

to register for health monitoring. Since there are some typos

and omissions when inputting data, self-reported registration

information has some errors and missing values (marked in

red) as shown in Figure 1(a). To improve the information of

passengers for accurate health monitoring, we use the national

COVID-19 records as master data (Figure 1(b)) to fix the

registration information. It is worth explaining here why we do

not directly use the clean national records and chose to repair

the registration information. The reason is that the master data

may not be comprehensive. For instance, the national data

do not include information of patients infected overseas, e.g.,

t3[Overseas] = Yes. As supplementary, it is still worthwhile to

curate the self-reported data.

Consider an editing rule (eR),

ϕ0 = ((City,City), (Date,Date)) → (Case, Infection),

tp[City,Date,Overseas] = (HZ, 2021-12,No))

It means that if the tourist, living in “HZ” (tp[City] = HZ),

was infected in “2021-12” (tp[Date] = 2012-12) and not

1For privacy reasons, examples are revamped by the customer of Huawei.



oversea (tp[Overseas] = No), then the infection case is

“contact with patient” according to the master data Dm. Since

master data does not record patients infected overseas, the

condition tp[Overseas] = No in the pattern avoids incorrect

repair of t3.

A. Challenge

The existing work [18] studies certain fixes with editing

rules but does not devise the corresponding discovery algo-

rithm. Discovering editing rules is challenging, since it has to

consider the conditions in both the master data and the input

data, such as tp[Date] = 2021-12 and tp[Overseas] = No.

Although the discovery of matching rules also considers

two data sources [40], it treats both sources equally and

identifies their matching relationships. The matching rule

(MD) discovery algorithms [32], [37] are not applicable to

discover editing rules (eR) for the following reasons. (1)

The labelling is different. MD discovery requires to label the

pairs from two sources denoting the same entity in the real

world. The labelling for eR discovery, however, is optional.

We alternatively utilize the labelled truths of errors only in the

input data source, to calculate the Quality measure. It evaluates

the accuracy of the possible repairs in the input table by eR,

rather than the matching of data from two tables by MD. (2)

The evaluation is different. The confidence of MD [39] denotes

the maximum proportion of pairs from two sources that can

satisfy the matching rule. In contrast, the editing rules target on

certain fixes of the input data referring to the master data [18].

That is, the Certainty measure is evaluated on the tuples in the

input table, telling whether the tuples can be fixed certainly.

(3) The syntax is different. MD considers similarity matching

relationship of values, but does not have any condition to

discover. On the contrary, eR considers equality relationship

of values and needs to discover the conditions in patterns.

To discover the conditions, one may mine conditional func-

tional dependencies (CFD) [16] from the clean master data and

use them as editing rules. However, such a discovery strategy

ignores the possible conditions from the input data such as

tp[Overseas] = No. Moreover, since the master data may not

be extensive, the rules discovered from master data could be

underfitting. Please see Section V-B2 for a comparison.

B. Intuition

A natural idea is thus to enumerate the conditions from both

the input and master data for possible editing rules, namely

EnuMiner. Although several pruning strategies could be en-

abled as introduced in Section II-D, it is not surprising that

EnuMiner is still costly given the huge space of enumeration.

Again, please see Section V for an evaluation.

A more practical study is how to find editing rules that are

still desired, without enumerating all the conditions. To this

end, we (1) formalize several metrics for evaluating desired

editing rules, and (2) consider reinforcement learning (RL).

The rationality of using reinforcement learning for discov-

ering editing rules is as follows. In essence, both playing

Go [34]–[36] and discovering eRs need to make the decision

according to the current state. For playing Go, we need to

decide the next step based on the chess pieces on the board. To

discover editing rules, we also need to decide which attribute

pair or attribute value pair should be added. The decisions

made will determine whether we win a game of Go or succeed

in discovering a set of correct editing rules.

It is different from frequent pattern mining [9], [19]. (i)

Instead of finding all frequent patterns, we only need to

discover a subset of editing rules that can have certain fixes for

the input data. (ii) While efficient algorithms are available for

frequent pattern mining [9], [19], effective pruning or heuristic

for discovering editing rules is absent. As presented below, the

heuristic is still costly to search the huge space of remaining

possible rules. In this sense, reinforcement learning can guide

the discovery process to wisely explore the search space.

Our major contributions in this work are as follows:

(1) We first formalize the eR discovery problem and analyze

the challenge. A set of metrics is proposed to measure the

utility of editing rules.

(2) We devise a novel RL-based editing rule mining method,

named RLMiner. It trains an agent to wisely discover rules

without enumerating values as conditions.

(3) We conduct extensive experiments on real datasets. The

results demonstrate that RLMiner can mine the desired editing

rules that repair data as accurately as EnuMiner. Moreover,

RLMiner is much more efficient than EnuMiner and scales

well on the datasets with many attributes and large domains.

The remainder of this paper is organized as follows. First,

we introduce the preliminary in Section II. Section III presents

RLMiner. The implementation details of RLMiner are in

Section IV. Our extensive experimental evaluation is reported

in Section V. We introduce the related work in Section VI.

Finally, Section VII concludes this paper.

II. PRELIMINARY

A. Editing Rules

Editing Rules [18] are proposed to utilize the high-quality

master data Dm to fix errors in the low-quality input data. We

use Rm and R to denote the schema of Dm and D.

Definition 1 (Editing Rules). An editing rule (eR) ϕ defined

on (R,Rm) is a pair ((X,Xm) → (Y, Ym), tp), where

• X ⊂ R and Xm ⊂ Rm are two lists of distinct attributes,

with the same length, i.e., |X| = |Xm|;
• Y is an attribute such that Y ∈ R \X , and Ym ∈ Rm;

• tp is a pattern tuple over Xp ⊂ R such that for each

A ∈ R, tp[A] = a. Here a is a constant drawn from the

domain of A, i.e., dom(A).

Note that the pattern tp is defined on schema R rather than

Rm. We can say that a tuple t matches the pattern tuple tp,

denoted by t[Xp] = tp[Xp], if for each A ∈ Xp, we have

t[A] = tp[A] = a. We use LHS(ϕ) = (X,Xm). In this

study, for simplicity, we do not consider ā in tp that denotes

tp[A] 6= a as stated in [18]. Obviously, ā in tp is equivalent to

enumerating the rest of the values in dom(A). Thus, omitting

ā does not affect the correctness of the editing rule.



Editing rules are used to update low-quality input data

according to high-quality master data. Given an editing rule

ϕ, a master tuple tm and an input tuple t, tm can update t by

assigning tm[Ym] to t[Y ], if t[Xp] = tp[Xp]∧t[X] = tm[Xm].

B. Utility Measure

Since our target is cleaning data with rules, we hope that

rules can cover as many tuples as possible and return a

minimal set of candidate fixes, preferably with set size as one

for a tuple, namely certain fixes [18]. Following [38], we also

design utility measure w.r.t. support, certainty, and quality to

evaluate the rule comprehensively.

