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ABSTRACT

Not only the vast applications but also the distinct features of time
series data stimulate the booming growth of time series database
management systems, such asApache IoTDB, InfluxDB, OpenTSDB
and so on. Almost all these systems employ columnar storage, with
effective encoding of time series data. Given the distinct features
of various time series data, it is not surprising that different en-
coding strategies may perform variously. In this study, we first
summarize the features of time series data that may affect encod-
ing performance, including scale, delta, repeat and increase. Then,
we introduce the storage scheme of a typical time series database,
Apache IoTDB, prescribing the limits to implementing encoding
algorithms in the system. A qualitative analysis of encoding effec-
tiveness regarding to various data features is then presented for the
studied algorithms. To this end, we develop a benchmark for eval-
uating encoding algorithms, including a data generator regarding
the aforesaid data features and several real-world datasets from our
industrial partners. Finally, we present an extensive experimental
evaluation using the benchmark. Remarkably, a quantitative anal-
ysis of encoding effectiveness regarding to various data features is
conducted in Apache IoTDB.
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1 INTRODUCTION

The time ordered values, write intensive workloads and other spe-
cial features make the management of time series data distinct
from relational databases [23, 28], and thus lead to the develop-
ment of time series database management systems, open source or

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication
rights licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 10 ISSN 2150-8097.
doi:10.14778/3547305.3547319

Sensor

s
_
0

(a) Large Scale

Sensor

s
_
0

(b) Large Delta

Sensor

s
_
0

(c) Vast Repeats

timestamp

v
a
lu

e

(d) Vast Increases

Figure 1: Example of real data with distinct features on (a)

large scale, (b) large delta, (c) vast repeats and (d) vast in-

creases, affecting the encoding performance

commercial, such as Apache IoTDB [1], InfluxDB [2], OpenTSDB
[3], Prometheus [4] and so on. It is not surprising that almost all
these systems employ columnar storage, given time series natu-
rally organized by two columns, time and value. In particular, the
column-oriented scheme enables effective encoding and compres-
sion of time series data. Obviously, distinct features of various data
as illustrated in Figure 1 lead to different encoding performances.

While general purpose data compression methods can be di-
rectly applied, e.g., SNAPPY [38] and LZ4 [19], the encoding tech-
niques are often specialized for time series, under some intuitions
like values usually not changing significantly over time, i.e., small
delta. Though lossy approaches like expressing time series in piece-
wise polynomial [25] are highly efficient in reducing space and
useful in edge or end devices, as a database, industrial customers
expect a complete archive of all the digital asset, i.e., lossless. More-
over, the extremely intensive write workloads, often machine gen-
erated in IoT scenarios, prevent the time consuming approaches
such as machine learning based reinforcement learning [47]. In
this sense, the scope of this study is within lossless encoding with
efficient system implementation.
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In this paper, we present a comparative analysis of time series
data encoding techniques in Apache IoTDB, an open-source time
series database developed in our preliminary studies [43]. Our ma-
jor contributions are summarized as follows.

(1) We summarize several time series data features that may af-
fect the performance of encoding in Section 2. Intuitively, as illus-
trated in Figure 1, the scale of values is obviously an important
factor of storage. Likewise, when storing the delta between two
consecutive values, it becomes a key issue. The number of value
repeats and increases are also essential to some encoding ideas.

(2) We present a qualitative analysis of encoding effectiveness
regarding to various data features in Section 4.

While there is no winner in all the data features, TS_2DIFF per-
forms well in a number of cases. For the cases where TS_2DIFF
shows worse results, such as repeat rate 1 in Figure 17, it may be
less frequent and not that significant in practice.

(3) We devise a benchmark for time series data encoding. It con-
sists of (a) data generators for simulating various data features, (b)
several real-world datasets, public or collected by our industrial
partners, (c) metrics such as compression ratio (space cost after
encoding and compressing divided by original space cost). In par-
ticular, multiple features could vary at the same time in the gener-
ator, such as large values but small deltas, so that the distinct cases
favored by different algorithms could be illustrated. Moreover, dif-
ferent data types are supported, including INT32, INT64, FLOAT
and DOUBLE of numerical values, as well as text values.

(4) We conduct an extensive experimental evaluation in Section
7. The quantitative analysis generally verifies the aforesaid quali-
tative analysis of encoding performance regarding to various data
features.

Finally, we also discuss some related work in Section 8, and out-
line some future directions in Section 9 referring to the analysis.
The source code of encoding algorithms has been deployed in the
GitHub repository of Apache IoTDB [5]. The experiment related
code and data are available in [6].

2 NUMERICAL DATA FEATURES

We select several features that may affect the performance of time
series encoding. As illustrated in Section 4, we have three types
of lossless encoding algorithms, RLE-based, Diff-based and hybrid.
For all the algorithms, scale is an important feature, since tech-
niques like bit-packing are widely used. Diff-based algorithms fa-
vor small changes in consecutive values, and thus the delta feature
is considered. RLE-based algorithms handle repeating contents in
consecutive values, i.e., the repeat feature. Finally, we notice that
the signal bit of negative delta also affects the performance of bit
compression, leading to the increase feature of consecutive values.

In addition to the aforesaid four features, there do exist others
for consideration. For instance, signal-to-noise ratio (SNR) could
be considered in frequency-domain-based compression [46], which
however is lossy and out the scope of this study. Moreover, besides
the numeral values, we further introduce two other features on
value and character for the text data type in Section 3.

Table 1 outlines the major features. For simplicity, we use TS =

[E1, E2, . . . , E=] to denote the value list of time series. Most of these

Table 1: Numerical data features

Category Notation Feature

Scale Mean(TS) Mean of values

Scale Var(TS) Variance of values

Scale Spread(TS) Maximum minus minimum of values

Delta Mean(DS) Mean of deltas

Delta Var(DS) Variance of deltas

Delta Spread(DS) Maximum minus minimum of deltas

Repeat Count(RS) Count of consecutive repeats

Increase Count(IS) Count of increases

features can be directly calculated in Apache IoTDB by the data
profiling tools developed in our previous study [7].

