
Separation or Not: On Handing Out-of-Order
Time-Series Data in Leveled LSM-Tree

Yuyuan Kang∗, Xiangdong Huang†, Shaoxu Song‡�, Lingzhe Zhang, Jialin Qiao,
Chen Wang, Jianmin Wang, and Julian Feinauer

School of Software, BNRist, Tsinghua University, Beijing, China

pragmatic industries GmbH, Kirchheim, Germany

{kyy19∗, zhanglz20, qjl16}@mails.tsinghua.edu.cn, {huangxdong†, sxsong‡, wang chen, jimwang}@tsinghua.edu.cn,

j.feinauer@pragmaticminds.de

Abstract—LSM-Tree is widely adopted for storing time-series
data in Internet of Things. According to conventional policy
(denoted by πc), when writing, the data will first be buffered
in MemTable in memory. When it is full, the data will be written
to the disk to form SSTables. Compaction is triggered to sort
the data in each layer of the LSM-Tree on the disk. However,
the arrival of data can be unordered due to reasons such as
transition delay. Apache IoTDB uses in-order and out-of-order
MemTables to separately buffer the in-order and out-of-order
data to accelerate queries, namely the separation policy (denoted
by πs). However, given a specific space of memory budget to
buffer the data, write amplification (WA) of the leveled LSM-Tree
will be influenced by πs. Whether the influence by separation is
positive or negative, and how intense WA is influenced, depend on
the properties of workloads and the capacity of the in-order and
out-of-order MemTables. It is highly demanded to build robust
models for estimating the expected amount of data rewritten
in each compaction, and predicting the WA under πc and πs.
Note that as an industrial paper, rather than proposing novel
techniques for research problems, we focus on the practice
of whether separating or not for lower write amplification.
Experiments on synthetic and real-world datasets show that the
models for estimating WA are accurate under various delay
distributions. In addition, based on the estimation models, we
implement an analyzer module in the open-source Apache IoTDB,
for choosing the policy with lower WA. We apply the method
in the use case of our industrial partner, a service provider of
engineering machinery. The use case verifies the effectiveness of
deciding whether separation or not by WA estimation.

Index Terms—Leveled LSM-Tree, Write Amplification

I. INTRODUCTION

Apache IoTDB [1] is an open-source, leveled LSM-Tree-

based, high-performance data engine tailored for time-series

data. A time-series is a collection of data points generated

along a timeline [2]. A timestamp recording when the data

point is generated, and another indicating when the data point

arrives in the database will be assigned to each data point.

In this paper, we use the term “tuples”, “entries” and “data

points” interchangeably. In terms of generation time, time-

series data are unordered because there are various delays [3]

caused by clock skew [4], batch transmission [5], network

delays [6], or system recovery from failure [5] varying from

data point to data point. IoTDB distinguishes in-order and

out-of-order data points according to their generation time. If

a new-arriving data point is generated later than all of the data

L0

L1

L0

L1

C0

without separa�on separa�on

merge mergeflush

�c πc �s πs

m
e

m
d

is
k

m
e

m
d

is
k

SSTable SSTable

Cseq Cnonseq

Fig. 1. Writing data with and without the πs. We consider that the capacity
of C0 equals the sum of the capacities of Cseq and Cnonseq.

points on the disk, then it is an in-order data point. Otherwise,

it is called an out-of-order data point. Accordingly, IoTDB

designed in-order and out-of-order MemTable (Cseq and Cnonseq

in Figure 1, respectively) to handle the two kinds of data

points separately [7], [8], which is called the separation policy,

compared to the conventional policy where there is only one

MemTable (C0 in Figure 1). We denote the separation policy

and the conventional policy as πs and πc.

A. Advantages of πs over πc

Data are organized in SSTables on the disk. In an SSTable,

the entries are sorted by the generation time. When writing,

πc first buffers the data in C0. When C0 is full, πc merges

the data in C0 and those in SSTables, which have overlapping

key ranges with C0, to form new SSTables so that the data

are sorted on the disk. πc can lead to data of a period on

the disk being rewritten many times in the partially unordered

time-series scenario. However, the separation design of IoTDB

[7], πs, only requires compaction when Cnonseq is full, and it

can just flush Cseq to the disk when it is full. πs exhibits two

advantages. First, because the minority of out-of-order data are

accumulated together, the remaining in-order data are stored

in SSTables without overlap, hence accelerating range queries

(with predicates on the generation time) since fewer data need

to be read [9]. Second, it attempts to accumulate more out-of-

order data before executing a merge operation so that data of

a certain period may be rewritten fewer times in the long run.

B. Problems of πs

However, πc and πs should be chosen carefully. In some

cases, πs may suffer comparatively greater write amplification

(WA), which is the ratio of the amount of data actually written

3340

2022 IEEE 38th International Conference on Data Engineering (ICDE)

2375-026X/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDE53745.2022.00315

L0

L1

flush

�cπc

d
is

k
m

e
m

L0

L1

merge

�cπc
d

is
k

m
e

m

L0

L1

merge

�cπc

d
is

k
m

e
m

L0

L1

�sπs

d
is

k
m

e
m

L0

L1

�sπs

d
is

k
m

e
m

flush

Cseq Cnonseq

flush

L0

L1

�sπs

d
is

k
m

e
m

merge

C0

C0

C0

Cseq Cnonseq

Cseq Cnonseq

overlapped

overlapped

mul�ple �mesmul�ple �mes

Fig. 2. A case where πs suffers more intensive WA than πc, when most of
the data are in order.

to the disk divided by the amount required by the user [10].

A high WA means a waste of system resources, and it is

detrimental to system performance and the lifespan of the

hardware [11]. In Fig. 2, for example, if there are only a few

out-of-order data points, then compaction happens at a very

low frequency under πc. WA is close to 1. While under πs, an

out-of-order point is collected in memory earlier. Then arrive

a large number of in-order data points. When enough out-

of-order data points have arrived, Cnonseq is full but contains

a long overlapping period among the SSTables on the disk,

some of which otherwise would not be rewritten under πc.

In the example of Fig. 2, the separation policy suffers more

intensive write amplification than conventional policy, mainly

in the last step. That is, Cnonseq has to merge with a large

number of SSTables in L1 that have overlapping key ranges

with Cnonseq. In order to better illustrate this, we use an arrow

to point to each SSTable in merging in Fig. 2. Therefore, πs

is not one-size-fits-all. It should depend on the intensity of

disorder of the writing workload. The general WA of leveled

LSM-Tree has been discussed in [12]. To show the difference

between πc and πs, an accurate model needs to be built.

Moreover, once the separation policy is chosen, the knob

introduced by πs, the capacity of Cnonseq or Cseq would also

have an impact on the WA, which was not discussed in current

literature. Considering limited space in memory for buffering

data points, if Cnonseq is too small, Cnonseq is filled more often,

which triggers frequent compaction and leads to intensive WA.

While if it is too large, which means that the space left for Cseq

is circumscribed. Therefore, Cseq is flushed more often, which

updates the maximum generation time on the disk frequently.

As a result, more data points are treated as out of order,

which would otherwise be considered in order. It also results

in higher WA. Therefore, revealing the impact of the capacity

of Cnonseq on WA is a non-trivial problem.

C. Decision Problem

However, in the early version of Apache IoTDB, the ca-

pacities of MemTables for in-order and out-of-order data are

not tunable. Therefore, the following questions demand prompt

solutions. Given limited memory for buffering data points (i.e.,

the number of the tuples that can be buffered in memory is a

constant), the delay distribution and generation time interval

of the writing workload, then

1) What is the WA under πc?

2) Under πs, how does WA change with different capacities

of Cseq? What is the minimum WA in this case?

Note that as an industrial paper, rather than proposing novel

techniques for research problems, we focus on the practice of

whether separating or not for lower write amplification.

