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Abstract—Mixed data distribution is widely observed, for
example, the bird migration data consist of the observed locations
of various birds in different years, varying in data distribution.
Learning a single regression model over such a mixed data
distribution is often ineffective, while manually segmenting the
data, e.g., by bird, date or region, for learning individual models
is truly labor-intensive. In this paper, we propose to automatically
discover the regression models that apply conditionally to only
a part of the data, namely conditional regression rules (CRRs),
enlightened by the conditional functional dependencies (CFDs)
that are FDs hold only in some data. Remarkably, a regression
model may apply in different parts of data, e.g., the seasonal
migration of birds is similar in different years. To capture
the shared regression models, we investigate the inference of
CRRs. An algorithm is devised to learn and discover CRRs from
data, with the help of CRR inference. Extensive experiments on
real-world datasets demonstrate that the discovered conditional
regression rules are more effective than the regression models
without conditions. In particular, with the inference of CRRs,
the number of learned CRRs is significantly reduced without
sacrificing rule semantics.

Index Terms—Integrity Constraint, Regression Model

I. INTRODUCTION

Mixed data distribution is widely observed. Making as-

sumptions such as mixed Gaussian distribution [1] is not

always valid in practice, e.g., in spatio-temporal data [2]. For

instance, the bird migration dataset BirdMap [3] consists of the

observed locations of various birds in different years, varying

in data distribution, as illustrated in Table I and Figure 1(a)

in Example 1 below. Our preliminary study [4] shows that

learning individual regression models for each tuple is accurate

and effective. Unfortunately, it is computational expensive and

not always necessary. As shown in Figure 1(b), a regression

model (lines with the same color) may apply to a set or

multiple isolated sets of data, not necessary to learn for each

individual tuple.

Example 1. Table I shows a fraction of the GPS locations of

different birds in several years from the BirdMap dataset [3].

Figure 1(a) visualizes part of the mixed data distribution,

where each point corresponds to a GPS record of the bird

2 .Maria . We use different colors to denote the data in different

seasons, showing the seasonal migration of a bird, which is

expected to be automatically discovered below.

This work is supported in part by the National Natural Science Founda-
tion of China (62072265, 62021002), the National Key Research and De-
velopment Plan (2021YFB3300500, 2019YFB1705301, 2019YFB1707001),
BNR2022RC01011, and the MIIT High Quality Development Program 2020.
Shaoxu Song is the corresponding author.

TABLE I
EXAMPLE OF THE BIRDMAP DATASET

TID Latitude Longitude BirdID Date

t1 56.20883 26.92067 2.Maria 2006-8-6

t2 55.83867 26.2075 2.Maria 2006-8-7

t3 21.988 22.56783 2.Maria 2007-8-28

t4 53.04183 25.80183 3.Raivo 2007-3-30

t5 47.39333 27.40033 1.Kalakotkas 2007-3-26

t6 – – 2.Maria 2007-3-20

t7 38.5855 28.040333 4.Mart 2007-9-11

t8 38.58567 28.03583 4.Mart 2007-9-1

t9 9.0155 20.07167 2.Maria 2008-8-27

t10 6.7465 19.073 2.Maria 2007-9-4

t11 58.61833 28.66967 33.Erika 2007-8-13

Regression models are learned over the data for various

applications, such as imputing the missing locations in t6 in

Table I. To better illustrate the regression model, Figures 1(b)

and 1(c) plot Latitude and Longitude over Date, respectively.

The existing methods, such as [5], may learn the same

model multiple times in different parts of data. For example,

in Figure 1(b), it splits the domain of timestamp and learns

regression models separately, e.g., the red line denotes the

migration of the bird from north to south between 2006-8-

11 and 2006-9-12. Unfortunately, the same regression model

is redundantly learned again from 2008-8-18 to 2008-9-19,

since the birds travel seasonally in the same way.

Obviously, manually splitting the data, e.g., by bird, date or

region, for learning individual models is truly labor-intensive.

Motivated by the extended conditional functional dependencies

(eCFDs [6]) that introduce disjunctions to apply CFD to some

data, in this paper, we propose to automatically discover the

regression models that apply conditionally to some parts of

the data, namely conditional regression rules (CRRs).

Informally, a CRR ϕ is in a form of triple (f, ρ, C), where

f : X → Y is a regression function from attributes X to Y ,

ρ is the maximum bias between the attribute value of Y and

prediction f(X), and C specifies the conditions. Motivated

by denial constraints (DCs) [7], we use predicates to form

conjunction and disjunction to specify the parts of data where

a CRR conditionally applies.

Example 2 (Example 1 continued). For the light-blue points

with Date from 2006-8-11 to 2006-9-12, a CRR ϕ1 is observed
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(a) GPS locations of Bird 2.Maria
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(b) Latitude-Date of Bird 2.Maria

08-06
(2006)

02-04
(2007)

08-06
(2007)

02-04
(2008)

08-06
(2008)

02-04
(2009)

D t

18

20

22

24

26

28

L
o
n
g
it

u
d
e

(c) Longitude-Date of Bird 2.Maria

Fig. 1. Regression models conditionally apply to parts of the BirdMap data

in Figure 1(b).

ϕ1 :f1(Date) = Latitude, ρ1 = 0.5,

C1 = (Date ≥ 2006-8-11 ∧ Date < 2006-9-12)

It denotes that the linear regression f1 with the maximum

bias |Latitude − f1(Date)| ≤ ρ1 applies to the tuples with

Date ≥ 2006-8-11 ∧ Date < 2006-9-12.

The following CRR ϕ2 applies to different parts of the data,

from 2007-4-1 to 2007-8-8, as well as 2008-4-13 to 2008-7-31,

denoted by disjunction in the condition C2.

ϕ2 : f2(Date) = Latitude, ρ2 = 0.5,C2 = (Latitude = 60.10∧

((Date ≥ 2007-4-1 ∧ Date < 2007-8-8)∨

(Date ≥ 2008-4-13 ∧ Date < 2008-7-31)))

Analogous to CFDs specifying conditions on the dependent Y
[8], the constant Latitude = 60.10 states that the prediction

should always be 60.10 with the maximum bias ρ2 = 0.5. It

denotes that the bird stays in the location of the same Latitude

from April to August each year.

While CRRs such as ϕ2 can be directly shared among dif-

ferent parts of the data, some others need translation. To share

the aforesaid f1 in another year, from 2008-8-18 to 2008-9-

19, translation is needed, i.e., f1(Date−x) = Latitude, where

x = 744 denotes the difference in date between two years.

ϕ3 : f1(Date− x) = Latitude, ρ3 = 0.5,C3 =

((Date ≥ 2006-8-11 ∧ Date < 2006-9-12 ∧ x = 0)∨

(Date ≥ 2008-8-18 ∧ Date < 2008-9-19 ∧ x = 744))

It is worth noting that ϕ3 subsumes the semantics of ϕ1

given x = 0, i.e., using ϕ3 is sufficient in practice and ϕ1

is redundant.