2.1 Scale

The scale of data is one of the most important factors in storage. In
general, the larger the values are, the more bits we need to encode
them. As illustrated in Section 4 below, the run-length based algo-
rithms [27] need to store the header, where more bits are needed
for larger values. Bit-packing algorithms [35] are similarly affected.
Besides, when most values are negative, bit-packing based algo-
rithms performs bad since sign bits are 1. To this end, we em-
ploy the mean, variance and spread (maximum minus minimum)
of the values in time series TS, denoted byMean(TS), Var(TS), and
Spread(TS) to represent the scale features.

2.2 Delta

The delta features show the amplitude of data fluctuations, partic-
ularly important to time series. Let DS = [E2 − E1, E3 − E2, . . . , E= −

E=−1] denote the delta series of the time series DS, measuring the
deltas of time-adjacent values. The differential-based algorithms
[40] as introduced in Section 4.1 store these deltas. In this sense,
we useMean(DS), Var(DS), and Spread(DS), mean, variance, and
spread (maximumminusminimum) of deltas, to evaluate how large
the deltas could be. It is worth noting that to some extent, Var(TS)
also reflects the delta features, and likewise, Var(DS) understands
delta of deltas, important to some encoding such as TS_2DIFF dis-
cussed in Section 4.1.

2.3 Repeat

Repetitive values are widely observed in time series, such as un-
changed temperature reading in several minutes. Such consecutive
repeats can be compressed by run-length based algorithms [27] in
Section 4.2. They also output zero values in XOR operators intro-
duced in Section 4.1, shrinking the space efficiently. To this end,
we introduce a method to describe the repeats of time series. The
main idea is to count the number of consecutively repeated values
which are in the interval of consecutive repetitive values. We de-
fine RS the repeat count series of time series TS = [A1, A2, . . . , A=],
having

r8 =

{

r8−1 + 1, if E8 = E8−1,

1, otherwise E8 ≠ E8−1
(1)

for 1 < 8 ≤ = and r1 = 1. Algorithms like SPRINTZ [20] in Section
4.3 have a block size of 8 for bit-packing numbers into integer bytes.
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Table 2: Text data features

Category Notation Feature

Value Exponent(TS) Exponent of Zipfian distribution

Value Domain(TS) Domain size of text values

Character Length(TD) Length of text value

Character Repeat(TD) # consecutive character repeats

Therefore, we are interested in the values that repeat more than 8
times. The repeat count measure Count(RS) is thus

Count(RS) = |{A8 | A8 ≥ 8, 8 ≤ 8 ≤ =}|.

2.4 Increase

While repetitive values have difference 0, the sign of difference for
non-repetitive values is also concerned. The reason is that the non-
zero sign bits may interfere encoding in algorithms like RLBE [41]
introduced in Section 4.3. If all the difference signs are positive,
in other words, the time series values are always increasing, the
encoding performs better. In contrast, when the differential value
is negative, i.e., decreasing, the encoding performance would be
bad. In this sense, we define Count(IS) the number of increasing
values with adjacent timestamps,

Count(IS) = |{E8 | E8 > E8−1, 1 < 8 ≤ =}|. (2)

In addition to the features on scale, delta, repeat and increase,
data type is also an important factor that affects the encoding per-
formance. For INT32 and INT64, similar values have smaller deltas
than those of FLOAT and DOUBLE. Moreover, the longer INT64
and DOUBLE may have more 0 bits, where bit compacting strate-
gies may perform. Therefore, in the qualitative analysis in Table 4
and the quantitative evaluation such as Figure 9, the data types are
also considered as important data features.

3 TEXT DATA FEATURES

Similarly, text time series data has several data features which may
be related to encoding performance, including the distribution of
values, the domain of values, the average length of text value and
consecutive repeats of characters. Table 2 outlines the major text
features.

3.1 Value

The text values often follow a Zipfian distribution [18, 45] in prac-
tice. The exponent of Zipfian distribution represents the frequency
of values. The larger the exponent is, the larger the skewness of
value frequency is. Such skewness affects the performance ofHUFF-
MAN encoding [29, 36], which relates to value frequency. More-
over, the domain size of text values is also important, e.g., to DIC-
TIONARY encoding [44] that stores the value domain as dictio-
nary.

3.2 Character

The character features could affect the encoding algorithms that
encode data at character level. The length of values is of course a

Table 3: Properties of numerical data encoding algorithms

Encoding First value # Repeat RLE-based Diff-based

TS_2DIFF X X

GORILLA X X

RAKE X

RLE X X

RLBE X X X X

SPRINTZ X X X

IEJ×ÜÙÙ L Fs

2 4 6 7 6 8 7 8 ···

2 2 2 1 -1 2 -1 1 ···

3 3 3 2 0 3 0 2 ···

11 11 11 10 00 11 00 10 ···

Bit-packing

Delta encoding

Second delta 

encoding

First Value

Figure 2: Examples of TS_2DIFF encoding algorithm

key factor. Longer values generally lead to larger character encod-
ing results. Again, repeats of characters also affect the encoding
performance, such as RLE [27] and HUFFMAN [29, 36].

4 NUMERICAL DATA ENCODING

Referring to the aforesaid discussions on lossless requirement and
system architecture, we introduce six encoding algorithms that are
proper to implement in Apache IoTDB, including TS_2DIFF [8],
GORILLA [37], SPRINTZ [20], RLE [27], RLBE [41], and RAKE
[21]. The source code of implementation is available in the GitHub
repository of Apache IoTDB [5]. Table 3 lists the common ideas
that may share among different encoding algorithms. Specifically,
a qualitative analysis of encoding effectiveness regarding to vari-
ous data features is presented in Table 4.