D. System Practice

We implement a delay analyzer in Apache IoTDB, which

will collect time-series data delays and generate the statistical

profile of the delays, e.g., the probability distribution function

(PDF) and cumulative distribution function (CDF). Then, a

statistical model is used to predict WA under πc and the

minimum WA under πs, as well as the (sub)optimal capacities

of Cseq and Cnonseq. The major components include:

1) A model of the time-series data, delays, and out-of-

order data to estimate WA under the conventional policy

without separation πc.

2) A model to estimate WA under the separation policy πs,

where Cseq is treated as a parameter. The minimum WA

and the (sub)optimal Cseq are also given.

3) An analysis module that will analyze the delays of the

writing workload, and adopt a (sub)optimal policy such

that the WA is minimized.

4) A case study of system practice in the scenario of our

industrial partner, verifying the effectiveness of deciding

whether separation or not by WA estimation in IoTDB.

As a part of the Apache IoTDB project, the code of this paper

is available in the official GitHub repository of IoTDB1.

The remainder of the paper is organized as follows. Section

II formally defines time-series data, delays, in-order and out-

of-order data points. The arrival rate ratio of in-order and out-

of-order data is also given to quantify the disorder intensity,

which is strongly related to the WA. In Section III, given the

delays’ distribution, generation time interval, the WA model

under πc is estimated by counting the subsequent data points.

Section IV shows the writing under πs in detail, and then

presents the model of WA under πs. Subsequently, based on

the models, a tuning algorithm is given to minimize the WA.

Section V conducts experiments on various datasets to confirm

that the models can accurately estimate WA under πc and πs.

Section VI shows a specific use case of our industrial partner,

a service provider of engineering machinery, and confirms the

effectiveness of the delay analysis module.

II. OUT-OF-ORDER DATA

In this section, we present some preliminaries on the defi-

nitions of time-series data points and delays. To describe the

intensity of chaos of the time-series data, we consider in-order
and out-of-order data points [7]. Then, a model is introduced

to quantify the arrival rate ratio of the two types. This model

1https://github.com/apache/iotdb/tree/research/separation

3341

Generation Time

Arrival Time
p1.ta p2.ta p3.ta pk.ta

p1.tg p2.tg pk.tgp3.tg

p1.td

t

on the disk

pk+1.ta pk+2.ta pk+n.ta

t

p2.td

in memory

k+1

pk+1.tg

t

p3.td

maximum generation time

k+2

k+n

pk+2.tg pk+n.tg

Fig. 3. Time-series data points and their generation time, arrival time and delays.

TABLE I
NOTATIONS AND EXPLANATIONS

Sym. Explanations
πc The conventional LSM-tree leveling merge policy.
πs The leveling-based separation policy.
rc The WA under πc.
rs The WA under πs.
n The maximum entries that can be held in memory.
C0 The MemTable of conventional LSM.

Cseq The MemTable for in-order data points.

Cnonseq The MemTable for out-of-order data points.

nseq The capacity of Cseq.

n′
seq

The expected number of data points to be flushed from
Cseq for the last time in a phase.

nnonseq The capacity of Cnonseq, nnonseq = n− nseq.

R The run [13] on level L1.

r The write amplification model.

ζ(n)
The expected number of subsequent data points in R
when there are n data points buffered in memory.

f(x) The probability distribution function of delays.
F (x) The cumulative distribution function of delays.

ι
The minimum duration of delay making a point
p out of order.

LAST(R)
The data point with the latest generation time in R
where R is the run on level L1.

p A data point.
S A time-series, which is a collection of data points.

πadaptive
The policy chosen by the tuning algorithm
under dynamic delay distribution.

πs(n̂∗
seq)

The separation policy with the recommended capacity
of Cseq, i.e., n̂∗

seq.

πs(nseq) The separation policy with the capacity of Cseq being nseq.

is crucial to estimate WA under πs. Section IV shows how

the model is adopted in detail. Several notations used in this

paper and their explanations are listed in Table I.

Definition 1. Time-series data point. A time-series data point
p is a triple p =< tg, ta, v >, where tg is the timestamp when
the data point is generated, which is unique and identifies a
specific data point; ta is the timestamp when the data point
arrives in the database; v is the value it carries on.

Time-series S is a collection of time-series data points, S =
{p1, p2, · · · , pi, · · · }. As is shown in Fig. 3, the index of each

data point indicates the order of their arrivals. Since the data

points are generated at a certain frequency, the time interval

to generate data points is a constant, denoted by Δt.

Definition 2. Delay. The delay of a time-series data point p
is the difference between its arrival time and its generation
time, denoted by p.td. Formally, p.td = p.ta − p.tg .

Fig. 3 shows data points p1, p2, · · · , pk+n, and the rela-

tionship of their generation time, arrival time, and delay. The

green spots refer to their generation time, and the yellow spots

refer to their arrival time. A dashed arrow connects the two

timestamps of a data point. In this paper, we use the notation

pi.ta and ti interchangeably to indicate the arrival time of the

i-th data points received.

In IoTDB, the SSTables on level L1 are organized without

overlapping key ranges with each other. As a whole, data

points on L1 are considered as a run [13], denoted by R.

We use the notation LAST(R) to denote the entry with the

latest generation time in R. Similar to [7], the in-order and

out-of-order data points are given as follows.

Definition 3. In-order and Out-of-order Data Points. For any
data point p buffered or to be buffered in memory, if all of the
data points in R are generated earlier than p, then p is an in-
order data point. Otherwise, p is an out-of-order data point.
Formally, p is an in-order data point, iff p.tg > LAST(R).tg;
p is an out-of-order data point, iff p.tg < LAST(R).tg .

Note that the out-of-order data points are different from

the concept of late events in the literature [14], [15]. The

former focuses on comparing the generation time of the new

data point and the latest generation time on the disk. The

latter compares the generation time of two data points that

arrive consecutively. In Fig. 3, p1, · · · , pk are on the disk,

while pk+1, · · · , pk+n are not. In this case, LAST (R) = pk.

Because pk+1.tg < pk.tg , then pk+1 is an out-of-order data

point. In contrast, pk+2.tg > pk.tg , so pk+2 is an in-order data

point. Consistent with the examples in Fig. 3, Fig. 4 plots

the data points in a two-dimensional coordinate according

to the two timestamps. In general, these points exhibit a

linear upward trend. If all of the data points arrive in order,

then the figure should be rigorously monotonically increasing.

However, the link between pk and pk+1 violates monotonicity.

It is also worth noting that the decision of separation or

not should be efficiently made online. Precise computation on

the joint distribution of generation intervals and transmission

delays is not affordable to the database system. Therefore,

in the following, as a trade-off, three assumptions are used to

approximate the computation. The delays of the data points are

assumed to obey a specific distribution, whose probability dis-

tribution function (PDF) and cumulative distribution function

(CDF) are denoted by f(x) and F (x), respectively. Moreover,

following the same line of [16], the delay values of different

3342

Arrival Time

e
mi

T
n

oit
ar

e
n

e
G

t
p1

p2

t

p1.tg

p2.tg

p3p3.tg

p2.ta p3.tap1.ta

pk

pk+1

pk+2

pk+n

t

t

pk.ta pk+1.ta pk+2.ta

pk.tg

pk+1.tg

pk+2.tg

pk+n.ta

pk+n.tg

Multiple points.

Violating the monotonicity.

Fig. 4. The arrival time and generation time of the data points in Fig.3.

data points are assumed to be independent and identically

distributed. And finally, the time-series data are assumed to

be generated at a certain frequency.

To quantify out-of-order intensity, the percentage of late
events is widely used in the literature [15], [17]. Nevertheless,

it is not suitable in this study, because the definition of out-
of-order data points is related to the latest generation time

on the disk. To take the MemTable into account, an analysis

is necessary on the quantitative relations between the number

of in-order data points and the number of out-of-order data

points received in a period. Denote the minimum delay of an

in-memory data point pk+i making it out-of-order as ιi =
pk+i.ta − LAST (R).tg . Therefore, the probability of a data

point pk+i being in order is F (ιi). Suppose there are α data

points collected in memory. Then, the expected number of

out-of-order data points is

g(x) = α− x (1)

where x =
∑α

i=1 F (ιi) is the expected number of in-order

data points.

