
The VLDB Journal (2021) 30:425–446
https://doi.org/10.1007/s00778-020-00641-6

REGULAR PAPER

Cleaning timestamps with temporal constraints

Shaoxu Song1 · Ruihong Huang1 · Yue Cao1 · Jianmin Wang1

Received: 14 September 2019 / Revised: 7 August 2020 / Accepted: 16 September 2020 / Published online: 23 February 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract
Timestamps are often found to be dirty in various scenarios, e.g., in distributed systems with clock synchronization problems
or unreliable RFID readers. Without cleaning the imprecise timestamps, temporal-related applications such as provenance
analysis or pattern queries are not reliable. To evaluate the correctness of timestamps, temporal constraints could be employed,
which declare the distance restrictions between timestamps. Guided by such constraints on timestamps, in this paper, we study
a novel problem of repairing inconsistent timestamps that do not conform to the required temporal constraints. Following
the same line of data repairing, the timestamp repairing problem is to minimally modify the timestamps towards satisfaction
of temporal constraints. This problem is practically challenging, given the huge space of possible timestamps. We tackle the
problem by identifying a concise set of promising candidates, where an optimal repair solution can always be found. Repair
algorithms with efficient pruning are then devised over the identified candidates. Approximate solutions are also presented
including simple heuristic and linear programming (LP) relaxation. Experiments on real datasets demonstrate the superiority
of our proposal compared to the state-of-the-art approaches.

Keywords Data cleaning · Timestamp repairing · Temporal constraints

1 Introduction

Imprecise timestamps are very prevalent, e.g., owing to clock
synchronization, granularity mismatch, latency or out-of-
order delivery of events in distributed systems [7]. Cleaning
the imprecise timestamps is necessary for reliable appli-
cations, such as provenance analysis [25] identifying the
sequence of steps leading to a data value, complex event pro-
cessing (CEP) [15] returning the occurrences of requested
event patterns, non-on-time events query [16], etc.

Figure 1 presents some example segments of real event
logs in the ERP system of a train manufacturer (see Sect. 8 of
experiments for more information). A trace, a.k.a. workflow
run or process instance, is a collection of events. For instance,
trace σ1 in Fig. 1 records five steps (events) for processing a
part design work, including Submit, Normalize, Proofread,
etc. Each event is associated with a timestamp on when this
event occurred. Every part design process yields a trace, e.g.,
σ2 in Fig. 1 is the trace of designing another part.

B Shaoxu Song
sxsong@tsinghua.edu.cn
https://sxsong.github.io

1 Tsinghua University, Beijing, China

Since the events are collected from various external
sources, imprecise timestamps are prevalent, e.g., 23:53 of
event 2 in σ1, which is delayed until just before midnight
owing to latency. Another example of granularity mismatch-
ing appears in event 3 inσ2.Proofread of the part is processed
by an outsourcing company, which records timestamps in
hour granularity, i.e., 14:__. However, the events are obvi-
ously not occurring in random, but constrained by certain
workflow discipline.

1.1 Temporal constraints

Constraints are essential in evaluating the correctness of
data, such as integrity constraints for relational data [18].
Regarding temporal data,we employ temporal networks [14],
specifying temporal constraints on timestamp differences
between nodes/variables. The aforesaid imprecise times-
tamps could be identified as violations of the temporal
constraints.

Figure 1 illustrates a temporal network (abstracted from
workflow specifications), specifying constraints on occur-
ring timestamps of events (denoted by nodes). For instance,
the temporal constraint [1, 30] from events 1 to 3 in Fig. 1
indicates the minimum and maximum restrictions on the dis-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-020-00641-6&domain=pdf
http://orcid.org/0000-0002-9503-2755

426 S. Song et al.

1 (Submit) 2 (Normalize) 3 (Proofread) 4 (Examine) 5 (Authorize)

σ1 09:05 23:53 09:25 09:48 09:54

σ2 14:46 14:55 14: 15:22 15:59
Temporal constraint network

Fig. 1 Temporal constraint network

tance (delay) of these two events’ timestamps. That is, event
3 (Proofread) should be processed within 30 minutes after
event 1 (Submit). Events 3 and 1 in σ1 satisfy this temporal
constraint, since their timestampdistance09:25−09:05 = 20
is in the range of [1, 30].

Multiple intervals may also be declared between two
events. For instance, in Fig. 1, [1,10][30,40] on edge 4 → 5
denote that 5 (Authorize) can be processed after 4 (Examine)
either by the department head in 1-10 minutes or by the divi-
sion head in 30-40 minutes.

The aforesaid imprecise timestamps are then identified as
violations of the temporal constraints, such as events 2 and
1 in σ1 with timestamp distance 23:53− 09:05 = 888 > 30.
Similarly, events 3 and 1 in σ2 with distance 14:__−14:46 =
−46 are identified as inconsistent timestamps as well.

The temporal constraints can be obtained in various
ways. (1) The rules could be specified by experts with
domain knowledge (as in the example in Fig. 1). For
instance, workflow/process specifications may specify the
maximum/minimum delay of an event after another [7]. (2)
Theymay also be discovered from data, as in the experiments
in Sect. 8. The FBLG approach [10] discovers the temporal
dependency between different time series data. For instance,
in Fig. 1, it may discover that Normalize at time t is caused
by Submit at time t −k, known as a lag k. Such a lag k could
be within an interval, e.g., [1, 30], namely lag interval [26].
While finding the interesting temporal constraints is out of
the scope of this study, we directly employ the existing dis-
covery method and focus on repairing the timestamp errors
under the (discovered) constraints.

1.2 Timestamp repairing

Inspired by data repairing w.r.t. integrity constraints [9],
the timestamp repairing proposes to modify the timestamps
towards satisfaction of the given temporal constraints. To
address the imprecise timestamps, similar to other constraint-
based repairing [13], the temporal constraint network is given
in advance as inputs. Although only five events are presented
in Fig. 1, a trace could be longer, containing events that are
not specified in the constraints. The events are not neces-
sary to be ordered by timestamps, since their timestamps are
imprecise.

The challenge of repairing the inconsistent timestamps is
obvious, given the huge volume of possible timestamps. To
capture reasonable repairs, we follow the minimum change

principle in data repairing [9], i.e., to find a repair that is as
close as possible to the original observation. The rationale
behind is that systems or human always try to minimize their
mistakes in practice. In the meantime, the value change is
expected to be minimized to preserve the original informa-
tion as much as possible [19]. (See a detailed discussion in
Sect. 2.2.)

The timestamp repairing problem is thus, given an assign-
ment of timestamps violating a temporal network, to find a
repaired timestamp assignment that (1) satisfies the temporal
constraints and (2) is closest to the initial assignment.

For instance, in Fig. 1, to eliminate the violation between
events 2 and 1 in σ1, one may modify the timestamp of
event 1 (e.g., to 23:23, referring to the constraint [1, 30]
on 1 → 2). However, it introduces new violations between
events 1 and 3, and leads to further modifications on events
3, 4 and 5. Alternatively, we can repair the timestamp of
event 2 by 09:35, which satisfies the time constraint and
does not evoke further timestamp modification. It is true that
the repaired timestamp (09:35 with the minimum change)
may not be exactly the original true timestamp. Neverthe-
less, without further knowledge, repairing slightly a single
event 2 is more reasonable than modifying significantly over
almost the entire trace 1, 3, 4 and 5, under the discipline
that people and systems always try to minimize mistakes in
practice.

Preliminary studies [17,28] handle imprecise timestamps
by an uncertainty model on possible timestamps. The
probabilistic-based repairing is thus performed via proba-
bilistic inference in Bayesian Networks [22]. A key issue of
this method (as analyzed in Sect. 9 of related work and eval-
uated in Sect. 8 of experiments) is that its repairing heavily
relies on an essential preliminary step of correctly ordering
data points before adapting the timestamps.

Beside the probabilistic-based approach, one may model
the temporal constraints as integrity constraints (e.g., denial
constraints [12]), and employ the existing constraint-based
data repairing methods [13]. Unfortunately, according to our
analysis (in Sect. 9 as well as in the experimental evaluation),
the soundness w.r.t. satisfaction of temporal constraints is not
guaranteed due to the greedy computation.

1.3 Contributions

The preliminary version of this paper [23] focuses on pruning
candidates that already have a larger repairing cost than the

123

Cleaning timestamps with temporal constraints 427

currently known solution, or have violations to others. In this
paper, we further consider building index to cache the opti-
mal solutions and enable sharing among different problems
(Sect. 5.2). Moreover, we introduce another approximation
method with linear programming relaxation and rounding
by the solution transformation in Algorithm 1 (Sect. 6.2).
Finally, we extend our algorithms to support incremental
computation in a streaming setting (Sect. 7). Our main con-
tributions are summarized as

1. We propose a solution transformation paradigm in
Sect. 3, the key to identify a finite set of timestamp repair
candidates. Our essential argument is that any repair
solution (including the optimal one) can be transformed
to a special form, without increasing modification cost,
such that each changed node (in repairing) is tightly con-
nected to some unchanged node. By tightly, wemean the
timestamp difference of two nodes equals to the interval
endpoint of temporal constraints. Intuitively, the tight
relationship is important since it significantly reduces
the number of timestamp candidates considered between
two nodes.

2. We capture a finite set of timestamp repair candidates,
w.r.t. the aforesaid unchanged nodes and tight connec-
tions, where an optimal repair solution can always be
found (Corollary 5) in Sect. 4. To generate a more con-
cise set of candidates, we show that it is sufficient to
consider a special type of provenance chains, instead of
arbitrary tight connections.

3. We devise an exact algorithm for repairing timestamps
based on the captured candidates in Sect. 5. Unlike the
constraint-based greedy repairing [13], the satisfaction
of temporal constraints (soundness) is guaranteed in our
results. Advanced pruning and indexing techniques are
also developed in Sect. 5.

4. We present two approximate algorithms in Sect. 6.
The simple heuristic approach is to greedily consider
only one branch of the exact algorithm. Without the
costly candidate generation, another linear programming
relaxation is also devised by extending the solution trans-
formation method for rounding. Moreover, we extend
our algorithm to support incremental computation in a
streaming setting in Sect. 7.

5. We report an extensive experimental evaluation over a
real dataset in Sect. 8. The results demonstrate that our
proposedmethods show significantly higher repair accu-
racy compared to the state-of-the-art approaches, while
time cost of our proposal is lower (see Sect. 8.6 for
details). In particular, the higher repair accuracy com-
pared to the probabilistic method [22] (that do not follow
the minimum modification principle) verifies the ratio-
nale of minimizing changes in timestamp repairing.

The remaining of this paper is organized as follows. In
Sect. 2, we show np-hardness of the repairing problem (The-
orem 1). The major challenge originates from the numerous
possible timestamps. Intuitively, instead of considering arbi-
trary combination of timestamps in Sect. 3, we show that
any repair could be transformed to a special class of solu-
tions with tight chains (Proposition 3). This property on
tight chains is important, since it implies an optimal repair,
composed of unchanged assignments and tight edges (Corol-
lary 5). Therefore, we can capture a set of candidates via
unchanged assignments and tight edges in Sect. 4.We present
the exact methods for computing the optimal solution from
the captured candidates, together with pruning and index-
ing techniques, in Sect. 5. Moreover, in Sect. 6, we study
two approximate approaches to get a feasible solution more
efficiently, including a simple heuristic repair and the linear
programming relaxation approximation. Besides, the algo-
rithm is extended to support incremental computation in a
streaming setting in Sect. 7. Section 8 reports an experimen-
tal evaluation, and Sect. 9 discusses related studies. Finally,
in Sect. 10 we conclude this paper. All the proofs can be
found in Appendix.

2 Preliminaries

In this section, we first formally introduce the employed tem-
poral constraints. The timestamp repairing problem is then
presented together with hardness analysis.

2.1 Temporal constraints

Consider a set of variables, X1, …, Xn . Each variable Xi

represents an absolute value of the time of event i , taking
values fromadomain D of possible timestamps. For instance,
the timestamp of event 1 in trace 1 is 09:05 in Fig. 1.

A simple temporal network (STN) is a directed constraint
graph, S = (N , E), whose nodes N = {1, . . . , n} represent
variables/events and an edge i → j (i, j ∈ N) indicates that
a constraint Si j is specified. Each constraint Si j specifies a
single interval, [ai j , bi j], to constrain the permissible values
for the distance X j−Xi , represented byai j ≤ X j−Xi ≤ bi j .

