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ABSTRACT

Regression models are learned over multiple variables, e.g., using
engine torque and speed to predict its fuel consumption. In prac-
tice, the values of these variables are often collected separately, e.g.,
by different sensors in a vehicle, and need to be aligned first in a tu-
ple before learning. Unfortunately, owing to various issues like net-
work delays, values generated at the same time could be recorded
with different timestamps, making the alignment difficult. Accord-
ing to our study in a vehicle manufacturer, engine torque, speed
and fuel consumption values are mostly not recorded with the
same timestamps. Aligning tuples by simply concatenating values
of variables with equal timestamps leads to limited data for learn-
ing regression model. To deal with timestamp variations, existing
time series matching techniques rely on the similarity of values
and timestamps, which unfortunately are very likely to be absent
among the variables in regression (no similarity between engine
torque and speed values). In this sense, we propose to bridge tuple
alignment and regression. Rather than similar values and times-
tamps, we align the values of different variables in a tuple that (i)
are recorded in a short period, i.e., time constraint, andmore impor-
tantly (ii) coincide well with the regressionmodel, known asmodel
constraint. Our theoretical and technical contributions include (1)
formulating the problem of tuple alignment with time and model
constraints, (2) proving NP-completeness of the problem, (3) devis-
ing an approximation algorithm with performance guarantee, and
(4) proposing efficient pruning strategies for the algorithm. Experi-
ments over real world datasets, including the aforesaid engine data
collected by a vehicle manufacturer, demonstrate that our proposal
outperforms the existing methods on alignment accuracy and im-
proves regression precision.
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1 INTRODUCTION

Regression models are learned over multiple variables, often col-
lected separately. For example, engine torque and speed are col-
lected by different sensors in a vehicle to determine its fuel con-
sumption [26]. Likewise, for the three variables in Figure 1, voltage
is predicted by monitoring active power and intensity in a house-
hold for anticipation of voltage violation [15]. To learn the regres-
sion model, a necessary preprocessing step is to align the values of
multiple variables in a row, e.g., the aligned tuple of three values,
active power, intensity and voltage, connected by dashed lines at
time 480 in Figure 1.

Unfortunately, owing to transmission or network delays as well
as hardware errors, values of different variables generated at the
same time could be collected with different timestamps, making tu-
ple alignment challenging [28]. For instance, engine torque, speed
and fuel consumption values are collected simultaneously from
controller area network (CAN) bus in vehicles, while logged with
different timestamps in electronic control units (ECU) owing to
transmission delays [25], known as timestamp variations.

Simply aligning multiple variables by equal timestamps lead to
limited data for learning regression models. According to the sur-
vey in a vehicle manufacturer, only about 5% data are found with
engine torque, speed and fuel consumption values having equal
timestamps (see Section 4.3.1 for the empirical study).

Instead of equal timestamps, existing time series matching tech-
niques, e.g., dynamic time warping (DTW) [4] and its variations,
align variables mainly based on similar values or in a period of
close timestamps. However, such proximity on values or times-
tamps is very likely to be absent among the variables in regression,
as the example illustrated in Figure 1.

Another possible alternative is interpolation [23], i.e., interpolat-
ing missing values at each timestamp (may consider both tempo-
ral and cross-variable correlations). Obviously, the interpolation-
based methods do not consider the timestamp variations, but in-
terpolating new values that are error prone.

Example 1. Figure 1 illustrates an example of learning the regres-
sion model to predict voltage by active power and intensity. In pre-
processing, we need to first align the three values, collected with
different timestamps, in a row.
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Figure 1: An example of aligning/interpolating three real-world variables by (a) DTW variation [35], (b) spline interpolation

[23] and (c) our proposal. The regression model is learned to predict voltage by intensity and active power. Red dots are the

original value observations. Dashed lines denote the alignment of values in a row/tuple. Blue triangles are the values predicted

by the regression model learned from the aligned data. Hollow points are the interpolated values computed by interpolation

algorithm on each timestamp (thus no alignment applies).

Figure 1(a) shows the result of a DTW variation [35], based
on value and time similarity. While the normalized values of ac-
tive power and intensity are somewhat alike and thus align well,
they are not similar to voltage values. Learned over the mistakenly
aligned rows of active power, intensity and voltage values, the re-
gression model is inaccurate, with predictions (blue triangles) de-
viating from observations (red dots).

Figure 1(b) presents the result based on spline interpolation. The
hollow points are the values interpolated by spline as time series.
The interpolation-based method does not consider the alignment
of timestamps, but simply interpolates (possibly imprecise) values
at each timestamp with no observation. Without addressing times-
tamp variations but introducing new error prone values, the pre-
diction with interpolation is inaccurate. �

In this study, we inventively bridge tuple alignment and regres-
sion. Rather than relying on similar values as in DTW, we propose
to align the values of different variables in a row, under the guide
of (iteratively learned) regression models. Intuitively, the aligned
row/tuple is expected to coincide well with the prediction of the re-
gression model (learned in the previous iteration). For instance, in
Figure 1(c), the aligned voltage observations (red dots) should co-
incide with the predictions (blue triangles) of the regression model
by the corresponding intensity and active power. Indeed, the afore-
said similarity of values considered in DTW could be interpreted
as a special regression model on variables with similar values, and
thus subsumed by our solution. In this sense, the alignment un-
der the guide of more general regression model would outperform
DTW relying on value similarity in special case, as demonstrated
in the experiments in Section 4.

Therefore, we propose to align the values of multiple variables
in a tuple, which (1) are recorded in a short period, i.e., time con-
straint, and (2) coincide well with the (iteratively learned) regres-
sion model, known as model constraint. This strategy applies iter-
atively, i.e., the well aligned data improves model learning, while
the improved regression model again advises the next iteration of

alignment. While out-of-phase matching has been researched over
last 20 years (e.g., DTW [4], GTW [35, 36]), our proposal is the first
work to combine both the model constraint (dependencies) and the
time constraint (close timestamps) for tuple alignment.

Our major contributions are summarized as follows.
(1) We formalize a novel problem, similarity alignment under

model constraint (SAMC), which is the first to utilize both time and
model constraints for aligning tuples.We analyzeNP-completeness
of the problem (Theorem 1).

(2) We devise an efficient approximation algorithm with theo-
retical performance guarantee (Proposition 2).

(3) We propose innovative strategies and structures with theo-
retical results to enable efficient pruning, thus significantly reduce
the time cost (Propositions 3 and 7).

Finally, we conduct a comprehensive experiment over real-world
datasets, including the engine data collected by a vehicle manufac-
turer. It demonstrates that our proposal outperforms the state-of-
the-art methods on both alignment and regression performance.

The proposal has been deployed in Apache IoTDB [1], an open-
source time series database. The code is in the Github repository of
Apache IoTDB [2]. All the Proofs 1 of the main theoretical results
and experimental code are available in [3].