III. SUBSEQUENT DATA POINTS AND WRITE

AMPLIFICATION

In Section II, in-order and out-of-order data points in mem-

ory are introduced. Motivated by [16], this section considers

subsequent data points on the disk to reveal the amount of

data to rewrite during compaction given the delay distribution

and generation time interval, and then estimates WA under πc.

Definition 4. Subsequent Data Points. For an on-disk data
point p and the in-memory MemTable C0, if there is any data
point q ∈ C0, p.tg > q.tg , then p is a subsequent data point
of C0, subsequent data point in short.

In Fig. 3, because pk.tg > pk+1.tg , then pk is a subse-

quent data point. During compaction, any SSTable containing

subsequent data points should be rewritten. The number of

subsequent data points on the disk is thus essential to estimate

the WA regarding different amounts of data points temporarily

collected in memory.

Denote the CDF and PDF of the specific delay distribution

as f(x) and F (x). For the k points on the disk, denote them

in the arrival order, p1, p2, · · · , pk, with the respective arrival

time t1, t2, · · · , tn. Suppose there are n data points buffered

in memory, denoted by pk+1, pk+2, · · · pk+n, with respective

arrival time tk+1, tk+2, · · · , tk+n. Then, denote the event that

“the generation time of pk−i is earlier than pk+j , where i ∈
[0, k − 1] and j ∈ [1, n]” to be A

[k]
i,j . Denote the event that

“pk−i is a subsequent data point” to be Bk
i . Following a similar

line of [16], the probability of being a subsequent data point
is estimated by

P (B
[k]
i) = 1− P (

n∧
j=1

A
[k]
i,j)

= 1−
∫ +∞

0

⎡⎣f(x) n∏
j=1

F (tk+j − tk−i + x)

⎤⎦ dx

where x indicates the delay of pi.
Compared with the possible values of the delay, the value

of a timestamp is treated as ∞. Therefore, the number of

subsequent data points on the disk is
∑k−1

i=0 P (B
[k]
i). However,

it describes a specific case of the k data points on the disk,

where the arrival time is given. Actually, tk+j − tk−i is a

sample of a random variable, indicating the difference between

the arrival time of the data points for every i + j points.

The random variable is denoted by T̃i+j . Suppose k is large

enough, then, the expectation of the number of subsequent

data points is

ζ(n) = E

[∑
i

P (Bi)

]

=
∑
i

⎧⎨⎩1−
∫ ∞

0

f(x)

n∏
j=1

E[F (t̃i+j + x)]dx

⎫⎬⎭
(2)

To confirm the correctness of (2) under different delays’ dis-

tributions, we test it in synthetic datasets. We adopt Δt = 50
to set the generation time interval and then add a random

variable, which obeys the lognormal distribution, to simulate

real-world delays and generate the arrival time. The data

points are sorted by the arrival time. We insert the data into

a prototype system that records the writing times of each

point in an LSM-Tree. Two delay distributions are applied,

where μ = 4, σ = 1.5 and μ = 4, σ = 1.75. Through

each compaction, the number of subsequent data points is

recorded. In Fig. 5, the scatters indicate the average number

of subsequent data points of all compaction. The two lines

are the results of Model ζ(n). Obviously, the model fits the

experimental results well.

Generally, if there are n data points collected in memory,

the expected number of subsequent data points on the disk is

ζ(n). To compact the in-memory data to the disk, the number

of data points that should be rewritten is ζ(n). As a result, the

write amplification can be estimated as WA = ζ(n)
n +1. This

is exactly the case for the WA under πc. Suppose the capacity

of C0 is n, then the WA under πc is

rc =
ζ(n)

n
+ 1 (3)

3343

0 2000 4000 6000 8000 10000
capacity of MemTable (n)

0

50

100

150

200

250

su
bs

eq
ue

nt
 d

at
a

po
in

ts
 n

um
be

r

real, =4, =1.5
real, =4, =1.75

model, =4, =1.5
model, =4, =1.75

Fig. 5. The numbers of subsequent data points with different capacities of
the buffer. Two delay distributions are used. The scatters are the results of
experiments. The curves are the estimation results of ζ(n). The unit of the
buffer size is the number of points.

L0

L1

L0

L1

L0

L1

L0

L1

L0

L1

L0

L1

L0

L1

L0

L1

Cseq (empty)

SSTables generated in previous phaseSSTables generated in previous phase

SSTables generated in current phaseCnonseq(empty)Cnonseq(empty)

Cnonseq(full)Cnonseq(full)

merge

(Narrive(nseq)) Narrive(nseq)-(n-nseq)-n'seq

Cseq (full) SSTables to be flushed from CseqSSTables to be flushed from Cseq

Fig. 6. An example of writing data via πs in a phase, in which case for nseq

in-order data points to arrive, there are g(nseq) out-of-order data points to
arrive, and (n− nseq)/g(nseq) = 3.

However, in reality, as long as an SSTable contains any sub-

sequent data points, all of the points inside would be rewritten.

Nevertheless, the models are based on the subsequent data

points. Therefore, the estimated value is a little lower than

reality. The upper bound of the difference is 1.

IV. THE SEPARATION POLICY

In this section, we first introduce the preliminaries of the

separation policy πs that has been studied and implemented in

Apache IoTDB [7]. By combining the arrival rate ratio model

in Section II, and the subsequent data points number model in

Section III, a model could be further introduced to estimate

WA under πs.

The whole writing process is divided into phases, separated

by the merges of Cnonseq. During each phase, the Cseq is

filled, flushed, and cleared several times, while Cnonseq is filled,

merged, and cleared for precisely one time. To analyze WA

under πs, the total number of data points arriving and the

number of subsequent data points of Cnonseq in a phase are

counted.

Fig. 6 demonstrates an example of writing data points via

πs in a phase. It starts at the point when both Cseq and Cnonseq

are empty, just after the compaction of Cnonseq. It ends at the

Algorithm 1 Separation Policy Tuning Algorithm

Require: n is the maximum number of data points allowed

in memory. F (x) is the CDF of delay distribution. f(x)
is the PDF of delay distribution. Δt is the generation time

interval;

1: rc ← GET WAπc
(n, f, F,Δt)

2: g ← GET G(Δt, F)
3: n̂∗seq ← −1, r∗s ←∞
4: for x from 1 to n− 1 do
5: r′s ← GET WAπs

(n, x, f, F,Δt, g)
6: if r∗s > r′s then
7: r∗s ← r′s, n̂∗seq ← x
8: end if
9: end for

10: if r∗s < rc then
11: π ← πs(n̂

∗
seq)

12: else
13: π ← πc

14: end if
15: return π

point when Cnonseq is full again, triggering a subsequent merge

and finally being cleared.

According to (1), for each time Cseq is full, there are g(nseq)
out-of-order data points being collected on average. Therefore,

Cseq will be filled for (n−nseq)/g(nseq) times in a phase. Then,

the total number of in-order points to be collected in a phase

is nseq · (n− nseq)/g(nseq). In Fig. 6, g(nseq) = (n− nseq)/3.

Besides, the number of out-of-order data points is n − nseq.