A tuple x = (x1, . . . , xn) is the assignment of variables
X1, …, Xn , {X1 = x1, . . . , Xn = xn}, denoting the times-
tamps of events 1, . . . , n in a trace. X1, …, Xn can be in any
order, e.g., in alphabetical order of event names. For example,
in Fig. 1, events 1, . . . , 5 are ordered referring to the prerequi-
sites of events in a process specification. There are two tuples
presented, denoting the timestamps of events 1, . . . , 5 in two
traces, respectively. It is possible that some event i may not
present in a trace, with different trace lengths (dimensional-
ity). The corresponding assignment xi is thus null. We make
an agreement that a null assignment of xi would not violate

123

428 S. Song et al.

Table 1 Frequently used
notations

Description

X A set of n variables {X1, . . . , Xn}
x A tuple (x1, . . . , xn) of assignments of n variables

M Minimal network of temporal constraints

N Nodes in the network of temporal constraints

di j A label of temporal constraint from nodes i to j

Mi j Temporal constraints [−d ji , di j] on variables Xi , X j

� Timestamps satisfy temporal constraints

Δ Distance cost of repairing timestamps

ti A timestamp candidate for Xi

Ti A set of timestamp candidates for Xi

T A set of timestamp candidate sets {Ti | 1 ≤ i ≤ n}
〈x, T 〉 A problem of repairing x with candidates T

Nm A set of changed nodes connected via tight chains, which are proposed to vary together

Np The nodes in Nm preferring to decrease

Nq The nodes in Nm who want increasing

θ The amount of variation that makes x ′
j unchanged

η The maximum amount of allowed variation such that no violation is introduced to any k, k /∈ Nm

any temporal constraints (and thus is ignored in timestamp
repairing). A tuple x = (x1, . . . , xn) is called a solution if
the assignment {X1 = x1, . . . , Xn = xn} satisfies all the
constraints. Let (xi , x j) � Si j denote xi , x j satisfying the
constraint Si j , i.e., ai j ≤ x j − xi ≤ bi j . The solution x satis-
fying all the constraints, (xi , x j) � Si j ,∀i, j ∈ N , is denoted
by x � S.

It is notable that the constraints between two events i and
j declared in a given simple temporal network (STN) might
not be tight, referring to the constraints on i and j derived
from other events. Thereby, the distance graph of the simple
temporal network is employed to find the correspondingmin-
imal (tight) constraints. A distance graph, Sd = (N , Ed), is
a directed edge-weighted graph. Initially, the structure of the
distance graph is determined by the input simple temporal
network S. It has the same node set as S. Each directed edge
i → j is associated with a weight ci j (a fixed threshold
value). It denotes that various possible timestamp values of
events i and j in a trace should always have difference no
greater than ci j , i.e., X j − Xi ≤ ci j = bi j exactly the same
as [ai j , bi j] given in S. (Xi − X j ≤ c ji = −ai j corresponds
to the edge j → i in the other direction.) Let di j denote the
length of the shortest path from i to j , w.r.t. the edge weights
ci j in the distance graph. An equivalentminimal network rep-
resentation, M , of S is defined by Mi j = [−d ji , di j],∀i, j ∈
N . It implies −d ji ≤ X j − Xi ≤ di j .

A general temporal network G generalizes STN by label-
ingmultiple intervals to an edge.A tuple x satisfiesG, x � G,
if one of the intervals in Gi j is satisfied for each edge i → j ,
denoted by (xi , x j) � Gi j . Considering the combinations of
intervals among edges,G can be represented by a set of STNs

S. A minimal network M for G is obtained by the union of
minimal network representations of all S [14].

As studied in [14], by applying all-pair-shortest-path
algorithm to the distance graph, the minimal network rep-
resentation M can be constructed from the simple temporal
network S, in O(n3) time. Since such a construction is out
the scope of this study and could be done in preprocessing,
we start directly from the minimal network M given as input,
and focus on the timestamp repairing w.r.t. M .

2.2 Repair model

A tracemay have eventswith timestamps conflicting the tem-
poral constraints M (specified by weights on graphs). That
is, the tuple x corresponding to the trace does not satisfy the
temporal constraints M , denoted by x � M . In this case,
timestamp repairing is applicable to find another tuple x ′ by
modifying the assignment in x such that the temporal con-
straints are satisfied x ′ � M .

Along the same line of minimum change principle in data
repairing [9,11] (with an intuition that human or machines
always try tominimize their mistakes), the repair cost is eval-
uated by

Δ(x, x ′) =
n∑

i=1

|xi − x ′
i |, (1)

where |xi − x ′
i | denotes the absolute difference between the

original timestamp xi and the repaired timestamp x ′
i .

123

Cleaning timestamps with temporal constraints 429

Given a tuple x of assignment over temporal constraints
M , the timestamp repairing problem is to find a repair x ′ of
x such that x ′

i ∈ D, x ′ � M and Δ(x, x ′) is minimized.

Theorem 1 The timestamp repairing problem is np-hard.
(Proof can be found in Appendix A.1.)

The rationale of the minimum change repair model lies
in two aspects. (1) Errors often occur minimally on only
a fraction of attributes, since human or machines always
try to avoid mistakes in practice [11]. For example, usually
only one or several RFID tags are broken at a time. (2) The
value change is expected to beminimized, following the intu-
ition that the modification should avoid losing information
of the original data [19]. For instance, the timestamp 14:__
in σ2 in Fig. 1 records in hour granularity. It is sufficient to
repair the minute value, e.g., 14:52, under the temporal con-
straints. Further excessively changing the hour value, such
as 15:02, is unnecessary, meaningless and leading to infor-
mation loss in the original hour value 14. It is true that the
minimum change repair model [9,11] cannot find the true
solution if another viable solution has smaller repair cost.
Without further knowledge, one can hardly distinguish the
viable solution from the truth.

Since the timestamp repairing problem is hard, we pro-
pose the exact solutions with pruning and index, as well as
approximate methods that can be adopted in different use
cases. The exact algorithms are devised for the scenario that
requires higher accuracy, while the approximate algorithms
are more flexible in time efficiency.

3 Solution transformation

In this section, we transform a given repair x ′ to another
x ′′ such that each changed node (x ′′

i 	= xi) is tightly
connected to some unchanged node (see tight definition
below). Intuitively, this transformation applies to the opti-
mal solution as well, and enlightens the candidate genera-
tion w.r.t. unchanged timestamps and tight connections (in
Sect. 4). Interestingly, the transformation algorithm can also
be adapted to round the solution into the domain of possi-
ble timestamps for linear programming approximation (in
Sect. 6.2).

3.1 Tightly connected nodes

Consider any repair x ′ � M . We call i → j a tight edge if the
time difference of events i and j equals exactly the endpoint
of the interval in temporal constraints M , i.e., x ′

j − x ′
i = di j .

Nodes connected via tight edges are then grouped together
as follows (for transformation).

Definition 1 A tight chain between i and j , denoted by 〈k0 =
i, k1, . . . , k� = j〉, includes � tight edges, having either

x ′
ky−1

− x ′
ky = dkyky−1 (i.e., tight edge ky → ky−1) or

x ′
ky − x ′

ky−1
= dky−1ky (i.e., tight edge ky−1 → ky),

∀y = 1, . . . , �.

Let Nu denote a set of nodes i that are either unchanged
in repairing (x ′

i = xi) or connected to some unchanged j via
a tight chain between i and j . The goal of transformation is
to move all nodes into Nu without increasing repair cost.

Moving Tightly Connected Nodes Together
Consider a changed node i , x ′

i 	= xi (say x ′
i > xi ; similar

moving transformation can be made for x ′
i < xi too). To

ensure the non-increasing repair cost, we could decrease x ′
i .

However, theremay exist some other x ′
j having x

′
j−x ′

i = di j .
That is, x ′

i could not decrease solely, owing to the temporal
constraints. Instead,we need to alter some other assignments,
such as x ′

j with tight edge i → j , together with the decrease
of x ′

i .
Let Nm denote a set of changed nodes connected via tight

chains,which are proposed to vary together, such as the afore-
said i, j connected by tight edge i → j . We consider

Np = { j ∈ Nm | x ′
j > x j }, Nq = { j ∈ Nm | x ′

j < x j },

where Np are the nodes preferring to decrease, while Nq are
the nodes who want increasing.

3.2 Transformation without increasing cost

Intuitively, if |Np| ≥ |Nq |, by decreasing a very small δ, δ >

0, for all x ′
j in Nm , we can obtain another x ′′, having x ′′

j =
x ′
j −δ, j ∈ Nm , such that for any x ′

j > x j it retains x ′′
j > x j .

That is, the sets Np, Nq have no change. It follows

Δ(x, x ′) − Δ(x, x ′′) =
∑

j

|x j − x ′
j | − |x j − x ′′

j |

= |Np|δ − |Nq |δ ≥ 0 (2)

If there is no other node k outside Nm which prevents the
decrease, we still have x ′′ � M after transformation.

For the amount δ that is allowed to move, we consider

η = min
j∈Nm ,k /∈Nm ,d jk∈M

d jk − (x ′
k − x ′

j). (3)

It denotes the maximum amount of allowed variation such
that no violation will be introduced to any k, k /∈ Nm . Eq. (3)
ensures that, after reducing x ′

j by η, x ′
k − (x ′

j − η) ≤ d jk

is still satisfied, for all j ∈ Nm, k /∈ Nm, d jk ∈ M . That is,
decreasing x ′

j by η, ∀ j ∈ Nm , is allowed.

123

430 S. Song et al.

Recall that the goal of solution transformation is to show
that a repair x ′

j is either unchanged (x ′
j = x j) or tightly

connected to some other unchanged x ′
i . We consider the fol-

lowing amount θ of variation that can make x ′
j unchanged,

θ = min
j∈Np

x ′
j − x j . (4)

The min operator ensures that any variation less than θ will
not change the relationship between x ′

j and x j for all j ∈ Np.
And thus, |Np| ≥ |Nq | retains (as decreasing x ′

j will never
affect x ′

j < x j in Nq).
While θ denotes the variation that is sufficient to obtain an

unchanged node, η specifies the maximum variation amount
allowed. The moving amount is thus determined by δ =
min(θ, η), which corresponds to two cases below:

Case 1 For θ > η, we assign x ′′
j = x ′

j − η,∀ j ∈ Nm . It
creates a new solution with tight edge j → k, x ′′

k −x ′′
j = d jk ,

for some j ∈ Nm, k /∈ Nm, d jk ∈ M , having d jk − (x ′
k −

x ′
j) = η before decreasing x ′

j by η.
If k ∈ Nu , all the nodes j in Nm find their connections to

unchangednodes in Nu (recall that nodes in Nm are connected
with each other by tight edges so that have to vary together),
and Nm can be merged with Nu ; otherwise, k is moved to
Nm , and the transformation carries on over Nm .

Case 2 For θ ≤ η, we assign x ′′
j = x ′

j − θ,∀ j ∈ Nm . It
creates a new solution with unchanged x ′′

j = x j , for some
j ∈ Nm , having x ′

j − x j = θ before reducing x ′
j by θ .

Hence, we move all the nodes in Nm to Nu .

Proposition 2 The transformation from repair x ′ to another
x ′′ satisfies that (1) the repair cost does not increase,
Δ(x, x ′′) ≤ Δ(x, x ′), and (2) each changed node (x ′′

i 	= xi)
in the new x ′′ is tightly connected to some unchanged node.
(Proof can be found in Appendix A.2.)

3.3 Transformation algorithm

Algorithm 1 shows the procedure of the aforesaid transfor-
mation from x ′ to x ′′. Lines 12 to 14 assemble Nm w.r.t. tight
edges. For |Np| ≥ |Nq |, Nm proposes to decrease as pre-
sented in Sect. 3.2. Otherwise, Lines 27 to 30 increase the
assignment for nodes in Nm .

The running example of Algorithm 1 is presented in
Sect. 5.4.2.

Proposition 3 Algorithm 1 runs in O(n2) time, and outputs a
repair x ′′, such that (1)Δ(x, x ′′) ≤ Δ(x, x ′) and (2) for each
x ′′
j 	= x j , there is a tight chain, 〈k0 = i, k1, . . . , k� = j〉,

where x ′′
i = xi . (Proof can be found in Appendix A.3.)