4.1 Differential-based Encoding

Differential encoding proposes to reduce the absolute value when
the data in time series is continuous, especially when the original
data is large. The number of significant bits reduces since the abso-
lute value is decreased, which reduces storage costs. Thereby, com-
pression ratio has an important relationship with delta features in
differential encoding algorithms. While traditional differential en-
coding can only perform well in monotonous integer values, GO-
RILLA and TS_2DIFF two recent advances.

4.1.1 TS_2DIFF. The TS_2DIFF encoding is a variant of delta-of-
delta [37]. It consists of three steps: delta encoding, second delta
encoding, bit-packing. The first step calculates the delta of every
value by subtracting the current value from the previous one. Note
that the first value does not have the previous value and should
be stored directly. Then, the algorithm finds the minimum delta,
mindiff , and gets the final data to store by subtracting the delta
from mindiff . Finally, the leading zeros of fixed length of binary
data is removed to get the final encoded byte stream.
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Table 4: A qualitative analysis of encoding effectiveness regarding to various numerical data features

Encoding INT32 INT64 FLOAT DOUBLE
Large

value mean
Large

value variance
Large

delta mean
Large

delta variance
Vast

repeats
Vast

increases

TS_2DIFF X X X X © × X × © ©

GORILLA X X © © © × © © © ©

RAKE × X × X × © © © © ©

RLE X X © © × © © © X ©

RLBE X X © © © © × © X X

SPRINTZ X X © © © × × × X ©

Xgood performance, © no preference, × bad performance

11 11 10 12 8 ···

00001011 00001011 00001010 00001100 00001000 ···

11 µ�¶ µ��¶������������µ�¶ µ��¶���29 ������µ��¶ µ��¶���µ��¶ · · ·

Encoding

INT32 Representation
(only the last byte in this figure)

XOR with previous

00001011 00000000 00000001 00000110 00000100 ···

Bit-width: 32 1 2+5+6+1 2+5+6+2 2+2 ···

First Value

Figure 3: Examples of GORILLA encoding algorithm

Therefore, the smaller variance and delta variance the sequence
has, the smaller bit-width the difference of the sequence has, and
the smaller the final compression ratio is. As summarized in Table
4, TS_2DIFF is also suitable for large delta mean values, since the
values can get a small value to store by subtracting large minimum
in the second delta encoding process.

Figure 2 shows a case of small delta variance, i.e., all the deltas
in the second delta are small and thus have lower space cost.

4.1.2 GORILLA. The GORILLA encoding is originally designed
for Facebook’s time series database (TSDB) [37]. First, it processes
the timestamps with second order differential, which is effective
when the values come in an almost fixed interval. The values are
divided into four areas by significant bit width. Then it writes the
packed timestamps and values. As for the value it uses the XOR
coding method. Typically, this procedure results in many leading
and tailing zeros for float number. If the XOR result is zero, it only
writes a bit ‘0’ to represent it. Otherwise, it writes the different bits
and numbers of leading/tailing zeros of the result.

As shown in Table 4, GORILLA is suitable for small variance
data, as it increases the number of leading and tailing zeros in XOR
results. On the other hand, it may fail on the time series with dras-
tic change, as more non-zero bits are used to encode the values.

In Figure 3, GORILLA shows a good performance by compress-
ing 160 bits of 5 INT32 values into 66 bits.

The time series data has a small variance and lots of leading and
tailing zeros.

3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 ···

[8] 3 [9] 5 ···

Run length 
encoding

3 [8] 011 [9] 101 ···

Bit-packing with 
max bit-width 3Header: bit-width

[8] and [9] are 
repeat time

Figure 4: Examples of RLE encoding algorithm

4.2 Run-length-based Encoding

Run-length encoding (RLE) [27] targets on reducing the space cost
of adjacent repeating values. The compression effect of traditional
RLE algorithm is limited when times of repeating values are small.
RLE with bit-packing and RAKE [21] are more effective advances.

4.2.1 RLE with bit-packing. RLE encoding [27] stores the contin-
uous repeating time of one element instead of repeating the same
elements over and over. For example, a series 444556666 can be
stored as 435264 with run-length, where the number 3 after 4 de-
noting that 4 repeats 3 times. RLE introduces extra space cost to
store repeat times when values are consecutive, thus IoTDB im-
plementation combines RLE with bit-packing. Run-length is only
applied to values whose repeat time is larger than 8. Simple bit-
packing is implemented to others.

It is not surprising that RLE with bit-packing performs good
when time series has vast repeats, as more values can be encoded
into one value and its repeat time. Bit-packing reduces storage cost
caused by data with few repeats. The algorithms perform better
when repeat rate is high and value mean is low but positive.

For example, in Figure 4, the series has many consecutive repeat
values which are also smaller positive numbers. Thereby, RLE with
bit-packing performs.

4.2.2 RAKE. The RAKE encoding [21] is based only on bits count-
ing operations. It considers a T-teeth rake to process ) bits every
time. If all the) bits are zeros, a setting bit of 0 is stored. Otherwise,
it first stores a setting bit of 1. Then, a codeword of ! = ⌈log2) ⌉
bits is generated according to the numbers in the rake. The code-
word records the position of the first 1, ?first , in binary notation.
And, the rake shifts ?first + 1 bits to the right.

Therefore, we expect the ‘1’s of binary numbers to be more
sparsely, so that T zeros can be compressed into one ‘0’. For INT64
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N!1040 010000010000 Setting Bit LÙÜåæç Code

I 1 1 101

II 0 - 0

III 1 1 101

IV 0 - 0

· · · 101010101 ···

Encoded data

· · · 1040 ···

Figure 5: Examples of RAKE encoding algorithm

1 2 3 7 10 ···

Differential coding

1 1 1 4 3 ···

Binary encoding

1 1 1 100 11 ···

Calculate length

1 1 1 3 2 ···

Run-length

3 1 1 ···

0011 11 11 ···

Fibonacci encoding

00001 0011 1 1 1 00011 11 100 00010 11 11 ···

First Value Concatenation of length and data 

Figure 6: Examples of RLBE encoding algorithm

data, data has more leading zeros, and will be compressed more
efficiently than INT32 data, as summarized in Table 4.