Therefore, the total number of data points to collect in a phase

is

Narrive(nseq) =
nseq · (n− nseq)

g(nseq)
+ n− nseq (4)

When Cnonseq is full, the subsequent data points on the

disk can be divided into two groups. Because they are either

written during the current phase or before that. Because the

number of in-order data points arriving in the current phase is

Narrive(nseq)−(n−nseq), while all of the timestamps in the last

flushed SSTable, which contains n′seq = [1+nnonseq/g(nseq)−
�nnonseq/g(nseq)�] · nseq data points, are earlier than those in

Cnonseq, then, for the first category, the number of data points

to rewrite is

Ncur(nseq) = Narrive(nseq)− (n− nseq)− n′seq

For example, in Fig. 6, suppose (n−nseq)/g(nseq) = 3. Then,

n′seq = nseq. Therefore, Ncur(nseq) = Narrive(nseq)− n. For the

second category, the writing could be interpreted in another

way, where all of the data collected in the current phase are

buffered in memory. Then, the number of subsequent data

points is Nbef(nseq) = ζ(Narrive(nseq)). Therefore, the write

3344

0 100 200 300 400 500
capacity of in-order MemTable(n

seq
)

2

3

4

5

6

7

W
A

real,
c

real,
s
(n

seq
)

model,
c

model,
s
(n

seq
)

Fig. 7. WA under πc using synthetic data, where the delays obey lognormal
distribution (μ = 5, σ = 2), and WA under πs with different settings of
nnonseq. The scatters are the results of experiments, while the two lines/curves
are estimation results.

amplification under πs is

rs(nseq) =
Ncur +Nbef +Narrive(nseq)

Narrive(nseq)

=
ζ(Narrive(nseq))

Narrive(nseq)
+ 1 +

n− nseq + n′seq

Narrive(nseq)

(5)

Subsequently, it is straightforward to compare rc(n) with

minnseq
(rs(nseq)). Algorithm 1 describes the procedure to

tune the separation policy given the delays’ distribution and

generation time interval. The output is a (sub)optimal policy.

In line 11, πs(n̂
∗
seq) means the separation policy, where the

capacity of Cseq is set to be n̂∗seq.

To have an intuitive view of WA under πs and πc, we

conduct experiments to show WA with different settings of

nseq. To confirm that the model fits more delay distributions,

we set μ = 5 and σ = 2 (different from the case in Fig. 5).

The generation time interval is 50, and the size of SSTables

is 512 points. In Fig. 7, the scatters are values collected

from experiments. The two lines/curves are the estimation

results of rc(n) and rs(nseq). It shows that the model fits the

experimental results well.

V. EXPERIMENTS

In this section, we first introduce how the datasets were

generated. Then, with the synthetic datasets of different delay

distributions, we conducted the experiments to show that

models, rc and rs, could effectively predict the WA. The

writing throughput under πc and πs was also compared.

Finally, various query workloads are considered to show the

influence of πs on query latency.

A. Dataset Description

To evaluate the correctness of the models under different

delay distributions and confirm that the recommendations of

Algorithm 1 work, we generated several synthetic datasets,

which followed the work in [18]. First, we made the generation

time by creating an arithmetic progression with the specific

time interval Δt. Then, we assigned the delays according

to a specific distribution. The sum of the delay and the

generation time is the arrival time of the data point. The

disorder characteristics are shown in Table II. Totally, there are

twelve datasets. For each dataset, there are 10 million tuples.

The tuples are written according to the arrival time.

TABLE II
PARAMETERS FOR THE SYNTHETIC DATASETS

Δt = 50 Δt = 10
μ = 4 μ = 5 μ = 4 μ = 5

σ = 1.5 M1 M4 M7 M10
σ = 1.75 M2 M5 M8 M11
σ = 2 M3 M6 M9 M12

0 500 1000 1500 2000
data point

0

1000

2000

3000

4000

de
la

y
(m

s)

(a) Delay samples. (b) Delays’ distribution.

Fig. 8. Delays of real-world dataset S-9.

We employ a real-world dataset S-9 [19]. The data are

sent from mobile devices (Samsung Galaxy Tab 2) to a

server (Windows PC), which encounter some delays during the

transmission. The dataset contains 27 dimensions and 30 thou-

sand data points. We choose “S.Message.received.time.ms” as

arrival time and “C-Send-Time” as the generation time of the

data points. The delays of the data points and the histogram are

shown in Fig. 8. The dataset exhibits skewness such that some

data points suffer much longer delays than others. 7.05% of the

data points are considered out-of-order, referring to Definition

3 in Section II. 2

B. WA Comparisons

The writing times of each data point were recorded to

accurately calculate WA, which would increase after the point

was rewritten. After writing the datasets, M1– M12, under

πc (n is 512 data points) and πs (with different settings of

nseq), the total number of writing times of all data points

was calculated to get WA. Fig. 9 shows the results from

experiments and the models, rs and rc. The WA of πc is the

result, but it can also reflect the intensity of disorders of the

data, which is related to Δt and the distribution parameters,

μ and σ.

In Fig. 9, comparing the two subfigures from the same row

in the first and the third column, as well as the second and

the fourth column, we can see that a greater Δt would reduce

the intensity of disorder, hence less WA. While comparing the

results on M1 and M4 (and similarly M2 vs M5, M3 vs M6, etc.),

we can see that increasing μ would intensify WA. Likewise,

the comparisons from M1 to M3 show that a larger σ introduces

more severe WA. Similar results are also observed from M4
to M6, from M7 to M9 and from M10 to M12.

The figures (in Figure 9) also show that models rs and

rc can predict the WA effectively, when the generation time

2Because of the limited amount of data in S-9, we set the memory budget
to be 8 to trigger merges in experiments.

3345

50 100 150 200 250 300 350 400
nseq

0

2

4

6

8

W
A

M1, Δt=50, μ=4, σ=1.5

real, πc

estimation πc

real, πs

estimation πs

50 100 150 200 250 300 350 400
nseq

0

2

4

6

8

W
A

M4, Δt=50, μ=5, σ=1.5

real, πc

estimation πc

real, πs

estimation πs

50 100 150 200 250 300 350 400
nseq

0

2

4

6

8

10

W
A

M7, Δt=10, μ=4, σ=1.5

real, πc

estimation πc

real, πs

estimation πs

50 100 150 200 250 300 350 400
nseq

0

5

10

15

20

W
A

M10, Δt=10, μ5= , σ=1.5

real, πc

estimation πc

real, πs

estimation πs

50 100 150 200 250 300 350 400
nseq

0

2

4

6

8

W
A

M2, Δt=50, μ=4, σ=1.75

real, πc

estimation πc

real, πs

estimation πs

50 100 150 200 250 300 350 400
nseq

0

2

4

6

8

W
A

M5, Δt=50, μ=5, σ=1.75

real, πc

estimation πc

real, πs

estimation πs

50 100 150 200 250 300 350 400
nseq

0

2

4

6

8

10

W
A

M8, Δt=10, μ=4, σ=1.75

real, πc

estimation πc

real, πs

estimation πs

50 100 150 200 250 300 350 400
nseq

0

5

10

15

20

W
A

M11, Δt=10, μ=5, σ=1.75

real, πc

estimation πc

real, πs

estimation πs

50 100 150 200 250 300 350 400
nseq

0

2

4

6

8

W
A

M3, Δt=50, μ=4, σ=2

real, πc

estimation πc

real, πs

estimation πs

50 100 150 200 250 300 350 400
nseq

0

2

4

6

8

W
A

M6, Δt=50, μ=5, σ=2

real, πc

estimation πc

real, πs

estimation πs

50 100 150 200 250 300 350 400
nseq

0

2

4

6

8

10

W
A

M9, Δt=10, μ=4, σ=2

real, πc

estimation πc

real, πs

estimation πs

50 100 150 200 250 300 350 400
nseq

0

5

10

15

20

W
A

M12, Δt=10, μ=5, σ=2

real, πc

estimation πc

real, πs

estimation πs

Fig. 9. WA tested from experiments under πs when using twelve synthetic datasets.

0.5 1 1.5 2
number of data points written 107

0

2

4

6

W
A

Fig. 10. WA of different strategies under dynamic delay distribution. πs(
1
2
n)

is the original settings in Apache IoTDB, where the nseq : nnonseq = 1 : 1.

interval is shorter, e.g., in M7-M12 with Δt = 10. The

differences between the predicated WA and the corresponding

truth could also be relatively large, e.g., in M1 - M4 in Fig. 9.

The reason is that as long as an SSTable contains subsequent

data points, all of the data inside would be read and rewritten.

Since the model is based on subsequent data points, it will

introduce estimation error when rounding up. Nevertheless, the

difference between the estimated WA and the real WA should

be less than 1. When the generation time interval is short, e.g.,

Δt = 10, there would be more subsequent data points in each

merge, hence resulting in higher WA. The relative difference

between prediction and truth is thus smaller.