2 TUPLE ALIGNMENT PROBLEM

Figure 2 provides an overview of aligning multiple variables for
learning regressionmodels. Consider< variables)1,)2, ...,)< with
schemaT8 (*8 ,+8 ), where*8 denotes the timestamp identifyingwhen
the variable is observed, and +8 is the corresponding value. Meth-
ods are introduced below to obtain an aligned instance R with
schemaR(*1,*2, . . . ,*<,+1,+2, . . . ,+<). As illustrated in Figure 1,
we do not assume the sampling rate of variables, i.e., supporting ir-
regular time intervals. By a projection on the attributes+1,+2, . . . ,+<
over R, we obtain a set of training data. The regression model M
could be trained over the aligned attributes.

1Due to the limited space, all the proofs are made online in [3].
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Figure 2: An overall of various tuple alignment methods with < = 3 as an example, including (a) equality alignment (b)

similarity alignment and (c) similarity alignment under model constraint. Equality alignment is a special case of similarity

alignment with time constraint \ = 0, i.e., each aligned tuple r ∈ Re has equal timestamps U1,U2,U3 of )1,)2,)3. Similarity

alignment ensures that timestamps U1,U2,U3 in an aligned tuple r ∈ Rs have distances ≤ \ with each other. The preliminary

aligned tuples (by equality or similarity) serve as the training data to learn an initial modelM. This modelM is then employed

as the model constraint on V1,V2,V3 in alignment, i.e., the distance between the prediction M (A [+1], A [+2]) and A [+3] of aligned

tuple r ∈ Rsm should be no greater than a threshold X , denoted by Δ(r,M) ≤ X . The similarity alignment with model constraint

rules out alignments inconsistent withM (red tuples in 'B in (b)) and finds more consistent alignments (blue one in Rsm in (c)).

Multiple iterations could be applied, where the new learnedM serves as the model constraint for another round of alignment.

Intuitively, to align variables)1,)2, . . . ,)< , a natural idea is based
on equal timestamps, namely equality alignment. The correspond-
ing results however are very limited, owing to issues such as trans-
mission delays. The alignment based on similar timestamps, namely
similarity alignment, largely enriches the training data but with
many aligned tuples inconsistent with the regression model. To
rule out inconsistent results, in Section 2.1, we propose to employ
the regression model M as a constraint.

To obtain more aligned tuples for training, the aligned instance
R is expected to be maximized in size. We show that obtaining an
optimal similarity alignment under model constraint is NP-hard
(Theorem 1), and devise an approximation (Proposition 2).

2.1 Similarity Alignment and Model Constraint

In this section, we first propose the time constraint, which restricts
the timestamps in a given threshold. The model constraint is then
devised based on regression models. Combining them, the similar-
ity alignment under model constraint problem is finally proposed.

Definition 1. The alignment cost of an aligned tuple r ∈ R w.r.t.

timestamp similarity is defined on the time attributes U1,U2, . . . ,U< .

Θ(r) = max
A,B∈{U1,U2,...,Um }

|r [A] − r [B] |. (1)

Intuitively, the values in an aligned tuple r ∈ R are expected to
be recorded in a short period. That is, their timestamps should have

distances no greater than a threshold \ , known as time constraint,

|r [U8 ] − r [U9 ] | ≤ \, 0 ≤ 8, 9 ≤ <. (2)

Definition 2. We say that an aligned instance R satisfies the time
constraint \ , if ∀r ∈ R, Θ(r) ≤ \ .

The aligned tuple based on similar timestamps might not be ac-
curate. In addition to the constraint on timestamps U1,U2, . . . ,U< ,
we further introduce the constraint on aligned valuesV1,V2, . . . ,V< .
Intuitively, the regression modelM (learned in previous steps) tell
the relationships among the values and could guide the subsequent
alignment as illustrated in Figure 2(c).

Definition 3. For a regression model" trained on+1,+2, . . . ,+<−1
to predict +< , the alignment cost of a tuple r ∈ R is defined as

Δ(r,M) = |M (A [+1], A [+2], . . . , A [+<−1]) − A [+<] |. (3)

The larger the value alignment cost Δ(r,M) is, the more the val-
ues in tuple r are inconsistent with the learned regressionmodelM .

Definition 4. We say that an aligned instance R satisfies themodel
constraint X , if ∀r ∈ R, it has Δ(r,M) ≤ X .

A desired alignment is to obtain aligned tuples that satisfy the
model constraint, i.e., consistent with M . Together with the afore-
said time constraint, we state the alignment problem as follows.

Problem 1 (Similarity Alignment underModel Constraint). Given
variables T1, T2, . . . , T< , time constraint \ and model constraint X ,

the problem of similarity alignment under model constraint is to
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obtain an aligned instance R, also denoted by Rsm, such that (1) each

time attribute U1,U2, . . . ,U< is a candidate key of R, i.e., each tuple

in T1, T2, . . . , T< can only be aligned once, (2) each tuple r ∈ R satis-

fies the time constraintΘ(r) ≤ \ and themodel constraint Δ(r,M) ≤

X , and (3) the number of aligned tuples |R| is maximized.

In this sense, to initialize M in the whole process, as illustrated
in Figure 2, we use equality/similarity alignment to obtain some
preliminary R for learning a regression model M to guide the sub-
sequent alignment. Similar to the idea of EM algorithm, both the
aligned instanceR and themodelM could be interactively improved
in the iteration. (See Figure 5 in Section 4.2.1 for an empirical study.)

The definitions of equality and similarity alignment are given in
Appendix A.2, where we also show that they are both special cases
of the proposed similarity alignment under model constraint.

2.2 Hardness Analysis

The similarity alignment problem under model constraint is gen-
erally hard when< ≥ 3.

Theorem 1. Given variables T1, T2, . . . , T< ,< ≥ 3, time constraint

\ , model constraint X and constant ^, the problem is NP-complete to

determine whether there is an aligned instance R having (1) candi-

date keys U1,U2, . . . ,U< , (2) time constraint Θ(r) ≤ \ and model

constraint Δ(r,M) ≤ X satisfied for each r ∈ R, (3) |R| ≥ ^.

Proof sketch. To show NP-hardness of the problem, we build a re-
duction from the maximum 3-dimensional matching problem [17,
19, 20]. Please see [3] for proofs in detail. �

3 ALIGNMENT ALGORITHM

Motivated by the reduction from themaximumk-dimensionalmatch-
ing problem [17, 19] in the hardness analysis in Theorem 1, we
devise an approximate alignment approach. A set R2 of candidate
aligned tuples is first obtained, in Section 3.1, referring to time and
model constraints, but with overlapping timestamps, i.e., does not
meet the requirement (1) in Problem 1. In Section 3.2, a local search
algorithm is then employed to eliminate the aligned tuples with
overlapping timestamps. Remarkably, we show in Proposition 2
the bound of the approximation. Finally, in Section 3.3, we propose
efficient pruning strategies for the algorithm. Proofs of all the the-
oretical results are available in [3].