1) Support: Unlike rules defined on one data source, editing

rules require not only the data to be fixed but also the master

data to satisfy predicates. Given a rule ϕ, its support S(ϕ)
denotes how many tuples in D can be applied by ϕ and Dm.

S(ϕ) =
∑

t∈D

fs(ϕ, t) (1)

fs(ϕ, t) is a signature function that outputs 1, if a tuple tm ∈
Dm can update t according to ϕ. Otherwise, fs(ϕ, t) = 0.

fs(ϕ, t) =

{
1, ∃tm ∈ Dm, t[Xp] = tp[Xp] ∧ t[X] = tm[Xm]

0, otherwise

2) Certainty: The certainty C(ϕ) denotes how many can-

didate fixes are returned according to ϕ and master data Dm.

fc(ϕ, ti) =

{
maxv count(v,ϕ)∑

v
count(v,ϕ) , if Cand(ti, ϕ) 6= ∅

0, otherwise
(2)

Cand(ti, ϕ) = {tm[Ym]|t[Xp] = tp[Xp] ∧ t[X] = tm[Xm],
tm ∈ Dm} are the candidate fixes returned by Dm according

to ϕ. And v denotes a candidate fix of Cand(ti, ϕ), i.e.,

v ∈ Cand(ti, ϕ). count(v, ϕ) is the count of the value v in

Cand(ti, ϕ). We have fc(ϕ, ti) ∈ [0, 1]. If fc(ϕ, ti) = 1, it

means that ϕ returns only one possible fix from Dm.

Based on fc(ϕ, ti), we can define the certainty C(ϕ) of the

rule ϕ as follows:

C(ϕ) =
1∑

ti∈D fs(ϕ, ti)

∑

ti∈D

fc(ϕ, ti) ∗ fs(ϕ, ti) (3)

where D is the input relation.

C(ϕ) describes the average certainty of repair results re-

turned by the rule ϕ over its covered tuples. C(ϕ) ranges from

0 to 1, and the closer it gets to 1, the more certain the rule is

about the result returned, which is exactly what we want.

3) Quality: Given a labelled instance Dl with a relation

schema R, same as D, we can further consider whether a

discovered rule ϕ can repair a tuple ti ∈ Dl correctly.

fq(ϕ, ti) = fs(ϕ, ti) ∗ κ(ϕ, ti) (4)

κ(ϕ, ti) identifies whether the most frequent candidate fix is

the truth.

κ(ϕ, ti) =

{
1, if argmaxv count(v, ϕ) = t̂i[Y ]

−1, otherwise

where t̂i[Y ] denotes the ground truth of ti ∈ Dl on the

dependent attribute Y and count(v, ϕ) returns the count of

the value v ∈ Cand(ti, ϕ).
Then, we can define the quality of the rule ϕ as below:

Q(ϕ) =
1∑

ti∈Dl
fs(ϕ, ti)

∑

ti∈Dl

fq(ϕ,Dl) (5)

Labelled data is optional. When there is no labelled data

available, we can omit the Quality measure. If most of the

input data are clean, we can also take the input data as labelled

data to obtain an approximate Quality measure.

4) Utility: Given an eR ϕ, we define utility U(ϕ) as a

comprehensive metric w.r.t. support, certainty and quality.

U(ϕ) = (logS(ϕ))2 × (C(ϕ) +Q(ϕ))

Figure 2 illustrates the relations of Utility U(ϕ) with Support

S(ϕ) and Certainty C(ϕ). Quality Q(ϕ) has similar effect

as Certainty and thus is omitted. Intuitively, rules leading to

certain fixes in high quality are preferred. Thereby, Utility

increases linearly as Certainty (and Quality), in Figure 2(a).

For Support, however, a rule with relatively large support,

not necessarily covering most tuples, is already useful (if the

corresponding quality is positive leading to correct fixes). To

avoid the high marginal benefit [31] of support for dominat-

ing the utility measure, we use log2 to scale the support.

Consequently, as illustrated in Figure 2(b), Utility is high

already with a relatively large Support, while further increase

of Support leads to marginal Utility increment.
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C. Editing Rule Discovery Problem

Due to the distinct schemes Rm and R, we need to first

apply schema matching [28], [33] to find a match M = {A :
{Am} | A ∈ X ∧ Am ∈ Xm}. M(A) denotes the matched

attribute Am of A. If there does not exist any matched attribute

of A, then M(A) = ∅. A schema matching algorithm can

be written as M(A,Am) ∈ {0, 1}, where M(A,Am) = 1
indicates that the attributes A matches Am, otherwise 0. In

this work, we assume that Rm and R are already matched, i.e.,

given the match M , and focus on discovering editing rules.

Given an input relation D of a schema R, a master relation

Dm of a schema Rm, a match M between schema R and Rm

(and an optional Dl), the editing rule (eR) discovery algorithm

aims to find eRs that can lead to certain fixes for D according

to Dm. Obviously, we do not hope that the discovered rule set

Σ includes any redundant editing rules. Thus, our target is to



mine a non-redundant set of eRs with high utility. Intuitively,

we say there exists redundancy in a pair of rules ϕ1 and ϕ2,

if the LHS in ϕ1 is a subset of LHS in ϕ2 and the constant

pattern in ϕ1 is also a subset of the pattern in ϕ2. Of course,

the opposite is also true. To avoid mining redundant rules, we

first introduce the domination relationship of patterns.

Definition 2 (Pattern Domination). Given two patterns tp1
and tp2, we say tp1 dominates tp2, denoted by tp1 ⋖ tp2, if

Xp1 ( Xp2 ∧ tp1[Xp1] = tp2[Xp1], where Xp1 and Xp2 are

sets of attributes specified in tp1 and tp2, respectively.

Based on the definition of pattern domination, we can define

the domination relationship of editing rules as follows.

Definition 3 (Editing Rule Domination). Given two edit-

ing rules ϕ1 = ((X1, Xm1) → (Y, Ym), tp1) and ϕ2 =
((X2, Xm2) → (Y, Ym), tp2), we say ϕ1 dominates ϕ2,

denoted by ϕ1 ⋖ ϕ2, if X1 ⊂ X2 ∧Xm1 ⊂ Xm2 ∧ tp1 ⋖ tp2.

Based on the editing rule dominate definition, the following

lemma describes the relationships of supports between two

editing rules when one is dominated by the other.

Lemma 1. Given two editing rules ϕ1 = ((X1, Xm1) →
(Y, Ym), tp1) and ϕ2 = ((X2, Xm2) → (Y, Ym), tp2), if ϕ1 ⋖
ϕ2, then S(ϕ1) ≥ S(ϕ2).

Given a set of editing rules Σ, we say it is non-redundant

if any eR ϕ1 ∈ Σ is not dominated by another eR ϕ2 ∈ Σ.

