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Abstract—Besides the conventional schema-oriented tasks, data dependencies are recently revisited for data quality applications,

such as violation detection, data repairing and record matching. To address the variety and veracity issues of big data, data

dependencies have been extended as data quality rules to adapt to various data types, ranging from (1) categorical data with equality

relationships to (2) heterogeneous data with similarity relationships, and (3) numerical data with order relationships. In this survey, we

briefly review the recent proposals on data dependencies categorized into the aforesaid types of data. In addition to (a) the concepts of

these data dependency notations, we investigate (b) the extension relationships between data dependencies, e.g., conditional

functional dependencies (CFDs) extend the conventional functional dependencies (FDs). It forms a family tree of extensions, mostly

rooted in FDs, helping us understand the expressive power of various data dependencies. Moreover, we summarize (c) the discovery of

dependencies from data, since data dependencies are often unlikely to be manually specified in a traditional way, given the huge

volume and high variety of big data. We further outline (d) the applications of the extended data dependencies, in particular in data

quality practice. It guides users to select proper data dependencies with sufficient expressive power and reasonable discovery cost.

Finally, we conclude with several directions of future studies on the emerging data.

Index Terms—Integrity constraints, data dependencies

Ç

1 INTRODUCTION

DATA dependencies, such as functional dependencies (FDs),
have been long recognized as integrity constraints in

databases [24]. They are first utilized in database design [2].
For instance, functional dependencies are employed to eval-
uate whether a relation is in third normal form (3NF) [23] or
Boyce-Codd normal form (BCNF) [24]. FDs are extended to
multivalued dependencies (MVDs) [6], i.e., every FD is also
an MVD, in order to test whether a relation is in fourth nor-
mal form (4NF) [30]. Such data dependencies are also used
in database query optimization [29], [47].

While data dependencies and their extensions are con-
ventionally used for schema design, they have been recently
revisited and extended for big data analysis. When the users
are exploring data, they often experience the variety and
veracity issues. To process the possibly dirty data from het-
erogeneous sources, data dependencies have been recently
extended and used for improving data quality [31], such as
error detection [102], data repairing [12], [62], data dedupli-
cation [37], etc.

Given the various data types, ranging from the conven-
tional categorical data, numerical data to the more prevalent
heterogeneous data, different extensions are made over the
data dependencies with distinct expressive power. In this

survey, we propose to give an entire landscape of typical
data dependencies, in order to identify their relationships
and distinct application scenarios. For example, if a user
wants to perform data repairing over a data source with
both categorical and numerical values, a direct suggestion
will be DCs [98] referring to Fig. 1 and Table 3.

1.1 Background

An FD X ! Y , over relation R, where X;Y � R, states that
if any two tuples in an instance of R have equal X-values,
then their Y -values should also be identical.

Consider the example relation instance r1 illustrated in
Table 1. A functional dependency fd1 below over r1 specifies
the constraint that for any two tuples of hotels, if they have
the same address, then their region values must be equal,

fd1 : address ! region:

For instance, tuples t1 and t2 in Table 1, with the same
address value “No.5, Central Park”, have equal region value
“New York” too. That is, each address is associated with
precisely one region.

This fd1 can be used to detect data quality issues in the
relation instance r1 in Table 1. For tuples t3 and t4 with
equal values on address, they have different region values,
which are then treated as a violation to the above fd1. It
implies errors occurred in t3 or t4, e.g., “Chicago, MA”
should be “Boston” instead.

1.2 Intuition

Owing to the variety issue of big data, real-world informa-
tion often has various representation formats. As indicated
in [96], the strict equality restriction limits the usage of FDs.

For example, according to fd1, tuples t5 and t6 in Table 1
will be detected as a “violation”, since they have “different”
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region values but the same address. However, “Chicago”
and “Chicago, IL” indeed denote the same region in the
real-world with different representation formats, i.e., no
errors.

On the other hand, t7 and t8, which have similar
addresses values but different regions, are true violations
with data errors. Unfortunately, they cannot be detected by
fd1, since their address values are not exactly equal (but
similar). The fd1 considers only those tuples with the strict
equality relationships on address.

Therefore, data dependency notations often need adap-
tion to meet the requirements of various data types.

1.3 Categorization

In this article, motivated by the aforesaid veracity and vari-
ety issues of big data, we focus on recent proposals of novel

data dependencies declared over various data types. Table 2
presents an overview of studied data dependencies.

(1) For the conventional categorical data, it is noticed that
data dependencies might no longer hold over the entire set
of all tuples. For example, as illustrated in Table 1, while t1
and t2 satisfy fd1, t5 and t6 (which contain no error) do not.
To support such scenarios, the important attempts are to
extend data dependencies with conditions [11] or statis-
tics [55]. The basic idea of these extensions is to make the
dependencies, that originally hold for the whole table, valid
only for a subset of tuples.

(2) The aforesaid extensions over categorical data still
consider the equality relationship of data values. This strict
constraint on equality limits the usage of data dependencies
over heterogeneous data, since real-world information often
has various representation formats or conventions, such as
“Chicago” and “Chicago, IL” in Table 1. To improve the
expressive power, distance metrics are introduced to data
dependencies [86]. Instead of equality, data dependencies
with distance/similarity metrics can specify constraints on
“(dis)similar” semantics. For example, a distance constraint
could state that if two tuples have similar address values,
then they are similar on regions as well.

(3) Another typical data type is numerical value, such as
star and price in Table 1. Order relationships are usually
more important than the equality relationships for numeri-
cal data [28]. For instance, as illustrated in Table 1, a higher
end hotel generally has a higher price.

Fig. 1. (A) A family tree of extensions between various data dependencies, where an arrow (e.g., from FDs to SFDs) denotes that SFDs extend/gen-
eralize/subsume FDs, or FDs are special SFDs (with strength 1). Each extension relationship is explained in the following sections. (B) The number
of publications using a data dependency.

TABLE 1
An Example Relation Instance r1 of Hotel

name address region star price

t1 New Center No.5, Central Park New York 3 299
t2 New Center Hotel No.5, Central Park New York 3 299
t3 St. Regis Hotel #3, West Lake Rd. Boston 3 319
t4 St. Regis #3, West Lake Rd. Chicago, MA 3 319
t5 West Wood Hotel Fifth Avenue, 61st Street Chicago 4 499
t6 West Wood Fifth Avenue, 61st Street Chicago, IL 4 499
t7 Christina Hotel No.7, West Lake Rd. Boston, MA 5 599
t8 Christina #7, West Lake Rd. San Francisco 5 0
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1.4 Perspective

For each data dependency, in addition to (a) the definition
of the dependency notation, we are particularly interested
in other aspects, including (b) extension, how it generalizes
other data dependencies; (c) discovery, how it can be
obtained from data; and (d) application, how it is utilized.

1.4.1 Family Tree on Extensions

To capture the semantics over big data with variety issues,
data dependencies are extended with more expressive
power. It is highly demanded to investigate the complicated
extension relationships between data dependencies, in order

to choose data dependencies with proper expressive power
in practice. Fig. 1 presents the extension relationships, where
each arrow denotes the extension/generalization relation-
ship between two types of data dependencies. For example,
an arrow from FDs to SFDs denotes that SFDs extend/gener-
alize/subsume FDs. That is, SFDs are extension of FDs, SFDs
are generalization of FDs, SFDs subsume the semantics of
FDs, or FDs are special SFDs (with strength 1).1

Table 2 and Fig. 2 provide a timeline of data dependen-
cies that are proposed for various reasons. There are some

TABLE 2
An Index of Data Dependencies With References of Definition, Discovery and Application

Data types Data dependencies References of References of References of Year # publications

definition discovery application using it

Categorical SFDs, Soft Functional Dependencies [55] [55], [60] [55], [60] 2004 327
PFDs, Probabilistic Functional Dependencies [104] [104] [104] 2009 55
AFDs, Approximate Functional Dependencies [61] [53], [54] [111] 1995 248
NUDs, Numerical Dependencies [50] [22] 1981 18
CFDs, Conditional Functional Dependencies [11], [34] [18], [35], [36], [49], [113] [25], [40] 2007 404
eCFDs, extended CFDs [14] [114] [14] 2008 76
MVDs, Multivalued Dependencies [30] [82] [80] 1977 471
FHDs, Full Hierarchical Dependencies [27], [52] 1978 191
AMVDs, Approximate MVDs [59] 2020 1

Heterogeneous MFDs, Metric Functional Dependencies [64] [64] [64] 2009 86
NEDs, Neighborhood Dependencies [4] [4] [4] 2001 15
DDs, Differential Dependencies [86] [65], [86], [88], [89] [86], [93], [94], [95], [96] 2011 109
CDDs, Conditional Differential Dependencies [66] [66] [66] 2015 3
CDs, Comparable Dependencies [91], [92] [92] [92] 2011 18
PACs, Probabilistic Approximate Constraints [63] [63] [63] 2003 39
FFDs, Fuzzy Functional Dependencies [79] [109], [108] [13], [56], [71] 1988 496
MDs, Matching Dependencies [33], [37] [85], [87], [90] [37], [38], [41] 2009 197

CMDs, Conditional Matching Dependencies [110] [110] [110] 2017 15
Numerical OFDs, Ordered Functional Dependencies [76], [77] [75] 1999 27

ODs, Order Dependencies [28] [67], [99] [28], [100] 1982 27
DCs, Denial Constraints [8], [9] [10], [19], [21], [78] [8], [9], [20], [70], [98] 2005 52
SDs, Sequential Dependencies [48] [48] [48] 2009 97
CSDs, Conditional Sequential Dependencies [48] [48] [48] 2009 97

TABLE 3
Applications of Data Dependencies

1. See Section 2.1 for details.
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important milestones. AFDs [61] are first proposed in 1995
for data dependencies that approximately hold in a relation.
Similar extensions such as SFDs [55] in 2004 and PFDs [104]
in 2009 are developed following the same line. Moreover,
CFDs introduce another series of extensions on condition-
ally holding in a relation, e.g., CSDs [11] in 2009, CDDs [66]
in 2015 and CMDs [110] in 2017.