When the disorder is severe, such as M12, WA of nseq from

50 to 400 exhibits U shape more obviously. That is because

1 2 3 4 5 6
nseq

0.0

0.5

1.0

1.5

2.0

2.5

3.0

W
A

real, πc

estimation πc

real, πs

estimation πs

Fig. 11. WA under πc and πs on dataset S-9.

when nseq is too large, the space left for Cnonseq is too limited,

so that compaction happens more frequently. While on the

other hand, if nseq is too small, then Cseq will be flushed

more often, which will also update the maximum generation

time on the disk. So, more data would be considered out-of-

order. When the “increase of out-of-order data” outweighs the

“increase of nnonseq”, WA is intensified.

We also implemented an auto-tuning program to confirm the

correctness of Algorithm 1. We used πc to initialize the system,

which then continuously collected delays when writing. If it

finds that the distribution of delays changes, it would trigger

the Separation Policy Tuning Algorithm (Algorithm 1) to

update the policy. We use the notation πadaptive to denote

the recommended policy. Fig. 10 shows the results of WA

3346

500 1000 5000

query window length (ms)

0

50

100

150

re
a
d
a
m
p
li
fi
c
a
ti
o
n M1, Δt=50, μ=4, σ=1.5

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

50

100

150

re
a
d
a
m
p
li
fi
c
a
ti
o
n M4, Δt=50, μ=5, σ=1.5

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

50

100

150

re
a
d
a
m
p
li
fi
c
a
ti
o
n M7, Δt=10, μ=4, σ=1.5

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

50

100

150

re
a
d
a
m
p
li
fi
c
a
ti
o
n M10, Δt=10, μ5= , σ=1.5

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

50

100

150

re
a
d
a
m
p
li
fi
c
a
ti
o
n M2, Δt=50, μ=4, σ=1.75

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

50

100

150
re
a
d
a
m
p
li
fi
c
a
ti
o
n M5, Δt=50, μ=5, σ=1.75

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

50

100

150

re
a
d
a
m
p
li
fi
c
a
ti
o
n M8, Δt=10, μ=4, σ=1.75

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

50

100

150

re
a
d
a
m
p
li
fi
c
a
ti
o
n M11, Δt=10, μ=5, σ=1.75

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

50

100

150

re
a
d
a
m
p
li
fi
c
a
ti
o
n M3, Δt=50, μ=4, σ=2

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

50

100

150

re
a
d
a
m
p
li
fi
c
a
ti
o
n M6, Δt=50, μ=5, σ=2

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

50

100

150

re
a
d
a
m
p
li
fi
c
a
ti
o
n M9, Δt=10, μ=4, σ=2

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

50

100

150

re
a
d
a
m
p
li
fi
c
a
ti
o
n M12, Δt=10, μ=5, σ=2

πc πs(̂n *
seq

)

Fig. 12. Read amplification when executing the recent data query workload.

under a dynamic delay environment. The synthetic dataset was

generated from delays of 5 different distributions. With fixed

μ = 5 and Δt = 50, the parameter σ was changed from

2, 1.75, 1.5, 1.25 to 1, respectively, for every 5,000,000 data

points. The total writing times of all data points were recorded

for each 512 data points to write from the user’s view. We used

a sliding window to smooth the WA for the records and plotted

the data in Fig. 10. It shows that the auto-tuning method could

detect the difference in the delays’ distribution and switch

different policies to reduce WA. It confirms the correctness

of Algorithm 1.

Note that the methods in comparison in Fig. 10 are πc

the conventional policy without separation, and πs(1/2n) the

separation policy with a straightforward space allocation used

in the current version of Apache IoTDB. For πs(1/2n), the

capacities of the in-order and the out-of-order MemTables

are both halves of the memory budget. Obviously, such a

straightforward split of space may not be the best choice. As

illustrated in Figure 7, WA changes with various nseq, where

πs(1/2n) may not lie in the middle of the U-shaped curve.

By dynamically tuning the capacity of the in-order MemTable,

the πs(adaptive) may show even lower WA than the minimum

one of πc and πs(1/2n).

The estimations and real results of the WA of πc and πs

over the real-world dataset S-9 are shown in Fig. 11. The

estimations show that the WA under πs is lower than πc,

which is consistent with the real WA results. Because of the

skewness, some data points suffering very long delays may

have a lot of subsequent data points. Under πc, those points

may share the same subsequent data points. Since they are

distributed in multiple merges, some subsequent data points

would be rewritten multiple times. However, under πs, those

out-of-order data points are buffered and merged with the

shared subsequent data points together, hence reducing the

WA. The high proportion of the out-of-order data points also

makes the advantage of πs more prominent.

C. Writing Throughput Comparisons

To study the impact of πs on writing throughput, we

conducted experiments on IoTDB using the synthetic dataset.

The implementation of πs was a little different from the design

that was introduced in Section III. That is, when a MemTable
is full, the data will be flushed to a file on the disk on level 1.

A compaction thread consumed the SSTables on level 1, and

organized them to new SSTables on level 2 in the background.

Therefore, on level 1, the SStables may have overlapping data

with each other. But on level 2, there’s no overlap at all.

So, the writing will not be blocked to wait for compaction.

Instead, new data points will be buffered in MemTables before

they are flushed again. The results of writing throughput are

shown in Table III. There is no significant impact on the

writing throughput because the compaction happens in the

background. From the user’s view, the throughput is calculated

3347

500 1000 5000

query window length (ms)

0

1

2

3

q
u
e
ry

la
te
n
c
y
(n
s
)

1e6

M1, Δt=50, μ=4, σ=1.5

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

1

2

3

q
u
e
ry

la
te
n
c
y
(n
s
)

1e6

M4, Δt=50, μ=5, σ=1.5

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

2

4

6

q
u
e
ry

la
te
n
c
y
(n
s
)

1e6

M7, Δt=10, μ=4, σ=1.5

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

2

4

6

q
u
e
ry

la
te
n
c
y
(n
s
)

1e6

M10, Δt=10, μ5= , σ=1.5

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

1

2

3

q
u
e
ry

la
te
n
c
y
(n
s
)

1e6

M2, Δt=50, μ=4, σ=1.75

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

1

2

3

q
u
e
ry

la
te
n
c
y
(n
s
)

1e6

M5, Δt=50, μ=5, σ=1.75

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

2

4

6

q
u
e
ry

la
te
n
c
y
(n
s
)

1e6

M8, Δt=10, μ=4, σ=1.75

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

2

4

6

q
u
e
ry

la
te
n
c
y
(n
s
)

1e6

M11, Δt=10, μ=5, σ=1.75

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

1

2

3

q
u
e
ry

la
te
n
c
y
(n
s
)

1e6

M3, Δt=50, μ=4, σ=2

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

1

2

3

q
u
e
ry

la
te
n
c
y
(n
s
)

1e6

M6, Δt=50, μ=5, σ=2

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

2

4

6

q
u
e
ry

la
te
n
c
y
(n
s
)

1e6

M9, Δt=10, μ=4, σ=2

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

2

4

6

q
u
e
ry

la
te
n
c
y
(n
s
)

1e6

M12, Δt=10, μ=5, σ=2

πc πs(̂n *
seq

)

Fig. 13. Query latency (ns) when executing the recent data query workload on synthetic dataset.

TABLE III
WRITING THROUGHPUT (POINTS/MS) WHEN ADOPTING πc AND

πs(SETTING OF IOTDB, I.E., nSEQ = 1
2
n)

Dataset πc πs Dataset πc πs

M1 89.98 89.94 M7 88.47 91.51
M2 90.60 88.07 M8 91.67 91.27
M3 92.52 91.17 M9 89.54 90.49
M4 83.56 89.73 M10 84.70 90.12
M5 90.71 90.51 M11 88.71 92.65
M6 88.53 89.55 M12 90.34 90.04

once the data are written to the database, while the compaction

may not have happened yet.

D. Query Latency Comparisons

We design two categories of query workloads to study the

impact of πs on query performance. The experiments were

conducted on IoTDB.