The novelty of our CRR is thus to share the same regression

model in different parts of data, specified by conditions. With

model sharing, both the learning and evaluation of regression

models could be improved. For example, in Figure 1(b), since

the regression model f1 in red line learned from 2006-8-11 to

2006-9-12 can also be applied in the time period from 2008-8-

18 to 2008-9-19, it does not need to be learned again, reducing

the learning time cost. As the number of the rules is reduced,

the evaluation time cost of the models is improved as well.

A. Challenges

Different from the existing studies for learning regression

models [9]–[13], the main challenge of learning CRRs origi-

nates from the huge space of possible conditions, with disjunc-

tion and conjunction of predicates. In particular, regression

models may be shared in different parts of data, specified

by different conditions, such as ϕ2 in Example 2. Moreover,

some regression models might not be directly shared but with

translation, e.g., translated from ϕ1 to ϕ3.

B. Contributions

In this paper, we will provide a deep insight into the problem

of learning and inferring conditional regression rules. Our

major contributions in this study are summarized as follows:

(1) We present a novel form of conditional regression rule

(CRR) with disjunctions to capture the sharing of regression

models among different parts of data, in Section III.

(2) We investigate the soundness of five inference rules

for CRRs, in Section IV, which could be used to reduce the

number of CRRs with shared models.

(3) We devise an algorithm to learn and discover CRRs from

data, in Section V, where model sharing further improves the

discovery time performance by avoiding redundant learning.

(4) We compare with strong baselines, in Section VI, to

demonstrate the reduced number of regression rules and time

performance without sacrifice of RMSE by model sharing.

II. RELATED WORK

Our proposed CRR is motivated by both the integrity

constraints and regression models that apply to part of the

data, discussed in Sections II-A and II-B, respectively.

A. Conditions for Integrity Constraints

Integrity constraints apply conditions to build data models

such as CFD [6], [8], [14], [15] and CDD [16], [17]. Different

from other existing conditional integrity rules, CRR only

considers single tuple relationship among attributes, which

does not rely on the existence of other tuples. Moreover, CRR

applies disjunctions based on predicates to form the condition,

integrating multiple parts of data. Based on predicates, denial

constraints (DCs) [7] define the false-negative part of data.
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Different from denial constraints, CRRs generate regression

models and use predicates for true-positive data partitions. In

this way, CRRs provide precise models in integrity constraints

for mixed data distribution.

B. Conditions for Regression Models

In general, our idea of model sharing is complementary

to the existing models, such as logistic regression [18], by

introducing the conditions for shared models in different parts

of data. Conditional logistic regression [19], [20] trains logistic

regression models over the part of data according to conjunc-

tion. However, model sharing is not studied, which is enabled

by DNF conditions in our CRR. Conditional regression forest

[21] builds an additive model to average the predictions from

multiple regression trees, each of which is trained through

data sampling from the same training set, leading to redundant

regression models. Again, the model sharing is not studied.

C. Conditions for Time Series Analysis

For time-series analysis/forecasting, regression models are

also considered, such as harmonic regression [22]. The har-

monic regression [22] fits data by cosine functions and use

different Fourier frequencies to capture short- and long-term

periodic features of the whole dataset. In contrast, we use

conditions to specify the periods, and thus enable model

sharing. Recurrence time modeling [23] uses random variable

Tj to represent the period and learn regression models over

each period. Again, model sharing is not supported, the main

motivation and novelty of our study.

III. DEFINITION

In this section, we introduce the definitions of each com-

ponent of CRRs formally in Section III-A. Then, we have the

semantics and formal definition of CRRs in Section III-B.

A. Preliminaries

We start with the formal definition of predicate p, condition

C, regression function f , regression bias ρ in Section III-A1,

Section III-A2, Section III-A3 and Section III-A4, respectively.

The CRRs are considered over a relational database

D. The database D is a collection of tuples of schema

R(A1, ...An), attr(R) = {A1, ...An} as data samples from

mixed data distribution. Given tuple t ∈ D, we denote

t.Ai = t[Ai] as the value of attribute Ai in tuple t.

1) Predicates p: As shown in Figure 1(b) and Example 2,

a conjunction of predicates could describe a simple set of data

for conditional regression model. Consider a set of operators

Φ = {=, >,≥, <,≤}, the predicate space P contains a set

of single tuple predicates p with p := Aφc, where φ ∈ Φ
and A ∈ attr(R), c as a constant from the domain of A. As

the usability of function translation illustrated by ϕ3, we also

have built-in predicates x = Δ, y = δ telling the parameter

of function translation in P defined in Section III-A3. Given

tuple t, assume that t is satisfied by any built-in predicates,

we have t � p iff t.Aφc.

2) Conditions C: For describing simple part of data, e.g.,

light-blue part of data in Figure 1, a conjunction Ci connects

a set of predicates pred(Ci) ⊆ P with the conjunction i.e.,

Ci :
∧

p∈pred(Ci)

p.

For each tuple t, we have t � Ci iff ∀p ∈ pred(Ci), t � p.

Mixed data distributions may vary in the shape of data,

and the same distribution could be shared over more complex

data sets, e.g., the horizontal green lines in Figure 1 (b).

Thereby, we use a disjunction normal form (DNF) composed

by countable conjunctions C1...Cn, i.e.,

C = (
∧

p∈pred(C1)

p) ∨ ... ∨ (
∧

p∈pred(Cn)

p).

For each tuple t and the DNF condition C, we have t � C iff

∃Ci, t � Ci. Given the condition C and instance I ⊆ D, we

denote IC as the subset of tuples in instance I with each tuple

satisfying condition C.

3) Regression f : Observing in Example 1 and Figure

1(b), each curve corresponds to a regression function f that

predicts the Latitude of a bird in a time slice. We have the

definition of regression function as follows. Given attributes

X ⊂ attr(R), built-in variables B = {x, y} and regression

target Y ∈ attr(R), a regression function f : X,B → Y
generates predictions with

Y = f(X+ x) + y = f(X1 + x1, ...) + y.

For built-in variables in f , the value of x, y is defined

by built-in predicates x = Δ, y = δ associated with the

conjunction of each part of data, where the constant Δi is

one of the differences between two values in the domain of

Xi ∈ X, and so as the constant δ of target Y . Thus, the

constants Δ and δ denote the difference of translating one tuple

to another. In Example 2, the data in Date ≥ 725∧Date < 769
is associated with built-in predicates d = 725 in condition,

representing the difference between two data parts on applying

model f1.

4) Bias ρ: In Figure 1(b), slight differences are observed

between f(Date) and t.Latitude even if the model f is fine-

tuned. In Table I, the precision of the GPS value of each

tuple is limited, e.g., for predicting Latitude, the precision

10−3 should be a lower bound of bias ρ. Thus, to decide

the bias ρ for regression function f and target value Y ,

we consider both the precision of attribute Y and model

bias maxt |t.Y − f(t.X)|. The regression model of data is

composed of regression function f and bias ρ, denoted by

(f, ρ).

B. Semantics

The regression model (f, ρ) with f : X,B → Y estimates

the target value Y based on attributes X ⊂ attr(R) under

some data by the regression function f and bias ρ. Thus,

to capture the semantic relationship between the conditions

to some data and the regression models, we introduce the

definition of CRR.
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Definition 1. Given condition C and database D of schema

R, conditional regression rule (CRR) ϕ is in the form of

ϕ : (f, ρ,C),

where f : X,B → Y is a regression function mapping from

the value of attributes X ⊆ R to the prediction of target

Y ∈ R with ρ ≥ 0 as the maximum error between prediction

and the value of Y, and C is a condition in DNF format with

no predicates on attribute Y.