Definition 4 (Non-redundant Editing Rules Set). Given a set

of editing rules Σ, if ∄ϕ1, ϕ2 ∈ Σ, ϕ1 ⋖ ϕ2, then Σ is a non-

redundant set of editing rules.

In practice, we find that even if only non-redundant eRs are

returned, the number of rules is still large. An overly large

rule set not only makes it difficult for users to focus on the

valuable rules (i.e., with high utility), but also makes it more

time-consuming to apply. Thus, we propose to only discover

top-k editing rules with the highest utility. We give a formal

definition of the Editing Rule Discovery problem as follows.

Problem 1 (Editing Rule Discovery). Given input data D,

master data Dm, (optional Dl), a match M between schema

(R,Rm), a target attribute pair (Y, Ym), rule utility function

U and a constant K, the Editing Rule Discovery problem is to

find a non-redundant set of K editing rules Σ whose utility

measures are maximized.

D. Enumeration-based Editing Rules Discovery

Following the classical rule mining approaches such as

CTANE [17], we propose EnuMiner that also starts from

singleton attribute sets (X,Xm) and proceeds to add more

attributes pairs to LHS(ϕ) or value conditions to pattern

tp. Similarly, EnuMiner also adopts a variety of pruning

strategies, such as pruning according to support, to speed

up the mining process. Since the enumeration space size

Nenum = 2|M |∗
∏

A∈R\Y (|dom(A)|+1) is exponentially large

in the number of attributes, traversing the entire space is too

expensive when the data set is large, even with the help of

pruning strategies. Thereby, EnuMiner fails to mine data with

lots of attributes and large domains efficiently (see Section V).

Implementation details of EnuMiner can be found in [4].

III. REINFORCEMENT LEARNING FOR RULE DISCOVERY

In this section, we first justify our choice of reinforcement

learning (RL) to avoid enumeration in editing rule discovery.

An overview of RLMiner as an RL system is first presented,

with implementation details in the following Section IV.

A. Why Reinforcement Learning?

In many cases, an exact set of non-redundant editing rules

that consists of top-k eRs sorted by utility measure is unnec-

essary. The users may prefer an algorithm that can discover

an approximate set of editing rules that still achieves similar

cleaning performance as the rule set returned by EnuMiner,

but only costs 10% time of EnuMiner. To achieve this, we

need smarter search and pruning strategies.

In recent years, reinforcement learning has achieved su-

perhuman performance over many complex tasks such as

Go [34]–[36] and Database Tuning and Optimization [22],

[23], [43], [46]. This demonstrates the potential of reinforce-

ment learning to solve problems with large domains and

decision spaces.

If we see the rule mining process as a decision process,

reinforcement learning can also be applied to train an agent

to intelligently discover and prune rules, thus avoiding a large

number of enumerations and greatly reducing the time cost.

Following the idea, we propose to model the rule mining task

as a Markov Decision Process, that is, each time we specialize

an editing rule ϕ by adding a new pair of attributes (A,Am)
to LHS(ϕ) or an attribute-value pair (A, v) to tp.

Definition 5 (Editing Rule Discovery Markov Decision Pro-

cess). Editing Rule Discovery Markov Decision Process is

defined by a four-tuple 〈S,A, T ,R〉.
S is the state space, where each s ∈ S corresponds to an

editing rule ϕ.

A is a set of actions and each a ∈ A denotes adding a pair

of attributes (A,Am) to LHS(ϕ) or adding a constant v on

attribute A to pattern tp in ϕ.

T : S ×A 7→ S is a transition function linking state-action

pairs to new states, i.e., generating a new editing rule ϕ′ from

ϕ by adding (A,Am) to LHS(ϕ) or (A, v) to pattern tp of ϕ.

R : S 7→ R is a reward function mapping states to a reward

value that is calculated according to rule measures.

B. Rule Discovery by Building a Rule Tree

Following the rule discovery of EnuMiner and Definition 5,

we propose to model the process of rule discovery as tree

growth as illustrated in Figure 3, where each node in the tree

is a rule. A child node is generated by refining its parent

node. As shown in Figure 3, given a parent node with a rule

ϕ = ((X,Xm) → (Y, Ym), tp), there are two operations for

growing a child from it.
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Fig. 3: Example of a rule tree in discovery

(1) Adding a pair of attributes (A,Am), Am ∈ M(A) to

the determinate (LHS) attributes, i.e., ϕ′ = ((X ∪ {A}, Xm ∪
{Am}) → (Y, Ym), (tp)).

(2) Adding a new condition in pattern tp by specifying a

value v ∈ dom(A) on attribute A ∈ R \ (Xp ∪ Y ), i.e., ϕ′ =
((X,Xm) → (Y, Ym), tp ∪ {(A, v)}).

To avoid generating the same rules multiple times, we

maintain a hash table to record the considered rules. Before

generating a new rule, we first check the possible operation

spaces according to the current rule and whether the generated

rule has already been considered.

Example 2 (tree growth for rule discovery). For the node N1

in Figure 3, its rule is ϕ1 = ((AC,AC) → (Case, Infection),
tp = ()) where the determinate attribute set LHS(ϕ1) is

{(AC,AC)}, the dependent attribute pair is (Case, Infection),

and the pattern is empty. If we add an attribute pair (ZIP,Zip)

into the rule ϕ1, then we will obtain a child node N3

of N1. The rule in N3 is ϕ3 = ((ZIP,Zip),(AC,AC) →
(Case, Infection), tp = ()). The maintained hash table avoids

adding (AC,AC) into ϕ2 of N2, which will generate a consid-

ered rule ϕ3. Then, we can further refine ϕ3. For example,

if we add (City, “HZ”) or (Sex, “Male”) to ϕ3, another two

editing rules ϕ4 and ϕ5 are generated and the corresponding

nodes are grown from N3.

C. An Overview of RL for RLMiner

Following Definition 5, we propose a reinforcement learning

based rule mining algorithm, namely RLMiner. RLMiner

learns to build a rule tree to discover editing rules. Figure 4

illustrates the overview of RLMiner. Next, we briefly introduce

each module in RLMiner.

1) Environment: It consists of the input data D, the master

data Dm, (the optional Dl) and the growing rule tree.

2) Agent: Agent is a rule miner system. It first receives the

reward of the last action and the state from the environment,

and then updates the policy to generate the next rule according

to the current state.

3) State: Before we generate a new rule, we should observe

the environment first, including what rules are generated thus

far and how many tuples are covered by those rules. Intuitively,

the state in RLMiner should represent the whole rule tree.

However,encoding a growing tree into a fixed-length vector

is challenging. If we assign a unique label to each rule

and represent the rule tree as a multi-hot vector, the vector

length would be too large. Although recent works of graph

representation [27], [45] can embed a graph into a fixed-

length vector, they are not suitable to encode a growing tree

whose length increases at each time step. Recall that our

rule discovery strategy generates new rules by refining a rule

contained in a node of the tree so that we can focus only on

one node when generating a new rule. Thus, we propose to

encode a rule (node) rather than the whole rule tree. The state

encoding should identify LHS(ϕ) and tp of the corresponding

rule. We will introduce the details of the state encoding in

Section IV-A.