In order to compare the impact of data dependencies,
Table 2 and Fig. 1 B illustrate the number of publications
using a data dependency, according to Google Scholar. As
shown, while the extensions over the conventional categori-
cal data such as CFDs attract more attention, recent pro-
posals focus more on the heterogeneous data, e.g., MDs,
DDs and their extensions. Moreover, the usage of data
dependencies over the numerical data is increasing, from
canonical ODs to recent SDs.

1.4.2 Discovery From Data

The discovery problem is to find the data dependencies that
hold in a given dataset (either clean or dirty). For instance,
given the instance in Table 1, it is to find FDs such as fd1
that (approximately) hold. The discovery of FDs from data
is known to be intrinsically hard, i.e., a minimal cover can
be exponential large with respect to the number of attributes
in a relation [72], [73], [83]. The problem of determining
whether a relation has a key of size less than a given integer
is NP-complete [5]. Efficient strategies are studies for dis-
covering FDs, such as TANE [53], [54], FastFD [112]. While
the extensions with metrics enable data dependencies with
more expressive power and tolerant to variations of hetero-
geneous data, the data dependencies become more compli-
cated. In particular, the thresholds of metric distances/
similarities are often non-trivial to specify manually in prac-
tice and thus rely more on the discovery from data. We will
introduce how similar techniques are proposed for discov-
ering various types of data dependencies.

Fig. 3 compares the difficulties of data dependency dis-
covery problems. Unfortunately, as illustrated, most prob-
lems are NP-complete. For instance, in CFD discovery, the
problem of generating an optimal tableau for a given FD is
NP-complete [49]. All the generalizations of CFDs, such as
CDDs and DCs including CFDs as special cases in Fig. 1,
inherit the difficulty, i.e., the discovery of CDDs and DCs is
no easier than that of CFDs. The discovery problem for
CSDs, however, is polynomial time solvable, i.e., an exact
dynamic programming algorithm for the tableau construc-
tion takes quadratic time in the number of candidate
intervals [48].

1.4.3 Application in Data

Once the foundations of data dependencies are carefully con-
structed, understood and discovered, a practical issue is then
how to apply such data dependencies in real data-centric
applications. Besides the traditional applications, such as
schema design, integrity constraints, and query optimization
with respect to the schema in databases, data dependencies
are recently applied in data quality-oriented practice, e.g.,
violation detection [11], data repairing [25], consistent query
answering [3], data deduplication [37], etc. Table 3 in
Section 1.4.3. The table provides the references of the data
dependencies supported for each application task, again cat-
egorized by data types. It is not surprising that a large num-
ber of the studies are dedicated to the applications of
violation detection and data repairing, referring to the verac-
ity issue and themotivation of improving data quality.More-
over, the heterogeneous data type is well supported, owing
to the prevalent variety issue of big data. Application details
of various data dependencies are discussed in the following
sections.

1.5 Difference to Existing Studies

As illustrate in Section 1.1, the tradition data dependencies
such as FDs are declared on the whole relation, i.e., for any
two tuples in a relation, if they have the same determinant
X values, their dependent Y values must be equal as well.
Such a strict condition cannot address the novel variety and
veracity issues in big data. (1) Data dependencies might not
hold in the whole relations. For example, one may notice
that only in UK, zipcode determines street, but not in other
countries. It leads to the extensions on statistics and condi-
tions on categorical data in Section 2. (2) The same entity
may have different representation formats in various data
sources. For instance, “Chicago” and “Chicago, IL” denote

Fig. 3. The difficulties of data dependency discovery problems (assum-
ing P6¼NP and NP6¼co-NP).

Fig. 2. Timeline of data dependencies proposed for various reasons.
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the same region. To be tolerant to such heterogeneity, data
dependencies are extended with distance metrics over het-
erogeneous data in Section 3. (3) The order of numerical
data needs to be considered, such as the price increases in
weekdays. Extensions are necessary to capture such order
constraints over numerical data in Section 4.

Caruccio et al. [15] summarize some relaxations of the
traditional functional dependencies. While the relaxed nota-
tions of various data dependencies are extensively intro-
duced, it is not discussed on how data dependencies extend
with each other, i.e., the family tree of extensions presented
in Fig. 1. In addition to comparing FD with its more specific
versions, in Fig. 1 B, we further compare the impact or
importance of a data dependency, by counting the number
of publications that use it. To add more insights on how
data dependencies relate to each other, we provide a time-
line of data dependencies that are proposed for various rea-
sons, in Fig. 2. Important milestones are observed, such as
AFDs [61] for data dependencies that approximately hold in
a relation, and CFDs [11] on conditionally holding in a rela-
tion. Moreover, we compare the difficulties of data depen-
dency discovery problems in Fig. 3. As illustrated, while
most problems are NP-complete, the discovery problem for
some data dependencies such as CSDs [48], however, is
polynomial time solvable.

Liu et al. [69] review typical discovery algorithms for data
dependencies mainly over categorical data, such as FDs,
AFDs, CFDs, etc. The discovery of data dependencies on
heterogeneous and numerical data as well as their applica-
tions are not addressed.

1.6 Organization

In Section 2, we first present the data dependencies on cate-
gorical data, since conventional data dependencies are often
defined on the equality relationship of categorical data val-
ues. Extensions with statistics or conditions are made to
meet the variety of big data. Section 3 introduces data
dependencies over heterogeneous data. The data dependen-
cies consider similarity metrics instead of equality opera-
tors, which increase expressive power. In Section 4, data
dependencies on numerical data are discussed. Orders
between two values are considered as the essential con-
straints in these dependencies. Finally, in Section 5, we con-
clude the article and discuss promising directions of future
work. Table 4 lists the notations frequently used in this
paper.

While categorical data, heterogeneous data and numeri-
cal data are individually analyzed in each section, they
would appear together in a system. Some data dependen-
cies could express the constraints across different data
types. As illustrated in Section 4.3, DCs can declare the
constraints over both categorical and numerical data. For
example, a DC may state that the price should not be lower
than 200 (numerical value) in the region of “Chicago” (cate-
gorical value). Likewise, Section 3.3.5 shows that CDDs can
express the constraints on both categorical and heteroge-
neous data. For instance, a CDD may state that in the
region of “Chicago” (categorical value), two tuples (from
heterogeneous sources) with similar name values (denot-
ing the same hotel) should have similar address values.
That is, while the data dependencies over categorical,

heterogeneous and numerical data form three branches in
Fig. 1, they do have connections. As aforesaid, DCs extend
ODs for numerical data (Section 4.3.2) as well as eCFDs on
categorical data (Section 4.3.3). Similarly, CDDs extend
both DDs over heterogeneous data and CFDs over categor-
ical data (Section 3.3.5).

2 CATEGORICAL DATA

Owing to the variety issues in big data, data dependencies
may not exactly hold. A natural extension is to investigate
the data dependencies that almost hold, known as statistical
extensions. Another idea is to extend the data dependencies
with conditions, i.e., data dependencies conditionally hold
in a subset of data, namely conditional extensions.

2.1 Soft Functional Dependencies (SFDs)

Unlike hard FDs, soft functional dependencies (SFDs) [55]
consider that some data values determine other values not
with certainty but merely with high probability, calculated
by counting domain values.

2.1.1 Definition

A soft functional dependency (SFD) is in the form of

SFD : X !s Y;

where X;Y are attributes in a relation R, and s is a mini-
mum threshold of strength measure. The strength measure
evaluates howX ! Y almost holds in a relation instance r

SðX ! Y; rÞ ¼ jdomðXÞjr
jdomðX; Y Þjr

;

where jdomðXÞjr is the number of distinct values in attrib-
utes X in r, and jdomðX;Y Þjr is the number of distinct val-
ues in the concatenation of X and Y in r. A SFD has
SðX ! Y; rÞ � s, stating that the value of X determines that
of Y not with certainty, but with high probability.

Consider the relation instance r5 in Table 5. We have

Sðaddress ! region; r5Þ ¼
jdomðXÞjr5

jdomðX;Y Þjr5
¼ 2

3
:

That is, address ! region almost holds in r5. Instead, the
strength measure for name ! address in relation r5 is

Sðname ! address; r5Þ ¼
jdomðXÞjr5

jdomðX; Y Þjr5
¼ 1

2
:

It is not a clear FD with lower strength value.

TABLE 4
Notations

Symbol Description

R relation scheme
X; Y attribute sets in R
A;B single attributes in R
r relation instance
t tuple in r
tp pattern tuple of conditions
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2.1.2 Special Case: FDs

As indicated in Fig. 1, SFDs extend FDs. When the value of
X determines the value of Y with strength 1, it is exactly an
FD. In other words, all FDs can be represented as special
SFDs with s ¼ 1. For example, fd1 in Section 1.1 can be
equivalently represented by

sfd1 : address !1 region:

That is, for the relation r1 in Table 1, we have strength
Sðaddress ! region; r1Þ ¼ 1. In this sense, SFDs subsume
the semantics of FDs, or SFDs generalize/extend FDs,
denoted by the arrow from FDs to SFDs in Fig. 1.

2.1.3 Discovery

Ilyas et al. [55] propose a sample-based approach CORDS to
discover SFDs, which uses system catalog to retrieve the
number of distinct values of a column. It uses a robust chi-
square analysis to identify the correlation between attrib-
utes, and analyzes the number of different values in the
sampling column to detect SFDs. The sample size of the
algorithm is basically independent of the database size.
Thereby, the algorithm is highly scalable. Kimura et al. [60]
describe algorithms to search for SFDs that can be exploited
at query execution time by introducing appropriate predi-
cates and choosing a different index. It introduces bucketing
on the domains of both attributes to reduce the size of index.

2.1.4 Application

Soft functional dependencies are useful in improving the
optimizers selectivity estimation during query optimiza-
tion [55] by collecting joint statistics for those correlated
data columns. They also can be used for improving query
processing performance [60] with the property that the val-
ues of an attribute are well-predicted by the values of
another attribute. If a column is correlated to another col-
umn, it is possible to recommend secondary indices.

2.2 Probabilistic Functional Dependencies (PFDs)

Probabilistic functional dependencies (PFDs) [104] extend
functional dependencies with probability for data integra-
tion systems, by counting the tuple values.