3.1 Candidate Generation

Given variables T1, T2, . . . , T< , we generate a set R2 of candidate
aligned tuples that meet the requirements of time constraint \ and
model constraint X . Rather than investigating the huge space of
T1 × T2 × · · · × T< , efficient candidate generation is possible given
the ordered variables and timestamp distance ≤ \ .

Algorithm 1 in Appendix A.3 provides an overview of the Can-
didate Generation algorithm. T1, T2, . . . , T< , read from databases,
are naturally sorted on timestamps. Referring to time constraint
in Definition 2, alignment happens only among tuples with times-
tamp distance ≤ \ . Thereby, it is sufficient to consider candidate
aligned tuples within a window of size \ . Motivated by the idea of
merge join [37], we slide the window over T1, T2, . . . , T< to gener-
ate all the possibly aligned tuples w.r.t. time constraint \ .

For each tuple tk ∈ T: , the algorithm specifies all the tuples
t9 ∈ T9 in the window of t: with size \ . Combining all the t9 found
in the former steps, it generates all the possible aligned tuples in
thewindow. Likewise, we perform such a strategy for each variable
): respectively, and thus generate all possible candidates satisfy-
ing the time constraint. The completeness and correctness of this
strategy are clear. For each possible candidate A , suppose that the
minimal timestamp in A appears in *:<8=

. Then, A must be found
when traversing ):<8=

. After generating the candidates following
time constraint, model constraint X (Definition 4) is adopted to fil-
ter the candidates conflicting with the model" .

In the worst case, there will be |T1 | · |T2 | . . . |T< | aligned tuples
generated. Let the prediction cost of regression model " be 2 ("),
the time complexity of Algorithm 1 is O( |T1 | · |T2 | · · · |T< | · 2 (")).

3.2 Alignment Search

A tuple in T1, T2, . . . , T< may appear in multiple candidate aligned
tuples in R2 . Referring to requirement (1) in Problem 1, we need
to find a subset Rsm ⊆ R2 where each tuple in T1, T2, . . . , T< is
aligned at most once. Moreover, the requirement (3) in Problem 1
seeks such a subset with size |Rsm | as large as possible.

Alignment Search algorithm employs a d-optimal local search
strategy [7, 18], which is a heuristic algorithm adopted by many
matching problems (e.g., k-set packing problem). The idea is to first
initialize RB< by a subset of R2 without overlapping timestamp, and
then gradually extend the set by swapping more tuples in. Figure
3 presents a running example.

First, for any candidate aligned tuples r1 = (t11, t21, . . . , t<1), r2 =

(t12, t22, . . . , t<2) in Rc , we say that r1, r2 overlap on some variables,
denoted by r1 ≍ r2, if∃:, 1 ≤ : ≤ <, C:1 = C:2, i.e., a tuple is aligned
more than once in r1, r2. In our Alignment Search algorithm, we
first initialize RB< with a greedy strategy, i.e., we continuously add
r2 ∈ R2 that does not overlap with any existing rsm ∈ Rsm.

Next, given a threshold d of subset sizes to search, and unchosen
candidates 'D=2 , i.e., 'D=2 = '2 \'B< , the algorithm searches for a
tuple collection '>DC ⊆ 'D=2 with size ? = 2, 3, . . . , d outside 'B<
which satisfies (1) |'>DC | = ? , (2) any two tuples in '>DC do not
overlap with each other, i.e., ∀A1, A2 ∈ '>DC , A1 - A2, and (3) tuples
in '>DC overlap at most ? − 1 tuples (denoted by '8=) in RB< , i.e.,
|'8= | < |'>DC |, '8= = {A8= |A8= ∈ 'B<, ∃A>DC ∈ '>DC , A8= ≍ A>DC }.
If the three conditions are satisfied, since '>DC does not introduce
further conflict, we could safely swap it into Rsm by removing '8= .
Rsm is then expanded with an increase of (|'>DC |− |'8= |) on the size.
When no further tuple pair could be swapped in Rsm, it reaches
local optima and returns Rsm.

For each '>DC with |'>DC | = ? , we conduct hash table to check
the overlapping as well as find overlapping sets with$ (d + |'B< |)
time cost. Recall that |Rsm | ≤ g since a tuple in T1, T2, . . . , T<
can only be aligned once. That is, the total time cost of checking
whether the tuple overlapping with each other in '>DC and finding

'8= is $ (d + g). For a fixed ? , at most
( |'2 |
?

)

'>DC will be checked.

When the size of '2 is large, we can assume that d < |'2 |/2, thus

we have
( |'2 |
?

)

≤
( |'2 |
d

)

, ? ≤ d . Besides, the iteration (Line 8) will

run d times, thus the total time cost will be$ (d
( |'2 |
d

)

(d + g)). The

searching will stop when reaches local optima. Again, since the it-
eration either increases the size of 'B< or stops, and the size of 'B<
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is bounded by g , the iteration performs (Line 6) at most g times. To
conclude, with a given moderately large d , the algorithm thus runs

in $ (gd
( |'2 |
d

)

(d + g)) time. Algorithm 2 gives the pseudocode.

Proposition 2. Given< variables)1,)2, . . . ,)< ,< ≥ 3, and thresh-
old d of subset size, the approximation ratio b of similarity alignment

under model constraint by Algorithms 1 and 2 is bounded by

b =

<(< − 1)
d+1
2 −<

2(< − 1)
d+1
2 −<

, if d = 3, 5, 7, . . . (4)

b =

<(< − 1)
d

2 − 2

2(< − 1)
d

2 − 2
, if d = 2, 4, 6, . . . (5)

Recall that the parameter d is the largest size of the sets we
consider for swapping. Intuitively, a larger d contributes to more
accurate alignment results. In practice, a moderately large d (e.g., 2
or 3) is sufficient. Theoretically, according to Proposition 2, given
< = 3, d = 2, we have b = 2, i.e., factor-2 approximation. Empiri-
cally, the alignment accuracy is already high (F1-score > 0.9) when
given d = 2 in the experiments in Figure 6 in Section 4.2.2. In such
a scenario with d = 2, Algorithm 2 runs in $ (g2 |'2 |

2) time.