4) Action: Action at denotes the behavior of the agent

at time t. As stated in Section III-B, we can generate a

new rule by adding a pair of matched attributes to LHS(ϕ)
or specifying an attribute-value pair (A, v) in the pattern

tp. Intuitively, the attribute pair selection action is discrete.

For text attributes, the attribute value selection action is also

discrete. For numerical attributes, we can treat them as discrete

attributes or discrete them into ranges. Then, the action space

is modeled as a discrete space. More details and discussions

can be found in Section IV-B.

5) Policy: The policy is a map that models agent’s action

selection according to the state s. Since our state and action

are discrete, it is tractable to estimate the “value” for each

selection, where “value” here evaluates how good a state is

[41]. For this reason, compared to policy-based RL algorithms

designed for continuous action space, Q-learning methods

are more suitable for our scenario. Q-learning methods first

estimate the action-value Qπ(s, a). And the policy greedily

chooses the action a with the maximum Qπ(s, a) as the next

action for s. Specifically, a deep neural network is used to

estimate Qπ(s, a) in DQN [26] and its variants. The input of

the value network is the encoding vector of the current rule

and the output is the estimated values for each action, i.e., the

attribute pair or attribute value pair with higher value is going

to be added into the current rule.

6) Reward: Reward is a scalar rt that represents the differ-

ence between the performance at time t and time (t− 1). The

design of reward is the soul of RL which directly affects the

performance of the model. Benefiting from domain knowledge

and rule measure defined in Section II-B, we design a reward

function that is in line with rule mining and enables RLMiner

to achieve quick convergence and good performance.

IV. IMPLEMENTATION DETAILS

A. State Representation

In Section III-C, the state is the encoding of a rule (node).

We represent the state by a one-hot vector s, consisting of two
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Fig. 4: RLMiner as an RL system

parts: LHS attributes state sl and pattern specification state sp.

s = [sl; sp] (6)

dim(sl) =
∑

A∈R\Y

|M(A)| (7)

dim(sp) =
∑

xi∈XC

Nsplit +
∑

xi∈XD

|dom(xi)| (8)

where XD is the set of discrete attributes and XC is the set

of continuous attributes. The LHS attributes state sl represents

what attribute pairs in LHS. Each dimension of sl denotes a

pair of matched attributes (X,Xm). The pattern specification

state sp specifies what attributes and values are specified in

the pattern tp of ϕ. Each dimension of sp corresponds to a

specific value from the domain of A ∈ R \ Y .

In many existing rule discovery algorithms [17], continu-

ous attributes are also seen as discrete attributes. If so, the

domain of continuous attributes would be too large to encode.

Compared to discrete values, continuous values are compara-

ble, since continuous attributes contain ordering relationships.

Moreover, it is unnecessary to specify each continuous value

in the pattern, which results in low support for the generated

rule. In most cases, a range of continuous values satisfy the

same rule. Thus, we propose to split continuous attributes into

multiple ranges, where Nsplit is the number of ranges.

To encode discrete attributes in ϕ, each specific value in tp
can be encoded by a |dom(xi)|-dimensional one-hot vector.

However, this encoding approach will cause the encoding

dimension to be very large, if the domain size is large. When

we learn a DNN-based value network, a too large dimension

of state representation leads to a huge number of parameters in

the value network, making the network difficult to converge.

A simple and straightforward idea is to reduce the domain

size by using common prefix. In this way, we can reduce the

encoding dimension from dom(xi) to K ≪ dom(xi).

B. Action Space

As stated in Section III-B, we add a new attribute pair

(A,Am) to LHS(ϕ) or attribute value (A, v) to the pattern

tp of ϕ. Note that we cannot change the existed attribute

pairs in LHS(ϕ) or attribute value pairs in tp. Therefore, the

corresponding actions of existed LHS(ϕ) and tp should not

be selected. Consider a node with rule ϕ = ((X,Xm) →
(Y, Ym), tp), we can only consider the attribute pairs in

{(A,M(A))|A ∈ R\X} as the candidate determinate attribute

pair for LHS(ϕ), and the attribute value pair {(A, v)|A ∈
R\Xp, v ∈ dom(A)} as the candidate condition for pattern tp.

To avoid enumerating all combinations, we add a stop

operation for pruning. If the policy returns the “stop” action,

it indicates that there does not exist any new attribute pair

(A,Am) or attribute value pair (A, v) which can be added

into the current rule to obtain a large reward. Then, RLMiner

will stop refining the rule from the current node and move

to the next node. In this way, RLMiner prunes the non-

explored search space of the current node. In each step,

we will select one operation for the current node with rule

ϕ = ((X,Xm) → (Y, Ym)), tp) from the followings:

(1) Adding an attribute pair from {(A,M(A))|A ∈ R \X}
to LHS(ϕ);

(2) Specifying one more condition from {(A, v)|A ∈ R \
Xp, v ∈ dom(A)} in tp;

(3) Stopping refinement and moving to the next node.

Following the state encoding, we define the action space

with a vector a consisting of three parts al, ap and astop

a = [al; ap; astop] (9)

dim(al) =
∑

A∈R\Y

|M(A)| (10)

dim(ap) =
∑

xi∈XC

Nsplit +
∑

xi∈XD

|dom(xi)| (11)

dim(astop) = 1 (12)

al denotes which attribute pair should be added into LHS(ϕ).
ap represents which attribute value pair is specified as a new

condition in tp. astop is the “stop” action that is encoded as a

one-dimensional vector. We can find that al and ap are actually

corresponding to state encoding sl and sp.

C. Value Network

Recall that our action is to refine a given rule via the

operations (1) and (2), and never deletes or replaces the

existed attributes pairs in LHS(ϕ) or attribute value pairs in

pattern tp. In addition, following EnuMiner, we should also

not consider any action that will generate an existing rule. To

achieve it, we propose a rule mask mechanism to restrict the

action space according to the current state and the rule tree.

The mask is initialized as a vector filled with m = ~1.