2.2.1 Definition

A probabilistic functional dependency (PFD) over attributes X
and Y in relation R is denoted by

PFD : X !p Y;

where X ! Y is a standard FD, and p is a maximum thresh-
old of the likelihood that the FDX ! Y is correct.

To compute the likelihood in a relation instance r, it first
calculates the fraction of tuples for each distinct value VX of
X. Let VY be the Y -value that occurs in the maximum num-
ber of tuples with value VX inX. The probability is

P ðX ! Y; VXÞ ¼ jVY ; VXj
jVXj ;

where jVY ; VXj is the number of tuples with values VX for X
and VY for Y , and jVXj is the number of tuples with values

VX forX. The probability ofX ! Y in r is given by the aver-
age of probabilities for each distinct value ofX,

P ðX ! Y; rÞ ¼
P

VX2DX
P ðX ! Y; VXÞ
jDXj ;

where DX is all distinct values of X in r. A PFD has P ðX !
Y; rÞ � p, i.e., a high probability to hold.

Consider again the relation instance r5 in Table 5, where
an FD address ! region almost hold. We have

P ðaddress ! region; V1Þ ¼1;

P ðaddress ! region; V2Þ ¼ 1

2
;

P ðaddress ! region; r5Þ ¼ 3

4
;

given V1 ¼ “175 North Jackson Street” and V2 ¼ “6030 Gate-
way Boulevard E”.

Similarly, for the FD name ! address, which does not
clearly hold in Table 5, we have

P ðname ! address; V1Þ ¼ jVaddress; V1j
jV1j ¼ 1

2
;

where V1 ¼“Hyatt”, Vaddress=“6030 Gateway Boulevard E”.
It follows

P ðname ! address; r5Þ ¼ 1

2
:

2.2.2 Special Case: FDs

From Fig. 1, we can see that PFDs subsume FDs. When the
value of X determines the value of Y with P ðX ! Y; rÞ ¼ 1,
having p ¼ 1 in a PFD X !p Y , it is exactly an FD. That is,
all FDs can be represented as special PFDs with p ¼ 1. For
example, fd1 in Section 1.1 can be represented by

pfd3 : address !1 region:

That is, for the relation r1 in Table 1, we have P ðaddress !
region; r1Þ ¼ 1. Consequently, PFDs subsume the semantics
of FDs, or PFDs generalize/extend FDs, denoted by the
arrow from FDs to PFDs in Fig. 1.

2.2.3 Discovery

Wang et al. [104] extend the TANE algorithm over a single
table to generate PFDs from hundreds of small, dirty and
incomplete data sets. Two counting-based algorithms are
proposed. The first algorithm merges the values and com-
putes the probability of each FD, while the second

TABLE 5
An Example Relation Instance r5 of Hotel Where FD address !
region Almost Holds, While name ! address is not Clear to

Hold

name address region rate

t1 Hyatt 175 North Jackson Street Jackson 230
t2 Hyatt 175 North Jackson Street Jackson 250
t3 Hyatt 6030 Gateway Boulevard E El Paso 189
t4 Hyatt 6030 Gateway Boulevard E El Paso, TX 189
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algorithm, which is for multiple sources, merges PFDs
obtained from each source.

2.2.4 Application

PFDs are used in a pay-as-you-go data integration system to
gauge and improve the quality of the information integra-
tion [104]. FDs are declared with probabilities to capture the
inherent uncertainties over many data sources. The viola-
tion of PFDs by some data sources can help pinpoint data
sources with low quality data. Moreover, PFDs can also
help normalize a large automatically generated mediated
schema into relations that correspond to meaningful real-
world entities and relationships, to help users better under-
stand the underlying data.

2.3 Approximate Functional Dependencies (AFDs)

Rather than exactly holding, approximate functional depen-
dencies (AFDs) [61] declares FDs that almost hold in a
relation.

2.3.1 Definition

An approximate functional dependency (AFD) between attrib-
utesX and Y in R is denoted by

AFD : X !" Y;

where " is a maximum threshold of an error measure evalu-
ating the exact proportion of tuples with violations. Given a
relation instance r, the g3 error measure calculates the ratio
of the minimum number of tuples that need to be removed
from r to makeX ! Y hold on r

g3ðX ! Y; rÞ ¼ jrj �maxfjsj j s � r; s�X ! Y g
jrj ;

where s is a subset of tuples in r that do not violate X ! Y ,
denoted by s�X ! Y . An AFD has g3ðX ! Y; rÞ � ". A nat-
ural interpretation is the fraction of rows with exceptions or
errors affecting the dependency.

Consider again the relation instance r5 in Table 5. We
have

g3ðaddress ! region; r5Þ ¼ 1

4
:

By removing either t3 or t4, the violation eliminates. It can be
computed by grouping tuples according to equal X values,
i.e., on address, then finding the minimum violation tuples
in each group.

Similarly, for name ! address in r5, we have

g3ðname ! address; r5Þ ¼ 1

2
:

That is, at least two tuples need to be removed (e.g., t3 and
t4) in order to make the FD hold.

2.3.2 Special Case: FDs

Again, in Fig. 1, we show that AFDs generalize FDs. For an
FD, i.e., the value of X determines exactly that of Y , the cor-
responding error measure is g3ðX ! Y; rÞ ¼ 0. The example
fd1 in Section 1.1 can be equivalently represented by

afd1 : address !0 region:

In other words, for the relation r1 in Table 1, we have error
measure g3ðaddress ! region; r1Þ ¼ 0. Thereby, AFDs sub-
sume the semantics of FDs, or AFDs generalize/extend
FDs, denoted by the arrow from FDs to AFDs in Fig. 1.

2.3.3 Discovery

The TANE algorithm [53], [54] for discovering exact FDs can
also be adapted for AFDs discovery. Similar to TANE, it
partitions the set of rows based on attribute values for han-
dling a large number of tuples. The use of partitions also
makes the discovery of AFDs simple and efficient. The error
or abnormal tuples can be easily identified. The key modifi-
cation is to change the validity test on whether X ! Y
exactly holds to whether g3ðX ! Y; rÞ � " as defined in
Section 2.3.1. It computes all minimal approximate depen-
dencies X ! Y with g3ðX ! Y; rÞ � ", for a given threshold
value ".

2.3.4 Application

AFDs are utilized for query processing over incomplete
databases. To retrieve possible answers, the QPIAD sys-
tem [111] mines the inherent correlations among database
attributes represented as AFDs. These AFDs are exploited
to select features and compute probability distribution over
the possible values of the missing attribute for a given tuple.

2.4 Numerical Dependencies (NUDs)

Rather than one element, numerical dependencies (NUDs) [50]
state that with an element of a particular attribute or set of
attributes, one can associate up to k elements of another attri-
bute or set of attributes.

2.4.1 Definition

A numerical dependency (NUD) on a relation R has the form

NUD : X !k Y;

where X;Y are attribute sets in R, and k � 1 is called the
weight of the NUD. It states that each value of X can never
be associated to more than k distinct values of Y .

Consider an NUD over relation r5 in Table 5,

nud1 : address !2 region:

It states that one address can only have at most 2 variations
of region. As shown in Table 5, there are 2 different region
representation formats for “El Paso” in tuples t3 and t4.

2.4.2 Special Case: FDs

Fig. 1 shows that FDs are special cases of NUDs. All FDs can
be represented as special NUDs with k ¼ 1. For example, fd1
in Section 1.1 can be equivalently represented by

nud2 : address !1 region:

That is, for the relation r1 in Table 1, each tuple t½X� is asso-
ciated to at most one value on Y . Thus, NUDs subsume the
semantics of FDs, or NUDs generalize/extend FDs, denoted
by the arrow from FDs to NUDs in Fig. 1.
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2.4.3 Application

NUDs can be used in various scenarios [22] such as (1) esti-
mating the projection size of a relation, that is, number of
distinct attribute values of a subset; (2) estimating the cardi-
nality of aggregate views; and (3) efficient query processing
in nondeterministic databases.

2.5 Conditional Functional Dependencies (CFDs)

Rather than FDs that hold in the whole relation, conditional
functional dependencies (CFDs) [11], [34] declare FDs that
conditionally hold in a part of the relation.

2.5.1 Definition

A conditional functional dependency (CFD) over R is a pair

CFD : X ! Y; tp;

where (1) X and Y are attributes in R; (2) X ! Y is a stan-
dard FD, embedded in CFD; and (3) tp is a pattern tuple
with attributes in X and Y . For each B 2 X [ Y , tp½B� is
either a constant ‘a’ in domðBÞ, or an unnamed variable ‘ ’
that draws values from domðBÞ. It denotes that X ! Y con-
ditionally holds over a subset of tuples specified by tp.

A CFD over the relation instance r5 in Table 5 can be

cfd1 : region; name ! address; ðJackson; k Þ:
It assures that for the tuples whose region is “Jackson”, if
they have the same name, then their address value must be
equal (since there is only one Hyatt hotel in Jackson). For
better readability, the CFD can be also written as

cfd1 : region ¼ 00Jackson00; name ¼ ! address ¼ :

Tuples t1 and t2 satisfy cfd1, which have the same name, the
same region of “Jackson”, as well as the same address.

2.5.2 Special Case: FDs

CFDs extend FDs as shown in Fig. 1. When the value of X
determines the value of Y without conditions, it is exactly
an FD. In other words, all FDs can be represented as special
CFDs without constants in tp. The example fd1 in Section 1.1
can be represented as a CFD,

cfd2 : address ! region; ð k Þ:
For better readability, it can be also written as

cfd2 : address ¼ ! region ¼ :

Therefore, CFDs subsume the semantics of FDs, or CFDs
generalize/extend FDs, denoted by the arrow from FDs to
CFDs in Fig. 1.