Based on CRR definition, we could see that conditional re-

gression model refines the regression model (f : X,B → Y, ρ)
by applying the data semantically satisfied by condition C.

Based on the condition semantics defined in Section III-A, we

interpret the semantics of CRRs as below. A tuple t of schema

R satisfies CRR ϕ : (f, ρ,C), denoted as t � ϕ, if t � C, then

|t.Y − (f(t.X+ x) + y)| ≤ ρ.

The value of x and y is determined by built-in predicates

x = Δ, y = δ in each conjunction with the default values of

x = 0, y = 0.

IV. INFERENCE

As illustrated in Examples 1 and 2, some CRRs can be

implied from others. The implication is essential to identify

the shared regression models among different parts of data,

and discover a concise set of CRRs in Section V below. To

study the extension and reasoning of CRRs, we analyze the

inference of CRRs in Section IV-B, based on the inference of

conditions in Section IV-A.

A. Inference on Conditions

We briefly introduce the inferences on conditions based on

DNF and conjunction, studied as predicate calculus in [7],

[24]. Conjunction inference C1 � C2 denotes the refinement

of conditions, as defined in [7]. It means that for any tuple t
of R, t � C1 implies t � C2. Based on conjunction inferences,

we restate the inference of DNFs for illustrating the CRR

inference.

Definition 2. For two DNFs C1 and C2, we say C1 � C2

if and only if, for all conjunction C1 ∈ C1, there exists a

conjunction C2 ∈ C2 s.t. C1 � C2.

B. Inference of CRRs

We define, state and prove the soundness of the inference

rules for CRR, as below.

Proposition 1 (Reflexivity). If Y ∈ X, then we have ϕ :
(f, ρ,C), where f(X) = Y, ρ = 0,C = ∅.

Proof. For any tuple t of schema R, since Y ∈ X, we have

t.Y = f(t.X), i.e., |t.Y − f(t.X)| = 0 ≤ ρ. That is, t � ϕ
for any tuple t.

Reflexivity extends the reflexivity rule in Armstrong’s Ax-

iom [25] on FDs to regression models. It means that any

tuple t of schema R always satisfies a CRR ϕ : (f, ρ,C)
with f(X) = Y, Y ∈ X. For instance, any tuple t satisfies

ϕ : (f, ρ,C) with f(Salary,Tax) = Tax, ρ = 0,C = ∅. For

CRR discovery, Reflexivity could avoid generating trivial rules

by ignoring Y ∈ X as regression target.

Proposition 2 (Induction). If C2 � C1, then ϕ1 : (f, ρ,C1)
implies ϕ2 : (f, ρ,C2).

Proof. Consider any tuple t with t � ϕ1. If t � C2, there

exist some C2 ∈ C2 having t � C2. Referring to Definition

2, given C2 � C1, for any conjunction C2 ∈ C2, there exists

C1 ∈ C1 s.t. C2 � C1. Thus, for any conjunction C2 ∈ C2, if

t � C2, then ∃C1 ∈ C1, t � C1. It follows t � C1. According

to t � ϕ1, we have |t.Y − (f(t.X+ x) + y)| ≤ ρ, i.e., t � ϕ2

as well. Otherwise, for t � C2, it naturally has t � ϕ2. To sum

up, ϕ1 implies ϕ2.

Induction means that for any tuple t, if t satisfies ϕ1, then t
also satisfies the CRR ϕ2 : (f, ρ,C2) under refined condition

C2 with C2 � C1. For instance, CRR ϕ5 : (f5, ρ5, C5) with

f5(Salary) = 0.04 ∗ Salary − 230, ρ5 = 1, C5 = (S = IA)
implies ϕ′5 : (f5, ρ5, C

′
5 = (S = IA ∧ MS = S )) by

applying Induction. When discovering CRRs, Induction lays

the foundation for the addition of the default built-in predicates

x = 0 ∧ y = 0, and also helps the comparison among

counterpart conditions, e.g., conditions on the same set of

attributes.

Proposition 3 (Fusion). For ϕ1 : (f, ρ,C1), ϕ2 : (f, ρ,C2),
ϕ1 and ϕ2 imply ϕ3 : (f, ρ,C3), where C3 = C1 ∨ C2.

Proof. Consider any tuple t with t � ϕ1 and t � ϕ2. If t �
C3 = C1 ∨C2, there exists some conjunction C ∈ C3 having

t � C. If C ∈ C1, then t � C1. It follows |t.Y − (f(t.X +
x) + y)| ≤ ρ since t � ϕ1. Thus, we have t � ϕ3. Otherwise,

when C ∈ C2, following similar proof, we also have t � ϕ3.

To conclude, ϕ1, ϕ2 imply ϕ3.

Fusion means that for any tuple t satisfies ϕ1 and ϕ2, if

the condition C3 = C1 ∨ C2, then t satisfies ϕ3 : (f, ρ,C3).
That is, Fusion is binary for combining the conditions of two

CRRs sharing the same regression model. In this way, Fusion

helps the reduction of total number of CRRs for modeling

data within database D. Recall ϕ2 in Example 2, which is

composed by the same regression model shared by two parts

of conjunction C2 = Latitude = 60.10∧ (C2,1 ∨C2,2). Given

(f2, ρ2, C2,1) and (f2, ρ2, C2,2), Fusion helps in obtaining ϕ2.

Proposition 4 (Generalization). If ρ2 ≥ ρ1, then ϕ1 :
(f, ρ1,C) implies ϕ2 : (f, ρ2,C).

Proof. Consider any tuple t with t � ϕ1. If t � C, then |t.Y −
(f(t.X + x) + y)| ≤ ρ1 ≤ ρ2. It follows t � ϕ2 : (f, ρ2,C).
Otherwise, it is natural to reach t � ϕ2 when t � C. To

conclude, ϕ1 implies ϕ2.

Generalization means that for any tuple t satisfies ϕ :
(f, ρ1,C), if ρ2 ≥ ρ1, then the tuple t satisfies ϕ2.
Generalization considers a tolerance on prediction bias, es-

pecially when applying Fusion over two CRRs with different

bias ρ. For example, given ϕ2 : (f2, ρ2 = 0.5,C2), we have

ϕ2 implies (f2, ρ3 = 1.0,C2), as ρ3 ≥ ρ2.
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Proposition 5 (Translation). For ϕ1 : (f1, ρ,C1), ϕ2 :
(f2, ρ,C2), if f2(X) = f1(X + Δ) + δ, then ϕ1 and ϕ2

imply ϕ3 : (f3, ρ,C3), where f3(X) = f1(X + x) + y , and

C3 = (C1 ∧ x = 0 ∧ y = 0) ∨ (C2 ∧ x = Δ ∧ y = δ).