Figure 5 shows a simple example of how values are encoded by
RAKE algorithm. Since the first 20 bits will be obviously encoded to
five zeros, the process of compressing the first 20 bits is not shown.
For the number of Figure 5, a sparse number, # = [010000010000]
is compressed by the RAKE algorithm (with ) = 4) to produce a
compressed sequence of 8 bits, [10101010].

4.3 Hybrid Encoding

While the differential-based and run-length-based encoding algo-
rithms can perform well in different scenarios, there are certain
cases with both small delta features and vast repeats. To this end,
hybrid encoding with both ideas can achieve a better result, such
as RLBE [41] and SPRINTZ [20].

4.3.1 RLBE. The RLBE encoding [41] proposes to combine delta,
run-length and Fibonacci based encoding ideas. It has five steps:
differential coding, binary encoding, run-length, Fibonacci coding
[42] and concatenation. Specifically, delta encoding is first applied
to original data (integers of 32bits), and lengths of each differen-
tial value (in binary notation) are calculated. Run-length is then
applied to the length codes. In the concatenation phase, the first 5
bits represent the length of binary words (the length is encoded in
binary word), followed by the Fibonacci code words of repeat time

000100 0011 1011 1110 1001

Binary code 

length

4 in Binary word

Fibonacci 

code

11, 14, 9 in binary words

First Value

Figure 7: Examples of INT32 and INT64 extensions for RLBE

2 4 6 7 6 8 7 8 ···

2 2 2 1 -1 2 -1 1 ···

3 3 3 1 2 3 2 1 ···

11 11 11 01 10 11 10 01 ···

Bit-packing

Delta encoding

Zigzag encoding

First Value

Figure 8: Examples of SPRINTZ encoding algorithm

of length code, and sequentially followed by binary code words of
differential values with the same length.

As summarized in Table 4, when the differential value is positive
and small, RLBE performs good. RLBE performs bad when the dif-
ferential value is negative, as the sign bit is ‘1’ and no leading ‘0’s
can be abolished. When adjacent differential values are of different
order of magnitude, i.e., variance is large, RLBE also performs bad
as run-length on length code cannot be applied.

The examples are shown in Figure 6.While values are all increas-
ing in the time series data and all the deltas are positive, RLBE has
a good performance such as the example in Figure 6.

To enlarge the encoding range, we extend the first 5 bits rep-
resenting binary code length to 6 bits, as shown in Figure 7. The
reason is that when differential value is negative, it has 32 mean-
ingful bits, exceeding the representation range of 5 bits. Likewise,
when supporting integers of 64 bits, we expand length represent-
ing binary code to 7 bits for the same reason.

4.3.2 SPRINTZ. The SPRINTZ encoding [20] combines encodings
in four steps: predicting, bit-packing, run-length encoding and en-
tropy encoding. In the first step, it uses some predictive functions
(delta encoding or Fast Integer REgression encoding) to estimate
the next coming value. Then it encodes the difference of the ac-
tual value and the predicted one. Typically, this step shrinks the
absolute value to be encoded. Next, it bit-packs a block of resid-
uals obtained in the first step. The largest number of significant
bits in the block is written in the header, and the leading zeros are
trimmed. Following that, run-length encoding and entropy encod-
ing (e.g., Huffman coding) are applied to reduce redundancy. Run-
length coding compresses the consecutive zero blocks by recording
the number of zeros and entropy coding compresses the headers
and payloads by encoding bytes in the form of Huffman coding.

As summarized in Table 4, SPRINTZ algorithm is suitable for
predictable time series. For delta function, the vast repeats or lin-
early increasing time series is the best target. For the FIRE (Fast
Integer REgression) predictor, a constant slope is the best fit.

Since the example in Figure 8 has small value variance and delta
mean, the SPRINTZ encoding has a good performance.
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Table 5: A qualitative analysis of encoding effectiveness re-

garding to various text data features

Encoding
Large

exponent
Large
domain

Large
length

Vast
repeats

HUFFMAN X × × X

DICTIONARY © × X ©

RLE © © X X

Xgood performance, © no preference, × bad performance

5 TEXT DATA ENCODING

In this section, we introduce 3 text encoding algorithms, includ-
ing DICTIONARY [44], HUFFMAN [29, 36] and RLE [27]. Table 5
presents a qualitative analysis of encoding effectiveness regarding
to various text data features.

5.1 DICTIONARY Encoding

The DICTIONARY algorithm [44] finds value in the dictionary. If
the value is found successfully, the value is replaced by a key in the
dictionary; otherwise, the algorithm adds a new pair of key and
value in the dictionary. For example, if the map in the dictionary is
{1:True, 2:False}, the time series TS = {True, False, True, True} could
be encoded as 1211. Obviously, a large domain leads to higher cost
in DICTIONARY encoding. In contrast, DICTIONARY favors large
length values, by encoding it to a short key.

5.2 Run Length Encoding

Run-Length Encoding (RLE) [27] performs especially for data with
strings of repeated characters (the length of the string is called a
run). The main idea of the algorithm is to encode repeated char-
acters as a pair of the length of the repeated characters and the
character. For example, the value ‘abbaaaaabaabbbaa’ of length 16
bytes is represented as ‘1a2b5a1b2a3b2a’. However, if there are no
repeat characters in the value, the size of output data can be twice
as large as the size of input data.

5.3 HUFFMAN Encoding

The HUFFMAN encoding algorithm [29, 36] decreases the over-
all length of the data by assigning shorter codewords to the more
frequently occurring characters, employing a strategy of replac-
ing fixed length codes (such as ASCII) by variable length codes. It
creates a uniquely decipherable prefix-code precluding the need
for creation of a separator to determine codeword boundaries. For
data with many high frequency values in skewed data distribution
andmany repeated characters, HUFFMAN’s ability to shorten high
frequency character encoding performs.