2.5.3 Discovery

For CFDs discovery, the problem of generating an optimal
tableau for a given FD is NP-complete [49]. The implication
problem for CFDs is co-NP-complete [11]. Since CFDs hold
only in a subset of tuples rather than the entire table as FDs,
an important problem in CFD discovery is thus to evaluate
how many tuples the discovered constraints can cover,
known as the support of a CFD. Fan et al. [35], [36] propose
three algorithms to discover CFDs. CFDMiner, based on the

connection between minimal constant CFDs, finds constant
CFDs by leveraging mining technique. CTANE extends
TANE [53], [54] to discover general minimal CFDs, based
on attribute-set/pattern tuple lattice. FastCFD, an extension
of FastFD [112], discovers general CFDs by employing a
depth-first search strategy. A level-wise algorithm, pro-
posed by Chiang and Miller [18], uses an attribute lattice to
generate candidate embedded FDs. Golab et al. [49] propose
a greedy approximation algorithm to compute a close-to-
optimal tableau for a CFD when the embedded FD is given.
Peter et al. [113] present Data Quality Rules Accelerator
(DQRA), by gradually introducing additional conditions to
some initial CFDs.

2.5.4 Application

Cong et al. [25] study the detecting and repairing methods of
violations to CFDs. Two strategies are investigated to
improve data consistency, or (1) directly computing a repair
that satisfies a given set of CFDs, (2) incrementally finding a
repair with updates to a database. Due to the hardness of
repair problems, heuristic algorithms are developed as well.
Fan et al. [40] investigate the propagation problem of CFDs.
Given a set of CFDs on a data source, it is to determine
whether or not such CFDs are still valid on the views (map-
pings) of the given data source. Such propagation is useful
for data integration, data exchange and data cleaning. Algo-
rithms are developed for computing the cover of CFDs that
are propagated from the original source to the views.

2.5.5 Extension: Extended CFDs (eCFDs)

To substantially improve the expressive power of CFDs,
conditional functional dependencies (eCFDs) [14] extend
CFDs with more predicates on disjunction and inequality.

An extended conditional functional dependency (eCFD) is

eCFD : X ! Y; tp;

where 1)X and Y are attributes in R; 2)X ! Y is an embed-
ded standard FD; and 3) tp is a pattern tuple with attributes
in X and Y . For each A in X [ Y , tp½A� is either an unnamed
variable ‘ ’ that draws values from domðAÞ, or ‘op a’, where
op is one of f¼; 6¼; < ;�; > ;�g, and ‘a’ is a constant in
domðAÞ. That is, more operators are employed to specify the
subset of tuples where the embedded FD holds.

An eCFD over the relation instance r5 in Table 5 can be

ecfd1 : rate; name ! address; ð� 200; k Þ:
which can also be written as follows

ecfd1 : rate � 200; name ¼ 00 00 ! address ¼ :

It states that if two tuples such as t3 and t4 in Table 5 have
the same rate value � 200, then their name determines
address(since small cities often have one hotel of each brand
with a relatively low rate).

There are some differences in terms of extension between
CFDs and eCFDs. That is, as illustrated in Fig. 1, CDDs
extend CFDs (in Section 3.3.5) but not eCFDs. The complex-
ity of the implication problem for eCFDs, implying an
eCFDs from a set of eCFDs, remains unchanged, i.e., coNP-
complete as CFDs [14].
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2.6 Multivalued Dependencies (MVDs)

While functional dependencies rule out the existence of cer-
tain tuples, known as equality-generating dependencies,
multivalued dependencies [30] require the presence of cer-
tain tuples, i.e., tuple-generating dependencies.

2.6.1 Definition

A multivalued dependency (MVD) over relation R is in the
form of

MVD : XH Y;

where X [ Y [ Z ¼ R is a partition of R. A relation instance
r of R satisfies the MVD, if a given pair of ðX;ZÞ values has
a set of Y values, which are determined only by X values
and independent of Z values, i.e., r ¼ pXY ðrÞ ffl pXZðrÞ.

An MVD in relation r5 in Table 5 can be

mvd1 : address; rateH region:

For instance, given the (address, rate, name) values “(6030
Gateway Boulevard E, 189, Hyatt)” in t3 and t4, we have a
set of region values {“El Paso”, “El Paso, TX”} independent
of name. Similarly, for t1 with (address, rate, name) values
(175 North Jackson Street, 230, Hyatt), we also have region
value “Jackson” independent of name.

2.6.2 Special Case: FDs

From Fig. 1, we can see that FDs are special cases of MVDs.
All FDs can be represented as special MVDs. For example,
fd1 in Section 1.1 can be rewritten as

mvd2 : addressH region:

That is, the value on address determines the set of values on
region, having set size 1. Thereby, MVDs subsume the
semantics of FDs, or MVDs generalize/extend FDs, denoted
by the arrow from FDs to MVDs in Fig. 1.

2.6.3 Discovery

Savnik et al. [82] study the discovery of MVDs from rela-
tions. It searches valid MVDs in the hypothesis space
designed according to the generalization relationships
between MVDs. The idea is generally similar to the level-
wise search of FDs discovery [53], [54]. Two strategies for
discovering MVDs are proposed. The top-down algorithm
searches for the positive border of valid dependencies, from
most general dependencies to more specific ones. The
bottom-up algorithm first calculates the negative border of
invalid MVDs by eliciting false dependencies.

2.6.4 Application

While MVDs are extremely important in database design,
introducing fourth normal form (the original relation can be
decomposed by MVDs and obtained from the new relations
by taking joins) [30], Salimi et al. [80] recently introduce a
novel application of MVDs to guarantee model fairness in
machine learning. The training data often reflect discrimina-
tion, e.g., on race or gender, which is difficult to eliminate
owing to the causal relationships among attributes. Intui-
tively, MVDs can be employed to capture the conditional

independence. The fairness is thus reduced to a database
repair problem by linking causal inference to multivalued
dependencies.

2.6.5 Full Hierarchical Dependencies (FHDs)

While multivalued dependencies decompose a relation into
two of its projections without loss of information, the full
hierarchical dependencies (FHDs) [27] further study the
hierarchical decomposition of a relation into multiple rela-
tions. An FHD is an expression X : fY 1; . . .; Y kg, where
X;Y 1; . . .; Y k � R form a partition of relation R. A relation
instance r of R satisfies the FHD, if r ¼ pXY1ðrÞ ffl . . . ffl
pXYkðrÞ ffl pXðR�XY1...YkÞðrÞ. That is, the FHD decomposes r
into multiple new relations without loss of information.
When k ¼ 1, it is exactly an MVDXH Y 1.

2.6.6 Approximate Multivalued Dependencies (AMVDs)

Similar to approximate functional dependencies, the
approximate multivalued dependencies (AMVDs) [59] cap-
ture MVDs that approximately or almost hold in a relation.
AMVDs are defined as "-MVDs with the accuracy threshold
" � 0. The accuracy relates to the percentage of spurious
tuples that will be introduced by joining the relations
decomposed referring to the MVDs. When " ¼ 0, i.e., no
spurious tuple allowed, it is indeed the exact MVD.

2.7 Summary and Discussion

The extensions of SFDs [55] in Section 2.1, PFDs [104] in
Section 2.2, AFDs [61] in Section 2.3, and NUDs [50] in
Section 2.4 are with statistics. Instead of the FDs exactly
holding in the data, it is to find almost valid FDs. That is,
these FD-extensions are applicable to the workload where
FDs hold in most tuples in a relation. Given more (approxi-
mate) rules, the recall of violation detection can be
improved, while it may drag down the precision. Moreover,
SFDs are efficient to compute by domain, while AFDs can
tell a fine grain proportion of violation tuples.

Different from the aforesaid statistical extensions that are
still declared over the whole relation, the extensions with
conditions, i.e., CFDs [11] and eCFDs [14] in Sections 2.5, can
be used in a workload that FDs hold only in a part of the rela-
tion. Unlike the approximately holding FDs, the accurately
declared CFDs naturally have a high precision of violation
detection. The coverage (recall), however, is limited, since
the data dependencies hold only in a part of the data.

3 HETEROGENEOUS DATA

Extensions with statistics or conditions to FDs are still based
on equality constraints. Despite the enhanced definitions, it
is not robust enough to address the variety issues of big
data. Data obtained from merging heterogeneous sources
often have various representation conventions. Dataspa-
ces [43], [51] provide a co-existing system of heterogeneous
data from multiple sources. Carefully declared data depen-
dencies over the heterogeneous data would be useful in
query optimization and consistent query answering in
dataspaces.

Table 6 presents some example data in different formats,
where the tuples are from two heterogeneous sources s1
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and s2. For instance, “12th St.” in tuple t5 from source s2 and
“12th Str” in tuple t6 from source s1 denote the same street
but with different formats.

3.1 Metric Functional Dependencies (MFDs)

Metric functional dependencies (MFDs) [64] extend FDs
with distance/similarity metrics on the dependent attrib-
utes Y when given the exactly matched (i.e., equal) values
on determinant attributesX.

3.1.1 Definition

A metric functional dependency (MFD) over R has the form

MFD : X ! dY;

where (1) X;Y are two sets of attributes in R; (2) d � 0 is a
threshold of metric distance on attributes in Y . The metric d
is defined on the domain of Y , i.e., d : domðY Þ 
 domðY Þ !
R. A relation instance r over schema R satisfies the MFD, if
any two tuples t1; t2 2 r having t1½X� ¼ t2½X� must have dis-
tance � d on attributes in Y .

Consider an example relation instance in Table 6. An
MFD over the relation r6 can be

mfd1 : name; region !500 price:

It states that if two tuples such as t2 and t6 have identical
name and region, then their distance on attribute price
should be � 500, i.e., close rather than exactly equal.

3.1.2 Special Case: FDs

As indicated in Fig. 1, MFDs extend FDs. When d ¼ 0, an
MFD states that if two tuples have equal X values, then
their A values have distance 0, i.e., equal as well. It is exactly
an FD. In other words, all FDs can be represented as special
MFDs with d ¼ 0. For example, fd1 in Section 1.1 can be
equivalently represented by

mfd2 : address !0 region:

That is, for any two tuples, equal address implies region
value distance 0. Consequently, MFDs subsume the seman-
tics of FDs, or MFDs generalize/extend FDs, denoted by the
arrow from FDs to MFDs in Fig. 1.