Algorithm 1: Transform(M, x, x ′)
Input: a repair x ′ of x
Output: a repair x ′′ where each changed node is connected to

some unchanged node by a tight chain
1 Nv ← the set of n (unvisited) nodes;
2 Nu ← ∅; Nm ← ∅;
3 while Nv is not empty do
4 move one node i from Nv to Nm ;
5 αi ← maxk∈Nv∪Nu ,dik∈M x ′

k − x ′
i − dik ;

6 βi ← maxk∈Nv∪Nu ,dki∈M x ′
i − x ′

k − dki ;
7 if αi > 0 then // make feasible solution
8 x ′

i ← x ′
i + αi ;

9 else if βi > 0 then
10 x ′

i ← x ′
i − βi ;

11 while Nm is not empty do
12 for each j ∈ Nm , i ∈ Nv, d ji , di j ∈ M do
13 if x ′

i − x ′
j = d ji or x ′

j − x ′
i = di j then

14 move node i with αi ≤ 0 and βi ≤ 0 from Nv to
Nm ;

15 for each j ∈ Nm , k ∈ Nu , d jk , dkj ∈ M do
16 if x ′

k − x ′
j = d jk or x ′

j − x ′
k = dkj then

17 move all nodes j from Nm to Nu ;
18 for each j ∈ Nm do
19 if x ′

j = x j then // unchanged repair
20 move all nodes j from Nm to Nu ;
21 Np ← { j ∈ Nm | x ′

j > x j };
22 Nq ← { j ∈ Nm | x ′

j < x j };
23 if |Np| ≥ |Nq | then // decrease Nm
24 η ← min j∈Nm ,k∈Nv∪Nu ,d jk∈M d jk − (x ′

k − x ′
j);

25 θ ← min j∈Np x
′
j − x j ;

26 x ′
j ← x ′

j − min(η, θ),∀ j ∈ Nm ;

27 else // increase Nm
28 η ← min j∈Nm ,k∈Nv∪Nu ,dk j∈M dkj − (x ′

j − x ′
k);

29 θ ← min j∈Nq x j − x ′
j ;

30 x ′
j ← x ′

j + min(η, θ),∀ j ∈ Nm ;

31 return x ′ as a new repair x ′′

4 Candidate generation

Intuitively, given any optimal repair, we transform it to a spe-
cial form that (1) consists of unchanged assignments and tight
edges, and (2) is still optimal, referring to the non-increasing
cost during transformation. Such a property enlightens us on
capturing a set of candidates via unchanged assignments and
tight edges (in this section), and finding the optimal solu-
tion from the candidates (in Sect. 5). Moreover, the simple
heuristic approximation (in Sect. 6.1) is also built upon the
generated candidates.

4.1 Candidates from tight chains

Consider an optimal repair solution x∗ of x whose repair cost
Δ(x, x∗) is minimized and x∗ � M . We first show that the
nodes must be tightly connected in the assignment.

Lemma 4 For any x∗
i > xi in an optimal solution x∗ =

(x∗
1 , . . . , x

∗
n), there must exist some j such that x∗

j − x∗
i =

123

Cleaning timestamps with temporal constraints 431

di j , where di j is the endpoint of the interval in temporal
constraints M. (Proof can be found in Appendix A.4.)

Similarly, for x∗
i < xi , there must exist an tight edge in

the form of j → i that x∗
i − x∗

j = d ji , i.e., increasing x∗
i is

impossible. In the following, we consider x∗
i > xi by default,

while the same results apply to the other case x∗
i < xi .

Moreover, the following conclusion states that there is an
optimal solution x∗ whose nodes are not only tightly con-
nected but also connected to unchanged nodes.

Corollary 5 An optimal solution x∗ = (x∗
1 , . . . , x

∗
n) can

always be found such that each changed x∗
j , x

∗
j 	= x j , is

connected to some unchanged x∗
i = xi via a tight chain.

(Proof can be found in Appendix A.5.)

We now generate the repair candidate for node j w.r.t.
unchanged node i and tight chain 〈k0 = i, k1, . . . , k� = j〉.
By summation of x ′

ky
− x ′

ky−1
= dky−1ky (or −x ′

ky−1
+ x ′

ky
=

−dkyky−1) for all tight edges in the chain, the repair candidate
for x ′

j is computed by

x ′
j = xi +

�∑

y=1
ky−1→ky in chain

dky−1ky

−
�∑

y=1
ky→ky−1 in chain

dkyky−1 . (5)

Considering all the tight chains connecting to possible
unchanged node i , we generate a set of repairing candidates
Tj for each node j . According to Corollary 5, an optimal
repair solution can always be found over Tj for all nodes j .

For a node j , there are n−1 possible unchanged nodes for
tight chains with length 1. Each may suggest 2c candidates,
where c is the maximum number of intervals labeling an
edge in M . For tight chains with length 2, there are at most
(2c)2(n − 1)(n − 2) candidates. For tight chains with length
n − 1, the maximum size of candidates is (2c)n−1(n − 1)!.

4.2 Towards more concise candidates

In the following, we show that it is not necessary to con-
sider all the possible tight chains with arbitrary tight edge
combinations. Instead, the chains in the transformation result
follow certain patterns (namely provenance chains, a partic-
ular class of structures with alternating edges). Intuitively,
since any tight chain can be reduced to a provenance chain
(Lemma 6), it is sufficient to consider provenance chains in
candidate generation (Propositions 7).

Definition 2 A provenance chain between i and j is a tight
chain, 〈k0 = i, k1, . . . , k� = j〉, such that the tight edges are

in the form of either

k0 → k1, k1 ← k2, k2 → k3, k3 ← k4, k4 → k5, . . . or

k0 ← k1, k1 → k2, k2 ← k3, k3 → k4, k4 ← k5, . . .

That is, the directions of consecutive tight edges are
always flipped in the chain. (See the running example in
Sect. 5.4.3.)

Lemma 6 (Transitivity on tight edges)For any x ′, if there are
two tight edges i → j and j → k, having x ′

j − x ′
i = di j and

x ′
k − x ′

j = d jk , respectively, it always implies the tight edge
i → k with x ′

k − x ′
i = dik . (Proof can be found in Appendix

A.6.)

With this transitivity on tight edges, all the tight chains
(by transformation) can be reduced to provenance chains.

Proposition 7 An optimal solution x∗ = (x∗
1 , . . . , x

∗
n) can

always be found such that each changed x∗
j , x

∗
j 	= x j , is

connected to some unchanged x∗
i = xi via a provenance

chain. (Proof can be found in Appendix A.7.)

According to Proposition 7, it is sufficient to consider can-
didates w.r.t. provenance chains. Instead of two alternative
directions in expanding a tight chain, the provenance chain
has only one choice determined by the preceding one. The
number of candidates is thus significantly reduced.

Provenance chains with length 2 suggest at most 2c2(n −
1)(n−2) candidates rather than (2c)2(n−1)(n−2) by tight
chains, where c is the maximum number of intervals labeling
an edge in M . For provenance chains with length n − 1, the
maximum size of candidates is 2cn−1(n − 1)!.

4.3 Candidate generation algorithm

Algorithm 2 generates a finite set of candidates for times-
tamp repairing, by considering (all) the possible provenance
chains. (See the running example in Sect. 5.4.3.)

Line 2 initializes the start point of all possible provenance
chains, whose timestamps are not changed, i.e., the orig-
inal xi . Procedure Generate(Nc, t, i, direction) recursively
expands the chain on the remaining variables, where Nc is
the currently processed nodes, t is the tuple of candidates
over Nc, i is the current ending (latest expanded) point of the
chain, and “direction” is the direction of the last edge (on i).
Finally, the algorithm returns T , where each Ti ∈ T is a set
of candidate timestamps for variable Xi .

Suppose that a solution xmin is known in advance to be
feasible w.r.t. M (see Sect. 6 below for how to obtain such
a solution from the aforesaid solution transformation). Let
Δc(x, t) = ∑

i∈Nc
|xi − ti | denote the currently paid cost

for generating the chain over Nc. If Δc(x, t) has already
exceeded Δ(x, xmin) of the given repairing solution xmin,

123

432 S. Song et al.

Algorithm 2: Candidate(M, x, xmin)
Input: a minimal network M , a tuple x , a currently known

feasible solution xmin
Output: T where each Ti ∈ T is a set of candidate timestamps

for variable Xi
1 N := {1, . . . , n};
2 initialize T := {Ti | i ∈ N } where each Ti := {xi };
3 visited := ∅;
4 for each i ∈ N do
5 ti := xi ;
6 Generate ({i}, t, i, out);
7 Generate ({i}, t, i, in);
8 return T ;
1 Procedure Generate(Nc, t, i, direction)
2 if Δc(x, t) < Δ(x, xmin) and t �c M and

(Nc, t, j, direction) /∈ visited then
3 visited := visited ∪ {(Nc, t, i, direction)};
4 if Nc = N then
5 xmin := t ;
6 return;
7 for each j ∈ N \ Nc, di j , d ji ∈ M do
8 if direction = out then
9 t j := ti + di j ;

10 flipped := in;
11 else if direction = in then
12 t j := ti + d ji ;
13 flipped := out;
14 Tj := Tj ∪ {t j } for Tj ∈ T ;
15 Generate(Nc ∪ { j}, t, j,flipped);

there is no need to further expand the chain, i.e., pruning
candidates by xmin in Line 2 in Generate.

Moreover, if the currently generated candidates in the
chain already violates the temporal constraintsM , the expan-
sion terminates. We say that t over Nc partially satisfies M ,
denoted by t �c M , if ∀i, j ∈ Nc having (ti , t j) � Mi j . Line
2 in Generate carries on chain expansion if t �c M .

Lines 7 to 15 of Generate consider the possible chain
expansion on each remaining node j ∈ N \ Nc.

The correctness is verified by showing that the product
of candidates in Ti , i.e.,

∏
Ti∈T Ti , includes all the possi-

ble provenance chains. In other words, an optimal solution
always exists by assembling candidate timestamps in Ti for
each Xi . (It is worth noting that there may be multiple
unchanged nodes in an optimal solution, that is, we might
not be able to obtain the optimal solution by simply consid-
ering all the provenance chains with length n − 1.)

Although the candidate size could be very large w.r.t. n, as
shown in the experiments, by restricting a maximum length
of provenance chains in expanding, the number of candidates
as well as generation time costs can be significantly reduced,
while the corresponding repair accuracy keeps high.

5 Exact algorithm

Once a finite set of timestamp candidates Ti are obtained
for each variable Xi , we next compute the (optimal) repair
solution over the generated timestampcandidates. Intuitively,
candidates can be efficiently pruned if their corresponding
costs exceed certain bounds (in Sect. 5.1). Moreover, sharing
solutions among problems is possible by building a solution
index (in Sect. 5.2). Running examples of the consolidated
repair procedure are presented in Sect. 5.4

5.1 Repair algorithm

We rewrite the repairing problem as

min Δ(x, x ′) (6)

s.t. x ′
i ∈ Ti , 1 ≤ i ≤ n, x ′ � M (7)

denoted by 〈x, T 〉, where T consists of all candidate sets Ti .

5.1.1 Branch and bound

We call T ′ a branch of T on a tk ∈ Tk, Tk ∈ T , where (1)
T ′
k = {tk}, and (2) T ′

j = Tj ,∀ j, j 	= k. The candidate is
fixed to tk in T ′

k , when branching from T to T ′. A branch
T ′ on tk is feasible, if ∀Ti ∈ T with |Ti | = 1, we have
(ti , tk) � Mik, ti ∈ Ti . That is, the new fixed tk does not
introduce violations to the previously fixed candidate ti .

Let Δp(x, T) denote the repair cost paid on those Xi

whose candidates are fixed with |Ti | = 1, i.e., Δp(x, T) =∑
ti∈Ti ,|Ti |=1,Ti∈T |xi − ti |.
Algorithm 4 considers a feasible branch T ′ in each iter-

ation in Line 15, and carries on branching if Δp(x, T ′) is
less than the bound Δ(x, xmin), where xmin is the currently
known best solution.

5.1.2 Candidate pruning during repairing

Given any T together with a currently known best solution
xmin, Algorithm 3 considers the pruning of candidates in Ti ∈
T in the following aspects.

1. Any ti ∈ Ti can be removed, if |ti − xi | > Δ(x, xmin), in
Lines 4-5 ofAlgorithm 3. That is, the cost of repairing by
ti is already greater than the currently known solution.

2. For a Ti = {ti }, any t j ∈ Tj such that (ti , t j) � Mi j can
be pruned. In other words, the remaining candidates t j
should not have violation to any ti with no other choices.

3. For any ti , t ′i ∈ Ti , |ti − xi | ≤ |t ′i − xi |, if (ti , t j) � Mi j

and (t ′i , t j) � Mi j ,∀ j , then t ′i can be pruned, in Lines
6-10. The rationale is that ti , t ′i have no difference in
determining the remaining repairs.