1) Recent data query workload: This workload simulated

the queries in the real-time monitoring system, where the latest

period of time-series is queried and visualized in real-time.

The queries were generated when the data were being written

to the database. The client recorded the maximum generation

time currently written to the database. When writing the data,

for every 100 ms, a query was generated and executed, with

a predicate on generation time. We use different “window”

lengths for the query, which was a period of time (500ms,

1000ms and 5000ms). For example, those statements were like

SELECT ∗
FROM TS

WHERE time > (max_time - window)

When writing the data, we set the capacity of MemTable
to be 512 data points under πc. While under πs, we used

the values recommended by the system to set the capacity

of Cseq and Cnonseq. The average read amplification is shown

in Fig. 12. There are two remarkable phenomena: (1) Given

a fixed window size, πs would have less read amplification

than πc. That is because the SSTables under πs contain fewer

data points. When querying data from the files, fewer useless

data points were read. (2) The more extended the query

window, the less the read amplification. That is because a

longer query window means more data points to be queried

from the database, whose number is increased by multiple

times accordingly and is the divisor when calculating read

amplification. Even though the number of SSTables to be read

will increase, the factor is less than that of the size of the result

sets. Therefore, the overall read amplification is reduced.

The average query latency is shown in Fig. 13. There are

two evident phenomena: (1) If the query windows are enlarged,

then the query latency will also increase. That is because the

number of data points to be queried is increased. (2) Under πs,

the query performance is negatively impacted. Even though the

3348

500 1000 5000

query window length (ms)

0

1

2

3

q
u
e
ry

la
te
n
c
y
(n
s
)

1e6

M1, Δt=50, μ=4, σ=1.5

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

1

2

3

q
u
e
ry

la
te
n
c
y
(n
s
)

1e6

M4, Δt=50, μ=5, σ=1.5

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

2

4

6

q
u
e
ry

la
te
n
c
y
(n
s
)

1e6

M7, Δt=10, μ=4, σ=1.5

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

2

4

6

q
u
e
ry

la
te
n
c
y
(n
s
)

1e6

M10, Δt=10, μ5= , σ=1.5

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

1

2

3

q
u
e
ry

la
te
n
c
y
(n
s
)

1e6

M2, Δt=50, μ=4, σ=1.75

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

1

2

3

q
u
e
ry

la
te
n
c
y
(n
s
)

1e6

M5, Δt=50, μ=5, σ=1.75

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

2

4

6

q
u
e
ry

la
te
n
c
y
(n
s
)

1e6

M8, Δt=10, μ=4, σ=1.75

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

2

4

6

q
u
e
ry

la
te
n
c
y
(n
s
)

1e6

M11, Δt=10, μ=5, σ=1.75

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

1

2

3

q
u
e
ry

la
te
n
c
y
(n
s
)

1e6

M3, Δt=50, μ=4, σ=2

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

1

2

3

q
u
e
ry

la
te
n
c
y
(n
s
)

1e6

M6, Δt=50, μ=5, σ=2

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

2

4

6

q
u
e
ry

la
te
n
c
y
(n
s
)

1e6

M9, Δt=10, μ=4, σ=2

πc πs(̂n *
seq)

500 1000 5000

query window length (ms)

0

2

4

6

q
u
e
ry

la
te
n
c
y
(n
s
)

1e6

M12, Δt=10, μ=5, σ=2

πc πs(̂n *
seq

)

Fig. 14. Query latency (ns) when executing historical data query workload on synthetic dataset.

1.2 1.4 1.6 1.8
Timestamp 105

20

25

30

35

40

45

50

S
S

T
ab

le
 ID

SSTable

(a) The case of πc.

1.2 1.4 1.6 1.8
Timestamp 105

50

60

70

80

90

100

S
S

T
ab

le
 ID

SSTable from C
seq

SSTable from C
nonseq

(b) The case of πs.

Fig. 15. SSTable generation time range and the queried range.

read amplification under πs is less than πc, since the number

of data points in each SSTable is reduced, the number of files

to read is increased. Considering the overhead of disk seeks

on HDD, the overall query performance is reduced.

2) Historical query workload: This query workload was

irrelevant to the latest generation time that had been written.

Following the concept of “window” in Section V-D1, the lower

bound of the constraints on time was generated randomly.

The upper bound was the sum of the lower bound and the

“window” length. It was guaranteed that the upper bound

would not be greater than the maximum generation in the

database. For example, those statements were like

SELECT *
FROM TS

WHERE time>rand_value AND time<rand_value+window

The results of the query latency are shown in Fig. 14.

Compared with Fig. 13, it is obvious that under πs, the system

has better performance on historical query workload than the

recent data query workload, sometimes even better than πc

(M6, M11 and M12 in Fig. 14). That is because under πc, more

SSTables share the same queried period, and they are still in

level 1, not compacted yet. Fig. 15 demonstrates an example

to explain the situation. Each horizontal segment indicates an

SSTable on the disk. Its left and right endpoints mean the

earliest and latest generation time of that SSTable. The two

vertical dashed lines indicate the lower bound and upper bound

of the query. In Fig. 15(a), there are 7 SSTables overlapping

with the required range. While in Fig. 15(b), the number is

4. With fewer SSTables to read, there will be fewer seeks on

the disk. Therefore, the query is accelerated. The analysis is

aligned with the case in [9]. But the smaller size of SSTable
under πs would increase query latency to some extent. We

also find that based on M1, M2, M4 and M5, the difference of

πs and πc remains almost the same when compared to those

in Fig. 13. That is because the σ of the delay distribution is

small. Subsequently, the majority of data points are in order.

Therefore, the overlap among SSTables which are generated

under πc is not severe at all. The trouble caused by small

SSTables outweighs the benefits of πs.

E. Robustness Evaluation

For the case that the delays of data points are not in-

dependent of each other, we use the autocorr function

in MATLAB to test the real-world dataset H (the details of

the dataset H are given in Section VI), in Fig. 16(a). The

3349

-0.2

0

0.2

0.4

0.6

0.8

S
am

pl
e

A
ut

oc
or

re
la

tio
n

0 5 10 15 20
Lag

(a) Autocorrelation function.

real estimation
0.0

0.5

1.0

1.5

2.0

2.5

3.0

W
A

πc

πs(̂n *
seq

)

(b) WA under πc and πs(n̂∗
seq) on H.

Fig. 16. Performance on real-world dataset H with non-independent delays.

0 2000 4000 6000 8000 10000
data point

100

102

104

106

de
la

y

(a) Delays of the data points.

0 0.5 1 1.5 2
write data point number 104

0

5

10

15

W
A

real,
c

real,
adaptive

estimation,
c

estimation,
adaptive

(b) WA under πc and πadaptive on the
synthetic dataset.

Fig. 17. The performance of dynamically determining separation policy over
the synthetic dataset without a certain delay distribution.

correlated value on the Y-axis of the red star indicates the

autocorrelation coefficient given the lag. A high absolute value

of the autocorrelation coefficient, close to 1, indicates that

there is a strong relationship. For example, when the lag is 1,

the autocorrelation coefficient means that 2 consecutive delays

in this time series have a strongly positive relation. Moreover,

there are indeed two very close green lines near 0, which

indicates the upper bound and lower bound for considering

the delays as independent given the lag. Fig. 16(a) shows that

in dataset H, the delays are not independent of each other.

Fig. 16 shows the estimated WA and the corresponding truth.

Remarkably, even though the real-world delays do not follow

the independence assumption, the approximate computation

can still successfully detect that the πc outperforms πs(n̂
∗
seq)

in this case.

For the case that the delays do not obey a certain distribu-

tion, we synthetically generate a dataset, which is composed of

5 different delay distributions, changing over time as illustrated

in Fig. 17(a). Fig. 17(b) demonstrates the results of WA when

ingesting the dataset. Again, the estimation could successfully

detect the change of the delay and dynamically adopt the best

policy to minimize the WA.