3.1.3 Discovery

During the MFDs discovery, a key step is to verify whether a
candidate MFD holds for a given relation [64]. Similar to the
computation of g3 measure for AFDs in Section 2.3.3, it first
groups all the tuples according to the LHS attributes X. For
each group of tuples with equal X values, the maximum dis-
tance between any two tuples is computed, known as the
diameter. Obviously, theMFDholds if the diameter has� d in
each group. In Oðn2Þ time we can verify whether an MFD
holds [64], where n ¼ jrj is the size of the relation r. Efficient
algorithm is also studied to approximately verifying anMFD.

3.1.4 Application

MFDs are useful in violation detection. For instance, as pre-
sented in [64], one might expect a functional dependency of
the form address ! ðlatitude; longitudeÞ to hold. It is worth

noting that the variations are a natural part of the location
data, and cannot be eliminated by format standardization.
With MFDs, such small variations will not be detected erro-
neously as violations.

3.2 Neighborhood Dependencies (NEDs)

Neighborhood dependencies (NEDs) [4] declare data depen-
dencies on the closeness of neighbor attribute values.

3.2.1 Definition

A closeness function uAð�; �Þ is associated to each attribute A 2
R. The inputs of uAð�; �Þ are two values of attribute A, and
the output is a number denoting the distance/similarity of
the two input values.

A neighborhood predicate specifies thresholds of distance/
similarity (the original definition is similarity, and for con-
venience, we use distance by default) on attributes,

A
a1
1 . . .Aan

n ;

where (1) Ai; 1 � i � n are attributes of a relation R; (2) ai �
0; 1 � i � n are thresholds of distance/similarity on corre-
sponding attributes Ai. Two tuples t1; t2 agree on the predi-
cate if their similarity on each attribute Ai satisfies
uAi

ðt1½Ai�; t2½Ai�Þ � ai, or their distance on each attribute Ai

satisfies uAi
ðt1½Ai�; t2½Ai�Þ � ai.

A neighborhood dependency (NED) declares constraints
between two neighborhood predicates

NED : A
a1
1 . . .Aan

n ! B
b1
1 . . .Bbm

m :

A relation instance r satisfies the constraints, if for each pair
of tuples in r that agrees on the predicate A

a1
1 . . .Aan

n , they
satisfy the predicate B

b1
1 . . .Bbm

m as well.
For tuples in Table 6, a neighborhood predicate can be

name1address5:

It specifies distance thresholds 1 and 5 on attributes
name and address, respectively. Two tuples t2 and t6
are said agreeing on the predicate, since their edit distan-
ces [74] have unameðt2½name�; t6½name�Þ ¼ 0 � 1 and uaddressðt2
½address�; t6½address�Þ ¼ 1 � 5.

An NED with distance thresholds is declared by

ned1 : name1address5 ! street5:

It states that two tuples such as t2 and t6 mentioned above,
having similar names and addresses, should have similar
streets as well, i.e., ustreetðt2½street�; t6½street�Þ ¼ 3 � 5.

TABLE 6
An Example Relation Instance r6 With Tuples From

Heterogeneous Sources

source name street address region zip price tax

t1 s1 NC CPark #5, Central Park New York 10041 299 29
t2 s2 NC 12th St. #2 Ave, 12th St. San Jose 95102 300 20
t3 s1 Regis CPark #9, Central Park New York 10041 319 31
t4 s2 Chris 61st St. #5 Ave, 61st St. Chicago 60601 499 49
t5 s2 WD 12th St. #6 Ave, 12th St. San Jose 95102 399 27
t6 s1 NC 12th Str #2 Aven, 12th St. San Jose 95102 300 20
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3.2.2 Special Case: MFDs

In Fig. 1, we can find that NEDs extend MFDs. When the
distance threshold has ai ¼ 0 in an NED, it denotes equality
constraints on attributes X. Consider the example mfd1 in
Section 3.1.1, it can be represented by an NED as follows,

ned2 : name0region0 ! price500:

It states that if two tuples have the same name and region,
then their distance of price should be � 500. In other words,
all MFDs can be represented as special NEDs with distance
thresholds ai ¼ 0. In this sense, NEDs subsume the seman-
tics of FDs, or NEDs generalize/extend FDs, denoted by the
arrow from FDs to NEDs in Fig. 1.

3.2.3 Discovery

The NEDs discovery problem [4] is given the target right-
hand-side neighborhood predicate, to find a left-hand-side
neighborhood predicate such that the resulting NED has
sufficient support and confidence. It is proved to be NP-
hard in terms of the number of attributes.

3.2.4 Application

NEDs can be used for filling unknown values or repairing
data errors, by a P-neighborhood method [4]. Let P and T
denote the left-hand-side predicator attributes and the
right-hand-side target attributes of an NED, respectively.
The P-neighborhood method predicts the T value of a new
tuple based on all existing neighbors of the tuple under the
closeness on P attributes. This proposal is more intuitive,
since the k-nearest-neighbor (kNN) method does not prede-
fine an appropriate distance metric or k.

3.3 Differential Dependencies (DDs)

In addition to equality, differential dependencies (DDs) [86]
capture the difference semantics, such as “similar” or
“dissimilar”, on both determinant and dependent attributes.

3.3.1 Definition

A similarity/distance metric, dA, is associated to each attribute
A, which satisfies non-negativity, identity of indiscernibles
and symmetry. For example, the metric on a numerical attri-
bute can be the absolute value of difference, i.e., dAða; bÞ ¼
ja� bj. For a text attribute, we can adopt string similarity
such as edit distance (see [74] for a survey).

A differential function f½A� on attribute A indicates a range
of metric distances, specified by f¼; < ; > ;�;�g. Two
tuples t1; t2 are compatible w.r.t. differential function f½A�,
denoted by ðt1; t2Þ�f½A�, if the metric distance of t1 and t2
on attribute A is within the range specified by f½A�, a.k.a.
satisfy/agree with the distance restriction f½A�. A differen-
tial function may also be specified on a set of attributes X,
say f½X�, which denotes a pattern of differential functions
(distance ranges) on all the attributes inX.

A differential dependency (DD) over a relation R has a form

DD : f½X� ! f½Y �;

where X; Y � R are attributes in R. It states that any two
tuples satisfying differential function f½X�must satisfy f½Y �.

Consider a differential dependency in Table 6,

dd1 : nameð� 1Þ; streetð� 5Þ ! addressð� 5Þ:
It states that if two tuples such as t2 and t6 have similar
names (i.e., having edit distance 0 on name in the range of
[0,1]) and street values (with distance 3 in [0,5]), they must
share similar addresses values as well (having address
value distance 1 in [0,5]).

To express the semantics on “dissimilar”, a differential
dependency could be

dd2 : streetð� 10Þ ! addressð� 5Þ:
That is, for any two tuples, e.g., t1 and t2, whose distance on
street is 10 (� 10), their distance on address must be greater
than 5. In other words, if the streets of two tuples are not
similar, the corresponding addresses should be dissimilar.

3.3.2 Special Case: NEDs

Fig. 1 indicates that DDs extend NEDs. When the differen-
tial functions in a DD express only the “similar” semantics,
it is exactly an NED. The example ned1 in Section 3.2.1 can
be represented by a DD as follows,

dd3 : nameð� 1Þ; addressð� 5Þ ! streetð� 5Þ:
Thereby, DDs subsume the semantics of NEDs, or DDs gen-
eralize/extend NEDs, denoted by the arrow from NEDs to
DDs in Fig. 1.

3.3.3 Discovery

Song and Chen [86] first introduce the concept of minimal
DDs and indicate that even the discovered minimal DDs
could be exponentially large in size w.r.t. to the number of
attributes. Several pruning strategies are then devised for
DDs discovery. The determination of distance thresholds
for differential functions is also studied in a parameter-free
style [88], [89]. Moreover, Kwashie et al. [65] propose a sub-
space-clustering-based approach to discover DDs. The
implication problem for DDs, i.e., implying a DD from a set
of DDs, is co-NP-complete [86] .

3.3.4 Application

As indicated in [86], DDs can be used to rewrite queries in
semantic query optimization. In data partition, DDs can
reduce the number of predicates and improve the efficiency.
In duplicate detection, DDs can address more matching
rules by introducing various differential functions on one
attribute. Furthermore, DDs are used as integrity constraints
to enrich the candidates for missing data imputation [95],
[96], and repairing data errors [93], [94].

3.3.5 Extension: Conditional DDs (CDDs)

Conditional different dependencies (CDDs) [66] extend DDs
with conditions, to capture some potential knowledge and
inconsistencies in a subset of data. While the conditions in
CDDs are categorical values, the distance constraints can be
declared over heterogeneous data. For instance, a CDD may
state that in the region of “Chicago” (categorical value), two
tuples (from heterogeneous sources) with similar name
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values (denoting the same hotel) should have similar
address values. In this sense, CDDs extend both DDs over
heterogeneous data and CFDs over categorical data. As a
generalization of CFDs, i.e., CDDs including CFDs as spe-
cial cases in Fig. 1, the discovery of CDDs is no easier than
that of CFDs.

3.4 Comparable Dependencies (CDs)

To declare data dependencies over heterogeneous sources,
comparable dependencies (CDs) [91], [92] consider the
matching of both heterogeneous attribute names and values.

3.4.1 Definition

A similarity function

uðAi;AjÞ : ½Ai �ii Ai; Ai �ij Aj; Aj �jj Aj�;
specifies a constraint on similarity of two values from attri-
bute Ai or Aj, according to the corresponding similarity
operators �ii;�ij or �jj . Here, Ai;Aj are often synonym
attributes, and the similarity function comes together with
the attribute matching on how their attribute values should
be compared. Two tuples t1; t2 are said to be similar w.r.t.
uðAi;AjÞ, denoted by ðt1; t2Þ�uðAi;AjÞ; if at least one of
three similarity operators in uðAi;AjÞ evaluates to true.

A comparable dependency (CD) is in the form of

CD :
^

uðAi;AjÞ ! uðBi;BjÞ;

where uðAi;AjÞ and uðBi;BjÞ are similarity functions. It
states that for any two tuples t1; t2 that are similar w.r.t.
uðAi;AjÞ, it implies ðt1; t2Þ�uðBi;BjÞ as well.