3.3 Optimization and Pruning

As shown in Section 3.2, the complexity of our proposed Align-

ment Search algorithm is $ (gd
( |'2 |
d

)

(d + g)), which runs in poly-

nomial w.r.t |'2 | and g . However, in practice, the amount of can-
didates is significantly larger than the length of the multiple vari-
ables, i.e., |'2 | ≫ g . Even given a small threshold d , the size of
( |'2 |
d

)

is still out of control. When d = 2, Algorithm 2 still runs

in $ (g2 |'2 |
2) time. Since the unchosen candidates have 'D=2 =

'2 \ 'B< , and 'B< ≤ g , it also indicates |'D=2 | ≫ |'B< |.
In this section, to further optimize and prune the Alignment

Search algorithm, we start from two concerns. (1) According to Sec-
tion 3.2, in each iteration, Alignment Search algorithm traverses
all the subsets of unchosen candidates 'D=2 with size ? , leading to
( |'2 |
?

)

time cost. Since |'2 | ≫ g and |'B< | ≤ g , is it possible to tra-

verse the subsets of 'B< instead? (2) Rather than traversing all the
subsets of 'B< , is there any strategy to prune some subsets before
finding swaps for them in traversing?

3.3.1 Traversing 'B< Instead of 'D=2 . For the first concern, given
currently chosen candidates 'B< , unchosen candidates 'D=2 = '2 \

'B< and optimal parameter d , we thus traverse the subsets '8=
of 'B< with size ? = 1, 2, . . . , d − 1 instead. The algorithm then
searches for a set '>DC ⊆ 'D=2 that satisfies (1) |'>DC | ≥ ? + 1, and
conditions (2) and (3) in Section 3.2. An example is illustrated in
Figure 3. However, the problem is how to find the possible '>DC
without traversing all possible subsets again in 'D=2 .

To address the aforesaid problem, we discover that, if '>DC could
be swapped with '8= , besides conditions (1), (2) and (3), each tuple
in '>DC overlaps with at least one tuple in '8= , and each tuple in
'8= overlaps with at least one tuple in '>DC (will be proved below
in Proposition 3). This observation could be further leveraged to
prevent the time-consuming traversal.

Figure 3: An example of Alignment Search algorithm. 'B<
and 'D=2 are the currently chosen and unchosen candidates,

respectively. '8= is a subset of 'B< with size ? = 2 and '>DC is

a subset of 'D=2 with size > ?. Edges denote the overlapping

relationships between two tuples (vertices). The blue dotted

lines form an oa-path, where tuples in '8= and '>DC alterna-

tively occur. The line with arrows is an attempt of swapping.

Proposition 3. Given 'D=2 , 'B< and ? , if '>DC ⊆ 'D=2 could be

swapped with '8= ⊆ 'B< having |'8= | = ? , it should also satisfy

following conditions:

(4) ∀A>DC ∈ '>DC , ∃A8= ∈ '8=, A>DC ≍ A8= .
(5) ∀A8= ∈ '8=, ∃A>DC ∈ '>DC , A>DC ≍ A8= .

Algorithm 3 in Appendix A.3 outlines the improved algorithm.
With conditions (4) and (5) in Proposition 3, we could search for
A>DC that overlaps with tuples in '8= , without traversing all the sub-
sets of 'D=2 . The searching of the overlapping tuples could be pre-
built by hash map. Since |'B< | ≤ g , the time complexity of search-

ing for possible swapping could be reduced from$ (d
( |'2 |
d

)

(d +g))

Lines 8-15 of Algorithm 2, to$ (d
( g
d−1

)

|'2 |g), in Lines 8-14 of Algo-

rithm 3. For a small d , we have $ (d
( |'2 |
d

)

(d + g)) ≈ $ (d |'2 |
d (g))

and$ (d
( g
d−1

)

|'2 |g) ≈ $ (dg
d |'2 |). Since |'2 | ≫ g , Algorithm 3 sig-

nificantly reduces the time complexity compared to Algorithm 2.

3.3.2 Pruning with OA-Path and Extended Time Constraint. For
the second concern, motivated by the alternating path approach
for bipartite graph matching, we find analogous alternating path
in our problem, namely overlapping alternating path (oa-path in
Definition 5). That is, A8= ∈ '8= and A>DC ∈ '>DC alternatively occur
in the path, as illustrated in Figure 3. By introducing oa-path, we
(1) extend the time constraint in Definition 2 to the extended time
constraint over oa-path (i.e., a set of tuples) in Lemma 4, and (2)
prove that for any two tuples A1, A2 ∈ '8= , there exists an oa-path
with length ≤ 2? − 1 between them in Lemmas 5 and 6.

Combining both findings, Proposition 7 proves that the time dis-
tance of any two tuples in '8= is within (2? − 1)\ . We thus employ
Proposition 7 for pruning '8= in Algorithm 3, which significantly
reduces the time cost of the Alignment Search algorithm.

Definition 5. (Overlapping alternating path, oa-path). Given '8=
and '>DC , an overlapping alternating path (oa-path) of length ; is de-

fined as (A1, A2, . . . , A; ), having (1) A8 ≍ A8+1, and (2) A8 and A8+1 belong

to '8= and '>DC (or '>DC and '8=), respectively, ∀8 ∈ {1, 2, . . . , ; − 1}.

In short, an oa-path is a list of tuples where consecutive tuples
overlap with each other, and tuples from '8= and '>DC alternatively
occur. Figure 3 shows an example, where vertices are the tuples
A ∈ '8= ∪'>DC . There is an edge between them, if A8 ≍ A 9 . The blue
edges form an oa-path. While the time constraint is originally de-
fined on tuple pairs in Definition 2, we extend it to restrict the time
differences of the start and end vertices over oa-path for pruning.
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Lemma 4. (Extended time constraint over oa-path). For an oa-path

(A1, A2, . . . , A; ), the differences between any timestamps of A1 and A;
are less than ;\ , i.e., ∀: ∈ {1, 2, . . . ,<}, |t:1 [*: ] − C:; [*: ] | ≤ ;\ .

To apply the extended time constraint in Lemma 4, we identify
the oa-path in the graph w.r.t. tuple overlaps ≍.

Lemma 5. For any two tuples A0, A1 ∈ '8= ∪ '>DC , if A0 and A1 are

connected by a path, the path connecting them must be an oa-path.

Lemma 5 states that any path connecting tuples in '8= and '>DC
must be an oa-path, which ensures the correctness of utilizing oa-
path for pruning. We further investigate its length.

Lemma 6. Given '8=, '>DC and |'8= | = ? , assuming that the algo-

rithm has found all possible swaps with |'′8= | < ? , for |'8= | = ? ,

if '8= could be swapped by '>DC , ∀A0, A1 ∈ '8= , there must exist an

oa-path %>0 = (A0, . . . , A1 ) with length ≤ 2? − 1.

Lemma 6 shows that any two tuples A0, A1 ∈ '8= are connected
by an oa-path, with a bounded length. Combining with Lemma 4
about the extended time constraint over oa-path, we finally apply
the extended time constraint to tuple pairs of '8= in Proposition 7.