123

Cleaning timestamps with temporal constraints 433

Algorithm 3: Prune(M, T , x, xmin)
Input: M, T , x, xmin the currently known best solution
Output: T pruned candidates

1 for each Ti ∈ T , |Ti | > 1 do
2 wmin := +∞;
3 for each ti ∈ Ti do
4 if |ti − xi | > Δ(x, xmin) then
5 Ti := Ti \ {ti };
6 if (ti , t j) � Mi j ,∀t j ∈ Tj , Tj ∈ T then
7 Ti := Ti \ {ti };
8 if |ti − xi | < wmin then
9 wmin := |ti − xi |, tmin := ti ;

10 Ti := Ti ∪ {tmin};
11 for each ti ∈ Ti , |Ti | = 1, Ti ∈ T do
12 for each t j ∈ Tj , |Tj | > 1, Tj ∈ T do
13 if (ti , t j) � Mi j then
14 Tj := Tj \ {t j } for Tj ∈ T ;
15 return T

Proposition 8 The pruning in Algorithm 3 is safe, and runs
in O(a2n2) time, where a is the maximum size of candidates
in Ti . (Proof can be found in Appendix A.8).

5.1.3 Repairing with pruning

In Algorithm 4, Line 1 employs candidate pruning by
Prune(M, T , x, xmin) in Algorithm 3. In each iteration, Line
13 chooses a branch. By removing Lines 2–7 and 21 (which
are used for indexing, see details in Sect. 5.2) and Lines 19–
20 (which are used for heuristic approximation, see details
in Sect. 6.1) , the branching will continue to compute other
solutions. Finally, the program outputs xmin as the optimal
solution.

Proposition 9 Algorithm 4 (without Lines 2–7 and 21 for
indexing and Lines 19–20 for heuristic) returns the optimal
solution, and runs in O(an) time, where a is the maximum
size of candidates in Ti . (Proof can be found in Appendix
A.9.)

5.2 Indexing optimal solutions

The aforesaid repair procedure only considers to prune candi-
dates that cannot be the optimal solution by using Algorithm
3. However, there exist problems sharing the same optimal
solutions during the recursive repair procedure, as introduced
in Sects. 5.2.1 and 5.2.2. A natural idea is thus to cache (and
index) the solutions to avoid repetitive computation for the
same/similar problems. Sharing solutions when given the
same 〈x, T 〉 is trivial, whereas its chance of being shared
is limited. To enable sharing among different problems, we
introduce a subproblem relationship. To further increase the
sharing chance, an advanced safe-subproblem is presented
(in Proposition 12).

Algorithm4:Repair(M, T , x, xmin, k)with pruning and
index
Input: M, T , x, xmin the currently known best solution, k the

node to branch
Output: xmin

1 T := Prune(M, T , x, xmin);

2 for each 〈x̃, T̃ 〉 with solution x̃ ′ returned by range query do
3 if 〈x, T 〉 is (safe-)subproblem of 〈x̃, T̃ 〉 and x̃ ′

i ∈ Ti , for all
(non-safe) Ti ∈ T then

4 x ′ := solution computed from x̃ ′ by Eq. (8);
5 if Δ(x, x ′) < Δ(x, xmin) then
6 xmin := x ′;
7 return xmin

8 if k > n then
9 x ′ := solution where x ′

i = ti , Ti = {ti },∀Ti ∈ T ;
10 return x ′
11 BC := Tk ;
12 while BC 	= ∅ do
13 remove a tk from BC;
14 T ′ := a branch of T on tk ;
15 if T ′ is feasible and Δp(x, T ′) < Δ(x, xmin) then
16 x ′ := Repair(M, T ′, x, xmin, k + 1);
17 if Δ(x, x ′) < Δ(x, xmin) then
18 xmin := x ′;
19 if xmin is feasible/not null then
20 break; // for heuristic approximation
21 insert 〈x, T 〉 with solution xmin to index;
22 return xmin

5.2.1 Index on optimal solutions for subproblems

We call 〈x, T 〉 a subproblem of another problem 〈x̃, T̃ 〉 if
Ti ⊆ T̃i , |ti − xi | = |ti − x̃i |,∀ti ∈ Ti , Ti ∈ T , i.e., sharing
as a subset of candidates with the same repair cost.

Let x̃ ′ be an optimal solution for the problem 〈x̃, T̃ 〉.
Proposition 10 For any subproblem 〈x, T 〉 of 〈x̃, T̃ 〉, if the
optimal solution x̃ ′ of 〈x̃, T̃ 〉 has x̃ ′

i ∈ Ti ,∀Ti ∈ T , then x̃ ′
is also an optimal solution of 〈x, T 〉. (Proof can be found in
Appendix A.10.)

It enables us to share the solutions among problems.
However, given the complex subset relationships between
problems and their subproblems, it is difficult to efficiently
materialize and re-access the subproblems.

Intuitively, we can relax the strict subproblem settings
for efficient filtering. Proposition 10 implies an additional
requirement on the ranges of candidates w.r.t. the optimal
solution, i.e., min Ti ≤ x̃ ′

i ≤ max Ti ,∀i . We can employ this
range requirement to filter subproblems.

Specifically, to support efficient access regarding the range
requirements, we build a k-d tree [8] that supports both effi-
cient range and nearest neighbor (NN) queries. Each leaf
node is a n-dimensional optimal solution x̃ ′. We extend the
tree index, by appending each leaf node x̃ ′ a list of problems
〈x̃, T̃ 〉 that yield the optimal solution x̃ ′. While we assume
all tuples have the same dimensionality, as also introduced

123

434 S. Song et al.

in Sect. 2.1, it is possible that some event i may not present
in a trace, with different trace lengths. In this case, the corre-
sponding assignment xi is set to null. In order to index such
tuples, we simply denote the null value by a large positive
number that is greater than all the timestamps in the domain
D.

Given a problem 〈x, T 〉, a range query with [min Ti ,
max Ti] on each i is posed. It returns all the cached optimal
solutions that are in the ranges specified by 〈x, T 〉. For each
returned optimal solution x̃ ′, we investigate whether 〈x, T 〉
is a subproblem of any 〈x̃, T̃ 〉 that yields the solution x̃ ′. If
yes, referring to Proposition 10, it is possible that x̃ ′ is also
the optimal solution of 〈x, T 〉.

5.2.2 Enhance reuseability

Intuitively, to increase the chance of an indexed solution
being used, we show in the following that the strict condition
on all dimensions i in the range query can be relaxed.

We call Ti ∈ T a safe candidate set in 〈x, T 〉 if each
candidate ti ∈ Ti is not in violation with all the candidates
in other nodes, i.e., (ti , t j) � Mi j ,∀t j ∈ Tj , Tj ∈ T .

Lemma 11 For a 〈x, T 〉 after candidate pruning, each Ti ∈
T with |Ti | = 1 is safe. (Proof can be found in Appendix
A.11.)

We call 〈x, T 〉 a safe-subproblem of 〈x̃, T̃ 〉 if (1) for all
non-safe Ti ∈ T , it has Ti ⊆ T̃i and |ti −xi | = |ti − x̃i |,∀ti ∈
Ti ; and (2) for all safe Tj ∈ T , T̃ j is also safe. It is remarkable
that Tj ⊆ T̃ j is no longer necessary for safe Tj and T̃ j .

Proposition 12 For any safe-subproblem 〈x, T 〉 of 〈x̃, T̃ 〉, if
the optimal solution x̃ ′ of 〈x̃, T̃ 〉 has x̃ ′

i ∈ Ti , for all non-safe
Ti ∈ T , an optimal solution x ′ of 〈x, T 〉 can be

x ′
i =

{
argminti∈Ti |ti − xi | if Ti is safe

x̃ ′
i otherwise

(8)

(Proof can be found in Appendix A.12.)

Consequently, referring to the safe-subproblem definition,
we only need to consider the range query with intervals
[min Ti ,max Ti] on non-safe Ti ∈ T . With Proposition 12,
an optimal solution x ′ could possibly be obtained.

5.2.3 Repairing with index and pruning

We extend the repair procedure by integrating with the opti-
mal solution indexing inAlgorithm 4. Lines 2–7 search index
for possible optimal solutions, and return in an early stage if
the target solution is already indexed. Otherwise, we adopt
the same steps of repairing with pruning as described in
Sect. 5.1.3. Finally, in Line 21, we maintain the index by

inserting new optimal solutions. Indeed, the preliminary ver-
sion of the RepairAlgorithm 4 in [23] is indeed a special case
of the new Algorithm 4 in this study, without the indexing
mechanism in Lines 2–7 and 21.

It is notable that the indexing is mostly an implementation
optimization, which gives a good performance improvement,
but does not change the approach.

5.3 Putting techniques together

We now present the consolidated repair procedure with all
the aforementioned techniques.

5.3.1 Consolidated repairing procedure

In summary, given temporal constraints M and a tuple x , the
overall repairing procedure is:

1. To initialize, we transform x to a valid solution1 via
Algorithm 1, xmin := Transform(M, x, x̃ ′);

2. Generating candidates T according to M and x , by the
generation Algorithm 2 (with pruning by xmin), T :=
Candidate(M, x, xmin);

3. Solving 〈x, T 〉 by Repair(M, T , x, xmin, 1) in Algo-
rithm 4.

5.3.2 Components of temporal constraints

In practice, one may observe that the temporal constraints in
M are disjoint. That is, some events do not have any tempo-
ral relationships with each other either directly or indirectly
through other events. For example, the examination step in
designing a part has nothing to dowith the part pricing step. In
this sense, the events in N could be decomposed into several
(c) components, N1, . . . , Nc, such that N = N1 ∪ · · · ∪ Nc.
Moreover, the events in any Ni and N j do not overlap, having
Ni ∩ N j = ∅. Let Mi ⊆ M be the set of temporal constraints
in M over the events in Ni . We call M1, . . . , Mc the compo-
nents of temporal constraints inM , ifM = M1∪· · ·∪Mc, and
for any nodes i and j not belonging to the same component
Nk , there is no constraint inM between events i and j , i.e., no
Mi j exists in M . Since two events not in the same component
are irrelevant w.r.t. the temporal constraints M , the repairing
on one of them will not affect the other. Thereby, we may
repair the timestamps in each component, respectively, and
assemble them as the whole repair.

5.4 Running examples

We use running examples to explain the consolidated repair
procedure of all the algorithms. The example tuple and tem-

1 Referring to Proposition 13.

123

Cleaning timestamps with temporal constraints 435

(a) (b) (c)

Fig. 2 a Example temporal constraint network, b the corresponding
distance graph, and c the correspondingminimal network representation

poral constraint network are introduced in Sect. 5.4.1 (Fig. 2).
We illustrate an example of solution transformation using the
aforesaid tuple and temporal constraint in Sect. 5.4.2 (Fig. 3).
The result after applying the transformation is used for prun-
ing in the following candidate generation and timestamp
repairing steps. In Sect. 5.4.3, we first show the examples
of tight and provenance chains in Fig. 4. The candidate gen-
erationw.r.t the provenance chains is then illustrated in Fig. 5.
Finally, with the generated candidates in the previous step,
we discuss the repairing process with pruning and indexing
in Sects. 5.4.4 and 5.4.5, respectively.

5.4.1 Temporal constraints

Consider an example temporal constraint network in
Fig. 2a. Its corresponding distance graph is plotted in Fig. 2b.
An edge, e.g., 2 → 3 in the distance graph, with weight
d23 = 30, denotes that X3 − X2 ≤ d23 = 30. Together with
X2−X3 ≤ d32 = −1, it is equivalent to the constraint [1, 30]
in Fig. 2a, i.e., 1 ≤ X3 − X2 ≤ 30. Figure 2c presents the
equivalent minimal network representation M for S, by con-
sidering the shortest paths for each pair of nodes in Fig. 2b.

A tuple x = (0, 30, 66), where x1=0 denotes the times-
tamp of event 1 and so on, is considered in the following
examples. We say that x1, x2 satisfy the temporal con-
straints, (x1, x2) � M12, since x2 − x1 = 30 ≤ 30 and
x1 − x2 = −30 ≤ −1, where 30 and −1, corresponding
to edges 1 → 2 and 2 → 1 in Fig. 2c, respectively, are
the temporal constraints [1, 30] in Fig. 2a. However, x2, x3
with distance x3 − x2 = 36 > 30 = d23 are identified
as violations of the temporal constraints. The inconsistent
timestamps should be repaired to resolve the violations.

Fig. 3 Example of solution transformation under the temporal con-
straint in Fig. 2

5.4.2 Solution transformation

Consider a repair x ′ = (15, 45, 66) of x , as illustrated in
Fig. 3. We have node 3 ∈ Nu , since x3 = x ′

3 = 66 is
unchanged.