For instance, consider a dataspace with 3 tuples,

t1 :fname : Alice; region : Petersburg; addr : #7 T Avenueg;
t2 :fname : Alice; city : St Petersburg; post : #7 T Avenueg;
t3 :fname : Alex; region : St Petersburg; post : No 7 T Aveg:

A similarity function specified on two attributes region
and city can be

uðregion; cityÞ : ½region ��5 region; region ��5 city;

city ��5 city�:

Two tuples agree the similarity function if either their region
values have distance � 5, or their city values have distance
� 5, or the region of a tuple is similar to the city of the other
with distance � 5. For instance, t1 and t2 have region and
city value distance 2 � 5, and thus agree uðregion; cityÞ.

Likewise, a similarity function on addr and post can be

uðaddr;postÞ : ½addr ��7 addr;addr ��9 post;post ��5 post�:

Tuples t2 and t3 having post values with distance 5 � 5
again satisfy uðregion; cityÞ.

Consequently, a CD can be declared as

cd1 : uðregion; cityÞ ! uðaddr; postÞ:
It states that if the region or city values of two tuples are sim-
ilar, e.g., t1 and t2, then their corresponding addr or post val-
ues should also be similar.

3.4.2 Special Case: NEDs

Fig. 1 shows that NEDs in Section 3.2 are special cases of
CDs. When the similarity functions in a CD are defined on
attributes in one table, it is exactly an NED. For instance, we
can represent the example ned1 in Section 3.2.1 by a CD,

cd2 : uðnameÞ; uðaddressÞ ! uðstreetÞ;

where

uðnameÞ : ½name ��1 name�;
uðaddressÞ : ½address ��5 address�;

uðstreetÞ : ½street ��5 street�:

It states that if the values of name and address are similar,
then their corresponding street values should be similar as
well. Therefore, CDs subsume the semantics of NEDs, or
CDs generalize/extend NEDs, denoted by the arrow from
NEDs to CDs in Fig. 1.

3.4.3 Discovery

Song et al. [92] introduce a pay-as-you-go approach for dis-
covering comparable dependencies in a given dataspace.
The algorithm is conducted in an incremental way with
respect to new identified comparison functions, i.e., given a
set of currently discovered dependencies and a newly iden-
tified comparison functions uðAi;AjÞ, it generates new
dependencies w.r.t. uðAi;AjÞ. For CDs discovery, both the
error validation problem to determine whether g3 � e, and
the confidence validation problem to determine whether
conf � c, are NP-complete [91], where g3 measures the min-
imum number of tuples that have to be removed for the
dependency to hold, and conf evaluates the maximum
number of tuples such that the dependency holds.

3.4.4 Application

Various applications of CDs are studied in [92]. The most
important application is to improve the dataspace query effi-
ciency. According to the comparison functions, the query
evaluation searches not only the given attributes in a query
tuple, e.g., region, but also their comparable attributes such
as city. According to the comparable dependency, if LHS
attributes of the query tuple and a data tuple are found com-
parable, then the data tuple can be returnedwithout evaluat-
ing on RHS attributes. It thus improves the query efficiency.
In addition, CDs can be also used to improve data quality,
such as detecting violation on heterogeneous data, and iden-
tifying duplicate tuples from various data sources.

3.5 Probabilistic Approximate Constraints (PACs)

Probabilistic approximate constraints (PACs) [63] bring
together distance metrics and probability. It introduces tol-
erance and confidence factors into integrity constraints.

3.5.1 Definition

A probabilistic approximate constraints (PAC)

PAC : XD !d Y�;
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specifics that, if two tuples have distances on attributesX

jti½Al� � tj½Al�j � Dl; 8Al 2 X;

then their probability of distances on attributes Y should be

Prðjti½Bl� � tj½Bl�j � �lÞ � d; 8Bl 2 Y;

where jti½Al� � tj½Al�j denotes the distance between tuples ti
and tj on attribute Al, jti½Bl� � tj½Bl�j is the distance on attri-
bute Bl, Dl and �l are distance tolerances on attributes Al

and Bl, respectively, and d is a confidence requirement.
Consider again the example in Table 6. The PAC with d ¼

0:9 below can tolerate that there are 10 percent of tuples not
satisfying the distance constraints

pac1 : price100 !0:9 tax10:

Table 6 doesn’t satisfy this PAC. There are 11 tuple pairs
which have price distances less than or equal to 100. Among
them, 3 pairs of tuples have tax distances greater than 10. It
follows Prðjti½tax� � tj½tax�j � 10Þ ¼ 8=11 ¼ 0:727 < d.

3.5.2 Special Case: NEDs

PACs extend NEDs in Section 3.2 as presented in Fig. 1.
When the probability threshold in a PAC is d ¼ 1, it is
exactly an NED. In other words, all NEDs can be repre-
sented as special PACs with d ¼ 1. The example ned1 in
Section 3.2.1 can be expressed as a PAC as follows,

pac2 : name1address5 !1 street5:

It states that when two tuples have similar names and
addresses, and the streets should also be similar. And d ¼ 1
means that we don’t tolerate any tuples that do not satisfy
the constraints. Consequently, PACs subsume the semantics
of NEDs, or PACs generalize/extend NEDs, denoted by the
arrow from NEDs to PACs in Fig. 1.

3.5.3 Discovery

The PAC Manager, namely PAC-Man in [63], provides a
method to specify PACs. There are several parameters that
need to be determined in a PAC, including D; � for approxi-
mation with distances, and d for the probability of satisfying
the constraint. Given a set of rule-templates provided by
users and some training data, PAC-Man first instantiates the
aforesaid parameters. Moreover, it keeps on monitoring the
new data overtime and alarmwhen violations are detected.

3.5.4 Application

The aforesaid PAC-Man is integrated into a database for
various applications [63]. It works as a browser or monitor
that keeps on tracking data quality. When problems are
detected, e.g., with missing values, instead of data cleaning,
PAC-Man proposes to automatically rewrite users’ queries
over the remaining complete observations.

3.6 Fuzzy Functional Dependencies (FFDs)

Fuzzy functional dependencies (FFDs) [79] extend FDs by
replacing the equality comparison on domain values with
“approximately equal”, “more or less equal”, etc.

3.6.1 Definition

For the domain of each attribute Ai, domðAiÞ, a fuzzy
resemblance relation EQUAL mEQða; bÞ; a; b 2 domðAiÞ, is
defined to compare the elements of the domain, e.g.,
within the range of [0,1]. It should be appropriately
selected during database creation to capture the meaning
of equality, or approximate equality, of domain values.
For instance, the more the values a and b are “equal”, the
larger the mEQða; bÞ is (see example below). The fuzzy rela-
tion EQUAL is then extended over all attributes in R of
tuples t1 and t2,

mEQðt1; t2Þ ¼ minfmEQðt1½A1�; t2½A1�Þ;mEQðt1½A2�; t2½A2�Þ;
. . .;mEQðt1½An�; t2½An�Þg:

A fuzzy functional dependency (FFD),

FFD : Xˆ Y;

with X;Y � R, holds in a fuzzy relation instance r on R, if
for all tuples t1 and t2 of r, we have

mEQðt1½X�; t2½X�Þ � mEQðt1½Y �; t2½Y �Þ:

Here, mEQðt1½X�; t2½X�Þ is the fuzzy resemblance relation
EQUAL of tuples t1 and t2 on attributes X. And � means
that the resemblance relation EQUAL of tuples t1 and t2 on
attributes X is less than that of Y . It denotes that the values
on attributes Y are more “equal” than those on attributesX.

For the relation r6 in Table 6, we consider an FFD

ffd1 : name; priceˆ tax;

where EQUAL is defined as follows

mEQða; bÞ ¼
0 if a 6¼ b

1 if a ¼ b

�
; a; b 2 domðnameÞ;

mEQða; bÞ ¼ 1=ð1þ bja� bjÞ;where

b ¼ 1 if a; b 2 domðpriceÞ
10 if a; b 2 domðtaxÞ:

�

It states that for any two tuples having “equal” price
should have “equal” tax.

Consider two tuples t1 and t2 in Table 6. The EQUAL
function is computed by

mEQðNC;NCÞ ¼ 1; NC 2 domðnameÞ;
mEQð299; 300Þ ¼

1

1þ j299� 300j ¼
1

2
; 299; 300 2 domðpriceÞ;

mEQð29; 20Þ ¼
1

1þ 10
 j29� 20j ¼
1

91
; 29; 20 2 domðtaxÞ:

It follows

minðmEQðNC;NCÞ;mEQð299; 300ÞÞ > mEQð29; 20Þ:
That is, they conflict the fuzzy functional dependency, since

minðmEQðt1½name�; t2½name�Þ;mEQðt1½price�; t2½priceÞÞ
>mEQðt1½tax�; t2½tax�Þ:
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3.6.2 Special Case: FDs

As shown in Fig. 1, FFDs extend FDs. For the example fd1 in
Section 1.1, by defining EQUAL as

mEQða; bÞ ¼
0 if a 6¼ b

1 if a ¼ b

�
; a; b 2 domðaddressÞ;

mEQða; bÞ ¼
0 if a 6¼ b

1 if a ¼ b

�
; a; b 2 domðregionÞ;

we can obtain a corresponding FFD,

ffd2 : addressˆ region:

It states that if two tuples t1 and t2 have the same address,
i.e., mEQðt1½address�; t2½address�Þ ¼ 1, they must have the
same region, i.e., mEQðt1½address�; t2½address�Þ ¼ 1 �
mEQðt1½region�; t2½region�Þ. Therefore, FFDs subsume the
semantics of FDs, or FFDs generalize/extend FDs, denoted
by the arrow from FDs to FFDs in Fig. 1.

3.6.3 Discovery

Wang et al. [109] propose a mining algorithm for FFDs,
which is an extension of the TANE algorithm [53], [54]. Sim-
ilar to the small-to-large search strategy in TANE (only for
non-trivial FDs), it finds each non-trivial FFD with a single
attribute in its right-hand-side. The algorithm checks every
tuple pair to see if it satisfies the EQUAL relation. Moreover,
an incremental searching algorithm is further devised based
on pair-wise comparison [108]. When a new tuple is added,
it avoids re-scanning of the database.