Proposition 7. Given '8= and |'8= | = ? , if '8= is possible to be

swapped by '>DC ⊆ 'D=2 , we have |C:0 [*: ] − C:1 [*: ] | ≤ (2? −
1)\ , ∀A0, A1 ∈ '8= , : ∈ {1, 2, . . . ,<}, i.e., the timestamp differences

timestamps any A0 and A1 are less than (2? − 1)\ .

Algorithm 3 presents the optimizedAlignment Searchwith prun-
ing. According to Proposition 7, we prune unnecessary '8= by sim-
ply checking the time differences of every tuple pair in '8= (Line
10). The time cost of searching possible swapping is further re-
duced from$ (d

( g
d−1

)

|'2 |g) in Section 3.3.1 to$ (d
( g
d−1

)

d<). Again,

as discussed by the end of Section 3.2, a moderately large d = 2
is sufficient, leading to the time complexity $ (g<) of Algorithm
3. As illustrated in Section 4.2.2, time performance is significantly
improved by the proposed strategies in practice.

4 EXPERIMENTS

In this section, we evaluate our proposal by comparing with the
state-of-the-art approaches over real-world datasets. The experi-
ment settings are in Appendix A.4.

4.1 Comparison with Existing Methods

For each dataset, we compare our SAMC with the existing align-
ment methods listed in Appendix A.4.3 over different regression
models introduced in Appendix A.4.2. Table 1 reports the align-
ment F1-score and model RMSE. To demonstrate that the differ-
ences in algorithms are significant, the experiments are conducted
5 times. The best performances based on Student’s Paired t-test
[29] at 95% significance level (i.e., ? < 0.05) are bold in Table 1.

For alignment accuracy, the results of baselines do not change
withmodels, since their alignment leverages only similarities with-
out considering the regression models. As shown, SAMC outper-
forms all the baselines over five datasets on alignment F1-score.
The result is not surprising, since as introduced in Section 1 the
similarity of variables can be captured by a special regressionmodel
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Figure 4: Comparing our SAMCwith the existing alignment

methods over Fuel dataset on (a) F1-score of the alignment

results, (b) RMSE loss of the LR model, (c) RMSE loss of the

XGB model and (d) RMSE loss of the TabNet model

on variables with similar values. In contrast, the more general re-
gression on distinct variables is not considered in the existing align-
ment methods. It verifies the intuition of our study, regression
model indeed guides the alignment of multiple variables.

Table 1 also reports the model RMSE over test data. In general,
more accurately aligned data lead to better model learning perfor-
mance. Therefore, our proposal achieves the lowest model RMSE.
Compared to the models trained on interpolated time series in Ta-
ble 1, our proposal also shows competitive performance. The re-
sult is not surprising since the interpolation does not consider the
timestamp variations, but interpolating new values that are error
prone, as the example illustrated in Figure 1(b) in the Introduction.

Figure 4 reports the alignment and model accuracies by varying
data sizes (i.e., sequence length). The results are stable over various
data sizes and generally similar to Table 1.

4.2 Evaluation of Proposed Techniques

This experiment evaluates the effectiveness of applying iteration,
optimization and pruning strategies. Due to the limited space, we
report similar results on all datasets in [3].

4.2.1 Varying the Number of Iterations. As illustrated in Figure 2
and discussed at the end of Section 2.1, the aligned instances by
equality R4 or similarity RB can serve in initialization to obtain a
preliminary regression model M . It is then used in the similarity
alignment under model constraint, known as M initialized by R4
andM initialized by RB , respectively. The new predicted modelM ′

can further be used in the model constraint in another iteration of
similarity alignment under model constraint M ′.

Figure 5 presents the results under various number of iterations.
It is not surprising that using similarity alignment RB to initializeM
has better performance.More iterations lead to better performance.
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Table 1: Comparison to existing methods over five datasets. The best performances based on Student’s Paired t-test at 95%

significance level (i.e., ? < 0.05) are bold.

Dataset Model
Alignment F1-score Regression RMSE on Test Data

DTW DDTW CTW GTW TTW SAMC DTW DDTW CTW GTW TTW SAMC Interpolation

House

LR 0.222 0.024 0.007 0.675 0.049 0.929 17.937 5.223 3.825 3.359 3.390 3.222 3.690

XGB 0.222 0.024 0.007 0.675 0.049 0.932 29.367 8.594 5.464 5.015 4.884 4.337 4.659

TabNet 0.222 0.024 0.007 0.675 0.049 0.928 27.465 7.778 5.232 4.519 5.190 4.152 4.714

Telemetry

LR 0.547 0.301 0.580 0.148 0.502 0.829 0.255 0.253 0.257 0.259 0.256 0.221 0.283

XGB 0.547 0.301 0.580 0.148 0.502 0.889 0.169 0.171 0.170 0.171 0.165 0.157 0.240

TabNet 0.547 0.301 0.580 0.148 0.502 0.855 0.240 0.231 0.248 0.224 0.267 0.212 0.263

Water

LR 0.140 0.629 0.092 0.061 0.002 0.948 0.239 0.210 0.204 0.195 1.081 0.057 0.279

XGB 0.140 0.629 0.092 0.061 0.002 0.964 0.037 0.037 0.036 0.036 0.173 0.031 0.051

TabNet 0.140 0.629 0.092 0.061 0.002 0.939 0.106 0.072 0.085 0.112 1.400 0.038 0.059

Air Quality

LR 0.190 0.056 0.048 0.037 0.001 0.693 50.571 47.215 43.133 50.146 49.072 35.670 38.056

XGB 0.190 0.056 0.048 0.037 0.001 0.731 44.748 43.907 40.608 39.231 54.105 37.281 38.409

TabNet 0.190 0.056 0.048 0.037 0.001 0.727 55.836 78.012 66.054 67.821 83.836 50.045 54.742

Fuel

LR 0.057 0.325 0.452 0.812 0.788 0.966 139.077 37.881 31.075 30.926 31.801 25.132 71.647

XGB 0.057 0.325 0.452 0.812 0.788 0.967 151.752 40.515 33.410 32.260 33.558 24.636 181.011

TabNet 0.057 0.325 0.452 0.812 0.788 0.935 154.779 38.814 33.137 31.673 37.215 24.585 54.154
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Figure 5: Alignment accuracy and model prediction perfor-

mance by multiple iterations of similarity alignment under

time constraint \ = 120 and model constraint X = 35 on Fuel

The results do not further improve by conducting even more itera-
tions, i.e., converge. That is to say, most of the aligned tuples con-
form to the regression and with similar timestamps, even though
some of them are not in ground truth.

4.2.2 EvaluatingOptimization and Pruning Strategy. Table 2 reports
the running time of the Alignment Search algorithmwith different
optimization and pruning strategies.We conduct experiments over
dataset House with different lengths g of variables. AS is the orig-
inal Alignment Search algorithm. AS+Opt represents the Align-
ment Search with optimization strategy introduced in Section 3.3.1.
AS+Opt+Pruning represents the Alignment Search with both opti-
mization and pruning strategies in Section 3.3.2.