Proof. Consider any tuple t with t � ϕ1 and t � ϕ2. If t � C3,

there exists some C ∈ C3 having t � C. When C ∈ C1 with

built-in predicate x = 0 ∧ y = 0, we have t � C1. According

to t � ϕ1, it has |t.Y − (f1(t.X + x) + y)| ≤ ρ, i.e., t � ϕ3.

When C ∈ C2 with built-in predicate x = Δ ∧ y = δ, it

follows t � C2. Given t � ϕ2, we have |t.Y − (f2(t.X +
x) + y)| ≤ ρ. According to f2(X) = f1(X + Δ) + δ, it has

|t.Y − (f1(t.X+x+Δ)+y+δ)| ≤ ρ, i.e., t � ϕ3. Otherwise,

for t � C3, it naturally has t � ϕ3. To sum up, ϕ1, ϕ2 imply

ϕ3.

Translation means that for any tuple t satisfies ϕ1 and ϕ2,
if models f1 and f2 have f2(X) = f1(X+Δ)+ δ, then tuple

t satisfies ϕ3, composed by the model from f1. Translation
replaces the regression model in a CRR by the model in

another CRR to share regression models. For instance, CRRs

ϕ4 and ϕ5 adopt different models with the relationship

f5(Salary) = 0.04 ∗ Salary − 230 = f4(Salary) − 230.
Thus, ϕ4, ϕ5 imply (f4, ρ5, (C5 ∧ y = −230)) after applying

Translation. It supports CRR discovery by comparing and

integrating regression models, which forms the equivalence

relationship among the shared regression models, discussed in

Section V-B1. Proposition 9 further uses f1 as the regression

model, and decides the built-in predicates inside each conjunc-

tion after applying Translation.
In Problem 1 below, we propose to find a set Σ of CRRs that

cannot be further reduced using the five inference rules. The

algorithms in Section V avoid enumerating all the CRRs, some

of which can be implied by others using the five inference

rules. It thus reduces the number of discovered CRRs and

improves the discovery efficiency.

Unfortunately, it is still open whether the five inference rules

for CRRs form a complete set. As the first study of model

sharing using conditions, we propose to remove redundant

semantics with our best effort, referring to the five inference

rules we have thus far.

V. DISCOVERY

With the help of the CRR inference rules in Section IV,

we could devise discovery algorithms for learning non-trivial

CRRs on the database D, where each CRR holds a regression

function f : X,B → Y, Y /∈ X.

With Translation, Fusion inferences and DNF conditions,

we could merge multiple CRRs with shared models for more

general CRRs. Applications such as data imputations could

take advantage of the merged CRRs by saving time on rule

locating and predicting. For example, in Example 2 and Figure

1, rather than finding CRRs for each part of data, we use CRR

ϕ3, which is more efficient for the imputation task e.g., 4 parts

could be seen from 2008-8-18 to 2008-9-19.

In this sense, we aim to find a concise set of CRRs from

data. To begin with, we first formalize this discovery problem

of CRRs in Problem 1.

Problem 1. Given a database D of schema R, attributes X,

target Y , maximum bias ρM and predicates P for conditions,

the CRR discovery problem aims to generate CRRs Σ such that

Σ covers the database D, i.e., ∀t ∈ D, ∃ϕ : (f, ρ,C) ∈ Σ, t �
C, and is not reducible by inference rules, i.e., (1) �ϕ ∈ Σ
where Reflexivity applies, (2) �ϕ,ϕ′ ∈ Σ s.t. ϕ implies ϕ′ by

applying Induction or Generalization, (3) �ϕ1, ϕ2, ϕ3 ∈ Σ
s.t. ϕ1, ϕ2 imply ϕ3 by Fusion or Translation.

Thus, based on Problem 1, to find a concise set of CRRs, we

need to share the models and merge CRRs through inferences.

As noticed in Example 2 model sharing avoids training new

regression models too frequently such as tree-based models

[9], [10]. However, as mentioned in challenges I-A, models

generate predictions over parts of data specified by different

conditions, and sometimes, model sharing asks for model

translation with built-in predicates decision.

In this section, to generate CRRs as described in Problem 1,

we perform CRR discovery in two steps, i.e., generating CRRs

from data with model sharing in Section V-A, and compacting

the generated CRRs for a concise set of CRRs in Section V-B.

A. CRR Searching with Model Sharing

For finding CRRs under data satisfaction, in this section, we

start with the most general condition and refine the condition

by adding predicates. Similar to tree-based regression learning

[9], [10], the top-down strategy may find a regression model

on each part of data specified by conjunction. However, in

this way, the model sharing over data partitions would not be

processed until all CRRs are sufficiently discovered.

Moreover, noisy data leads to the hardness of generating

precise regression models. For example, for Latitude − Date

data shown in Figure 1, slight differences in data lead to the

failure of sharing the models on light-blue and pink points.

Based on the Translation inference, two CRRs with linear

models are able to translate into a new CRR when they share

the same slope, which could be sensitive to data noise.

Motivated by the above discussions, we propose an incre-

mental CRR discovery algorithm that trains new models to fit

the data only when no existing models could be shared, as

shown in Algorithm 1.

In Algorithm 1, the incremental discovery maintains the set

of shared models F as shown in Line 2, and finds CRRs

starting from the most general condition C = ∅ as shown in

Line 3. We introduce the incremental discovery of CRRs by

model sharing in Section V-A1 for Line 7-10 and top-down

searching in Section V-A2 for Line 4-5 and 12-22.

1) Model Sharing: In this section, we focus on a simple

way of model sharing on the part of data under condition C.

Instead of sharing the model based on the Translation

inference, the model sharing based on data could generalize

to noisy database. We also prove the correctness of sharing

model in this section, by Proposition 7.

For a conjunction C, Line 7-10 focus on the model sharing

on all tuples from DC , where DC is the collection of tuples

satisfying the condition C. We first consider two cases, δ = 0
and δ �= 0, to discuss model sharing based on data.
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Algorithm 1 CRR Searching with Model Sharing

Input: Database D of schema R, attributes X, target Y with

Y /∈ X ⊆ attr(R), maximum bias ρM and predicate

space P with no predicates on Y
Output: Σ CRRs with conjunction conditions

1: CRR set Σ = ∅
2: Model set F = ∅
3: Priority Queue Q = {(C = ∅, i(C) = 0)}
4: while queue Q is not empty do

5: Conjunction C = Top(Q)
6: // Find possible model sharing

7: if ∃f ∈ F s.t. ∃δ, ∀t ∈ DC , |t.Y − (f(t.X)+ δ)| ≤ ρM
then

8: Decide ρ = maxt∈DC
|t.Y − (f(t.X) + δ)|

9: C = (C ∧ (y = δ))
10: Σ = Σ ∪ {(f, ρ, C)}
11: else

12: ind(C) = maxf∈F
|{t|t∈DC∧|t.Y−(f(t.X)+δ0)|≤ρM}|

|DC |
13: Train f under data DC

14: if error maxt∈DC
|t.Y − f(t.X)| ≤ ρM then

15: ρ = maxt∈DC
|t.Y − f(t.X)|

16: Σ = Σ ∪ {(f, ρ, C)}
17: F = F ∪ {f}
18: else

19: Decide split predicate p1, ...pn ∈ P′ ⊂ P
20: for pi ∈ {p1, ...pn} do

21: Build Ci = (C ∧ pi)
22: Add to queue Q = Q ∪ {(Ci, ind(C))}
23: return Σ.