6 ENCODING BENCHMARK

To evaluate the encoding algorithms,we extend IoTDB-Benchmark
[9], developed in our previous study, by introducing advanced data
generator for various time series data features. Some real-world
data collected by our industrial partners are also employed, to-
gether with necessary metrics for evaluation.

Table 6: Parameters of numerical data generator for various

data features

Notation Data Features Range

`E Mean of values [−5 × 104, 5 × 104]

`3 Mean of deltas [−2000, 2000]

f3 Variance of deltas [0, 1000]

W Repeat rate [0, 1]

[ Increase rate [0, 1]

6.1 Synthetic Numerical Data

To evaluate the effect of encoding algorithms working on different
data features, we design a data generator for varying data features,
controlled by 5 parameters. Table 6 lists the parameters, generally
analogous to the data features in Section 2. The parameter `E con-
trols the mean of valuesMean(TS) in Table 1. For each data point,
we employ a normal distribution with `3 and f3 to determine
its delta to the previous value, i.e., analogous to mean of deltas
Mean(DS) and variance of deltas Var(DS) in Table 1. Since the
point has been already determined by this delta and its previous
value, we are not able to further control the variance or spread of
values. Nevertheless, they are related to the deltas as discussed to
certain extent. Repeat rateW is the probability of generating a series
of consecutive points with repeated values, analogous to repeat
count Count(RS) defined in Section 2.3. Increase rate [ denotes
the probability of generating a point with value greater than the
previous, for the increase count feature Count(IS) in Section 2.4.

Algorithm 1 presents the pseudo-code of the data generator. Let
DS denote the delta series, as introduced in Section 2.2, to gener-
ate. Lines 3-6 generate repeats with probability W specified in the
parameters. Likewise, Lines 8-12 generate an increase point with
probability [. The delta is given by a normal distribution with pa-
rameters `3 and f3 . Finally, the delta series DS is transformed to
TS by a prefix summation, and zoom all the values to the target
value mean `E .

6.2 Real-world Numerical Data

Real-world datasets, public or collected by our industrial partners,
are also included in the benchmark, for learning the data features,
and evaluating the encoding algorithms. Table 7 reports the major
statistics of the prepared datasets. Figure 12(b) below illustrates
their data features.

MSRC-12 [10] is a datasetwith float values fromMicrosoft Kinect
gestures and has a low repeat rate and small delta variance due
to small fluctuation. UCI-Gas [11] also consists of float values for
measuring gas concentration during chemical experiments and has
a low delta mean. WC-Vehicle contains sensor readings for moni-
toring vehicles and has a low repeat rate. TH-Climate is a dataset
of weather information collected in Tsinghua campus. It has low
delta mean and high repeat rate. CW-AIOps is a dataset of applica-
tion performance monitoring (APM) in cloud services, where the
mean, variance and spread of both value and delta are very large
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Algorithm 1: Numerical data generator

Data: `E, `3 , f3 , W, [, length =
Result: TS

1 DS := empty_list();

2 while |DS | < = do

3 8B'4?40C := random_index(W );

/* Probability of isRepeat == 1 is W, */

/* probability of isRepeat == 0 is 1 − W */

4 if 8B'4?40C then

5 A4?40C_;4= := random(8, ) );

/* Get a random number in (8, )] */

6 DS.append(0, A4?40C_;4=);

/* Append 0 for A4?40C_;4= times */

7 else

8 8B%>B8C8E4 := random_index([);

9 34;C0 := 0;

10 if 8B%>B8C8E4 then

11 while 34;C0 ≤ 0 do
12 34;C0 := random_gauss(`3 , f3 );

13 end

14 else

15 while 34;C0 ≥ 0 do
16 34;C0 := random_gauss(`3 , f3 );

17 end

18 end

19 DS.append(34;C0);

20 end

21 end

22 TS := prefix_sum(DS);

23 TS.zoom(`E );

/* Zoom TS to adjust means to `E */

24 return TS;

due to the complex application scenarios. CS-Shipmonitors the sta-
tus of ship engines. Value mean and delta mean are small while in-
crease is high. TY-Carriage contains readings of carriage monitor-
ing sensors, and it has low delta mean. WH-Chemistry is a dataset
from chemical plant. It has high value mean, value variance, value
spread, delta mean, delta variance and delta spread. CR-Train is a
dataset from metro system, with low delta mean and high repeat
rate. CB-Engine consists of senor readings in concrete mixer. It has
low delta mean, delta variance and repeat rate.

6.3 Synthetic Text Data

The text data generator considers 4 parameters in Table 8, corre-
sponding to 4 features listed in Table 2 in Section 3. The exponent
\E determines the skewness of value distribution. #E is the domain
size of text values. These two parameters decide the distribution
of values. Moreover, ℓ2 represents the average length of all the text
values, and repeat rate W2 is the probability of generating consecu-
tive character repeats.

Algorithm 2 shows the pseudo-code of text data generator. Let
TS be the time series and TD be the value domain to generate TS.

Table 7: Real-world numerical datasets

Dataset Public # data points # time series

MSRC-12 [10] 17,059 10

UCI-Gas [11] 189,981 19

WC-Vehicle 79,992 8

TH-Climate 1,317,330 140

CW-AIOps 2,215,599 224

CS-Ship 89,991 9

TY-Carriage 9,680,088 450

WH-Chemistry 44,622 54

CR-Train 859,914 86

CB-Engine 533,901 88

Table 8: Parameters of text data generator for various text

data features

Notation Text Data Features Range

\E Value of exponent [0, 10]

#E Domain size of text values [1, 1500]

ℓ2 Average length of text value [100, 1100]

W2 Repeat rate [0.9, 1]

Lines 2-16 generate TDwith domain size#E , given the value length
ℓ2 and character repeat rate W2 . Then, lines 17-23 generate the dis-
tribution of values, under a Zipfian distribution with exponent \E .