Nodes in Nm = {1, 2} are proposed to move (decrease)
together, given x ′

1 > x1 and the tight edge 1 → 2 with
x ′
2 − x ′

1 = 30 = d12. By solely decreasing x ′
1 (e.g., to 6)

without changing x ′
2, it leads to violation to x

′
2 − x ′

1 ≤ d12 =
30. Thereby, x ′

2 should decrease together with x ′
1.

Np = {1, 2} indicates that decreasing is preferred, since
x ′
1 > x1, x ′

2 > x2.
|Np = {1, 2}| ≥ |Nq = ∅| implies that by decreasing

together the assignments of nodes in Nm , the repair cost will
not increase.

Referring to Eq. (3), η = d13 − (x ′
3 − x ′

1) = 60 − (66 −
15) = 9 requires the amount of decreasing should not exceed
9, otherwise violation occurs between x ′

1 and x ′
3 (where 3 /∈

Nm). For instance, an assignment x ′′
1 = 5 with decreasing

amount 15−5 = 10 > η = 9 is not allowed, since 66−5 =
61 > d13 = 60.

Referring to Eq. (4), θ = x ′
1 − x1 = 15 − 0 = 15 means

that a decreasing amount less than 15 will not change |Np =
{1, 2}| ≥ |Nq | = ∅. It ensures the non-increasing repair cost.

After decreasing δ = 9 (according to Case 1 since η < θ),
x ′′
1 = 6 becomes tightly connected with the unchanged node
3. Node 2 moving together with 1, having x ′′

2 = 36, is still
tightly connected to node 1. Therefore, both nodes 1 and 2
in Nm are moved to Nu .

For the repair x ′ = (15, 45, 66) with cost Δ(x, x ′) = 30,
after applying the transformation (decreasing Nm = {1, 2}),
it forms another repair x ′′ = (6, 36, 66), with lower cost
Δ(x, x ′′) = 12.

5.4.3 Candidate generation

For generating repair candidates for x , Fig. 4a illustrates
a tight chain, where the number on each edge denotes the
constraint from the minimal network M . For instance, -1
on 2→1 corresponds to d21=-1 on 2→1 in Fig. 2c. All the
nodes are connected via this tight chain to the unchanged
node x ′

1 = x1 = 0. The number attached to each node i rep-

(a) (b)

Fig. 4 Examples of a tight and b provenance chains, for repairing
x = (0, 30, 66) under the temporal constraint in Fig. 2

123

436 S. Song et al.

Fig. 5 Example of generating candidates w.r.t the provenance chains
connected to the unchanged node 1 as in Fig. 4b

resents a repair candidate x ′
i , which is computed by Eq. (5).

For instance, we have x ′
3 = x1 − d21 − d32 = 0+ 1+ 1 = 2.

Figure 4b illustrates a provenance chain. As shown, the
directions of edges appear alternatively in the chain. For
example, the direction of edge 1 → 2 (in red) should be
different from the following edge 2 ← 3 in Fig. 4b. The
tight chain in Fig. 4a has no such constraint, e.g., the edge
1 ← 2 (in blue) is acceptable.

As a special tight chain, the repair candidates w.r.t. the
provenance chain, x ′ = (0, 30, 31), are computed by Eq. (5)
as well. While candidate generation via tight chains has to
consider both Fig. 4a and b, the generation over provenance
chains considers Fig. 4b only. It is not surprising that, prove-
nance chains lead to more concise candidate sets, and are
more efficient.

Figure 5 illustrates the provenance chains connected to
the unchanged x1. It is indeed a tree rooted in node 1 with
height n−1. The two numbers attached to each node i denote
the candidate ti and the partial cost Δc(x, t). For example,
(t3,Δc) = (2, 64) attached to node 3 denotes that the cost
of generating the current chain 〈1 ← 3〉 is |0 − 0| + |66 −
2| = 64. Suppose that the x ′′ = (0, 30, 31) with Δ(x, x ′′) =
12 calculated in Sect. 5.4.2 is used as xmin in pruning the
subsequent chains. Consequently, the expansion on the chain
〈1 ← 3〉, whose Δc cost is already 64, terminates.

5.4.4 Repairing with pruning

Figure 6a shows the candidate sets obtained for repairing the
tuple x = (0, 30, 66). For instance, the candidates for node 2
are T2 = {1, 30, 36, 65}, where x2 ∈ T2 as well. The number
attached to each candidate ti denotes |ti − xi |, i.e., the cost
needs for such a repair.

Suppose that t1 = 0 ∈ T1 of 〈x, T 〉 in Fig. 6a is considered
for branching. It yields a branch with new T1 = {t1 = 0}
as shown in Fig. 6b. The paid repair cost is Δp(x, T) =
|t1 − x1| = 0, where t1 is 0.

Consider that a currently known feasible solution xmin has
cost Δ(x, xmin) = 12, which is calculated in Sect. 5.4.2. For
the problem 〈x, T 〉 in Fig. 6b, the candidate t2 = 1 ∈ T2
with |t2 − x2| = 29 > 12 can be directly removed according

to the pruning rule (1). Similar pruning applies to 65 ∈ T2,
2 ∈ T3and 31 ∈ T3.

Moreover, consider T1 = {t1 = 0}. According to the prun-
ing rule (2), t2 = 36 ∈ T2 with t2 − t1 = 36 > d12 = 30 can
be removed. Similar pruning applies to 66 ∈ T3. Figure 6c
shows the problem 〈x, T 〉 after pruning.

5.4.5 Indexing optimal solutions

Consider the problem 〈x, T 〉 in Fig. 6d, where each red
rectangle denotes a ti ∈ Ti , i.e., T1 = {0}, T2 =
{30}, T3 = {31, 60}. Suppose that the range query with inter-
vals [0, 0], [30, 30], [31, 60] on nodes 1, 2, 3, respectively,
returns a solution x̃ ′ with x̃ ′

1 = 0, x̃ ′
2 = 30, x̃ ′

3 = 60. Let
〈x̃, T̃ 〉, where x̃ = (0, 30, 66), be the problem attached to x̃ ′,
i.e., the problemyielding x̃ ′ as the optimal solution. Each blue
triangle denotes a t̃i ∈ T̃i , i.e., T̃1 = {0}, T̃2 = {30, 36}, T̃3 =
{31, 60, 66}. Since Ti ⊆ T̃i and |ti − xi | = |ti − x̃i | for
all ti ∈ Ti , 〈x, T 〉 is a subproblem of 〈x̃, T̃ 〉. Referring to
x̃ ′
i ∈ Ti ,∀i , we directly return x̃ ′ as the optimal solution of

〈x, T 〉.
Consider the problems 〈x, T 〉 and 〈x̃, T̃ 〉 denoted by red

rectangles and blue triangles, respectively, in Fig. 6e. Since
T1 = {0} and T̃1 = {6}, i.e., T1 � T̃1, 〈x, T 〉 is not a subprob-
lem of 〈x̃, T̃ 〉. However, T1 = {0} is a safe candidate set, with
(t1 = 0, t2 = 30) � M12 for all candidates in T2 = {30},
and similarly for T3. Moreover, T̃1 is also safe in T̃ . That is,
〈x, T 〉 is a safe-subproblem of 〈x̃, T̃ 〉.

For the optimal solution x̃ ′ = (6, 30, 60) of 〈x̃, T̃ 〉, it has
x̃ ′
2, x̃

′
3 in the intervals of [30, 30] and [36, 60] on non-safe

nodes 2 and 3, respectively, specified by the range query
of 〈x, T 〉. Indeed, we have x̃ ′

2 ∈ T2, x̃ ′
3 ∈ T3. Referring to

Proposition 12, an optimal solution x ′ of 〈x, T 〉 could be
obtained by Eq. (8) with x ′

1 = 0, x ′
2 = x̃ ′

2 = 30, x ′
3 = x̃ ′

3 =
60.

6 Approximate algorithm

Although pruning and indexing techniques are developed,
referring to the hardness in Theorem 1, the exact Algorithm
4 is still costly. In this section, we present two approximate
solutions, including a simple heuristic method adapted from
the exact algorithm (in Sect. 6.1) and another even more
efficient method without candidate generation (in Sect. 6.2).

6.1 Simple heuristic repair

While the exact repairs (Algorithm 4) costly consider all
possible branches, a simple heuristic approximation is to
greedily consider only one branch (e.g., eliminating viola-
tions most) in each iteration. If it forms a feasible solution,

123

Cleaning timestamps with temporal constraints 437

as presented in Lines 19–20 in Algorithm 4, the program
stops branching and directly returns this solution as the repair
result.

As illustrated in Algorithm 4, the heuristic method still
needs to take the candidates T as the input. Referring to
the analysis at the end of Sect. 4.2, the maximum size of
candidates is 2cn−1(n − 1)!, where n − 1 is the tight chain
length and c is the maximum number of intervals labeling an
edge in M . It motivates us to devise another approximation
without the costly candidate generation step.

6.2 Linear programming approximation

Another intuitive idea of approximation is to relax the prob-
lem by ignoring the constraints that the repair takes only the
values from the domain D of possible timestamps. Without
such a constraint, we show how the repairing problem can be
formulated as linear programming (LP) in Sect. 6.2.1.

6.2.1 Linear programming relaxation

Referring to the repair model introduced in Sect. 2.2, the
timestamp repairing problem is to find a repair x ′ of x such
that x ′

i ∈ D the repair takes values from the timestamp
domain D, x ′ � M the temporal constraints M are satis-
fied, and Δ(x, x ′) the repair cost in Eq. (1) is minimized. To
relax the problem, we propose to remove first the constraints
x ′
i ∈ D that the repair must take values only from the times-
tamp domain D. According to the requirement of temporal
constraints M , i.e., x ′ � M , the relaxed repairing problem is
given by

min
n∑

i=1

|xi − x ′
i |

s.t. x ′
i − x ′

j ≤ d ji , d ji ∈ M

x ′
j − x ′

i ≤ di j , di j ∈ M (9)

where the variables x ′
i in problem solving no longer require

x ′
i ∈ D.
To formulate the relaxed problem as linear programming

(LP), we have to eliminate |xi − x ′
i | the absolute difference

between theoriginal timestamp xi and the repaired timestamp
x ′
i . Let

ui = |x ′
i − xi | + (x ′

i − xi)

2
,

vi = |x ′
i − xi | − (x ′

i − xi)

2
.

We have |x ′
i − xi | = ui +vi and x ′

i − xi = ui −vi . It follows
the LP relaxation

min
∑n

i=1 ui + vi
s.t. v j − u j + ui − vi − x j + xi ≤ d ji , d ji ∈ M

u j − v j + vi − ui − xi + x j ≤ di j , di j ∈ M
ui ≥ 0, vi ≥ 0, 1 ≤ i ≤ n

(10)

where ui , vi are variables in problem solving. The solution
by LP relaxation is thus x ′

i = xi + ui − vi .

6.2.2 Rounding by transformation

Let x̂ ′ denote the solution of LP in Eq. (10). To obtain a valid
repair, we need to round x̂ ′ into the domain D of possible
timestamps.

A simple rounding is x̃ ′
i = argminti∈D|x̂ ′

i − ti |, i.e., sim-
ply assigning the timestamps in D that are closest to the LP
solution as the repair. It is not surprising that violations to the
temporal constraints M may be introduced again in this sim-
ple rounding. The generated x̃ ′ might not satisfy the temporal
constraints M .

Fortunately, by calling Algorithm 1 of solution transfor-
mation again, x ′ = Transform(M, x, x̃ ′), we can transform
the infeasible x̃ ′ into a solution x ′. Referring to Lines 5–10
and 14 in the transformation Algorithm 1, the returned repair
x ′ always satisfies the temporal constraints M .

Proposition 13 Given any x ′ that may violate the temporal
constraints M, Algorithm 1 always outputs a repair x ′′ that
satisfies M, x ′′ � M. (Proof can be found in AppendixA.13.)

The LP+transform approximation without candidate gen-
eration is more efficient than the heuristic approach. How-
ever, the Transform Algorithm 1 used for rounding the LP
solution does not aim to minimize the repair cost. Therefore,

(a) (b) (c) (d) (e)

Fig. 6 Example process for repairing a tuple x = (0, 30, 66) with candidates generated in the same way as in Fig. 5

123

438 S. Song et al.

as illustrated in Figs. 16 and 17, the LP+transform method
may show lower accuracy than Heuristic in some experi-
ments.