Firstly, when the condition in Line 7 is satisfied by δ = 0,

we have ∀t ∈ DC , |t.Y − f(t.X)| ≤ ρM , indicating that the

function f fits for the part of data DC perfectly by allowing

maximum bias ρM . In this way, f is considered to be the

regression function of tuples from DC , and we add a CRR

(f, ρ, C ∧ (y = 0)) to the result Σ (Line 10).

Then, when δ �= 0, the condition ∀t ∈ DC , |t.Y −(f(t.X)+
δ)| ≤ ρM indicates that by adding the prediction f(t.X) to a

constant δ, the model f(X) + δ fits all data from DC within

bias ρM . Thus, the function f could be shared by data DC

with a built-in predicate y = δ. With an update on condition

C = (C∧ (y = δ)), we add the CRR (f, ρ, C) to Σ (Line 10).

The value of δ could be determined by the average δ0 =
(max{t.Y −f(t.X)|t ∈ DC}+min{t.Y −f(t.X)|t ∈ DC})/2,

indicating the value δ0 in f(X)+δ0 for the minimum absolute

error |Y − (f(X) + δ0)|. The following conclusion considers

the determination of δ.

Proposition 6. Only if ∀t ∈ DC , |t.Y − (f(t.X)+ δ0)| ≤ ρM
is satisfied, the model f could be shared by tuples under

condition C by a built-in predicate y = δ, where δ0 =
(max{t.Y −f(t.X)|t ∈ DC}+min{t.Y −f(t.X)|t ∈ DC})/2.

Thus, δ0 provides the necessary condition of whether we

could share model f over all tuples in DC . Based on the above

conclusion, we could examine whether data DC can translate

to model f under the condition in Line 7 by assigning δ = δ0.

Further, we have the following conclusion for the correctness

of the data-based model-sharing.

Proposition 7. If the model f1 in CRR ϕ1 : (f1, ρ1, C1) could

be shared by instance DC by applying a built-in predicate

y = δ, then there exists a CRR ϕ2 : (f2, ρ2, C2 = C) s.t.

ϕ3 : (f3, ρ3, C3) with f3 = f1, C3 = (C ∧ (y = δ)) could be

reached by applying Translation inference on ϕ1, ϕ2.

Proposition 7 actually points out the existence of a model for

a data partition when the data-based model sharing conditions

are satisfied. Without fine-tuning over noisy data, Proposition

7 could avoid the influence of noisy data to model sharing

through Translation inference. Thus, Proposition 7 provides a

practical solution to model sharing when CRRs need to learn

over noisy data.

2) Top-down Searching: In this section, we consider the

top-down searching for CRRs among Line 12-22 in Algorithm

1. Similar to the top-down approaches [9], [10] in tree-

based structures, we briefly introduce Line 13-22 here for

completeness and its adjustments to CRR discovery.

Among Line 13-17, we start with the condition C to train

new model by Line 13, as we cannot observe any model

sharing for data in DC . To find whether the model could

generalize to all data in DC , we test the new model f with all

data in DC and compare the difference between the predictions

of the model f and the observed values of the attribute values

on Y at Line 14, i.e., maxt∈DC
|t.Y − f(t.X)| ≤ ρM . When

the new model f is satisfied by the above condition, we

calculate the bias ρ for f under data DC and add the new CRR

into Σ (Line 15-16). To potentially utilize f as the existing

model later, we add the trained model f in the model set F
(Line 13).

When no model could be shared in F among Line 7-10, we

search for more models and more data partitions. Line 19-22

finds split predicates p for data partition from P′ ⊂ P decided

by applicable strategies from tree-based approaches [9]. We

then add all new formed data partitions with conditions C ∧ p
to the queue Q.

We use VC dimension [26] to determine the number of

tuples for learning a regression model. If it cannot find a

suitable regression model for the smallest data part so that the

error is less than ρM , we have to return this model anyway

to ensure the coverage. The edge case is indeed a regression

model per tuple, i.e., our preliminary study [4]. For example,

for linear regression, any tuple (the smallest data part) could

learn a regression model.

3) Conjunction Ordering: In the above two parts, the

Algorithm 1 mainly focuses on model reuse among Line 5-10

that tries to fit the current part of data with existing models

w.r.t. the error ρM . It speeds up the search by avoiding learning

the same model multiple times over different parts of the

data. Based on Propositions 6 and 7, the model reuse enables

model sharing in Algorithm 1 that combines the conditions

of the same regression model. Existing top-down approaches

like regression tree [9]–[13] cannot capture the model sharing
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among different parts of data, and thus may learn the same

regression model multiple times in different data parts.

In addition to model sharing, we develop another new

innovation of the method, by discovering those CRRs first

which could be more likely in model sharing. Let the index

ind(C) denote the probability of conjunction C being shared.

We estimate the probability by Line 12 of Algorithm 1.

Consequently, Line 5 considers C in the decreasing order

of ind(C), using a priority queue Q. In addition, the split

decision could be adjusted in Line 19 based on ind(C) for

the guarantee on model sharing.

Proposition 8. Given the conjunction C, the index ind(C)
and predicates P, when we take �(1 − ind(C))|DC |� ≤ |P|
as the number of predicates for splitting C, at least one of

the resulting new conjunctions could be shared by an existing

regression model.

That is, when we choose �(1−ind(C))|DC |� as the number

of predicates for splitting conjunction C, it guarantees that at

least one of the resulting new conjunctions could be shared

by an existing CRR. Thus, considering C with index ind(C)
in a decrease order could speed up the model sharing and

discovery of CRRs by fewer conjunction splits.

4) Complexity Analysis: Algorithm 1 has time complexity

O(|D|2log|D|). Similar to the condition discovery in regres-

sion trees, the predicates could make binary searching for

further data partitions in Line 19. In Line 17 of Algorithm

1, we add a regression model when a new CRR is formed.

Thus, the total number of tested models in Line 7 is bounded

by |Σ|. As the CRR discovery terminates when applying each

tuple to a regression model, we have |Σ| ≤ |D|. When we

make binary searching for further data partitions in Line 19,

the searching terminates within O(log |D|) partitions. Thus,

the worst case is to test |D| models in Line 7 by all tuples

O(log |D|) times, i.e., the time complexity is O(|D|2 log |D|).

B. CRR Compaction with Inference

A more concise set of CRRs without sacrifice of rule se-

mantics could obviously improve the efficiency of downstream

applications such as data imputation. In this section, we aim to

find a concise set of CRRs Σ∗ from the aforesaid Σ discovered

from data. To reduce the size of CRR set, we use inferences

in Proposition 5 to translate and merge CRRs.

In Propositions 1 and 2, Reflexivity inference aim to identify

trivial CRR patterns, and Induction refines the condition of

CRRs. As discussed in Section IV-B, Generalization considers

a tolerance on ρ that could be the first step of Fusion. The other

two rules, Translation and Fusion, share the regression models

and merge CRRs of the same regression models.