6.4 Real-world Text Data

Table 9 presents several real-world text time series datasets. CW-
AIOps is a log dataset of application performancemonitoring (APM)
in cloud services, collected by our industrial partners. Web Server
Access Logs, Incident Event Log Dataset and Web Log Dataset are
public datasets in Kaggle [15]. Among them, Web Server Access
Logs contain information on any event that was registered / logged.
Incident Event Log Dataset is a event log dataset of a website. Web
Log Dataset is the server log dataset of RUET OJ.

6.5 Evaluation Metrics

To measure the performance of encode algorithms for time series,
two aspects are considered, compression ratio in space cost, encod-
ing and decoding time cost.

6.5.1 Compression Ratio. It measures the ratio of compressed (en-
coded) data size to uncompressed (non-encoded) data size

compressionRatio =
2><?A4BB43(8I4

D=2><?A4BB43(8I4
.

6.5.2 Time Cost. We report two aspects of time cost. The insert

time measures the total cost of inserting a time series, including
adding to memTable, flushing from memory to disk with sorting,
encoding, and compressing. The select timemeasures the total cost
of querying a time series, with decompressing and decoding.
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Algorithm 2: Text data generator

Data: \E, #E, ℓ2 , W2 , length =
Result: TS

1 TS := empty_list()

2 TD := new string[N]

3 for 8 ∈ [0, #E] do

4 for 9 ∈ [0, ℓ2 ] do
5 if 9 = 0 then
6 TDi .append(rand_Char())

7 continue

8 end

9 8B'4?40C := random_index(W2 )

/* Probability of isRepeat == 1 is W2,

probability of isRepeat == 0 is 1 −W2 */

10 if 8B'4?40C then

11 TDi .append(TDi .back())

12 else

13 TDi .append(rand_Char_except(TDi .back()))

14 end

15 end

16 end

17 num := {=D<0, ..., =D<#E−1}, where =D<8 =
( 1
8+1 )

\E

∑#E−1
9=0 ( 1

9+1 )
\E
=

18 for 8 ∈ [0, #E] do

19 for 9 ∈ [0, =D<8 ] do

20 TS.append(TDi)

21 end

22 end

23 TS = random_permutation(TS) return TS;

Table 9: Real-world text datasets

Dataset Public # points # series

CW-AIOps 2,215,599 224

Web Server Access Logs [12] 10,365,152 1

Incident Event Log [13] 141,712 35

Web Log [14] 258,441 4

7 EXPERIMENTAL EVALUATION

In this section, we conduct the experimental evaluation of encod-
ing algorithms analyzed in Section 4. Note that encoding and com-
pressing are complementary. Therefore, we study PLAIN (no en-
coding), TS_2DIFF [8], GORILLA [37], SPRINTZ [20], RLE [27],
RLBE [41], and RAKE [21] encoding, combined with NONE (no
compression), SNAPPY [38], GZIP [16] or LZ4 [19] compressor.
We present their performances over various data types including
INT32, INT64, FLOAT and DOUBLE as listed in Table 4. With the
help of benchmark in Section 6, the results on both the real-world
and synthetic data with various features are reported.

The experiments run on amachinewith 2.1 GHz Intel(R) Xeon(R)
CPU and 128GB RAM. While the source code of encoding algo-
rithms has been deployed in theGitHub repository of Apache IoTDB
[5], the experiment related code and data are available in [6].
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Figure 9: Compression ratio over all numerical datasets

7.1 Real-world Numerical Data Evaluation

Figures 9, 10 and 11 report the compression ratio, insert time and
select time defined in Section 6.5, respectively. The experiments are
conducted over all 1088 time series in Table 7. In boxplot chart, ev-
ery element represents one time series. We study 28 combinations
of 7 encoding schemes and 4 compression schemes on 4 different
data types. In Figure 9, the lower the metrics are, the better the per-
formance is. Since the compression ratios are the same in different
runs, we do not repeat the experiments of compression ratio. The
experiments on time cost are repeated 50 times.

7.1.1 Comparison. As illustrated in Figure 9, TS_2DIFF encoding
achieves good (low) compression ratio, with or without compres-
sion. RAKE encoding performs even worse than PLAIN (no encod-
ing) when handling INT32 and FLOAT.

As introduced in Section 4.2.2, when there are many consecu-
tive 0 bits, RAKE performs. The more the 1 bits are, the worse the
RAKE algorithm performs. For INT32 and FLOAT, since there are
less 0 bits than INT64 and DOUBLE for the same values, the perfor-
mance of RAKE is worse. In particular, for negative numbers with
a small absolute value, owing to the leading sign bit ‘1’ and more
leading ‘1’s, RAKE may perform even worse given the extra cost
of setting bits and so on. Similar results are also observed in Figure
14(a), where RAKE again performs worse than PLAIN on negative
numbers (with value mean less than 0).

GORILLA performs better on INT32 and INT64 than FLOAT and
DOUBLE since positions of leading and trailing 0 are more similar.
The results verify the qualitative analysis on data types in Table 4.

2155



NONE SNAPPY LZ4 GZIP
Compression

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

In
s
e
rt

 T
im

e

(a) INT32

NONE SNAPPY LZ4 GZIP
Compression

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

In
s
e
rt

 T
im

e

(b) INT64

NONE SNAPPY LZ4 GZIP
Compression

0.13

0.14

0.15

0.16

0.17

0.18

0.19

In
s
e
rt

 T
im

e

(c) FLOAT

NONE SNAPPY LZ4 GZIP
Compression

0.14

0.16

0.18

0.20

In
s
e
rt

 T
im

e

(d) DOUBLE

TS_2DIFF

GORILLA

RAKE

RLE

RLBE

SPRINTZ

PLAIN

Figure 10: Insert time over all numerical datasets
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Figure 11: Select time over all numerical datasets

Nevertheless, with compression, the space cost is further reduced.
The improved by compression after TS_2DIFF encoding, however,
is limited, with extra compressing and decompressing time.