Table 2 shows that the optimization strategy reduces the time
cost of the original algorithm. The pruning strategy does not per-
form when d = 2, i.e., there is only one tuple in '8= . Neverthe-
less, for d > 2, the pruning strategy significantly improves the
efficiency (reducing 85% time when |'2 | ≈ 104).

Figure 6 illustrates the alignment performance of our proposal
by varying d , the largest size of the sets we will consider for swap-
ping. The results verify that a moderately large d is sufficient as
discussed at the end of Section 3.2, since the performance of the

Table 2: Running time (s) of Alignment Search algorithm

using different optimization and pruning strategies over

House dataset with \ = 80 and X = 8

d g |'2 | AS AS+Opt AS+Opt+Pruning

2 100 986 1.56 0.03 0.03

3 100 986 525.93 0.17 0.06

2 1000 9686 112.02 0.32 0.32

3 1000 9686 > 1 hour 15.61 2.17
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Figure 6: (a) Alignment performance and (b) time cost of

SAMC by varying d over House dataset with \ = 80 and X = 8

proposal with d > 2 only shows slight improvement while suffer-
ing from a loss of efficiency as also shown in Table 2.

4.3 Automatic Constraint Determination

In this section, we first illustrate how the time constraint \ and
model constraint X affect the alignment and model learning perfor-
mance. Then, we introduce the automatic determination of proper
\ and X in practice without the ground truth.

4.3.1 Varying Time Constraint \ . (For each fixed X ,) it is not sur-
prising that increasing \ leads to more aligned tuples in Figure
7(b). More tuple pairs with larger timestamp distances can meet
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the requirement of a time constraint with a larger distance thresh-
old \ . Figure 7(a) illustrates that by increasing \ , the F1-score first
increases and then drops. For a small \ (the extreme case is equal-
ity alignment with \ = 0), a limited number of tuples are aligned,
leading to low alignment recall. On the other hand, for a large \ ,
too distant tuples not occurring in the same period are mistakenly
aligned, with low accuracy. Thereby, a moderately large time con-
straint \ is expected (see Section 4.3 on determining proper \ ).

Figure 8(a) presents the results of model accuracy by SA and
SAMC under various time constraints \ . The result of EA with a
fixed \ = 0 is also reported as the baseline. The model performance
is generally analogous to the alignment accuracy in Figure 7(a). EA
with \ = 0 has low alignment F1-score and high model prediction
RMSE. Time constraints \ with better alignment F1-score, e.g., in
the range of [90, 130] for X = 35 in Figure 7(a), show lower model
prediction RMSE as well in Figure 8(a).

4.3.2 Varying Model Constraint X . For a small X , i.e., strict model
constraint, fewer tuples can meet the requirement as shown in Fig-
ure 7(b). Again, a small X leading to a limited number of aligned
tuples has low recall. For a large X (the extreme case is similar-
ity alignment without model constraint X = +∞), aligned tuples
do not conform to the model M will be considered, leading to low
alignment precision. As shown in Figure 7(a), on Fuel dataset, X in
a range of [25, 35] shows the best alignment accuracy (also see the
determination of X in Section 4.3).

Likewise, Figure 8(b) reports equality and similarity alignment
with X = +∞ as the baselines. Again, SAMC under a model con-
straint X = 35, showing better alignment accuracy in Figure 7(a),
leads to lower model RMSE in Figure 8(b). We observe that a small
X leads to an inaccurate model. It is not surprising since a small X
ignores too many alignments and thus is insufficient for learning.
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Figure 9: Distribution of (a) timestamp distances on consec-

utive tuples in dataset Fuel, which automatically determine

time constraint \ = 129, and (b) value distances between

aligned candidates and their model predictions, which au-

tomatically determine model constraint X = 28

4.3.3 Determining TimeConstraint\ . To determine a proper thresh-
old \ of timestamp distances between aligned tuples, we observe
the distribution on timestamp distances of consecutive tuples in
the input dataset. Interpreting consecutive tuples as the nearest
neighbors on timestamps, we can use a Poisson process to approx-
imate the appearance of the nearest neighbors [27]. That is, the
timestamp distances of consecutive tuples are modeled with an ex-
ponential distribution, denoted by dU ∼ Exp(_), having probabil-
ity density function (PDF) f (dU | _) = _ exp(−_dU ). The param-

eter _ is estimated by _ ≈ 1
MTI , where MTI is the median of all

timestamp distances. Figure 9(a) shows the distribution over the

dataset used in the experiment with estimated parameter _ =
1
43 .

Once timestamp distances of consecutive tuples are modeled by
an exponential distribution, we determine the threshold \ of times-
tamp distances that can be aligned under confidence level 0.95
[33], i.e., find a \ having cumulative distribution function (CDF)
F (\ | _) = 0.95. For the distribution in Figure 9(a), we determine
\ = 129. As in Figures 7(a) and 8(a), such a time constraint leads to
better alignment accuracy and model prediction performance.

4.3.4 Determining Model Constraint X . Similarly, to find a proper
threshold of model constraint X , we observe the value distances
between aligned candidate tuples r and the predictions of M , i.e.,
Δ(r,M) in Formula 3. Again, we canmodel the distances on nearest
neighbors by an exponential distribution [27], dV ∼ Exp(_), hav-
ing probability density function (PDF) f (dV | _) = _ exp(−_dV ).
Figure 9(b) presents the distribution observed in dataset Fuel with

estimated parameter _ =
1
9.3 . With confidence level 0.95 [33], we

determine X=28. As shown in Figures 7(a) and 8(b), the correspond-
ing alignment accuracy is high, while themodel RMSE is low.More-
over, if the dependent variable could not be predicted, i.e., the re-
gression relationship does not hold, the problem of similarity align-
ment under model constraint (in Section 2.1) is equivalent to the
problem of similarity alignment, i.e., exactly the mentioned simple
approach of only comparing the timestamp. In such scenarios, we
can set X to +∞ and the proposal still works. Since the parameters
\ and X are determined by observing the data distributions, the
proposal could tolerate noise to some extent.

5 RELATED WORK

In addition to the typical methods compared in the experiments in
Section 4.1 (and introduced in Appendix A.4.3), similar approaches
could also be used for aligning time series. ERP [9] and EDR [10]
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utilize edit distance with dynamic programming to evaluate the
similarities of time series. LCSS [32] computes the similarity of
sequences in a bounded time window, and considers the similar-
ity of the values. Although most of these methods do not require
a bounded matching window, they highly rely on the similarities
among time series. Unfortunately, such proximities of similar val-
ues and timestamps are very likely to be absent among the vari-
ables in regression, e.g., in Figure 1. For the same reason, the ap-
proaches [12, 16] also emphasizing similarities among a cluster of
time series do not apply.