In this section, we apply the inferences Translation,

Generalization and Fusion in rule compaction. Based on the

above three inferences of CRRs, we devise Algorithm 2 for

compacting CRRs. Algorithm 2 processes mainly in two steps,

i.e., rule translation (Line 3-11) in Section V-B1 and rule

fusion (Line 12-15) in Section V-B2.

Algorithm 2 CRR Compaction with Inference

Input: Database D of schema R, maximum bias ρM and

CRRs Σ
Output: a concise set of CRRs Σ∗

1: Initial CRR set Σ∗ = Σ
2: Queue Q = Σ
3: while queue Q is not empty do

4: CRR ϕ : (f, ρ,C) = Top(Q)
5: for CRR ϕ′ : (f ′, ρ′,C′) ∈ Σ∗ and f ′ �= f do

6: if ∃Δ, δ s.t. f ′(X) = f(X+Δ) + δ then

7: // Apply Translation by solving Line 8-10

8: for conjunction C ′ ∈ C′ with built-in predicates

x = Δ′, y = δ′ do

9: Replace built-in predicates in C ′ by x = Δ′ +
Δ, y = δ′ + δ

10: Update Σ∗ = Σ∗ ∪ {(f, ρ′,C′)}
11: Remove ϕ′ from Σ∗ and Q
12: while ∃ϕ : (f, ρ,C), ϕ′ : (f ′, ρ′,C′) ∈ Σ∗ having f = f ′

do

13: Apply Generalization: ρ′′ = max(ρ, ρ′)
14: Apply Fusion: C′′ = (C ∨ C′)
15: Remove ϕ,ϕ′ from Σ∗

16: Update Σ∗ = Σ∗ ∪ {ϕ′′ : (f, ρ′′,C′′)}
17: return Σ∗

1) Rule Translation: In this section, we first introduce

the basic property of the Translation inference. Then, we

introduce the operations among Line 3-11 in Algorithm 2.

As the input CRRs Σ for Algorithm 2 may include built-in

predicates for model sharing, e.g., data-based model sharing

among Line 8-10 in Algorithm 1, the model sharing based on

the Translation inference also introduces built-in predicates

for each conjunction. After applying multiple Translation

inference or model sharing, each conjunction may need to

combine multiple built-in predicates, and keep one built-in

predicate x, y in each conjunction. Thus, it is important to

decide the built-in predicates under this case.

As shown in Proposition 5, Translation inference consumes

two CRRs ϕ1, ϕ2 and generates ϕ3 with built-in predicates.

We have Proposition 9 for built-in predicate decision when ϕ3

is again translated to get ϕ4.

Proposition 9. Given CRR ϕ1 : (f1, ρ1, C1), ϕ2 : (f2, ρ2, C2)
and ϕ3 : (f3, ρ3, C3), if f1(X) = f2(X+Δ)+δ and f2(X) =
f3(X + Δ′) + δ′, then ϕ2, ϕ1 imply ϕ′1 : (f ′1, ρ1, C1 ∧ (x =
Δ∧y = δ)) with f ′1 = f2, and ϕ3, ϕ

′
1 imply ϕ′′1 : (f ′′1 , ρ

′′
1 , C

′′
1 ),

where f ′′1 = f3, ρ′′1 = ρ1 and C ′′1 = (C ′1∧ (x = Δ′∧y = δ′)).
We have the decision of built-in predicates of C ′′1 as C ′′1 =
(C ∧ (x = Δ′ +Δ ∧ y = δ′ + δ)).

Proposition 9 decides the built-in predicates when the

Translation inference is applied multiple times to the same

CRR and its translations. Based on Proposition 9, we have the

correctness of Line 8-10.

Thus, when Translation inference applied ϕ1, ϕ2 for ϕ3, we

could also reach ϕ2 after applying the Translation inference on
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ϕ1, ϕ3. Based on the Translation inference and Proposition 9,

we could introduce the equivalence relationship among CRRs,

i.e., when ϕ3 is obtained by Translation on ϕ1, ϕ2, it indicates

that ϕ2 is equivalent to ϕ3. Thus, for each step of applying

the Translation inference, we would obtain the equivalent set

of CRRs as the input. Also, the results of Line 3-11 will not

be influenced by the order of applying CRR Translation.

Among Line 3-11, applying Translation inference aims to

unify the regression models in Σ∗ for condition fusion. In Line

4, we take a CRR ϕ : (f, ρ, C) from the queue Q each time.

Among Line 6-11, we try the Translation inference for all

rules ϕ′ with f ′(X) = f(X+Δ)+δ. Besides the equivalence

relationship among CRRs with multiple Translations, consid-

ering the equivalence as the existence of built-in predicates

x = Δ, y = δ between two functions, we can construct the

equivalence relationship among functions.

Thereby, when ϕ1 is used at Line 4 for chances of

Translation, ϕ1 will translate all CRRs with the same equiv-

alent class with function f1. When ϕ2 is translated into ϕ′2
by ϕ1, there is no need for using ϕ2 again, as all CRRs with

their functions equivalent to f1 and f2 are already translated

by ϕ1 with function f1. Considering this, at Line 10, we add

a new CRR (f, ρ′,C′) to Σ∗, and remove its equivalent CRR

from queue Q (Line 11).

2) Rule Fusion: Rule fusion among Line 12-16 utilizes

two inferences Generalization and Fusion. As discussed above,

the functions of the same equivalent class could use the

built-in predicates translating each other. Thus, after applying

Translation inference, all functions from the same equivalence

class will obtain a unique form for ease of fusion.

The inference Fusion requires two CRRs with the same

regression function f and bias ρ, and combines their con-

ditions with a DNF. For any pair of CRRs share the same

regression function, we could find the same regression model

after applying the Generalization inference. Thus, at Line 12,

we enumerate all pairs of CRRs with the same regression

functions, and apply Generalization (Line 13) and Fusion to

combine two rules.

In this way, we could finally merge all CRRs with the

functions in the same equivalence class. Based on the above

discussions, we have a concise set of CRRs Σ∗ from the input

CRRs Σ. When CRRs Σ are discovered by Algorithm 1 with

a top-down approach to cover all tuples, we have Σ∗ as the

equivalent set of CRRs with data satisfaction.

3) Complexity Analysis: Algorithm 2 has time complexity

O(|Σ|2), since Translation tests every two rules. It merges

the CRRs sharing the same regression model. As Line 5 in

Algorithm 2 suggests, for each time, we test a pair of CRRs

for chances of Translation. Since the queue Q contains at most

|Σ| CRRs, the time complexity between Line 3 and Line 11 is

O(|Σ|2). The rest part of Algorithm 2 finds CRRs with shared

regression functions, which is terminated in O(|Σ|). Thus, the

time complexity of Algorithm 2 is O(|Σ|2).

TABLE II
DATASET STATISTICS

Dataset #Row #Column Category

Air Quality [28] 9.4k 18 Time series

Electricity [29] 2075k 12 Time series

BirdMap [3] 407k 4 Time series

Tax 100k 17 Relational

Abalone 4.2k 9 Relational

VI. EXPERIMENTS

We evaluate our algorithms on CRRs discovery by ex-

periments in this section. The evaluations show the advance

of sharing models and learning regression under disjunctions

(Section VI-B). Through the scalability study of conditional

regression discovery in Section VI-C, the performance of our

algorithm is stable under the increasing size of instances,

and the reports on scalability verify our analysis in previous

sections. Under the parameter study in Section VI-D, we

could adjust regression bias ρ, varying the efficiency on

CRR discovery. For a special case of CRRs, we evaluate the

performance of rule compaction on regression trees, and the

downstream application, data imputation, in Section VI-E.