3.6.4 Application

Analogous to FDs to identify the occurrence of redundancy
in a database, FFDs are also used for redundancy elimina-
tion [13], with tolerance to slight difference in the data. Intan
et al. [56] studies query processing in a fuzzy relation in the
presence of FFDs. Approximate join over multiple fuzzy
relations is also introduced. Ma et al. [71] investigate the
strategies and approaches for compressing fuzzy values by
FFDs. The idea is to eliminate the unnecessary elements
from a fuzzy value and thus compress its range.

3.7 Matching Dependencies (MDs)

As a matching rule, matching dependencies (MDs) [33], [37]
consider similarity metrics on determinant attributes X to
determine the identification of dependent attributes Y .

3.7.1 Definition

A matching dependency (MD) on a relation R has a form2

MD : X �! Y Ð;

where (1) X � R; Y � R; (2) � denotes the corresponding
similarity operator on attributes of X, which indicates that
two values are similar; (3) Ð denotes the matching operator
on attributes of Y , which shows that two values are identi-
fied. It states that for any two tuples from an instance of

relation R, if they are similar on attributes X, then their Y
values should be identified.

Consider the relation r6 in Table 6, An MD can be

md1 : street �; region �! zip Ð:

It states that if any two tuples, e.g., t5 and t6 from r6 in
Table 6, have similar streets (with edit distance � 5 denoted
by �) and similar regions (with distance � 2 denoted by �),
then they can be identified (denoted byÐ) on zip.

3.7.2 Special Case: FDs

Fig. 1 states that MDs subsume FDs in Section 1.1. When the
values have matching similarity equal to 1.0, it is exactly an
FD. The example fd1 in Section 1.1 can thus be represented
by a special MD

md2 : address ¼! region ¼;

when address and region have identical values, respec-
tively. In this sense, MDs subsume the semantics of FDs, or
MDs generalize/extend FDs, denoted by the arrow from
FDs to MDs in Fig. 1.

3.7.3 Discovery

Song et al. [85], [87] propose both exact and approximation
algorithms for discovering MDs. The exact algorithm traver-
ses all the data to find MDs that satisfy the required
confidence and support, i.e., evaluations ofMDs. The approxi-
mation algorithm only traverses the first k tuples in statistical
distribution, with bounded relative errors on support and
confidence of returned MDs. Moreover, similar to minimal/
candidate keys about FDs, relative candidate keys (RCKs)
with minimal compared attributes can remove redundant
semantics. Song et al. [90] find a concise set of matching keys,
which can reduce the redundancy while satisfy the coverage
and validity. The problem of deciding whether there exists a
set ofmatching keys such that supp � s; conf � c, and the size
of the set is no greater than k is NP-complete [90], where supp
measures the proportion of distinct tuple pairs that agree on
at least one of the matching keys in the set, and conf is the
minimum ratio of tuple pairs that satisfies a matching key in
the set.

3.7.4 Application

Reasoning mechanism for deducingMDs from a set of given
MDs is studied in [37]. MDs and their reasoning techniques
can improve both the quality and efficiency of various record
matching methods. Remarkably, record matching with MDs
and data repairing with CFDs can interactively perform
together [38], [41]. While matching aims to identify tuples
that refer to the same real-world object, repairing is to make
a database consistent by fixing data errors under integrity
constraints. The interaction between record matching and
data repairing can effectively helpwith each other.

3.7.5 Extension: Conditional MDs (CMDs)

Conditional matching dependencies (CMDs) [110] extend the
matching rules of MDs with conditions, which can only be
applied to a part of the relation. Analogous to CFDs extending

2. Similar to CDs in Section 3.4, MDs can also be defined on attrib-
utes of two relations from heterogeneous sources [33], [37].
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FDs in Section 2.5, CMDs binds matching dependencies only
in a certain part of the table. The problem of decidingwhether
a CMD has g3 � e in a relation is NP-complete [110], where g3
is the error rate of the CMD, the minimum number of
tuples that need to be removed from the relation in order
to make the CMD hold, and e is the maximum bound of
error rate.

3.8 Summary and Discussion

To capture the relationships among heterogeneous data,
instead of the equality operator in FDs over categorical data,
distance and similarity of values are considered. The dis-
tance/similarity metrics could be introduced in left-hand-
side, right-hand-side or both sides of attributes in a data
dependency. They can also be extended to two relations
from heterogeneous sources [91]. Such extensions on dis-
tance and similarity are useful not only for violation detec-
tion but also object identification [37]. Similarly, the distance
metrics could also be considered over numerical data, e.g., in
sequential dependencies (SDs) [48] in Section 4.4.

4 NUMERICAL DATA

Data sets with numerical values are prevalent, e.g., time-
stamps, sequence numbers, sales, temperature, stock prices,
and so on. It is also promising to address data dependencies
on such numerical data. In the following, we introduce sev-
eral typical studies on such numerical data, where each
attribute A has a partial ordering �A on domðAÞ. Data
dependencies are then declared concerning the orderings
on the attribute domains [28], [44], [45], [46].

4.1 Ordered Functional Dependencies (OFDs)

Ordered functional dependency (OFD) [76], [77] state that
attributes should be ordered similarly, for instance, the
mileage increases with time.

4.1.1 Definition

An ordered functional dependency arising from pointwise-
orderings3 over a relation R has the form

OFD : X !P Y:

Pointwise ordering on X, denoted by t1½X� �P
X t2½X�, means

that, for n attributes Ai in X, 1 � i � n; t1½Ai� � t2½Ai�: The
OFD states that for all tuples t1; t2 of relation R, t1½X� �P

X

t2½X� implies that t1½Y � �P
Y t2½Y �.

An OFD can be declared over r7 in Table 7

ofd1 : subtotal !P taxes:

It states that a higher subtotal leads to higher taxes. For
example, the subtotal of t2 is “370”, higher than that of t1
“190”. Thereby, the taxes of t2 should be higher as well.

4.1.2 Application

OFDs are employed as useful semantic constraints over
temporal relations [75]. Temporal relations can be inter-
preted as special cases of linearly ordered relations over
time schemas. OFDs can hold the consistency of time data
with various time measurement systems. For example, the
experience of an employee should be increased with the
passage of time.

4.2 Order Dependencies (ODs)

Order dependencies (ODs) [28] are introduced to express
the constraints with different orders. For instance, the price
of a production drops with the increase of time.

4.2.1 Definition

For each attribute A, the marked attributes of A are used to
denote various orderings, such as A < , A�, A > , A�, and
so on. For any two tuples t1; t2, t1½A��t2 means t1½A� � t2½A�.

An order dependency (OD) over R is in the form of

OD : X ! Y;

whereX and Y are marked attributes. We say that a relation
instance r over schema R satisfies the OD, if any two tuples
t1; t2 2 r, t1½X�t2 implies t1½Y �t2.

For the relation instance r7 in Table 7, an OD can be

od1 : nights
� ! avg=night�:

That is, the more nights a guest stays, the lower the average
price per night (avg=night) will be. For instance, for the
tuples t1 and t2, we have t1½nights� ¼ 1 � 2 ¼ t2½nights�. It
leads to t1½avg=night� ¼ 190 � 185 ¼ t2½avg=night�.

4.2.2 Special Case: OFDs

Fig. 1 indicates that ODs extend OFDs in Section 4.1. When
all the marked attributes are in the form of A� in an OD, it
is exactly an OFD. For example, ofd1 in Section 4.1.1 can be
represented as an OD,

od2 : subtotal
� ! taxes�:

It also means that the taxes of a tuple should be higher than
that of any other tuples with less subtotal. In this sense, ODs
subsume the semantics of OFDs, or ODs generalize/extend
OFDs, denoted by the arrow from OFDs to ODs in Fig. 1.

4.2.3 Discovery

Langer and Naumann [67] propose an OD discovery algo-
rithm, which traverses the lattice of permutations of attributes
in a level-wise bottom-up manner. Instead of expressing ODs
in a list notation, Szlichta et al. [99] express ODs with sets
of attributes via a polynomial mapping into a set-based

TABLE 7
An Example Relation Instance r7 With Multiple Numeri-

cal Attributes on Hotel Rates

nights avg=night subtotal taxes

t1 1 190 190 38
t2 2 185 370 74
t3 3 180 540 108
t4 4 175 700 140

3. In addition to pointwise ordering, another lexicographical order-
ing is also introduced in [76], [77].
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canonical form. Similar to the idea of FastFD [112], an algo-
rithm named FASTOD is presented to discover a complete,
minimal set of set-based ODs. It traverses a lattice of all possi-
ble sets of attributes in a level-wisemanner, reducing the com-
plexity from using list-based axiomatization. The implication
problem for ODs, i.e., implying an OD from a set of ODs, is
co-NP-complete [101].

4.2.4 Application

ODs are used for database implementation to improve effi-
ciency [28]. First, ODs can reduce indexing space without
much access time increase. For instance, suppose that an
employee database is sorted with rank. One can access the
employee instance using the order of rank. In addition, if
the database also satisfies the OD rank ! salary, then the
data is also ordered by salary. That is, we can get salary by
rank rapidly. Moreover, ODs can also be used in query opti-
mization. Szlichta et al. [100] present optimization techni-
ques using ODs for various SQL functions and algebraic
expressions. Finally, following the same line of other data
dependencies, ODs are naturally applicable as integrity con-
straints for error detection and data repairing.

4.3 Denial Constraints (DCs)

In addition to the dependency between determinant and
dependent attributes, Denial constraints (DCs) [8], [9] study
a more general form of integrity constraints that prevent
some attributes from taking certain values, by built-in atoms
with f¼; 6¼; < ; > ;�;�g.

4.3.1 Definition

A denial constraint (DC) has a form

DC : 8ta; tb; . . . 2 R;:ðP1 ^ . . . ^ PmÞ;

where Pi is of the form v1 f v2 or v1 f c, f is an element of a
negation closed finite operator set f¼; 6¼; < ; > ;�;�g, and
v1; v2 2 ta:A; tb:A; . . .; A 2 R, and c is a constant. It states
that all the predicates cannot be true at the same time.