7 Streaming algorithm

The data in practice may have thousands of nodes, such as
the smart home datasets introduced in Sect. 8 of experiments,
which arrive in a stream. The repairing is often expected to be
performed instantly, e.g., before storing the data in a database.
Fortunately, the proposed technique can be naturally adapted
to stream computing so that the repairing occurs in a window
rather than the whole space of all nodes.

We extend our algorithms to support incremental com-
putation in a streaming scenario, where events (data items)
arrive in real time, as follows. Algorithm 5 provides the
pseudo code for the stream processing. The sliding windows
are for each node, where Nw denotes the nodes in the current
window w, and Nw+1 includes the nodes in the next window
w + 1.

For candidate generation, the incremental computation is
as follows. Given candidate sets Tw for nodes in Nw in the
current window w, Algorithm 5 computes the new candidate
sets Tw+1 for nodes in Nw+1 in the next slidingwindoww+1,
denoted by Tw+1 := CandidateUpdate(M, x, Tw, Nw+1).
It is an adaption in Algorithm 2 to support streaming setting.
That is, for each candidate ti recorded in T , we also keep its
corresponding Nc the currently processed nodes, t the tuple
of candidates over Nc, i the current ending (latest expanded)
point of the chain, and “direction” the direction of the last
edge (on i). First, all the candidates ti can be removed whose
Nc � Nw+1, i.e., no longer belonging to the current win-
dow w + 1. Second, rather than expanding the provenance
paths from scratch, the expansion carries on from each pre-
viously generated candidate ti recorded in Tw, by calling the
Generate procedure in Algorithm 2.

For timestamp repairing, the adaption, e.g., in Algorithm
4, is simply to replace k+1 in Line 16 by k−1. Consequently,
the branch and bound computation starts from the last node
(data item) in the current window w, instead of the first one
in the previous version of the algorithm. Similar to candidate
generation, when calling Repair(M, T , x, xmin, k) which is
previously processed, we may directly reuse the result with-
out further branching. Pruning of candidates in Sect. 5.1 and
indexing of optimal solutions in Sect. 5.2 can be naturally
applied without any adaption needed.

8 Experiment

In this section, we present the experimental evaluation, with
particular focus on comparing our proposed methods to the

Algorithm 5: CandidateUpdate(M, x, Tw, Nw+1)

Input: a minimal network M , a tuple x , the candidate sets Tw

for nodes in Nw in the window w, the set Nw+1 of nodes
in the next sliding window w + 1 ,

Output: T the new candidate sets for nodes in Nw+1 in the next
sliding window w + 1 where each Ti ∈ T is a set of
candidate timestamps for variable Xi

1 N = Nw+1;
2 remove candidates ti from Tw whose Nc � Nw+1;
3 T := Tw;
4 for each ti recorded in Tw do
5 Generate (Nc, t, i, out);
6 Generate (Nc, t, i, in);
7 return T ;

existing approaches. All the implementation codes and data
are available online [5].

Data Set We use a real dataset of event logs collected
from the ERP systems of a train manufacturer . Temporal
constraints are abstracted from the workflow specifications
in the company. In total, there are 38 different workflow spec-
ifications, with the number of nodes (variables, analogous to
number of attributes in a relation) ranging from 5 to 37, and
8612 event traces (tuples).

Moreover, we consider a series of large real-world sensor
data sets. The climatology data [1] consists of 13.8 thou-
sand tuples with up to 38 nodes. The biomedical science
data [6] has 1 million tuples over up to 17 thousand nodes.
The smart cities data [3] contains 27 thousand tuples over up
to 37 nodes. The smart home data [4] has 15 thousand tuples
over up to 10 thousand nodes. The IoT dataset [2] is with 1
million reading over up to 10 thousand nodes for streaming
evaluation.

In addition, we also use a semi-synthetic big data set to
control the experiment and the injection of faults. A log gen-
eration toolkit [20] is employed to generate up to 1 million
tuples over 1 thousand nodes, using the real workflow spec-
ifications from the ERP systems of a train manufacturer (as
introduced above).

Criteria Following the same line of evaluating data repair-
ing [9], we inject faults in timestamps to evaluate the
repairing methods. Let xtruth be the original correct times-
tamps of a tuple, xfault be the error timestamps with injected
faults, and xrepair be the repaired timestamps. We observe
the accuracy measure of repairing [24], accuracy = 1 −

Δerror(xrepair,xtruth)
Δcost(xrepair,xfault)+Δinject(xtruth,xfault)

, where Δerror(xrepair, xtruth)
is the error distance between true timestamps and repair
results,Δcost(xrepair, xfault) is the distance cost paid in repair,
and Δinject(xtruth, xfault) is the distance injected between true
and fault timestamps.

All the distances are defined on absolute differences,
i.e., the Δ distance function defined in Eq. (1). The accu-
racy measure takes Δcost(xrepair, xfault) into consideration,

123

Cleaning timestamps with temporal constraints 439

in order to normalize the measure, following the same line
in [24]. That is, according to triangle inequality on dis-
tances, in the worst case, we have Δerror(xrepair, xtruth) =
Δcost(xrepair, xfault) + Δinject(xtruth, xfault) with accuracy=0.
For the best repair results,Δerror(xrepair, xtruth) = 0, we have
accuracy=1.

8.1 Evaluation on candidate generation

This experiment evaluates the generation of candidates in
Sect. 4. The experiment is performed on 10 workflow spec-
ifications which have 5 nodes/variables. The results are
averages over 1750 tuples/traces. Figure 7 reports the aver-
age size of candidate timestamps generated for each node,
the corresponding generation time cost, and the accuracy of
repairing with such candidates. The x-axis considers vari-
ous limits on the maximum lengths of provenance chains in
generation.

As shown in Fig. 7a, by considering longer lengths of
provenance chains, more candidates could be generated. The
number of candidates does not increase fast, which illus-
trates the effectiveness of avoiding unnecessary candidates
by provenance chains and pruning techniques in Sect. 4.

The time cost of candidate generation, in Fig. 7b, however,
increases significantly. It is not surprising that, with more
candidates, the corresponding time cost of repairing will be
significantly higher as well (see more details in the following
experiments).

Nevertheless, Fig. 7c illustrates that by considering prove-
nance chains with length 1 or 2, the repair accuracy is already
high, while further increasing the chain length leads to only
a slight improvement in accuracy. The corresponding gener-
ation (as well as repairing) time cost for longer chains will
be much higher as aforesaid.

Motivated by the result that a longer provenance chain
has significantly higher time cost but little contribution in
improving repair accuracy, we consider below the candidate
generation with a provenance chain length 4.

 0

 10

 20

 30

 40

 50

 60

1 2 3 4

ca

nd
id

at
e

Limit of chain length

(a)

 0

 1

 2

 3

 4

1 2 3 4

G
en

er
at

io
n

tim
e

co
st

 (s
)

Limit of chain length

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4

R
ep

ai
r a

cc
ur

ac
y

Limit of chain length

(c)

Fig. 7 Candidate generation with various lengths of provenance chains
over the workflow dataset

8.2 Efficiency of proposed techniques

Next, we evaluate the performance of prune techniques in
Sect. 5.1.2 for repairing. The experiment considers vari-
ous numbers of tuples under the same temporal constraints.
Therefore, only 50 tuples w.r.t. the same temporal constraint
network (among 8000 tuples w.r.t. different temporal con-
straint networks) are considered. The size of each tuple is 5.
A fault rate 0.3 is considered in the experiments, i.e., 30%
events (nodes/variables) are injected with fault timestamps.

Figure 8 reports the time performance of our Baseline
repair method in Sect. 5.1.1, Prune (without index) and
Index+Prune (with both prune and index) in Algorithm 4.
Results in different numbers of nodes (analogous to schema
sizes in relational settings) and traces (tuples) are presented.
It is clear to see the significantly reduced repair time cost
by prune and index. In particular, Index+Prune shows about
one order of magnitude improvement in time cost

8.3 Evaluation on indexing solutions

To compare the time costs for repairing with and without
the index proposed in Sect. 5.2, we report the results under
various budgets of index sizes, ranging from 0 (no index) to
1000 solutions, in Figs. 9 and 10. In particular, a budget 0 of
index size means repairing without index.

Figure 9 evaluates the utility of index by observing the
hit rate, i.e., the times of a solution being returned by index
divided by the total number of the procedure Repair being
called. It is not surprising that the larger the budget of index is,

 1

 10

 100

 1000

 5 10 15 20 25 30 35 40

Ti
m

e
co

st
 (s

)

nodes

(a)
Baseline

Prune
Index+Prune

 1

 10

 100

 1000

5 10 15 20 25 30 35 40 45 50

Ti
m

e
co

st
 (s

)

tuples

(b)
Baseline

Prune
Index+Prune

Fig. 8 Repairing with pruning over the workflow dataset

0
10

50
100

200
500

1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40

H
it

ra
te

nodes

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25 30 35 40 45 50

H
it

ra
te

tuples

(b)

Fig. 9 Hit rate of index in repairing over the workflow dataset

123

440 S. Song et al.

0
10

50
100

200
500

1000

 1

 10

 100

 5 10 15 20 25 30 35 40

Ti
m

e
co

st
 (s

)

nodes

(a)

 1

 10

 100

5 10 15 20 25 30 35 40 45 50

Ti
m

e
co

st
 (s

)

tuples

(b)

Fig. 10 Repairing with various index size budgets over the workflow
dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40

A
cc

ur
ac

y

nodes

(a)

Difference
Count

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
cc

ur
ac

y

Fault rate

(b)

Difference
Count

Fig. 11 Evaluation on repair cost functions over the workflow dataset

the higher the hit rate will be. However, by further increasing
the budget, e.g., from 500 to 1000, the improvement of hit
rate slows down. On the other hand, as shown in Fig. 9b,
given a small budget (say 50), since the index is already full
after processing the first 5 tuples, no more solutions could be
indexed when processing the following tuples and the hit rate
drops. Nevertheless, a large budget like 500 can still keep the
hit rate high.

Consequently, in Fig. 10, the improvement of time cost is
not significant by further increasing the index budget from
500 to 1000. Indeed, owing to the cost of accessing large
size index, the improvement from 50 to 100 is already not as
significant as that from 10 to 50. Nevertheless, the indexing
technique shows about one order of magnitude improvement
in time cost compared to that of no index (budget 0).

8.4 Evaluation on cost functions

Besides the absolute difference-based repair cost metric in
Eq. (1), other metrics, such as counting the number of
changed timestamps, could also be applied. Figure 11 com-
pares the results by using the absolute difference-based
and count-based repair cost metrics. As shown, the repair
accuracy with the absolute difference-based cost function
shows higher repair accuracy than the count-based. The
reason is that, compared to the count-based metric, the
absolute difference-based cost can capture more precisely
the “amount” information of the data deviations, and thus
achieve better the minimum change goal.

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
cc

ur
ac

y

Fault rate

(a)

Random
Certain-amount

Counterpart-correlated
 1

 10

 100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ti
m

e
co

st
 (s

)

Fault rate

(b)

Random
Certain-amount

Counterpart-correlated

Fig. 12 Evaluation on various error cases over the workflow dataset

Exact
Heuristic

LP+transform
Probabilistic

Holistic
SCARE

 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
cc

ur
ac

y

Fault rate

(a)

 0.001

 0.01

 0.1

 1

 10

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ti
m

e
co

st
 (s

)

Fault rate

(b)

Fig. 13 Comparison on various fault rates over the semi-synthetic
dataset

8.5 Evaluation on various error cases

This experiment considers several representative cases of
timestamp errors that often occur in practice: (1) Ran-
dom errors, which take random values from the timestamp
domain. (2) Certain amount errors, such that all timestamps
being off by a certain amount in some sources. (3) Coun-
terpart correlated errors, where faulty timestamp values are
partially correlated with their correct counterparts through a
normal distribution-based fault model,N (μ, σ 2). μ denotes
the correct counterpart (true timestamp) of an event, and σ 2

is variance. That is, faulty timestamp values are partially cor-
related with their correct counterparts μ.

Figure 12 reports the results of Exact repairing on various
error cases. Generally, the accuracy drops with the increase
of fault rate. Random errors and certain amount errors show
very similar performance, which illustrates the robustness of
proposed methods. The accuracy of counterpart correlated
errors is a bit higher, especially when the fault rate is large,
as illustrated inFig. 12a. The result is not surprising given that
the faulty timestamp values are partially correlated with their
correct counterparts. Time costs under various error cases are
generally similar.

8.6 Comparison to existingmethods

This experiment compares our proposal with the repairing
methods.