A. Experimental Settings

All the experiments are performed on a machine with an i7-

10700 CPU and 32 GB RAM. The code and data are available

online [27].

1) Datasets: We consider several real datasets to test the

effectiveness of CRRs, which fall into two different categories,

relational and time-series. The BirdMap dataset [3] traces the

GPS position of multiple birds in Africa and Europe from

the year 2006 to 2020. The Abalone dataset [30] collects

4.2k tuples about the information of one abalone with its

age, sizes such as height, diameter and weights such as its

shell, viscera. AirQuality collects time series data with air

quality measurements, used in time series statistical analysis

like [31]. Electricity is an IoT dataset that collects the data

on household energy consumption every minute, included in

the benchmark study [32]. Tax is a relational dataset for tax

payments, widely used for constraint discovery such as [33].

The dataset statistics are shown in Table II.

2) Default Parameters: The parameters of CRR discovery

are composed by the maximum bias ρM , and the predicate set

P. We set the parameter ρM according to the data distribution

of each dataset, with 1.0 as default. In regard to the predicates

in P, for the domain of each attribute A, we generate predicates

Aφc on each value c with φ ∈ {>,≤}, in binary by default.

3) Basic Regression Models F: For the regression learning

of each part of data, we select simple models as some

regression trees [5], [12], i.e., F1 (Linear) [34], F2 (Ridge Re-

gression) [35], and F3 (Multi-layer Perceptron) [36]. Among

the selected regression models, F1 and F2 are linear models
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Fig. 2. Training and evaluation instance scalability compared to conditional
regression approaches over AirQuality dataset [28]

supporting the CRR inference Translation by solving param-

eters Δ, δ in built-in predicates x = Δ, y = δ, while F3 only

supports the variance of δ, i.e., when choosing F3 as regression

models, model sharing only considers built-in predicate y = δ.

4) Baselines: We consider regression tree, RegTree [5],

for regression models, and auto-regression, AR [37], for

time series, as baselines. Moreover, the conditional logistic

regression methods, SampLR [19] and MCLR [20], generate

logistic regression models over large datasets by sampling.

The regression forest, Forest [21], builds an additive model

for predictions. The harmonic regression, DHR [22], fits the

cosine models on time series data by specifying seasonal

parameters. Recurrence regression, Recur [23], models the

recurrence time of each value in time series.

B. Effectiveness of Conditional Regression Rules

1) Effectiveness of Model Sharing: Figures 2, 3 and 4

demonstrates that model sharing could avoid redundant models

and reduce the number of models to train and evaluate. Owing

to the extremely high time costs of SampLR, MCLR and

DHR in training, some of their results are omitted in larger

data sizes. In Figures 2 and 3, we compare all the regression

models/time series analysis approaches, since they are all able

to handle time series data, with timestamps as conditions.

Figure 4 only includes SampLR, MCLR and regression tree,

as others are not designed for relational data. Similar results

are also observed in the other datasets BirdMap and Abalone,

and reported in the full version technique report [38], owing

to limited space.

To show that the regression model sharing is meaningful, we

demonstrate that both the learning and evaluation time could

be reduced by model sharing. Again, the results are shown in

Figures 2(a)(b), 3(a)(b) and 4(a)(b). The reduction of learning

time is achieved as follows. Rather than learning models over
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Fig. 3. Training and evaluation instance scalability compared to conditional
regression approaches over Electricity dataset [29]
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Fig. 4. Training and evaluation instance scalability compared to conditional
regression approaches over Tax dataset

each part of data and then detecting the same learned models,

our proposal first tries to apply the existing models to a part

of data before learning a new model over them. If they can be

applied, there is no need to conduct the model learning. Note

that learning is more costly than evaluating a model. With

possible model sharing, the overall learning time is reduced.

To illustrate that such shared models cannot be obtained by

state-of-the-art, we compare the number of regression rules

as in Fig. 9. Compared to existing studies, our proposal uses

fewer rules to achieve comparable RMSE, in Figures 2(c)(d),

3(c)(d) and 4(c)(d), owing to the shared models. The RMSE of

Forest in Figure 3(d) is a bit lower, but needs 100 times more
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Fig. 5. Instance scalability performance on RMSE and time consumption

rules and thus significantly higher learning and evaluation time

costs than CRR.

2) Effectiveness of Conditions: We here study the perfor-

mance of using conditions, as one major component of CRR.

Figure 5 shows that CRR discovery provides more precise

predictions than RRs and is stable as the instance size grows.

In Figure 6, with more predicates provided, CRRs show more

clear improvement compared to RR. Such an improvement is

observed on all the columns in Figure 7. Finally, by ignoring

those inaccurate rules with the maximum tolerated bias ρM in

Figure 8, CRRs show again better RMSE than RR. In short,

compared with RRs, CRRs lead to lower regression error but

higher time cost, a worthwhile trade-off.

C. Discovery of Conditional Regression Rules

1) Instance Scalability: To find whether the proposed

approach can be extended to larger databases with varied

regression functions, we introduce the instance scalability as

shown in Figure 5, where we find CRRs for all attributes and

vary the size of input instance. As the subsets of BirdMap

on different birds belong to several isolated data partitions,

we include the predicates on each bird, which leads to a

natural segregation on the whole dataset. In this way, we study

the instance scalability onto one of the years among 2006 to

2020. The first two figures consider the RMSE evaluation over

different tuples sizes, while the last two ones study the time

consumption on different instance sizes |I|, I ⊆ D.

In the first two figures, we notice that our algorithm is

stable under different instance scales. Based on proposed

Algorithm 1, we generate CRRs through model sharing and

avoid discovering new models, which is observed as a major

time-consuming workload. Thus, from the last two figures

on time consumption over various instance sizes, we notice

that our algorithms are scalable to larger data sets with stable

performance on prediction errors, e.g., the simple model F1.
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Fig. 6. Predicate scalability performance on RMSE and time consumption

2) Predicate Scalability: To find out how our algorithm

performances over more precise conditions, we conduct this

experiment to study the predicate scalability of our approach.

We use Figure 6 to report the behavior of our algorithm

over different conditions. As discussed in Section V-A2, the

predicates size |P| decides refinement of conjunctions. When

no suitable models found, the results may contain CRRs with

higher RMSE.

The first two figures of Figure 6 show the RMSE of the

CRRs and three basic regression models, with conditions under

different refinements. The last two figures in Figure 6 show

the time consumption on varied predicates. As the predicate

space P increases, we would have more conditions in queue

for regression learning. From the last two figures, the time

cost of Linear method (F1) is almost the same after adding

sufficient predicates in P because a small size of P is enough

to generate reliable CRRs.

3) Column Scalability: Column scalability aims to illustrate

whether our approach has performance tilt over the real-world

datasets. The experimental results are shown in Figure 7.