For the case of data not generated at a certain frequency,

we consider another real-world dataset S-9. The generation

time intervals for two consecutive data points are collected,

sorted in order of duration, and then visualized in Fig. 18(a).

As shown, the generation time interval varies significantly

from pair to pair. The results of WA estimation under πc

and πs(n̂
∗
seq) as well as the real WA are shown in Fig. 18(b).

Again, the estimation can successfully predict that the WA

under πs(n̂
∗
seq) is lower than πc in this case.

0 1 2 3
interval index (sorted) 104

100

101

102

du
ra

tio
n

(m
s)

(a) Generation time interval.

real estimation
0.0

0.5

1.0

1.5

2.0

2.5

W
A

πc πs(̂n *
seq

)

(b) WA under πc and πs(n̂∗
seq) on

S-9.

Fig. 18. The performance on real-world dataset S-9 with data not generated
at a certain frequency.

0 2 4 6 8 10
data point 105

0

1

2

3

4

5

6

7

de
la

y
(m

s)

104

(a) Delays in H. (b) Delays’ PDF in H.

Fig. 19. The delay set and its distribution in H.

VI. A USE CASE IN VEHICLE INDUSTRY

To evaluate the effectiveness of πadaptive in IIoT, we imple-

mented a delay analyzer module in IoTDB based on Algorithm

1, deployed it, and conducted experiments on a real-world

scenario. Our industrial partner is an enterprise in the area

of IIoT. It builds the monitoring system for industrial vehicle

vendors, who have first-hand data in the areas of IIoT. The

company deploys one IoTDB instance for each vendor to store

the data. The data are generated from the devices on vehicles,

and then it is sent to the data center, where Apache IoTDB

is deployed to store the time-series data. For each vehicle,

more than two thousand time-series are recorded, such as the

location and velocity of the vehicle, the temperature of the

engine, and the status of the pilot lamp, etc. Unordered time-

series data are common in this scenario, because the transition

duration varies from point to point. More than one-third of the

time-series contain out-of-order data points. Denote the dataset

as H, which contains 1 million data points. The delays of each

point are shown in Fig. 19(a), and the distribution is shown in

Fig. 19(b). The generation time interval is one second.

According to the statistics in this experiment, the average

delay of the out-of-order data points, referring to Definition

3 in Section II, is about 2.49s. The percentage of out-of-

order data points is about 0.0375%. As illustrated in Figure

19(b), there exist some systematic patterns of the delays in the

real-world dataset H. That is, most of the delays are indeed

less than about 5 × 104ms. The reason is that normally the

device would send the data points immediately when they

are collected. However, when the network is unstable or the

3350

10,000 20,000

query window length (ms)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
q
u
e
ry

la
te
n
c
y
(n
s
)

1e6

πc

πs(̂n *
seq

)

(a) Query latency (ns) when execut-
ing recent data workload.

10,000 20,000

query window length (ms)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

q
u
e
ry

la
te
n
c
y
(n
s
)

1e6

πc

πs(̂n *
seq

)

(b) Query latency (ns) when execut-
ing historical data query workload.

Fig. 20. Querying data in dataset H.

transmission fails, the device is able to buffer the data points

locally. Moreover, a system triggers re-sending for about every

5× 104ms, transmitting the buffered data points in a batch to

the data center. Therefore, it appears some clear systematic

delays about 5× 104ms.

The results of WA are shown in Fig. 16(b). It shows that

the analyzer module can effectively estimate the WA, and πc

requires less WA than πs(n̂
∗
seq). In this case, the analyzer will

choose πc for IoTDB to reduce the WA. Fig. 20(a) shows the

query latency when executing the recent data query workload

on dataset H. The results are similar to the cases in the

synthetic dataset. Fig. 20(b) shows the average query latency

when executing the historical data query workload on dataset

H. Compared to Fig. 20(a), the difference of query latency

under πc and πs is reduced when the query window length is

10 s. When it is 20 s, πs shows better query performance.

VII. RELATED WORK

A. LSM-Tree-based Storage Engine

Although it has been decades since Log-Structured-Merge

Tree (LSM-Tree) was proposed [13] in 1996, it is widely

used in modern database systems for handling write-intensive

workload, e.g., LevelDB [20], RocksDB [21], Cassandra [22],

[23], to name a few. Some made exploration to reduce WA

in LSM-tree [24]–[27]. WiscKey [27] separates the keys and

values to only store keys in the LSM-tree, which lessens

the size and makes the compaction less expensive. Luo et
al. [12] reviewed modern LSM-based storage techniques and

concluded the techniques for reducing WA, including tiering,

merge skipping, and data skew exploitation. However, those

were improvements on LSM-Tree. The characteristics and ap-

plications of LSM-tree in time-series were seldom considered.

Moreover, [12] also studied the WA of leveled LSM-Tree, but

in a general form, which was O(T · LB), where T is the capacity

ratio from a higher level to a lower level, B is block size, L
is the number of levels. However, it is not acute enough to

detect the difference between πc and πs.

B. Time-series Database

With the rapid development of IIoT, the demand for in-

dustrial data storage has risen sharply, a lot of time-series

databases came into being, e.g., InfluxDB [28], Prometheus

[29], IoTDB [1], etc. However, Prometheus rejects to store

out-of-order data. IoTDB [1] is an integrated data management

engine designed for time-series data, aiming to provide excel-

lent data ingestion and query performance. Experiments [30],

[31] show that IoTDB is a promising database, which out-

performs InfluxDB [28] and Open-TSDB [32] in many fields.

Although it designed in-order and out-of-order MemTables, the

capacities are not tunable. Timon [9] is a new timestamped

event database, that is also aware of out-of-order event data.

It designs two kinds of MemTable in memory, one for the late

event data, and another for the rest. The data persistence is

based on LSM-Tree, too. They focus on data processing and

analysis. The purpose of the separation is to reduce the time

span of normal SSTables.

C. Time-series Data Processing

Time-series data are widespread in life. It is observed that

time-series data are not always strictly in order of a timeline

[3]–[6], [9], [33]. Our preliminary study [34] shows that even

the timestamps could be dirty. The disorder in time-series

has attracted wide attention. Grulich et al. [4] even proposed

a stream generator that could produce out-of-order data on

purpose to simulate time-series data. FiBA [6] provided a

sliding window aggregation algorithm for dealing with out-of-

order data. Weiss [3] studied the dynamic time-out buffering

algorithm for reordering the out-of-order data. Ji et al. [17]

proposed AQ-K-slack, a buffer-based method to handle out-

of-order data stream, which keeps low query latency but high

accuracy for the user at the same time. The dataset they used is

the time-series dataset proposed by Mutschler et al. [35]. The

data were collected from sensors embedded in the football

players’ shin guards. More than 50% of the data were late
events [17]. These works dealt with out-of-order data in a time

window. How to permanently store the data was not discussed.

VIII. CONCLUSION

To handle the unordered time-series data, Apache IoTDB

adopts a separation policy to store the out-of-order data points

and reduce query latency. However, it is concerned that how

the separation policy would affect WA. Over the time-series

data as well as the out-of-order data, a robust model can

be built to estimate WA with and without the separation

policy. To enable efficient determination, the model could

be approximated under certain assumptions. Note that as

an industrial paper, rather than proposing novel techniques

for research problems, we focus on the practice of whether

separating or not for lower write amplification. Therefore, we

implement a delay analyzer in Apache IoTDB to choose the

better policy so that the WA is reduced. Experiments confirm

that the models can accurately predict the WA.

Acknowledgement: This work is supported in part

by the National Key Research and Development Plan

(2021YFB3300500, 2019YFB1705301, 2019YFB1707001),

the National Natural Science Foundation of China (62021002,

62072265), BNR2022RC01011, the MIIT High Quality De-

velopment Program 2020 and the MIIT Industry Internet

Innovative Development Program 2021.

3351

REFERENCES

[1] C. Wang, X. Huang, J. Qiao, T. Jiang, L. Rui, J. Zhang, R. Kang,
J. Feinauer, K. A. McGrail, P. Wang et al., “Apache iotdb: time-series
database for internet of things,” Proceedings of the VLDB Endowment,
vol. 13, no. 12, pp. 2901–2904, 2020.