Each dimension corresponds to an action. By setting the

corresponding m to 0, the policy will not consider those

actions as the next action. As illustrated in Algorithm 1, we can

divide the mask into local mask (lines 3-11) and global mask

(lines 12-17). The local mask is designed to generate the mask

according to the state s of the current rule ϕ = ((X,Xm) →
(Y, Ym), tp). For each attribute pair (A,Am) ∈ LHS(ϕ), the

actions corresponding to (A,Am) are masked (lines 6-8). For



Algorithm 1 mask

Input: State Encoding s; Discovered Rule Set Σ;

Output: Mask vector m;

1: m = ~1, |m| = dim(s)+1 // Never mask the last dimension

corresponding to stop action

2: candIndex = {s[ix] = 1|ix ∈ [0, |m|)}
3: // Local mask according to s

4: for ix ∈ candIndex do

5: res = invertedIndex[ix]

6: if res is (A,Am) then // Mask attribute action space

7: for (A,A′
m), A′

m ∈ M(A) \ {Am} do

8: m[indexOf(A,A′
m)] = 0

9: if res is (A, v) then // Mask pattern action space

10: for v′ ∈ dom(A) \ {v} do

11: m[indexOf(A, v′)] = 0

12: // Global mask: avoid repeated enumerations

13: for ϕ ∈ Σ do

14: s0 = decode(ϕ)
15: diff = s0 ⊕ s

16: if sum(diff) = 1 and sum(s0)− sum(s) = 1 then

17: m[i] = 0, where diff[i] = 1

18: return m

each attribute value pair (A, v) ∈ tp, the actions corresponding

to (A, v′) for any v′ ∈ dom(A) are also masked (lines 9-

11). The global mask is proposed to avoid discovering rules

repeatedly. We choose to mask any action that will transform

s 7→ s0 and s0 already exists (lines 12-17).

The rule mask mechanism is applied to the original logits

outputted by the value network. The logits corresponding to

the actions not allowed will be assigned a small negative value

so that the greedy policy will not select them later.

The masked value network π(st) is shown in Figure 5.

The input is the state encoding st in Section IV-A. Then,

a deep neural network extracts features from st and obtains

the corresponding feature vector zt ∈ Rh, where h is the

dimension of the feature vector. A linear layer W ∈ Rh×d

calculates the logits qt ∈ Rd (Q-values) according to zt, where

qt[i] denotes the q-value of the action at[i]. Then a rule mask

layer is applied to restrict the action space.

q′ = q ⊙m− inf ∗ (1−m) (13)

Example 3 (masked value network). Figure 5 shows input

data with schema R = (A1, A2, Y ), master data with schema

Rm = (Am1, Am2, Ym) and a match M = {A1 : {Am1
},

A2 : {Am2
}}. According to the state encoding in Section IV-A,

the input state st = [1, 0, 1, 0, 0, 0, 0, 0] denotes the rule

ϕ = ((A1, Am2) → (Y, Ym), tp[A1] = (v1)). Then, the DNN

transforms st into zt and the MLP calculates its logits qt.

First, we consider the local mask. Since the attribute pair

(A1, Am1) already exists in LHS(ϕ), we should not consider

(A1, Am1) as our next action. Thus, the action logits qt[0] are

masked. For the pattern tp[A1] = (v1), A1 is included in Xp
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Fig. 5: Masked value network

so that all actions corresponding to values in dom(A1) are

masked, i.e., qt[2 : 5] are masked.

Then, we consider the global mask. According to Algo-

rithm 1, the action corresponding to (A2, v6) should be

masked, otherwise the generated rule will be the same as

s2 that already exists in the discovered rule set Σ. Then, we

can obtain the masked logits where allowed action is in blue.

It means that RLMiner can add (A2, Am2) into LHS(ϕ) or

add (A2, v4) or (A2, v5) into the pattern or stop refining the

current rule and move to the next node in the rule tree.

D. Reward Function

At time t, the agent will generate a new rule by refining the

current rule. In order to help the agent learn a good policy,

we need to design a reward function to evaluate how good the

discovered rule is. As discussed in Section II-B, utility is a

comprehensive measure for rule. We propose to calculate the

reward based on utility as shown in Algorithm 2.

For “stop” action, we assign it a constant θ reward that

should be a small positive value such as 0.01 used in our

study (lines 1-2). The reason we suggest θ as a positive value

is to encourage the agent to prune automatically and move to

the next rule when it cannot generate a good new rule. But

if we assign θ a big value, the agent may be drunk on the

“easy money”, i.e., getting a large sum of rewards by always

choosing the “stop” action, and fail to discover valuable rules.

Note that the reward here is based on utility U and the utility

is calculated by querying input data D and master data Dm

with rule ϕ. Therefore, we maintain a hash map RΣ to store

the reward for each discovered rule. In this way, we avoid

executing the same queries when discovering the same editing

rules in different episodes during RLMiner training, and thus

greatly reducing the time cost.

Compared to the nodes in the deeper level, the nodes in

the lower level contain more general rules that may lead to



Algorithm 2 env.CalReward

Input: Current State st; Current Node N ; Action at; Rule

Reward HashMap RΣ;

Output: Reward rt
1: if at is “stop” then

2: rt = θ // θ = 0.01 by default.

3: else

4: // Calculate the rule reward

5: st+1 = transform(s, a)
6: if st+1 ∈ RΣ.keys then

7: rt = RΣ.get(st+1) // Reuse reward

8: else

9: ϕ = decode(st+1)
10: if S(ϕ) ≥ η then

11: rt = U(ϕ)
12: else

13: rt = −0.01 // By default

14: RΣ.put(st+1, rt) // Store the reward for each rule

15: if N.children = ∅ and S(ϕ) ≥ ηs then

16: rt = rt + (rt −RΣ.get(st))

17: return rt

many incorrect fixes and thus be of low utility. For example, a

single “First Name” attribute cannot accurately infer a person’s

information, but if the “Last Name” is added, the utility of the

rule can be greatly improved. It causes the utility of the rule

in the lower-level node may exceed the rule in the upper-

level node. To encourage RLMiner to explore nodes with low

reward but whose child contains rules with high utility, when

we generate a valid new rule from a node with no children, the

reward for that action will be added with the utility difference

between the current and the new rule (lines 15-16).

On the other hand, if the node can already return correct

fixes and achieve high utility, the reward function will penalize

RLMiner for choosing to grow new nodes from the current

node. Specifically, as shown in Lines 15-16 in Algorithm 2,

when we generate a valid new rule with S(ϕ) ≥ ηs from a

node with no children, the reward for the action is the sum

of two parts: (a) the original reward rt of the new rule and

(b) the reward difference between the new and current rule,

i.e., rt − RΣ.get(st). On one hand, if rt > RΣ.get(st), it

encourages RLMiner to generate child rule with high utility

from the current rule with low utility, by assigning it extra

rewards. On the other hand, for rt < RΣ.get(st), it penalizes

RLMiner for continuing to generate over specific rules from

highly-utility rules. In addition, if the generated rule cannot

satisfy the support threshold, i.e., S(ϕ) < ηs, the reward

function will return a constant value −0.01 (Lines 10-13),

also preventing RLMiner from generating too specific rules.

E. Overall Algorithm

The overall algorithm of RLMiner is as shown in Algo-

rithm 3. RLMiner starts with the root node of the rule tree, s∗.