Based on the first two figures, we could notice that the

RMSE over multiple variables is stable. According to the

last two figures, we could notice that the time consumption

increases almost linearly with the number of target columns.

Thus, based on statistics in Figure 7, our approach provides

stable performance on each target variables.

D. Parameter Sensitivity

1) Regression Bias: We evaluate the performances with

various regression bias ρM over two datasets. The bias ρM
studied here is applied to all continuous attributes. Among

the four figures in Figure 8, we vary the parameter ρM , and

compare the results of RMSE and learning time consumption.

Based on Section III-B and Section V, the parameter ρM
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Fig. 7. Column scalability performance on RMSE and time consumption
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Fig. 8. Parameter study on different regression bias ρ

relates to the validation of regression models. During the CRR

discovery, a failure on validating the regression model on

condition C will lead to the refinement of C, which could

be either precise or overrefined. Thus, a better choice of ρM
results in lower RMSE of CRR discovery.

In Figure 8, similar to refined conditions caused by large

predicate set P, the RMSE results indicate that large regression

bias could lead to worse performances, such as ρM = 5
for attribute Latitude and Longitude in BirdMap dataset. For

smaller ρM , Algorithm 1 would find conditions with more

refinements. Noticed in [4], learning individual models could

generate high performance, which is also proved by our data.

We could notice that each dataset achieves lowest RMSE at

TABLE III
PERFORMANCE OVER VARIED PREDICATE GENERATORS

Data Method Learning Evaluation RMSE # Rules
(S) (MS)

BirdMap
Expert 0.496 0.79 0.254 6.7
Binary 0.348 0.76 0.275 5.0

Random 0.372 0.78 0.283 5.9

Abalone
Expert 0.684 0.91 0.056 7.6
Binary 0.641 0.93 0.057 7.4

Random 0.644 0.93 0.059 7.6

TABLE IV
PERFORMANCE OF MODEL SHARING PRIORITY

Data Order Learning Evaluation RMSE # Rules
(S) (MS)

BirdMap
Decrease 0.331 0.77 0.269 6.0
Increase 0.577 0.75 0.275 6.5
Random 0.496 0.78 0.264 6.5

Abalone
Decrease 0.681 0.91 0.047 7.2
Increase 0.970 0.87 0.046 8.0
Random 0.730 0.93 0.051 7.0

different ρM , indicating that the decision of ρM should be

varied under different data distributions.

2) Predicate Generation: The predicates P could be gen-

erated both automatically [9]–[13] and manually by expert

knowledge [39], and different predicates P could influence the

experimental performance. In addition to Figure 6 on different

number of predicates, we add experiments to compare different

ways of generating predicates, in Table III.

In short, we include three ways of generating predicates,

expert knowledge, binary separation and random separation,

and keep the size |P| of generated predicates the same for

fair comparison. Given the size of predicates P, for expert

knowledge, we specify several useful separations for subset

of P, such as Date ≥ 2006-8-11 in Example 2. Then, we use

the predicates Aφc with c decided by random values from the

domain, e.g., 2006-9-12 in Date. Inspired by a regression tree

with depth limited by n [5], when the specified size is 2n,
the predicates generated by binary separation would segment

the domain into 2n−1 sections. Random generation finds
|P|
2

constants from the domain to construct the predicates Aφc
with operator φ ∈ {>,≤}.

We use the same strategy [5] on deciding splits in Line

19 of Algorithm 1 with the same predicate size |P| for fair

comparison, and report the performance on different predicate

generations in Table III.

In short, Table III shows that different ways of generating

predicates P could influence the experimental effects, even if

they share the same size. Among different predicate genera-

tions, expert knowledge helps the Algorithm 1 to make better

splits in Line 19, and thus leads to lower RMSE. In addition,

different predicate generations also lead to differences on time

efficiency of Algorithm 1. Since expert knowledge may lead

to skewness on using predicates to separate the domains,
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Fig. 9. Performance of rule compaction via translation and fusion on
regression tree over different basic regression models

the corresponding learning time is a bit higher than others,

i.e., binary and random generations are observed more time

efficient on learning CRRs.

3) Conjunction Ordering: To illustrate the effectiveness of

ordering conjunctions, an experiment is conducted in Table IV,

by comparing the decreasing, increasing and random index

order of conjunctions in Q (Line 3 of Algorithm 1). As

Proposition 8 points out, the decreasing order of enumerating

conjunctions could share the existing models through fewer

predicate splits. As shown in Table IV, considering first the

conjunctions with higher probability of being shared (i.e.,

decreasing order) could enable model sharing cases handled

ahead and thus speed up the discovery.

E. Rule Compaction

In this experiment, we evaluate the performance of rule

compaction by inference with translation and fusion over the

BirdMap and Abalone datasets. We compare the regression

tree [5], [12] with regression models F1, F2 and F3 mentioned

above as the RR model. As each node in a regression tree

represents a CRR with the condition on conjunction, we

use the inferences translation and fusion (implemented in

Algorithm 2) to merge the nodes and produce a concise set of

CRRs as shown in Figure 9.

We use the green bars to represent the number of CRRs

a regression tree generated, and use the purple bars for the

number of CRRs in the concise set returned by our algorithm.

The results show that through rule compaction with fusion

and translation inference, our algorithm could cut down the

number of CRRs efficiently.

While the discovered concise set of CRRs can be utilized

in various downstream application, we provide one of them,

missing data imputation, as case study. Again, the compaction

of CRRs reduces the size of rules for more efficient imputation,

whereas the semantics of the CRR set remains the same after
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Fig. 10. Performance of missing data imputation using rules with/without
compaction via translation and fusion

compaction. Therefore, as illustrated in Figure 10, while the

imputation RMSE is somewhat comparable, the time cost

of the imputation task, using our proposed rule compaction

via CRR inference, is significantly reduced compared to the

regression tree without rule compaction.

We also compare the results of Algorithm 1, denoted as

CRR searching. Figure 9 shows that the rule compaction is

efficient on reducing the amount of regression rules learned by

regression tree. Even without rule compaction, CRR searching

returns less rules than regression tree + rule compaction. The

corresponding RMSE however is comparable in Figure 10.

It indicates that model sharing is also useful in avoiding

redundant model generation.

VII. CONCLUSION

In this paper, in order to capture the regressions over mixed

data distribution, we study conditional regression rules (CRRs)

that apply conditionally to only a part of the data. Interestingly,

the same regression model may also be shared among different

parts of data, such as the seasonal migration of birds similar in

different years. To capture such conditionally shared regression

models, i.e., redundant semantics, we study the inference of

CRRs. With the help of CRR inference, we devise an algorithm

for learning and discovering a concise set of CRRs. The

extensive experiments on real-world datasets demonstrate that

the discovered CRRs are more effective than the corresponding

regression models without conditions. In particular, with CRR

inference, the number of learned CRRs is significantly reduced

without sacrifice of rule semantics.

Note that pruning through chi-squared independence test

has been studied as a post-pruning method for decision trees

[40]. It is interesting to apply similar strategies to the CRRs

discovered by Algorithm 1 to avoid overfitting of conditions.

We leave this pruning opportunity on the independence of the

variables in the future study.
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