M
SR

C-1
2

U
CI-G

as

W
C-V

eh
ic
le

TH
-C

lim
at

e

CW
-A

IO
ps

CS-
Sh

ip

TY
-C

ar
ria

ge

W
H
-C

he
m

is
tr
y

CR-
Tr
ai
n

CB-E
ng

in
e

Dataset

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
o
m

p
re

s
s
io

n
 R

a
ti

o

TS_2DIFF

GORILLA

RAKE

RLE

RLBE

SPRINTZ

PLAIN

(a) Compression ratio of each dataset

M
SR

C-1
2

U
CI-G

as

W
C-V

eh
ic
le

TH
-C

lim
at

e

CW
-A

IO
ps

CS-
Sh

ip

TY
-C

ar
ria

ge

W
H
-C

he
m

is
tr
y

CR-
Tr
ai
n

CB-E
ng

in
e

Dataset

10− 4

10− 2

100

102

104

106

108
v
a
lu

e

Value mean

Delta mean

Value variance

Delta variance

Value spread

Delta spread

Repeat

Increase

(b) Feature value of each dataset

Figure 12: Compression ratio and features on each dataset

7.1.2 Individual Datasets. In addition to the qualitative analysis
on data types, we further validate the effects of data features an-
alyzed in Table 4. Figure 12(a) reports the compression ratio of 7
encoding schemes without compression applied (NONE). Figure
12(b) shows the corresponding 8 data features listed in Table 1.

In general, TS_2DIFF encoding still achieves good performance,
while RAKE could be worse than PLAIN without encoding, similar
as the observations in Figure 11. For the datasets with large delta
mean, such as UCI-Gas, TH-Climate, MSRC-12, CS-Ship and TY-
Carriage, TS_2DIFF still performs well. For the datasets with small
value variance and delta mean, such asWC-Vehicle and CB-Engine,
GORILLA performs better. RLBE performs better in CS-Ship than
other datasets, since CS-Ship has relatively smaller delta mean and
delta variance. The results verify again the analysis in Table 4.

Note that both time and value series are encoded and compressed,
and the statistics stored in the PageHeader consider both time and
value series compression. Since time is encoded and compressed
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Figure 13: Trade-off between time and compression ratio

by default, the compression ratio of PLAIN encoding and NONE
compression on value series together with time is less than 1.

7.1.3 Trade-off. Figure 13 breaks down the time costs into encod-
ing time (ET), decoding time (DT), compression time (CT), uncom-
pression time (UT) and the corresponding compression ratio (CR)
of different encoding algorithms together with four compression
strategies. The experiments run on all the real-world datasets in
Table 7 and report the average. For each dimension, we normalize
the results into a range between 0 and 1, the larger the better. For
ET, DT, CT and UT, a larger value represents lower time compared
with other encoding algorithms, i.e., more efficient. For compres-
sion ratio (CR), a larger metric represents lower compression ratio,
again better compression performance.

As shown, most encoding algorithms are efficient in encoding
(ET). TS_2DIFF has better compression ratio (CR) as well as com-
pression time (CT) and uncompression time (UT), but the corre-
sponding decoding time (DT) is worse. GORILLA with both better
encoding and decoding time (ET and DT) has worse compression
ratio (CR). Similar trade-off results are also observed in Figure 13(d)
without compression (NONE).

7.2 Varying Numerical Data Features

While the experiments on real data in Section 7.1 cover only part
of the data features analyzed in Table 4, in order to conduct a more
extensive quantitative analysis, we further evaluate the encoding
algorithm over the synthetic data with various features controlled
by the data generator presented inAlgorithm 1. Again, we compare
7 encoding schemes without compression (NONE). Figures 14-18
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Figure 14: Varying scale feature of value mean `E
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Figure 15: Varying delta feature of delta mean `3
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Figure 16: Varying delta feature of delta variance f3
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Figure 17: Varying repeat feature of repeat rate W

report the results on INT32. Due to the limited space, the similar
results on other setting combinations are omitted.

7.2.1 Compression Ratio. Figure 14(a) varies the scale feature of
value mean `E introduced in Table 6. RAKE and RLE perform bet-
ter when value mean is positive. For negative value mean, sign
bits are 1, i.e., compression cannot be applied on the first 4 bits of
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Figure 18: Varying increase feature of increase rate [

leading zeros. TS_2DIFF and RLBE are less affected by value mean,
since run-length and differential encoding store the length of re-
peat times and differential value instead of storing lots of large val-
ues. GORILLA is unstable, as its performance is affected by XOR,
unrelated to value mean.

For delta features, Figure 15(a) varies delta mean `3 and Figure
16(a) considers delta variancef3 . TS_2DIFF performance decreases
with the increase of delta variance in Figure 16(a), which is not
surprising referring to the analysis in Table 4.

When repeat rate W increases in Figure 17(a), RLE, RLBE and
SPRINTZ perform better. They are run-length based algorithms,
favoring high repeats. GORILLA also performs better with repeat
rates increasing, since XOR has more zeros and only a bit of ‘0’
needs to be stored. RAKE’s performance is not affected due to its
run-length is on bits, instead of value repeats.

Figure 18(a) varies the increase rate [. When increase rate be-
comes larger, more positive values appear, beneficial to bit-pack.
Thereby, RLBE is positively correlated with the increase rate.

7.2.2 Time Cost. Analogous to the compression ratio results in
Section 7.2.1, Figures 14(b), 15(b), 16(b), 17(b) and 18(b), report the
insert time under various value mean `E , delta mean `3 , delta vari-
ance f3 , repeat rate W and increase rate [, respectively. Likewise,
Figures 14(c)-18(c) are the corresponding select time. Due to the
limited space, similar results on other setting combinations are
omitted. Each test is conducted 50 times and reports the average.

As shown, while the compression ratio is affected largely by var-
ious data features in Figures 14(a)-18(a), the corresponding insert
time and select time are stable. Different encoding methods indeed
lead to very close insert and select time. Similar to Figures 10 and
11, the insert time is much higher than the select time under var-
ious data features. Due to the extremely low select time, the vari-
ances of select time in the tests are relatively larger. The results are
generally consistent with those on real datasets in Section 7.1.