The goal of RLMiner is to learn an optimized value function

Algorithm 3 RLMiner

Input: Input Data D; Master Data Dm; To-Repair Attribute

Y ; Maximum number of transitions N ; Rule Number K;

Labelled Data Dl (optional);

Output: Value Network π

1: Init environment env=BuildEnv(
⋃

dom(A), Dm, D,Dl)
2: Init rule reward hashmap RΣ = HashMap()
3: Init Replay Memory replay = [] and Value Network π

4: while n < N do

5: Reset State s = Reset(s∗)
6: Generate the mask m = mask(s, env)
7: done=False

8: while not done do

9: Calculate Q values q = π(s)
10: Generate the mask m = mask(s, env)
11: Mask Q values q′ = q ⊙m− inf ∗ (1−m)
12: Select action a = argmaxa∈A q′[a]
13: Get next state s = env.GrowTree(s, a) //Alg. 4

14: if s is None or |env.tree.leaves| ≥ K then

15: done = True

16: Calculate reward r = env.CalReward(s, a,RΣ)
//Alg. 2

17: Collect transition replay.add((st, at, rt, st+1))
18: Optimize Value Network via RL algorithm by

sampling from replay memory

19: n = n+ 1

20: return π

π that can precisely estimate the value of each action for the

state. With π, the greedy policy will refine the current rule by

selecting the action with maximum value and discover rules

by growing a rule tree in this way.

The details of tree growing are illustrated in Algorithm 4.

Specifically, if the selected action corresponds to “stop”,

RLMiner will stop growing from the current node and move

to the next node in lever-order, i.e., bread-first-search (lines 1-

3). Otherwise, we will refine the current rule according to the

action and grow a new node from the current node (lines 5-17).

As EnuMiner, RLMiner also employs several optimizations

for acceleration except reusing utility in Algorithm 2. First,

RLMiner also sets a support threshold ηs and only rules

satisfying S(ϕ) ≥ ηs will be added as leaf nodes and refined

later (lines 14-17). And if the rule only returns one certain

fix, we do not need to further refine it (line 14). In addition,

RLMiner stores the index of cover(ϕ) and conducts subspace

search on it like EnuMiner (lines 9-10). After training, the

rules in leaf nodes are returned as the discovered editing rules.

Then we will reset the state and the rule tree.

V. EXPERIMENTAL STUDY

A. Experimental Settings

The experiments run on a machine with 2.1GHz CPU,

Nvidia 1080ti GPU and 128GB memory. The source code and

data have been made available online [3].



Algorithm 4 env.GrowTree

Input: Current State st; Action at;

Output: Next State st+1

1: if at is “stop” then

2: node = env.getNextNode() // Level-order Walk

3: st+1 = node.state

4: else

5: st+1 = copy(st)
6: st+1[at] = 1
7: ϕ = decode(st+1) = ((X,Xm) → (Y, Ym), tp)
8: nodec = env.tree.currentNode

9: Dc = nodec.getCover(), Dc ⊂ Dm //

10: Dp = {ti|ti[X] = tp[X], ti ∈ Dc} // subspace search

11: node = Node(st+1, Dp, parent = nodec)
12: node.cover = Dp

13: nodec.children.add(node)
14: if C(ϕ) < 1 and S(ϕ) ≥ ηs then

15: env.queue.add(node)

16: else

17: continue // stop refinement

18: return st+1

1) Dataset: We employ several public and real datasets

for evaluation. Table I provides statistics on input/master

schema size (the number of attributes), input/master data size

(the number of tuples). In the experiments, we do not use

any labelled data Dl but take input data D to obtain an

approximate Quality measure as discussed in Section II-B3.

For the datasets without labelled errors, Nursery, Adult and

Covid, we assume the original data clean. Thereby, the input

data and master data are sampled separately from the original

dataset. To simulate dirty input, following the same line of

error generation [10], we inject errors into the input data.

(1) Adult [1] is a publicly available dataset in size 48842.

We randomly sample 40000 tuples as input data and 5000

tuples as master data. “Income” is taken as the Y-attribute.

The default support threshold ηs of dataset Adult is 1000.

(2) Covid-19 [7] is a public dataset that records COVID-

19 information in South Korea. We keep the tuples whose

values in the attribute “state” are “released” as master data and

randomly sample 2500 tuples as input data. “infection case”

is taken as the Y-attribute. The default support threshold ηs of

dataset Covid-19 is 100.

(3) Nursery [2] is a public dataset whose size is 12960.

Similarly, we randomly sample 10000 tuples as input data

and 2980 tuples as master data. “finance” is taken as the Y-

attribute. The default support threshold ηs of Nursery is 1000.

(4) Location [6] contains location information of 2,559

coffee shops, with nine attributes. we manually label the errors

and the corresponding truths. It has 14.7% missing values in

the Postcode attribute, i.e., already dirty. We download the

clean postcode data from the government website [8] as master

data, including the postcode information of 3,430 counties.

There are five attributes in the master data, among which

TABLE I: Dataset summary

Dataset # A # Am # Input # Master

Adult 10 9 40000 5000

Covid-19 7 8 2500 1824

Nursery 9 9 10000 2980

Location 9 5 2559 3430

“City”, “County”, “AreaCode” and “Postcode” are matched

with the Location dataset. The ground truths of the missing

values are then manually labelled referring to the master data.

In addition to missing values, we also find 19.6% real-world

errors existing in the raw data.

2) Criteria: We evaluate the correctness of all cell pre-

dictions returned by applying the discovered editing rules.

As illustrated in Table I, all the to-repair attributes contain

multiple classes. Thus, the weighted precision/recall/f-measure

are considered as the evaluation metric.

Precisionw =
1∑

l∈L |ŷl|

∑

l∈L

|ŷl|Precision(yl, ŷl)

Recallw =
1∑

l∈L |ŷl|

∑

l∈L

|ŷl|Recall(yl, ŷl)

F-Measurew =
1∑

l∈L |ŷl|

∑

l∈L

|ŷl|F-Measure(yl, ŷl)

In addition to the proposed EnuMiner and RLMiner, we

adapt the CFD discovery algorithm for comparison. An intu-

itive approach is to mine CFDs on master data and convert

them to eRs. The CFDs whose attributes in LHS and the

pattern are matched with the attributes in input data can be

transformed. The CFD discovery algorithm CTANE [5] is

implemented in C++. Both EnuMiner and RLMiner are imple-

mented in python and the number of rules K is set to 50. Since

CTANE and our proposed methods are implemented with

different programming languages and CTANE only discovers

CFDs on master data of smaller size, it is unfair to compare

the time cost. We thus focus on time cost comparison between

EnuMiner and RLMiner. Note that for RLMiner, the time cost

is composed of both training time and rule discovery time. All

the experiments repeat five times, and the mean and standard

deviation of them are reported as the final results.