Apart from warping, Dignös et al. [13] study temporal align-
ment, and propose a relational algebra for providing sequenced se-
mantics in DBMS. However, it cannot be applied to our situation,
since (1) the method deals with time durations, e.g., the period of
a stay in the hotel, rather than discrete time, e.g., the instant data
collected from sensors, and (2) it focuses on the query operations
between two temporal relations rather than multiple time series.

Unlike time lag discovery problems [31] that indicates hidden
temporal dependencies, we study unaligned variables that are caused
by unexpected timestamp variations such as transmission delays.
Such delays cannot bemodeled as temporal dependencies. To learn
a high-quality regression model for downstream tasks, it is possi-
ble and necessary for the alignment over variables.

The regression among multiple aligned variables further guides
the alignment in the following alignment iteration, analogous to
the temporal constraints for time series data cleaning [30]. To han-
dle the inconsistency of the aligned instance R to the model, we
employ the model M as the reference data. The idea is similar to
data repairing with master data [14]. While Fan et al. [14] propose
to modify the data values to eliminate violations, our study finds
alignment variables that conforms to M .

6 CONCLUSION

In this paper, to align tuples for learning regression models on the
corresponding variables, we propose a novel similarity alignment
undermodel constraint (SAMC).While the time constraints ensure
that the values in an aligned tuple are temporally close with simi-
lar timestamps in variables, the model constraints further rule out
the alignment inconsistent with the (iteratively learned) regression
model. We prove NP-completeness of the alignment problem and
propose an approximation algorithmwith theoretical performance
guarantee. Novel pruning strategies are proposed to improve effi-
ciency. Experiments over real datasets demonstrate that by our pro-
posal, aligning tuples and learning regression model improve with
each other in iteration. The improvement verifies the necessity of
aligning tuples for learning regression model.
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A SUPPLEMENTARY MATERIAL

A.1 Notations

Table 3 summarizes some frequently used notations in this paper.

Table 3: Notations

Symbol Description

)1,)2, . . . ,)< < variables

g the minimum number of values of each variable

\ , X thresholds of time and model constraints

'4 , 'B , 'B< tuples aligned by EA, SA and SAMC

'2 , 'D=2 all candidates and unchosen candidates

'8=, '>DC subsets of 'B< and 'D=2 to be swapped

d threshold of searched subset size

A.2 Special Cases

Problem 1 defines the similarity alignment under model constraint
(SAMC). Besides the time constraint in Definition 2, which restricts
the similar timestamps, the model constraint in Definition 4 en-
sures Δ(r,M) ≤ X for each r ∈ R.

As we introduced in Section 2, equality alignment, a natural
idea of aligning tuples, is based on equal timestamps. Similarity
alignment employs time constraint, to further enrich the training
data. Indeed, we will prove that they are both special cases of the
proposed problem. According to the similarity alignment under
model constraint (SAMC), we will give the definitions of the equal-
ity alignment (EA) problem and the similarity alignment (SA) prob-
lem. An example of their relationships and the pipeline of employ-
ing the methods is illustrated in Figure 2.

The equality alignment (EA) problem enforces the same times-
tamps in aligned tuples, which is an intuitive alignment strategy.
The definition of equality alignment is provided as follows.

Problem 2 (Equality Alignment). Given variables )1,)2, . . . ,)< ,

the equality alignment problem is to obtain an aligned instance R,

namely R4 , such that (1) each time attribute Ui is a candidate key of

R, i.e., each tuple in )1,)2, . . . ,)< can only be aligned once, (2) each

tuple r ∈ R has equal timestamp r [U1] = r [U2] = · · · = r [U<], and

(3) the number of aligned tuples |R| is maximized.

Solving the equality alignment problem is trivial. By performing
join operations R = T1 ⊲⊳ T2 ⊲⊳ . . . ⊲⊳ T< on U1 = U2 = · · · = Um,
it naturally maximizes the number of aligned tuples |R|.

The Similarity Alignment (SA) problem employs time constraint
alone to filter the aligned tuples.

Problem 3 (Similarity Alignment). Given variables T1, T2, . . . , T<
and time constraint \ , the similarity alignment problem is to obtain

an aligned instance R, namely 'B , such that (1) each time attribute

U1,U2, . . . ,U< is a candidate key of R, i.e., each tuple in T1, T2, . . . , T<
can be aligned once, (2) each tuple r ∈ R satisfies the time constraint

Θ(r) ≤ \ , and (3) the number of aligned tuples |R| is maximized.

Rather than equal timestamps in Equality Alignment, the time
constraint in SimilarityAlignment, defined as time constraintΘ(r) ≤
\ in Definition 2, considers similar timestamps. It ensures that in

each aligned tuple r ∈ R, the distances between any two times-
tamps are no greater than \ . To solve the similarity alignment prob-
lem, our proposed Candidate Generation (Algorithm 1) and Align-
ment Search (Algorithm 2) are also applied, by ignoring the model
constraint part, as well as the pruning strategies in Algorithm 3.

Proposition 8. Given X = +∞, i.e., no model constraint, Problem 1

is equivalent to the similarity alignment. Together with X = 0, it is
indeed the equality alignment.

A.3 Algorithms

Algorithm 1 provides an overview of the candidate generation. Let
T1, T2, . . . , T< be naturally sorted on timestamps. The algorithm
first specifies all the tuples t9 ∈ T9 in the window of t: with size
\ (Line 3). Model constraint X is adopted to filter the candidates
conflicting with the model " (Line 6). As aforementioned, in the
whole process, equality/similarity alignment are used to initialized
preliminary R for learning a regression model M to guide the sub-
sequent alignment (illustrated in Figure 2).

Algorithm 2 presents the Alignment Search algorithm. Line 3
initializes RB< with a greedy strategy, i.e., we continuously add
r2 ∈ R2 that does not overlap with any existing rsm ∈ Rsm. Lines
10-12 filter possible swapping by the conditions and generate all
the possible aligned tuples in the time window that conform to
the modelM . Line 14 finally conducts the swapping. It follows the
framework of d-optimal local search algorithm for :-SP problem
[18, 24], which has a bounded approximation ratio (Proposition 2).

Algorithm 3 outlines theAlignment Search algorithmwith prun-
ing strategies. Line 9 is proved by Proposition 3, to traverse 'B<
instead of 'D=2 . Line 10 employs oa-path with extended time con-
straint to further filter the candidates, proved in Proposition 7.