123

Cleaning timestamps with temporal constraints 441

Exact
Heuristic

LP+transform
Probabilistic

Holistic
SCARE

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 0.8

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00

A
cc

ur
ac

y

nodes

(a)

 0.01

 0.1

 1

 10

 100

 1000

 10
0

 20
0

 30
0

 40
0

 50
0

 60
0

 70
0

 80
0

 90
0
 10

00

Ti
m

e
co

st
 (s

)

nodes

(b)

Fig. 14 Comparison on various numbers of nodes over the semi-
synthetic dataset

Exact
Heuristic

LP+transform
Probabilistic

Holistic
SCARE

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

10 102 103 104 105 106

A
ve

ra
ge

 a
cc

ur
ac

y

tuples

(a)

 0.01
 0.1

 1
 10

 100
 1000

 10000
 100000

 1x106

10 102 103 104 105 106

To
ta

l t
im

e
co

st
 (s

)

tuples

(b)

Fig. 15 Comparison on various numbers of tuples over the semi-
synthetic dataset

1. For our proposed Exact repairing, we use the most
advanced Algorithm 4 with prune and index techniques.

2. Heuristic approximation (in Sect. 6.1, with termination
in Line 20 in Algorithm 4) is also evaluated.

3. LP+transform is another approximationmethodwith LP
relaxation and rounding by solution transformation in
Algorithm 1 as presented in Sect. 6.2.

4. The Probabilistic approach [22] studies the distribution
of timestamps and uses Bayesian Network to determine
repair values.

5. The Holistic method [13] greedily repairs data (times-
tamps) in violations to the given denial constraints [12].
By representing temporal constraints as denial con-
straints, this repairingmethod is applicable to timestamp
repairing.

6. The ML-based repairing method SCARE [27] considers
the repair likelihood defined on values w.r.t. functional
dependencies. To adapt the maximum likelihood princi-
ple in timestamp repairing, we study the likelihood over
timestamps. Repairs are then generated upon the maxi-
mum likelihood instead of the minimum change.

We first report the results over the semi-synthetic big data
set, under various settings. Figure 13 reports the results with
various fault rates, e.g., a fault rate 0.3 denotes that 30%
events (nodes/variables) are injected with fault timestamps.
It is not surprising that the accuracy drops with the increase

Exact
Heuristic

LP+transform
Probabilistic

Holistic
SCARE

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

2.8k 5.6k 8.4k 11.2k 14k

A
ve

ra
ge

 a
cc

ur
ac

y

tuples

(a)

 1

 10

 100

 1000

 10000

 100000

2.8k 5.6k 8.4k 11.2k 14k

To
ta

l t
im

e
co

st
 (s

)

tuples

(b)

Fig. 16 Comparison on various numbers of tuples over the climatology
dataset

Exact
Heuristic

LP+transform
Probabilistic

Holistic
SCARE

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

10 102 103 104 105 106
A

ve
ra

ge
 a

cc
ur

ac
y

tuples

(a)

 0.01
 0.1

 1
 10

 100
 1000

 10000
 100000

10 102 103 104 105 106

To
ta

l t
im

e
co

st
 (s

)

tuples

(b)

Fig. 17 Comparison on various numbers of tuples over the biomedical
science dataset

Exact
Heuristic

LP+transform
Probabilistic

Holistic
SCARE

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

5.4k 10.8k 16.2k 21.6k 27k

A
ve

ra
ge

 a
cc

ur
ac

y

tuples

(a)

 10

 100

 1000

 10000

 100000

 1x106

5.4k 10.8k 16.2k 21.6k 27k

To
ta

l t
im

e
co

st
 (s

)

tuples

(b)

Fig. 18 Comparison on various numbers of tuples over the smart cities
dataset

of fault rate. In Fig. 14, the time cost increases heavily with
the number of nodes, while the accuracy is relatively sta-
ble. Figure 15 shows again that all the methods have stable
accuracy but linear time cost w.r.t. the number of tuples.

Moreover, we conduct the experiments over large real-
world sensor data sets. Figure 16 evaluates on the climatology
data [1]. Figure 17 considers the biomedical science data [6].
Figure 18 is for the smart cities data [3]. Figure 19 presents
the smart home data [4]. The performances are generally
similar to that over the semi-synthetic data in Fig. 15. Some
results of the existing methods are not reported in Figs. 15
and 17, owing to the extremely high costs over the large
semi-synthetic and biomedical science datasets.

Our Exact repair always shows the highest repair accuracy
in all the tests. Remarkably, its corresponding time cost is
surprisingly lower than that of Probabilistic or Holistic. The

123

442 S. Song et al.

Exact
Heuristic

LP+transform
Probabilistic

Holistic
SCARE

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

3k 6k 9k 12k 15k

A
ve

ra
ge

 a
cc

ur
ac

y

tuples

(a)

 1

 10

 100

 1000

 10000

 100000

3k 6k 9k 12k 15k

To
ta

l t
im

e
co

st
 (s

)

tuples

(b)

Fig. 19 Comparison on various numbers of tuples over the smart home
dataset

reason is that Probabilistic employs the high cost Bayesian
Network inference, while the greedy repair in Holistic could
be trapped in local optima and evokes multiple rounds of
repairing.

The accuracy of Heuristic approach is not as high as
Exact, whereas its time cost is significantly lower than Exact.
The LP+transform method is comparable in accuracy with
Heuristic, and has even lower time cost. The reason is that
Heuristic still needs to generate a large number of repair can-
didates, which is not necessary in LP+transform.

The Probabilistic approach has lower accuracy and much
higher time cost, compared to our proposal (Exact and
Heuristic). The reason is, as discussed in Sect. 9, the Prob-
abilistic repairing heavily relies on obtaining a right order
of events (nodes) in the first step, and the second step of
inference over Bayesian Network is very costly.

TheHolisticmethod also shows lower accuracy but higher
time cost, compared to our Exact approach. As discussed (in
Sect. 9 as well), the greedy repair may be trapped in local
optima and cannot guarantee to eliminate all the violations.
A large number of repair iterations need to be performed.

The SCARE approach has various performances in differ-
ent datasets. The reason is that it needs to specify a set of
reliable nodes where no errors present. In practice, however,
errors could occur in any node. The statistical-based SCARE
(as well as Probabilistic) shows unstable repair accuracy in
Figs. 13 and 14, since the statistical distributions could vary
under different fault rates and numbers of nodes.

The higher repair accuracy of our proposed methods com-
pared to the statistical-based approaches (that do not follow
the minimum modification principle) verifies the rationale
of minimizing changes in timestamp repairing. Repairing
should be conducted by avoiding losing information of the
original data.

8.7 Evaluation in streaming setting

To evaluate the incremental computation in a streaming set-
ting, similar to Sect. 8.6, we use again the semi-synthetic
dataset and another real dataset smart home [4]. The exper-

 0

 0.2

 0.4

 0.6

 0.8

 1

10 15 20 25 30 35 40 45 50

A
cc

ur
ac

y

Window size

(a)

Exact
Heuristic

LP+transform
 0.01

 0.1

 1

 10

 10 15 20 25 30 35 40 45 50

Ti
m

e
co

st
 (s

)

Window size

(b)

Exact
Heuristic

LP+transform

Fig. 20 Repairing timestamps with various sliding windows sizes over
the streaming semi-synthetic dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

10 15 20 25 30 35 40 45 50

A
cc

ur
ac

y

Window size

(a)

Exact
Heuristic

LP+transform
 0.01

 0.1

 1

 10

 10 15 20 25 30 35 40 45 50

Ti
m

e
co

st
 (s

)

Window size

(b)

Exact
Heuristic

LP+transform

Fig. 21 Repairing timestamps with various sliding windows sizes over
the streaming smart home dataset

iment is performed by sliding windows from node 1 to n in
tuples.

Figure 20 reports the repair accuracy and the correspond-
ing time cost under various window sizes. By varying the
window size, it is not surprising that a larger window size
achieves higher accuracy in Fig. 20a, since more nodes
are considered in the context. However, more time cost is
required to deal with the nodes in a larger sliding window as
well, which is indicated in Fig. 20b.

Similar results are also observed in the real dataset smart
home [4] in Fig. 21. Again, the time cost of LP+transform
increases slower than those of Exact and Heuristic, since
they have to generate a large number of candidates (though
in an incremental manner as presented in Algorithm 5). The
LP+transform approximation shows better performance than
the simple Heuristic, especially given a larger window size.

Exact
Heuristic

LP+transform

Probabilistic
Holistic
SCARE

SCREEN

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
cc

ur
ac

y

Fault rate

(a)

 0.0001
 0.001
 0.01

 0.1
 1

 10
 100

 1000
 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ti
m

e
co

st
 (s

)

Fault rate

(b)

Fig. 22 Repairing values (rather than timestamps) with various fault
rates over the walking dataset

123

Cleaning timestamps with temporal constraints 443

8.8 Applicability beyond timestamps

It is remarkable that the proposed repairing could also be
applied to other finite, partially ordered sequences of data,
as long as the corresponding constraints can be represented
in the form of minimal networks. To demonstrate the gen-
eral applicability and the practical value of our proposal, we
manually collect a dataset of GPS readings, by carrying a
GPS device and walking around the campus. The maximum
walking speed of a person thus serves as the hard limits.

Figure 22 reports the results over various fault rates. The
results are generally similar to Fig. 13 on repairing times-
tamps. That is, with the increase of fault rate, the repair
accuracy drops. Our proposed Exact algorithm can achieve
higher accuracy and lower time costs, compared to the exist-
ingProbabilistic and SCARE approaches. The performance of
Holistic is not stable, since it may be trapped in local optima
and evokes multiple rounds of repairing as aforesaid. The
results demonstrate the general applicability and practical
value of our proposal in the fields beyond timestamps.

Moreover, we conduct another experiment on a larger IoT
data with 1 million readings over up to 10 thousand nodes by
comparing with the existing method SCREEN [24], which
is dedicated to cleaning big sensor data streams. As shown
in Fig. 23, while the SCREEN method is efficient, our pro-
posal achieves a higher repairing accuracy. The reason is that
SCREEN uses coarse grained speed constraints on all data
points, while we employ fine grained constraints over dif-
ferent data pairs. With more precise constraint, our proposal
achieves a higher accuracy. The corresponding time cost of
SCREEN is lower, which is not surprising given the coarse
grained yet simple speed constraints.

9 Previous work

Owing to thedistinct differencebetween temporal constraints
and integrity constraints, most existing data repairing tech-

Exact
Heuristic

LP+transform
SCREEN

 0

 0.2

 0.4

 0.6

 0.8

 1

10 15 20 25 30 35 40 45 50

A
cc

ur
ac

y

Window size

(a)

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 10 15 20 25 30 35 40 45 50

Ti
m

e
co

st
 (s

)

Window size

(b)

Fig. 23 Repairing values (rather than timestamps) with various sliding
windows sizes over the streaming IoT dataset

niques (such as [9] based on functional dependencies) are
not directly applicable to repairing timestamps.

Holistic repair [13] can support repairing w.r.t. temporal
constraints, by expressing them as denial constraints [12]. It
greedily modifies values (timestamps) to eliminate the cur-
rently observed violations. This greedy modification may
introduce new violations to other data points, and thus evokes
multiple rounds of repairing. Moreover, the greedy repair
could be trapped in local optima, and cannot eliminate all
the violations. It is worth noting that assigning fresh vari-
ables outside the currently known timestamp domain does
not help in eliminating violations of temporal constraints.

To the best of our knowledge, the only existing work ded-
icated to repairing timestamps is [22]. Unlike the holistic
cleaning in a constraint-based approach, the repairing in [22]
consists of two steps: (1) repairing the order of data points
(since the imprecise timestamps may lead to out-of-order
arrival), and (2) then adapting the timestamps. It is worth
noting that if an erroneous order of data points is returned
in the first step, the timestamps would never be repaired cor-
rectly.

Instead of repairing the imprecise timestamps, Zhang et
al. [28] handle the imprecise timestamps in a different set-
ting. A range of possible timestamps is assumed to be given
for each event, together with a probabilistic distribution of
the possible timestamps. The study [28] thus focuses on per-
forming analyses directly over the uncertain timestamps. In
our scenario, we do not have such a given range and distri-
bution of possible timestamps. In this sense, our proposal of
timestamp repairs is not directly comparable to [28].