Consider the relation instance r7 in Table 7. The order
relationships on numeric values such as subtotal and taxes
can be captured by a DC with operators < ; >

dc1 : 8ta; tb 2 R;:ðta:subtotal < tb:subtotal

^ta:taxes > tb:taxesÞ:

It declares that a lower subtotal should not pay more taxes.
For example, tuples t1 and t2 satisfy dc1, having
t1½subtotal� < t2½subtotal� and t1½taxes� < t2½taxes�.

4.3.2 Special Case: ODs

Fig. 1 states that DCs subsume ODs in Section 4.2. We can
represent od1 in Section 4.2.1 by a DC as follows,

dc2 : 8ta; tb 2 R;

:ðta:nights � tb:nights ^ ta:avg=night > tb:avg=nightÞ:

Both constraints state that any ta; tb 2 R should not have
ta½nights� � tb½nights� but ta½avg=night� > tb½avg=night�,
i.e., stays more nights but with a higher rate. In this

sense, DCs subsume the semantics of ODs, or DCs gen-
eralize/extend ODs, denoted by the arrow from FDs to
DCs in Fig. 1.

4.3.3 Special Case: eCFDs

Again, Fig. 1 shows that DCs extend eCFDs. We can repre-
sent the example ecfd1 in Section 2.5.5 by a DC,

dc3 : 8ta; tb 2 R;

:ðta:rate ¼ tb:rate ^ ta:rate � 200 ^ ta:name ¼ tb:name

^ ta:address 6¼ tb:addressÞ:

It states that for any ta; tb 2 R, they should not have same
rate (� 200) and the same name but different addresses.
Consequently, DCs subsume the semantics of eCFDs, or
DCs generalize/extend eCFDs, denoted by the arrow from
eCFDs to DCs in Fig. 1.

4.3.4 Discovery

Chu et al. [19] present a DC discovery algorithm FASTDC as
an extension of FastFD [112]. It starts by building a predi-
cate space and calculates evidence sets. For instance, for the
DCs involving at most two tuples without constants, the
structure of a predicate consists of two different attributes
and one operator. The algorithm establishes the connection
between discovering minimal DCs and finding minimal set
covers for evidence sets. Depth-first search strategy is
deployed for finding minimal set covers, together with DC
axioms for branch pruning. Chu et al. [19] also extend
FASTDC to discover approximate DCs (A-FASTDC) and
constant DCs (C-FASTDC). Since FASTDC is sensitive to
the number of records in the dataset, Pena and Almeida
present BFASTDC [78], a bitwise version of FASTDC that
uses logical operations to form the auxiliary data structures
from which DCs are mined. Bleifuß et al. [10] propose a new
algorithm Hydra, which overcomes the quadratic runtime
complexity in the number of tuples in a relation. Based on
the FASTDC algorithm, a system for discovering DC rules
is implemented, namely RuleMiner [21].

4.3.5 Application

Denial constraints are useful for detecting violations and
enforcing the correct application semantics. Linear denial
constraints [8], [9] are utilized to fix the numerical attributes
in databases. Efficient approximation algorithms to obtain a
database repair are presented [70]. Since DCs subsume
existing formalisms and can express rules involving numer-
ical values, with predicates such as “greater than” and “less
than”, Chu et al. [20] propose a holistic repairing algorithm
under the constraints of DCs. It is worth noting that in prac-
tice, both the given DC rules and the data could be dirty.
Song et al. [98] study the simultaneous repairing of both
DCs and data.

4.4 Sequential Dependencies (SDs)

Sequential dependencies [48] generalize ODs to express
interesting relationships between ordered determinant
attributes and distances on dependent attributes.

4732 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 10, OCTOBER 2022



4.4.1 Definition

A sequential dependency (SD) is in the form of

SD : X !g Y;

where X � R is a set of ordered attributes, Y � R can be
measured by certain distance metrics, and g is an interval. It
states that when tuples are sorted on X, the distances
between the Y -values of any two consecutive tuples are
within interval g.

For the relation instance r7 in Table 7, we can set an SD,

sd1 : nights !½100;200� subtotal:

It identifies that subtotal raises within the interval ½100; 200�
with the increase of nights. As shown in Table 7, tuples are
sorted on nights. Tuples t2 and t3 have “2” and “3” nights,
respectively. The corresponding distance/increase of
subtotal is 540-370=170 within the range of ½100; 200�.

4.4.2 Special Case: ODs

As stated in Fig. 1, SDs subsume ODs in Section 4.2 as spe-
cial cases. The interval g on distance in an SD can be used to
express the order relationships, such as ½0;1Þ or ð�1; 0�.
Thereby, we rewrite od1 in Section 4.2.1 as an SD,

sd2 : nights !ð�1;0� avg=night:

It means that avg=night for a room decreases with the
increase of nights that a guest will stay. Therefore, SDs sub-
sume the semantics of ODs, or SDs generalize/extend ODs,
denoted by the arrow from ODs to SDs in Fig. 1.

4.4.3 Discovery

To discover reasonable SDs, Golab et al. [48] first define the
confidence of an SD, i.e., the minimum number of tuples
that needs to be removed or inserted to make the SD hold in
a given dataset. It is worth noting that tuple insertion may
apply to satisfy the distance constraints in an SD, different
from the g3 error measure of AFD in Section 2.3 with tuple
deletion only to make an FD hold. Efficient computation of
confidence is then studied for SD discovery, e.g., simple
SDs of the form X !ð0;1Þ Y where Y always increases with
X.

4.4.4 Application

SDs are useful in network monitoring, e.g., auditing the
polling frequency [48]. An SD : pollnum !½9;11� time could be
employed. It requires that the data collector probe the coun-
ters in about every 10 seconds. Too frequent polls, with time
interval less than 9, or missing data, with time interval
greater than 10, may indicate problems of the collector.

4.4.5 Extension: Conditional SDs (CSDs)

Since the frequency of data feed varies with time and the
measurement attributes fluctuate with time, conditional
order dependence (CSD) [48] declare SDs that conditionally
hold in a period. As illustrated in Fig. 3 in Section 1.4.2,
while most problems are NP-complete, the discovery prob-
lem for some data dependencies such as CSDs [48], how-
ever, is polynomial time solvable. That is, for CSD tableau

discovery, an exact dynamic programming algorithm for
the tableau construction takes quadratic time in the number
of candidate intervals [48].

4.5 Summary and Discussion

For numerical data, data dependencies are extended with
operators < ;�; > ;� for expressing the order relationships
between data values. The ideas of conditional constraints
for categorical data and distance metrics for heterogeneous
data are also employed for data dependencies over numeri-
cal data, such as CSDs with conditions on determinant
attributes and distances on dependent attributes as intro-
duced in Section 4.4.5.

5 CONCLUSION AND FUTURE DIRECTIONS

In this survey, we briefly review a number of recent pro-
posals on data dependencies. Most studies aim to adapt
conventional data dependency notations to various types of
big data. We categorize these novel data dependencies into
three types, i.e., on categorical data, heterogeneous data, or
numerical data. Remarkably, the extension relationships
among data dependencies are investigated. It forms a family
tree on extensions (mostly) rooted in functional dependen-
cies. In addition, we also discuss how these novel data
dependencies could be discovered from data. This is partic-
ularly important, since data dependencies are often unlikely
to be manually specified in a traditional way, given the
huge volume and high variety of big data. Moreover, we
also introduce how these data dependencies could be uti-
lized in data quality applications.

Future work may be raised over more emerging data.
Novel types of data dependencies are expected to be
declared on the data not stored in conventional relational
databases, such as graph, time series or uncertain data.

5.1 Uncertain Data

Uncertain data are prevalent [81], e.g., owing to noises that
make it deviate from the correct or original value in sensor
networks [17]. The data are expected to be cleaned by reduc-
ing the uncertainty [16]. Motivated by the probability meas-
ures of functional dependencies in Section 2, a natural idea
is to study the data dependencies over uncertain data. An
uncertain relation allows to give multiple possible values
for tuples, and represents a set of possible worlds, each of
which is an ordinary relation. Sarma et al. [81] study the
functional dependencies for uncertain relations. The pro-
posed horizontal FDs and vertical FDs are consistent with
the conventional FDs when an uncertain relation does not
contain any uncertainty. Xiang et al. [68] study the problem
of consistent query answering over uncertain data. A novel
notion of repaired possible worlds (involving both repair
and possible worlds) is proposed. In this sense, uncertainty
could be introduced in all the aspects, naturally embedded
in the data, probed in the discovered dependencies, or gen-
erated in possible repairs. It is highly demanded to holisti-
cally study these aspects of uncertainty.

5.2 Graph Data

Graph data widely exist in real-world applications such as
knowledge bases, workflows or social networks [116]. Like
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other types of big data, veracity issues are prevalent in
graph data. For example, gene ontology annotation could
be erroneous in a protein interaction network [93]. The
event names are misplaced in a workflow network [105]. To
clean such errors, neighborhood constraints between verti-
ces are considered, e.g., extracted from workflow specifica-
tion [103]. Unlike relational data, graph data do not have a
specific schema. Thereby, most of the existing dependencies
cannot be applied in graph data directly. Graph data have
structural characteristics that can be used for defining
dependencies [39], while they also have various forms, such
as XML, RDF or networks. Each form of graph may have its
own features. The variety of graph data is another challenge
when solving the problems in data. Fan et al. [32], [42] pres-
ent some pioneer studies in this promising direction.

5.3 Temporal Data

Temporal data are characterized by data elements with
time-varying information [58]. It is important in various sce-
narios such as IoT, where sensor devices uninterruptedly
obtain data from the physical world. The sensor devices are
often unreliable with missing readings [57] or even wrong
timestamps [84]. As a result, time series data are usually
very large, incomplete [106], [107] and dirty [105], [115].
While data dependencies over numerical data such as
sequential dependencies [48] could be employed to partially
capture the order information, more advanced constraints
on temporal features are expected. Speed constraints [97]
are some attempts of declaring constraints on consecutive
data. Unfortunately, it is not well studied yet on how to dis-
cover such meaningful speed constraints. Abedjan et al. [1]
study the temporal rule discovery for web data cleaning. It
is further expected to address the unique data quality chal-
lenges due to the presence of autocorrelations, trends, sea-
sonality, and gaps in the time series data [26].
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