B. Discovery Results

1) Rule Statistics: We report the mean, standard deviation

(std), max and min on the number of left hand side (LHS)

attributes and patterns in the discovered rules. For instance,

the eR ϕ0 = ((A1, Am1), (A2, Am2) → (Y, Ym), tp[A3] = v)
has LHS length 2 and pattern length 1. As shown, RLMiner

does not return too specific or too general rules, with lengths

similar to those discovered by RLMiner. It is worth noting that

in the Nursery dataset, the average length of EnuMiner reaches

5.62, i.e., too specific. The reason is that the domain size of

Nursery is small. Thereby, more attributes are employed to

determine the fixes. Nevertheless, the small domain size leads

to higher support, i.e., avoiding the negative reward −0.01 in



TABLE II: Statistics on rule length

Dataset Method
# LHS

(mean+std)
# LHS

(max/min)
# Pattern

(mean+std)
# Pattern

(max/min)

Nursery
CTANE 1.55± 0.73 4 / 1 3.37± 0.76 4 / 1

EnuMiner 5.62± 0.57 7 / 5 0.00± 0.00 0 / 0
RLMiner 1.18± 0.38 2 / 1 0.72± 0.45 1 / 0

Adult
CTANE 1.76± 0.65 3 / 1 1.33± 0.47 2 / 1

EnuMiner 1.13± 0.35 3 / 1 0.88± 0.33 1 / 0
RLMiner 1.24± 0.49 3 / 1 1.17± 0.55 2 / 0

Covid
CTANE 1.38± 0.51 3 / 1 1.54± 0.55 3 / 1

EnuMiner 1.54± 0.78 4 / 1 0.81± 0.60 3 / 0
RLMiner 2.04± 0.81 4 / 1 0.90± 0.71 2 / 0

Location
CTANE 1.00± 0.00 1 / 1 1.00± 0.00 1 / 1

EnuMiner 1.06± 0.24 2 / 1 0.94± 0.24 1 / 0
RLMiner 1.03± 0.16 2 / 1 1.11± 0.40 2 / 0

RLMiner. Consequently, it avoids overfitting, and leads to a

smaller LHS length.

Moreover, we illustrate some examples of the discovered

rules in the datasets Covid-19 and Location.

ϕ1 = ((city, city), (confirmed date, confirmed date) →

(infection case, infection case), tp[state] = release)

ϕ2 = ((area code, area code), (County, County) →

(Postcode, Postcode), ())

Similar to the eR in Example 1, ϕ1 states that we can infer

the “infection case” for the person, whose state is “release”,

according to “City” and “confirmed date” from the master

data. Referring to ϕ2, “Postcode” can be inferred by “County”

and “area code” in master data. The lengths of the left hand

side attributes in both rules are 2, whereas ϕ1 has an extra

pattern specified on one attribute.

2) Rule Effectiveness: To evaluate the effectiveness of the

mined rules, we utilize the mined rules to infer the values

of the Y-attribute and compare the inferred values with the

original value. Given an editing rule ϕ ∈ Σ and a tuple t, we

can obtain the certainty score σv,ϕ = count(v,ϕ)∑
v′ count(v′,ϕ) for each

candidate fix v returned by applying ϕ. The candidate fix with

the maximum sum of certainty scores is considered as the fix

argmaxv
∑

ϕ σv,ϕ.

Table III demonstrates the evaluation results over the four

datasets. EnuMiner and RLMiner achieve similar results on

all three datasets, which proves that RLMiner can mine high-

quality rules without iterative the entire enumeration space.

The CFD discovery algorithm CTANE [17] has low recall over

the four datasets. The results are not surprising, since CFDs

discovered from master data could only specify conditions on

master data attributes and values. More eRs with conditions

on input data attributes and values are ignored. Indeed, the

distributions of input and master data may differ. A rule that

has low support in master data (and thus is pruned) may have a

great value on input data. On the other hand, since the master

data may not be extensive, the rules discovered from the master

data could be underfitting.

The precision is about 0.7 or even lower in the datasets

Nursery, Adult and Covid. The reason is that for these three

datasets, we do not have the labels of errors embedded in

the raw data. Thereby, we manually inject additional errors

TABLE III: Repair results of RLMiner compared to baselines

Dataset Method Precision Recall F1

Nursery
CTANE 0.51± 0.01 0.23± 0.00 0.32± 0.01

EnuMiner 0.52± 0.00 0.52± 0.00 0.52± 0.00

RLMiner 0.52± 0.01 0.52± 0.00 0.51± 0.01

Adult
CTANE 0.77± 0.00 0.19± 0.00 0.31± 0.00

EnuMiner 0.78± 0.01 0.77± 0.00 0.67± 0.00

RLMiner 0.75± 0.01 0.76± 0.01 0.70± 0.03

Covid
CTANE 0.58± 0.02 0.17± 0.00 0.26± 0.01

EnuMiner 0.62± 0.01 0.63± 0.01 0.61± 0.01

RLMiner 0.73± 0.10 0.59± 0.06 0.63± 0.03

Location
CTANE 0.70± 0.00 0.53± 0.00 0.59± 0.00

EnuMiner 0.86± 0.00 0.86± 0.00 0.85± 0.00

RLMiner 0.90± 0.03 0.77± 0.07 0.81± 0.03
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Fig. 6: Varying noise rate over Adult

in the data and evaluate the repairs by comparing with the

original data. It is worth noting that the original data may

also be dirty with unknown errors and truths. To illustrate

this, we also report the results of noise rate 0, i.e., no

additional errors injected, in Figure 6. As shown, even without

injecting additional errors, there are still some data repaired

with comparable F-Measure.

Nevertheless, to conduct a more reliable evaluation, we

consider another dataset, Location, by manually labelling the

errors embedded in the raw data and the corresponding truths,

as introduced in Section V-A1. Table III shows that the

relationships of different methods’ results on Location with

real errors are generally consistent with the randomly sampled

datasets. Moreover, the accuracy on Location is higher than

the other datasets with manually added errors. The reason is

that these raw datasets may originally contain errors but not

labelled, and thus leading to lower precision and recall.

C. Varying Data Features

1) Varying Noise Rate: We test the algorithms at different

noise rates to evaluate the robustness of algorithms against

noise. As shown in Figure 6(a), both EnuMiner and RLMiner

are stable under various noise rates.

RLMiner shows order-of-magnitude improvement in time

cost but is more sensitive to noise. The reason is that RLMiner

does not traverse the entire search space for efficiency. It is not

surprising that EnuMiner leads to more stable results by costly

enumerating all the possible rules. Nevertheless, the difference

in accuracy is not significant, especially over the large dataset

Adult, as illustrated in Figure 6, i.e., a worthwhile trade-off.

2) Varying Duplicate Rate: The duplicate rate d% means

how many input data correspond to the same entity in Dm.
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Fig. 7: Varying duplicate rate over Adult
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Fig. 8: Varying input data size over Adult

We fix master data size as 5000 and input data size as 10000.