Algorithm 1: Candidate Generation (T_List, \,M, X)

Input: variables list T_List = ()1,)2, . . . ,)<), time
constraint \ , model constraint (M, X)

Output: candidates of aligned tuples R2
1 R2 ← ∅;

2 for each ): ∈ )_;8BC do

3 R: ← {(t1, t2, . . . , t<) |∀1 ≤ 8 ≤ <, t8 ∈ T8 , t: [U: ] ≤

t8 [U8 ] ≤ t: [U: ] + \ };

4 R2 ← R2 ∪ R: ;

5 for each r ∈ R2 do

6 if Δ(r,M) > X then

7 R2 ← R2 \ {A }

8 return R2 ;

A.4 Experiment Settings

A.4.1 Datasets. (1) House 2 is about electric power consumption
in one household. The regressionmodel is built on active power, re-
active power and intensity attributes to predict voltage. (2) Teleme-
try 3 is from environmental sensor telemetry data. The regression
model is built on carbon monoxide, humidity and smoke attributes

2https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
3https://www.kaggle.com/garystafford/environmental-sensor-data-132k
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Algorithm 2: Alignment Search (R2 , d)

Input: aligned candidates Rc , threshold d

Output: aligned tuples Rsm without overlapping timestamp
1 Rsm ← ∅;

2 for rc ∈ Rc do

3 if ∀rsm ∈ Rsm, r2 - rsm then

4 Rsm ← Rsm ∪ {rc};

5 local optimal← False;

6 while not local optimal do

7 local optimal← True;

8 for 2 ≤ p ≤ d do

9 'D=2 ← Rc \ Rsm;

10 for '>DC ⊆ 'D=2 , |'>DC | = ? do

11 if ∀A0, A1 ∈ '>DC , A0 - A1 then

12 '8= ← {A8= ∈ RB< |∃A>DC ∈ '>DC , A>DC ≍ A8=};

13 if |'8= | ≤ ? − 1 then
14 'B< ← 'B< \ '8= ∪ '>DC ;

15 local optimal← False;

16 return Rsm;

Algorithm 3: Alignment Search-Pruning (R2 , d , \ )

Input: aligned candidates Rc , threshold d , time constraint \
Output: aligned tuples Rsm without overlapping timestamp

1 Rsm ← ∅;

2 for rc ∈ Rc do

3 if ∀rsm ∈ Rsm, r2 - rsm then

4 Rsm ← Rsm ∪ {rc};

5 local optimal← False;

6 while not local optimal do

7 local optimal← True;

8 for 1 ≤ p ≤ d − 1 do

9 for '8= ⊆ Rsm, |'8= | = ? do

10 if ∀A0 ∈ '8=,∀A1 ∈ '8=,∀8 ∈

{1, 2, . . . ,<}, |C80 − C81 | ≤ (2? − 1)\ then

11 '>DC ← {A>DC ∈ 'D=2 |∃A8= ∈ '8=, A>DC ≍

A8=} ∩ {A>DC ∈ 'D=2 |∀r ∈ RB< \ R8=, r -

A>DC };

12 if |'>DC | ≥ ? + 1 then
13 'B< ← 'B< \ '8= ∪ '>DC ;

14 local optimal← False;

15 return Rsm;

to predict temperature. (3) Water 4 is collected by sensors from wa-
ter quality monitoring stations. The regression model is built on
electric conductivity, water temperature and turbidity to predict
water level. (4) Air quality 5 is air pollutants data from air-quality
monitoring sites in Beijing. It is a high-dimensional dataset with
11 attributes, the regression model is to predict PM10 by other at-
tributes. (5) Fuel is real-world fuel consumption data of vehicles,
collected by a vehicle manufacturer. The regression model is built
on engine torque and speed to predict fuel consumption.

4https://www.kaggle.com/ivivan/real-time-water-quality-data
5https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data

For House, Telemetry and Air Quality, their timestamps are all
naturally aligned to serve as ground truth. We simulate the un-
aligned variables by introducing disturbance on timestamps [8].
For Fuel, due to the aforementioned issues like transmission de-
lays, only about 5% data are naturally aligned. Analogously, for
Water dataset, among 29k tuples, only around 13k tuples are natu-
rally aligned. We thus consider the part of naturally aligned tuples
as the ground truth of evaluation, denoted as Rtruth.

A.4.2 Regression Models. We employ regression models includ-
ing Linear Regression (LR) and XGBoost (XGB [11]), implemented
by scikit-learn[5]. TabNet [6] is a more recent canonical deep tab-
ular data learning architecture for multiple regression.

A.4.3 Alignment Methods. We compare our proposed Similarity
Alignment under Model Constraint (SAMC) with existing meth-
ods: (1) dynamic timewarping (DTW) [4], a dynamic programming-
based algorithm; (2) derivative dynamic timewarping (DDTW) [21],
an extension of DTW considering the local derivatives of the data;
(3) canonical time warping (CTW) [34], an extension of canonical
correlation analysis (CCA) for spatio-temporal alignment of hu-
man motion; (4) generalized time warping (GTW) [35, 36], which
extends DTW for temporally aligningmulti-modal sequences from
multiple subjects; (5) trainable time warping (TTW) [22] utilizes a
sinc convolutional kernel and a gradient-based optimization tech-
nique for multiple alignment. Since our scenario focuses on align-
ing multiple variables, for DTW, DDTW and CTW proposed only
on pairs of time series, we extend them with the framework of Pro-
crustes analysis [35] for handling multiple time series alignment.

A.4.4 Evaluation Metrics. We propose to evaluate how accurate
the methods align the tuples (alignment accuracy) and how accu-
rate the models are learned from the aligned data (model accuracy).

For alignment accuracy, we compare the instance R, aligning
T1, T2, . . . , T< by various algorithms, to the truth Rtruth introduced
in Section A.4.1. The alignment accuracy is given by

F1-score = 2 ∗
?A428B8>= ∗ A420;;

?A428B8>= + A420;;
,

where A420;; = Rtruth∩R
Rtruth

, and ?A428B8>= =

Rtruth∩R
R .

For model accuracy, we reserve 20% naturally aligned tuples of
each dataset as test data 'C4BC for evaluating the learned models.
For a learned regression model M , given independent variables
+1,+2, . . . ,+<−1 and dependent variable+< , we employ RMSE, i.e.,

'"(� (M, 'C4BC ) =

√

∑

A ∈'C4BC (" (A [+1], . . . , A [+<−1]) − A [+<])
2

|'C4BC |
.

The lower the RMSE is, the better the alignment and learned mod-
els are.

A.4.5 Implementation Details. In our Similarity Alignment under
ModelConstraint (SAMC), the model" is initialized by Similarity
Alignment (SA), as illustrated in Figure 2. The learned model" is
then utilized and updated in SAMC as described in Section 2.1.

The experiments are conducted on an Ubuntu 16.04 LTS ma-
chine with 16 2.1GHZ cores and 128 GB memory. The large-scale
data alignment is executed on a cluster of 3 nodes with Apache
Spark 2.2.3. Each node has 32 GB memory and 16 2.6GHz cores.
Experimental code and data as well as proofs are available in [3].
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