[2] H. Yuan and G. Li, “A survey of traffic prediction: from
spatio-temporal data to intelligent transportation,” Data Sci. Eng.,
vol. 6, no. 1, pp. 63–85, 2021. [Online]. Available: https:
//doi.org/10.1007/s41019-020-00151-z

[3] W. Weiss, V. J. E. Jimenez, and H. Zeiner, “Dynamic buffer sizing for
out-of-order event compensation for time-sensitive applications,” ACM
Transactions on Sensor Networks (TOSN), vol. 17, no. 1, pp. 1–23, 2020.

[4] P. M. Grulich, J. Traub, S. Breß, A. Katsifodimos, V. Markl, and T. Rabl,
“Generating reproducible out-of-order data streams,” in Proceedings of
the 13th ACM International Conference on Distributed and Event-based
Systems, 2019, pp. 256–257.

[5] A. Awad, M. Weidlich, and S. Sakr, “Process mining over unordered
event streams,” in 2020 2nd International Conference on Process Mining
(ICPM). IEEE, 2020, pp. 81–88.

[6] K. Tangwongsan, M. Hirzel, and S. Schneider, “Optimal and general
out-of-order sliding-window aggregation,” Proceedings of the VLDB
Endowment, vol. 12, no. 10, pp. 1167–1180, 2019.

[7] K. Liu, “Improvement and implementation of lsm on time series data
storage,” Master’s thesis, Tsinghua University, 2019.

[8] T. I. Authors. (2021, May) Apache iotdb’s comparison with
tsdbs. The Apache Software Foundation. [Online]. Available: https:
//iotdb.apache.org/

[9] W. Cao, Y. Gao, F. Li, S. Wang, B. Lin, K. Xu, X. Feng, Y. Wang, Z. Liu,
and G. Zhang, “Timon: A timestamped event database for efficient
telemetry data processing and analytics,” in Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data, 2020,
pp. 739–753.

[10] Q. Mao, S. Jacobs, W. Amjad, V. Hristidis, V. J. Tsotras, and N. E.
Young, “Experimental evaluation of bounded-depth lsm merge policies,”
in 2019 IEEE International Conference on Big Data (Big Data). IEEE,
2019, pp. 523–532.

[11] T. Yao, Y. Zhang, J. Wan, Q. Cui, L. Tang, H. Jiang, C. Xie, and
X. He, “Matrixkv: Reducing write stalls and write amplification in lsm-
tree based {KV} stores with matrix container in {NVM},” in 2020
{USENIX} Annual Technical Conference ({USENIX}{ATC} 20), 2020,
pp. 17–31.

[12] C. Luo and M. J. Carey, “Lsm-based storage techniques: a survey,” The
VLDB Journal, vol. 29, no. 1, pp. 393–418, 2020.

[13] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured
merge-tree (lsm-tree),” Acta Informatica, vol. 33, no. 4, pp. 351–385,
1996.

[14] A. Brito, C. Fetzer, H. Sturzrehm, and P. Felber, “Speculative
out-of-order event processing with software transaction memory,” in
Proceedings of the Second International Conference on Distributed
Event-Based Systems, ser. DEBS ’08. New York, NY, USA:
Association for Computing Machinery, 2008, p. 265–275. [Online].
Available: https://doi.org/10.1145/1385989.1386023

[15] Y. Ji, H. Zhou, Z. Jerzak, A. Nica, G. Hackenbroich, and C. Fetzer,
“Quality-driven processing of sliding window aggregates over out-of-
order data streams,” in Proceedings of the 9th ACM International
Conference on Distributed Event-Based Systems, ser. DEBS ’15. New
York, NY, USA: Association for Computing Machinery, 2015, p.
68–79. [Online]. Available: https://doi.org/10.1145/2675743.2771828

[16] L. Chen, “Research on out-of-order message of real-time streaming
system in condition monitoring,” Master’s thesis, Tsinghua University,
2017.

[17] Y. Ji, H. Zhou, Z. Jerzak, A. Nica, G. Hackenbroich, and C. Fet-
zer, “Quality-driven continuous query execution over out-of-order data
streams,” in Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, 2015, pp. 889–894.

[18] D. Basin, F. Klaedtke, and E. Zălinescu, “Runtime verification of
temporal properties over out-of-order data streams,” in International
Conference on Computer Aided Verification. Springer, 2017, pp. 356–
376.

[19] W. Weiss, V. J. E. Jiménez, and H. Zeiner, “A dataset and a comparison
of out-of-order event compensation algorithms,” in 2nd International
Conference on Internet of Things, Big Data and Security, 2017.

[20] Google. (2021, May) google/leveldb: Leveldb is a fast key-value
storage library written at google that provides an ordered mapping
from string keys to string values. Google. [Online]. Available:
https://github.com/google/leveldb

[21] Facebook. (2021, May) Rocksdb — a persistent key-value store.
Facebook Open Source. [Online]. Available: https://rocksdb.org/

[22] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2,
pp. 35–40, 2010.

[23] Cassandra. (2021, May) Apache cassandra. The Apache Software
Foundation. [Online]. Available: https://cassandra.apache.org/

[24] S. Dong, M. Callaghan, L. Galanis, D. Borthakur, T. Savor, and
M. Strum, “Optimizing space amplification in rocksdb.” in CIDR, vol. 3,
2017, p. 3.

[25] Y. Lu, J. Shu, and W. Zheng, “Extending the lifetime of flash-based
storage through reducing write amplification from file systems,” in 11th
{USENIX} Conference on File and Storage Technologies ({FAST} 13),
2013, pp. 257–270.

[26] X. Wu, Y. Xu, Z. Shao, and S. Jiang, “Lsm-trie: An lsm-tree-based ultra-
large key-value store for small data items,” in 2015 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 15), 2015, pp. 71–82.

[27] L. Lu, T. S. Pillai, H. Gopalakrishnan, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau, “Wisckey: Separating keys from values in ssd-
conscious storage,” ACM Transactions on Storage (TOS), vol. 13, no. 1,
pp. 1–28, 2017.

[28] S. N. Z. Naqvi, S. Yfantidou, and E. Zimányi, “Time series databases
and influxdb,” Studienarbeit, Université Libre de Bruxelles, p. 12, 2017.

[29] B. Rabenstein and J. Volz, “Prometheus: A next-generation monitoring
system (talk).” Dublin: USENIX Association, May 2015.

[30] Y. Cheng, M. Cheng, H. Ge, Y. Guo, Y. Hao, X. Sun, X. Qin,
W. Lu, Y. Chen, and X. Du, “Midbench: Multimodel industrial big data
benchmark,” in International Symposium on Benchmarking, Measuring
and Optimization. Springer, 2018, pp. 172–185.

[31] IoTDB. (2021, May) Apache iotdb’s comparison with tsdbs. The
Apache Software Foundation. [Online]. Available: https://iotdb.apache
.org/UserGuide/Master/Comparison/TSDB-Comparison.html

[32] OpenTSDB. (2021, May) Opentsdb - a distributed, scalable monitoring
system. The OpenTSDB Authors. [Online]. Available: http://opentsdb
.net/

[33] A. Dey, K. Stuart, and M. E. Tolentino, “Characterizing the impact of
topology on iot stream processing,” in 2018 IEEE 4th World Forum on
Internet of Things (WF-IoT). IEEE, 2018, pp. 505–510.

[34] S. Song, Y. Cao, and J. Wang, “Cleaning timestamps with temporal
constraints,” Proc. VLDB Endow., vol. 9, no. 10, pp. 708–719, 2016.
[Online]. Available: http://www.vldb.org/pvldb/vol9/p708-song.pdf

[35] C. Mutschler, H. Ziekow, and Z. Jerzak, “The debs 2013 grand chal-
lenge,” in Proceedings of the 7th ACM international conference on
Distributed event-based systems, 2013, pp. 289–294.

3352