Then we first sample d% tuples from the master data and the

others from other data. As shown in Figure 7, we can find F-

Measures of EnuMiner and RLMiner increase as the duplicate

rate d% increases. This is accord with our intuition, because

the more input data exists in the master data, the likely it is

to discover eRs that can return fixes from the master data.

D. Varying Data Size

To evaluate the scalability, we test algorithms by varying

input data sizes and master data sizes.

1) Varying Input Data Size: To show the scalability of the

proposed discovery algorithms, we vary input data sizes of

Adult dataset from 10k to 40k, and the experimental results

are shown in Figure 8. Obviously, when the input data size

increases, the domain size increases. After we get the schema

matching result as introduced in Section II-C, EnuMiner needs

to enumerate combinations of attributes and values for LHS

and patterns of the rules. That is, its enumeration space size is

positively associated with the input domain size. As the input

data size increases, the time costs of EnuMiner increase, while

that of RLMiner does not increase significantly, demonstrating

superior scalability of RLMiner.

2) Varying Master Data Size: To see how master data size

affects the performance of algorithms, we fix input data size

as 40k and vary master data sizes from 1k to 5k over Adult

dataset. The F-measure and time cost results are illustrated

in Figure 9. Compared to the results of input data size in

Figure 8(b), the master data size has less effect on the time

consumption of EnuMiner. By contrast, RLMiner is still more

efficient on master data of all sizes.

In the experiments, we randomly sample multiple times to

get different master and dirty datasets. Figures 8 and 9 report

the mean (bar) and variance (interval) of the results in multiple
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Fig. 10: Incremental input data over Adult

times, to illustrate the sensitivity w.r.t. the choice of the master

data sample. As shown, the variances of the results are small,

illustrating the robustness of our proposals. It is not surprising

that the variance of RLMiner guided by the learned model is a

bit larger than that of EnuMiner enumerating all the possible

rules.

It is notable that in most cases, the left hand side (LHS)

attribute set of editing rules is small, as illustrated in Table II.

In this sense, limiting the size of LHS X to 3 is a practical

heuristic strategy. We implement a method EnuMinerH3 by

limiting the length of LHS attributes and patterns to 3. The

results in Figures 8 and 9 show that EnuMinerH3 achieves

nearly the same precision and recall as EnuMiner, but takes

much less time. Nevertheless, the time cost of EnuMinerH3 is

still much higher than that of RLMiner. Such a significantly

higher time cost prevents the heuristic handling the incremen-

tally enriched input and master data, as introduced in Section

V-D3 below.

3) Incremental Discovery: As shown in Figure 6 and Figure

7, EnuMiner costs about 4.7 hours, while the heuristic Enu-

MinerH3, also takes about 1.2 hours. It might be acceptable

to take hours if conducted only once. In practice, however,

both the input data and the master data are enriched gradually.

That is, the discovery is performed repeatedly. As illustrated in

Figures 10 and 11, an efficient discovery algorithm is highly

desired. It is also the reason why we introduce RLMiner-ft

with fine-tuning to further reduce the time cost of incremental

discovery, w.r.t. the enriched input and master data.

As illustrated in Figures 10 and 11, the input and master

data are enriched incrementally. Rather than re-training and

discovering over the enriched data each time, RLMiner-ft only

fine-tunes the model. As shown, the F-Measure of RLMiner-

ft is very close to those by EnuMiner or RLMiner starting

from scratch. The results exhibit the good generalization of
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our approach. The corresponding time cost of RLMiner-ft is

of course much lower.

4) Training and Inference Time Costs: As shown in Fig-

ure 4, a step means the agent selects an action at according to

the current state st and the environment updates the state to

st+1. An episode in RLMiner represents the entire process of

generating a rule tree from scratch. Following [24], we train

RLMiner with a fixed number of steps (5000) instead of a

fixed number of episodes.

We show the training costs of RLMiner (from scratch) in

Figure 12(a), and RLMiner-ft (fine-tuning) in Figure 12(b).

Since fine-tuning uses less steps, the corresponding time cost is

lower. We also show the inference time of RLMiner in Figure

12. RLMiner generally mines top-K rules in about 150 steps

in the inference phase, taking less time than the training phase.

VI. RELATED WORK

A. Rules with External Data

Rules-based approaches play an important role in data

cleansing due to their good interpretability (e.g., [21], [42]).

In recent years, more attention has been paid to data

cleansing leveraging high-quality external data. For example,

KATARA [13] is crowd powered data cleaning system that

utilizes rules about knowledge base for repair. Detective

rules [20] is a kind of graph-based rule and defined on

knowledge base for data cleaning. Editing rules [18] are

designed for leveraging relational master data to repair data.

The previous work [18] focuses on the editing rule definition

and determining certain fixes with editing rules. There does

not exist any efficient and effective editing rule discovery

algorithm. Thus, our work is aimed to discover high-utility

editing rules efficiently. When the data size is large, our

proposed RLMiner can efficiently discover a set of editing

rules from data, because RLMiner avoids enumerating all

candidate rules.

B. Rule Discovery

Unfortunately, our solution designed for editing rule (eR)

discovery cannot be applied to discover other types of rules,

owing to the unique scenario of repairing input data referring

to the master data by eR. (1) Different from the discovery

of most other rules from one data source, e.g., CFD discov-

ery [16], the editing rule discovery considers another data

source, i.e., master data. In particular, CFD discovery concerns

whether the input data satisfy the rule, whereas eR discovery

focuses on how certain the fix of input data is returned from

the master data by eR. (2) Although the discovery of matching

rules (MD) also considers two data sources [40], it treats both

sources equally and identifies their matching relationships. In

contrast, eR utilizes the clean master data source to repair

the dirty input data source. The algorithm for discovering eRs

with certain fixes in the input data does not apply to find MD

for matching the data from two sources. (3) Consequently, the

measure for evaluating the certainty of fix by eR is different

from the confidence measure for CFD [14] or MD [39]. The

latter denotes the maximum number of data that satisfy the

rules.

VII. CONCLUSION

Editing rules utilize high-quality master data to repair low-

quality input data. To automatically discover editing rules, we

first introduce EnuMiner that costly enumerates all attribute

and value combinations. For this reason, EnuMiner does not

scale well. Then, we argue to mine editing rules by growing a

rule tree, which is indeed a Markov Decision Process. Specif-

ically, each node in the tree denotes a rule. The algorithm will

generate a new rule as the child node from the current node.

We propose an RL-based editing rule discovery algorithm

(RLMiner) that trains an agent to wisely discover rules without

enumerating the value combination space. Remarkably, when

the master and input data are gradually enriched, very likely in

practice, the learned agent could be incrementally fine-tuned,

rather than re-discovering the rules from scratch. Following the

idea of evaluating rules, we design a reward function that is in

line with the rule discovery scenario and makes our algorithm

perform effectively and efficiently. The experimental results

show that our proposed RLMiner is able to mine high-utility

editing rules and is more scalable on the datasets with lots of

attributes and large domains.
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