7.3 Real-world Text Data Evaluation

Figure 19 reports compression ratio, insert time and select time
defined in Section 6.5, respectively, over all text datasets in Table 9.
We perform the 16 combinations of 4 text encoding schemes and 4
general compression schemes on text data.

As shown in Figure 19, when there is no compression algorithm
applied, HUFFMAN has the best performance in compression ra-
tio, but it has the worst performance in time cost. RLE shows even
worse compression ratio than PLAIN (no encoding), owing to the
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Figure 19: Performance of text encoding on real datasets

0 5 10
Exponent

0.00

0.25

0.50

0.75

1.00

1.25

C
o
m

p
re

s
s
io

n
 R

a
ti

o

(a) Exponent

0 5 10
Exponent

0.0

0.2

0.4

0.6

0.8

1.0

In
s
e
rt

 T
im

e
(s

)

(b) Exponent

0 5 10
Exponent

0

1

2

3

4

S
e
le

c
t 

T
im

e
(s

)

(c) Exponent

HUFFMAN DICTIONARY RLE PLAIN

Figure 20: Varying text feature of exponent \E
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Figure 21: Varying text feature of domain size #E

limited repeated characters as analyzed in Section 5.2. When com-
pression is applied, either SNAPPY, LZ4 or GZIP, theDICTIONARY
encoding has almost the best compression ratio and time cost.

7.4 Varying Text Data Features

Similar to the numeric data, we generate text data with different
features mentioned in Section 3, by Algorithm 2, and evaluate the
encoding performance on the synthetic text data.

For value features, Figure 20 varies the exponent \E introduced
in Table 8. The larger the exponent is, i.e., the data distribution is
more skewed, the better HUFFMAN performs. The improvement
of compression ratio however is not significant. The other algo-
rithms are not affected by the exponent, as also analyzed in Table 5.

Figure 21 varies the domain size #E introduced in Table 8. It
is not surprising that DICTIONARY performs worse with the in-
crease of domain size. In contrast, DICTIONARY favors a larger
value length as illustrated in Figure 22, with a slight improvement.
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Figure 22: Varying text feature of value length ℓ2
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Figure 23: Varying text feature of repeat rate W2

In Figure 23, the compression ratio of RLE significantly improves
when the character repeat rate W2 is large, as analyzed in Table 5
and Section 5.2. However, such character repeats may not be preva-
lent in practice as illustrated in Figure 19(a).

Due tomore characters, insert time significantly increases while
length is increasing. And insert time is almost unchanged with ex-
ponent, domain and repeat varying.

Since HUFFMAN algorithm needs to recover Huffman tree in
the process of selecting data, it has significantly higher select time.
When repeat becomes larger, the Huffman tree becomes smaller,
and select time decreases in Figure 23(c). In contrast, with the in-
crease of length, the Huffman tree becomes larger, and select time
increases in Figure 22(c).

8 RELATED WORK

While this study focuses on encoding methods that are proper to
implement in time series database management systems, there do
exist many other alternatives (see [22] for a survey).

8.1 Lossless Encoding

In addition to the lossless encoding algorithms studied in this pa-
per, the dictionary-based algorithms [32, 34] are not practical to
implement for numerical values, since the dictionaries could be
too large to store in the PageHeader of Apache IoTDB. Similarly,
machine learning based lossless encoding, such as [47] consisting
of a transform stage and an encoding stage, needs to conduct rein-
forcement learning. Not only the models are too large to store, but
also the learning is too heavy to process inside databases.

8.2 Lossy Encoding

While we focus on lossless encoding required in databases, the
lossy encoding is also practical in other applications especially in
end or edge devices. Plato [31] proposes to reduce noise. ODH
[30] adopts different lossy algorithms to encode the linear and
non-linear data, respectively. Eichinger et al. [25] propose to es-
timate time series in piecewise polynomial by applying a greedy
method and three different online regression algorithms, includ-
ing a PMR-Midrange algorithm [33], an optimal approximation al-
gorithm [24], and a randomized algorithm [39], for approximat-
ing constant functions, straight lines, and polynomials. Fink and
Gandhi [26] introduce an algorithm to encode time series by ex-
ploiting time seriesmaxima andminima. TRISTRAN [34] and COR-
AD [32] use autocorrelation in one or multiple time series to im-
prove compression ratio and accuracy.

8.3 General Compression

In Apache IoTDB, a compression step for general data is applied
after the time series is encoded, i.e., complementary. The compres-
sion algorithms implemented inApache IoTDB, GZIP [16], SNAPPY
[38] and LZ4 [19], all originate from LZ77 [48], looking for the
longest match string using a sliding window on the input stream.
Nevertheless, the results in Figure 9 show that TS_2DIFF encoding
is already efficient, while further applying general purpose com-
pression cannot reduce the space cost further.

9 CONCLUSION

In this paper, we provide both qualitative and quantitative analy-
sis of time series encoding algorithms regarding to various data
features. The comparison is conducted in Apache IoTDB, an open-
source time series database developed in our preliminary study
[43]. First, we profile several features that may affect the perfor-
mance of encoding. The qualitative and quantitative analysis is
thus built on these data features. To evaluate the encoding algo-
rithms, we present a benchmark with real-world data and a data
generator for various features.

We notice that different encoding algorithms favor various data
features. It motivates us to recommend distinct encoding algorithms
referring to the features for different datasets. While some prelimi-
nary results of encoding recommender are presented in Appendix
A in [17], it is expected to improve the recommender further. For in-
stance, one may employ more advanced machine learning models
to train a more accurate recommender. Incremental and transfer
learning could also be applied, to address evolving data features
and generalize over never-seen datasets. In addition to pursuing
more concise encoding, one may also expect to balance the space
cost and the time cost of efficient query processing.
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