10 Conclusion

This study proposes to repair timestamps that do not con-
form to temporal constraints. The timestamp repairing is
manipulated under the minimum change principle, widely
considered in data repairing [9]. Tofind the optimalminimum
repair over the various combinations of possible timestamps,
we notice that any optimal repair solution can be transformed
to a special form, such that each changed node (in repairing)
is connected to some unchanged one via a tight/provenance
chain (Corollary 5). A finite set of promising candidates are
thus generated upon the chains and unchanged timestamps,
where an optimal repair can always be found (Proposition 7).
We devise (1) an exact algorithm for computing the optimal
repair from the generated candidates, (2) a heuristic approx-
imation by greedily selecting repairs from the candidates,
(3) a solution indexing scheme for reusing the solutions of
problems, (4) the extension to streaming repairing, and (5)
a LP relaxation with rounding by solution transformation.
Extensive experiments over real datasets demonstrate that our
exact method has the highest repair accuracy compared to the

123

444 S. Song et al.

state-of-the-art approaches as well as the proposed approxi-
mation methods. The simple heuristic approximation shows
lower time costs than the exact approach, but still needs the
costly candidate generation. The LP+transform approxima-
tion without candidate generation is thus more efficient than
the heuristic approach while still having comparable repair
accuracy.

While the temporal constraints in the form ofminimal net-
works are prevalent and can capture many realistic scenarios,
additional (more complicated) temporal constraints could
also be declared. For example, event patterns in complex
event processing [15] may be used as temporal constraints as
well. The sequential semantics in event patterns, i.e., an event
occurs after another with time difference at least a but within
b, is exactly the temporal constraints in the form of minimal
networks considered in this paper. In addition to the pairwise
constraints on two events, the event patterns could further
declare the constraints on multiple events, i.e., several events
could occur in any order but their time differences should
be at least a but no greater than b. Note that with minimal
networks on event pairs, the timestamp repairing problem is
already hard (Theorem 1). Given the more complicated tem-
poral constraints on multiple events, the cleaning is highly
nontrivial. We leave this problem as future work.

Acknowledgements Thiswork is supported in part by theNational Key
Research andDevelopment Plan (2019YFB1705301), theNationalNat-
ural Science Foundation of China (62072265, 61572272, 71690231),
and the MIIT High Quality Development Program 2020.

A Proofs

A.1 Proof of Theorem 1

To prove the np-hardness of the repairing problem, we build
a reduction from the 3-coloring problem, which is known to
be np-complete [21]. Given a connected graph G = (V , E),
the 3-coloring problem is to determine whether there is a way
of coloring the vertices in graph G such that no two adjacent
vertices are of the same color, using atmost 3 different colors.

Each vertex vi ∈ V corresponds to a variable Xi . Its
assigned color C(vi) maps to the assignment of Xi . Let
D = {1, 2, 3, 6} be the timestamp domain, where the val-
ues 1, 2 and 3 stand for the three admissible colors in the
coloring problem, and the value 6 is for the initial assign-
ment. That is, we set xi = 6 for all i at the beginning. For
each edge (vi , v j) ∈ E , we associate a constraint Si j with
multiple intervals {[-2,-2], [-1,-1], [1,1], [2,2]}. It restricts
Xi and X j to have different values, i.e., restricting the two
adjacent vertices vi and v j to have different colors.

We show in the following that the tuple x of assignment
has a repair x ′ with cost Δ(x, x ′) ≥ 3n that satisfies all the
constraints iff the graph G is 3-colorable.

First, let C be a feasible 3-coloring solution. For each
edge (vi , v j) ∈ E , recall that vi and v j should not be the
same color, and C(vi),C(v j) ∈ {1, 2, 3}, which stand for
the three admissible colors. We consider a repair x ′

i = C(vi)

for all i . The difference betweenC(vi) andC(v j), i.e., x ′
i−x ′

j
(or x ′

j −x ′
i) will always satisfy the constraint {[-2,-2], [-1,-1],

[1,1], [2,2]}. That is, we get a repair x ′ with cost Δ(x, x ′) ≥
3n that satisfies all the temporary constraints.

Conversely, suppose that there exists a feasible repair x ′
with cost Δ(x, x ′) ≥ 3n. Apparently, we have x ′

i 	= 6 for
all i , since any x ′

i = 6 will definitely violate the constraints.
For each edge (vi , v j) ∈ E , since x ′

i − x ′
j 	= 0 and x ′

i , x
′
j

can only take values from {1, 2, 3}, the two adjacent vertices
vi and v j do not share the same color. Thereby, we have a
proper 3-coloring solution C(vi) = x ′

i for graph G.

A.2 Proof of Proposition 2

To prove this proposition, we consider two aspects:
First, Δ(x, x ′′) ≤ Δ(x, x ′) is ensured. By decreasing the

assignment for |Np| ≥ |Nq | (and similarly, increasing for
|Np| < |Nq |), the repairing cost is non-increasing in each
step, as illustrated in Eq. (2).

Second, by moving changed nodes to Nu , the conclu-
sion is proved. In particular, a node i is added into Nm if
there is a tight edge i → j or j → i for some j ∈ Nm .
Moreover, nodes in Nm are moved to Nu , if either they are
connected to some node in Nu or some node in Nm itself
become unchanged.

A.3 Proof of Proposition 3

To illustrate the correctness of Algorithm 1, we consider the
following aspects.

First, x ′′ is a feasible solution. The bound η ensures that
each being modified assignment will not exceed the con-
straints specified by d jk in Eq. (3) or equivalently Lines 24
and 28 in Algorithm 1.

Second, Δ(x, x ′′) ≤ Δ(x, x ′) is ensured. By decreasing
the assignment for |Np| ≥ |Nq | (and similarly, increasing
for |Np| < |Nq |), the repairing cost is non-increasing in
each step, as illustrated in Eq. (2).

Third, the connectivity w.r.t. tight chain is obvious by
seeing that nodes in Nm are connected by tight edges. In
particular, a node i is added into Nm if there is a tight edge
i → j or j → i for some j ∈ Nm , according to Line 13.
Moreover, nodes in Nm are moved to Nu , if either they are
connected to some node in Nu (Line 16) or some node in Nm

itself become unchanged (Line 19).

123

Cleaning timestamps with temporal constraints 445

Finally, to show the termination of the algorithm, we can
see that after each step of modification (Lines 23–30), either
some node become unchanged by variation θ (with at least
one node moved to Nu) or some node reaches the bound by
variation η. For the latter case, at least one node is moved
from Nv to Nm or from Nm to Nu .

A.4 Proof of Lemma 4

Solely reducing x∗
i without modifying the corresponding x∗

j
is forbidden. Otherwise, it leads to another solution with
lower repairing cost, which is contradictory to the optimality
of x∗ with the minimum repairing cost. In other words, there
must exist some j such that x∗

j − x∗
i = di j .

A.5 Proof of Corollary 5

Referring to Proposition 3, the conclusion is obvious by con-
ducting Transform(M, x, x ′) for any optimal solution x ′. It
returns another optimal solution x∗ with the same optimal
repairing cost and connecting changed nodes to unchanged
ones via tight edges (chains).

A.6 Proof of Lemma 6

Since edges i → j and j → k are tight, we have x ′
k − x ′

i =
di j + d jk . Referring to the temporal constraints, it follows
di j +d jk = x ′

k − x ′
i ≤ dik . According to the shortest paths in

defining the minimal network M , we have dik ≤ di j + d jk .

The conclusion is a direct consequence.

A.7 Proof of Proposition 7

For any tight edges, ky−1 → ky, ky → ky+1, in a tight
chain that makes it not a provenance chain, according to the
transitivity in Lemma 6, theremust exist a tight edge ky−1 →
ky+1. In other words, the node ky can be removed from the
tight chain.

Similar conclusion applies to the case of ky−1 ←
ky, ky ← ky+1. By removing all the aforesaid ky , the chain
becomes a provenance chain.

A.8 Proof of Proposition 8

We prune the unused temporal constraints by comparing all
the pairs of candidates across two nodes,where themaximum
size of candidates of a node is a. Comparing all the pairs
of candidates across two nodes needs O(a2) comparisons,
and we have n2 node pairs, so the whole time complexity is
O(a2n2).

A.9 Proof of Proposition 9

Referring to the branch and bound computation, the repairing
procedure at most try all the combinations of the candidates
of n nodes, where the maximum size of candidates of a node
is a. The time complexity of Algorithm 4 is O(an).

A.10 Proof of Proposition 10

First, given Ti ⊆ T̃i ,∀i , it is obvious to see that all the solu-
tions of subproblem 〈x, T 〉 are also the solutions of 〈x̃, T̃ 〉.
On the other hand, x̃ ′

i ∈ Ti ,∀i , indicates that x̃ ′ is a solu-
tion of 〈x, T 〉 as well. If there exists another solution x∗ with
lower cost for 〈x, T 〉, it contradicts the optimality of x̃ ′ to
〈x̃, T̃ 〉.

A.11 Proof of Lemma 11

The correctness is easy to see according to the candidate
prune rule (2) in Sect. 5.1.2. It eliminates all the candidates
in violation to Ti = {ti }, i.e., all the t j ∈ Tj such that (ti , t j) �

Mi j .

A.12 Proof of Proposition 12

Assume that x ′ is not an optimal solution of 〈x, T 〉, i.e., exists
a x∗ with Δ(x, x∗) < Δ(x, x ′). According to Eq. (8), for
any safe Ti ∈ T , x ′

i is the one with the lowest cost, i.e.,
|x∗

i − xi | ≥ |x ′
i − xi |. Since x ′ is not optimal, there must

exists a non-safe Tj such that |x∗
j − x j | < |x ′

j − x j |.
We construct a x̃ ′′ for 〈x̃, T̃ 〉, where x̃ ′′

i = x̃ ′
i if Ti is safe;

otherwise, x̃ ′′
j = x∗

j for non-safe Tj . The safe-subproblem

definition requires T̃i to be safe for each safe Ti , i.e., x̃ ′′ forms
a feasible solution. It followsΔ(x̃, x̃ ′′) < Δ(x̃, x̃ ′), referring
to |x̃ ′′

j − x̃ j | = |x∗
j − x j | < |x ′

j − x j | = |x̃ ′
j − x̃ j | for some

non-safe Tj . In other words, x̃ ′′ is a solution of 〈x̃, T̃ 〉 with
cost lower than x̃ ′, which is a contradiction.

A.13 Proof of Proposition 13

First, as illustrated in Lines 4–10 in Algorithm 1, when
moving a node i from Nv to Nm , we check whether it
will introduce violations to the existing nodes in Nv ∪
Nu w.r.t. temporal constraints M . That is, a modifica-
tion is made on x ′

i to ensure its αi ≤ 0 and βi ≤ 0,
where αi = maxk∈Nv∪Nu ,dik∈M x ′

k − x ′
i − dik and βi =

maxk∈Nv∪Nu ,dki∈M x ′
i − x ′

k − dki . Similarly, Line 14 guar-
antees no violation when moving node i from Nv to Nm .

Moreover, as presented in the proof of Proposition 3, with
the bound η, the modification in Lines 24 and 28 will not
introduce violations to the temporal constraints M either. To
sum up, Algorithm 1 always returns a feasible solution that

123

446 S. Song et al.

satisfies the temporal constraints M , no matter whether the
input x ′ has violation or not.

References

1. http://ampds.org/
2. http://db.csail.mit.edu/labdata/labdata.html
3. http://iot.ee.surrey.ac.uk:8080/datasets.html
4. https://archive.ics.uci.edu/ml/datasets/

gas+sensors+for+home+activity+monitoring
5. https://github.com/rui-hrh/timestamp
6. https://physionet.org/data/
7. Barga, R.S., Goldstein, J., Ali, M.H., Hong,M.: Consistent stream-

ing through time: a vision for event stream processing. In: CIDR
2007, Third Biennial Conference on Innovative Data Systems
Research, Asilomar, CA, USA, 7–10 Jan 2007, Online Proceed-
ings, pp. 363–374 (2007)

8. Bentley, J.L.: Multidimensional binary search trees used for asso-
ciative searching. Commun. ACM 18(9), 509–517 (1975)

9. Bohannon, P., Flaster, M., Fan, W., Rastogi, R.: A cost-based
model and effective heuristic for repairing constraints by value
modification. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, Baltimore, Maryland, USA,
14–16 June 2005, pp. 143–154 (2005)

10. Cheng, D., Bahadori, M.T., Liu, Y.: FBLG: a simple and effective
approach for temporal dependence discovery from time series data.
In: Macskassy, S.A., Perlich, C., Leskovec, J., Wang, W., Ghani,
R. (eds.) The 20th ACM SIGKDD International Conference on
Knowledge Discovery and DataMining, KDD ’14, NewYork, NY,
USA, 24–27 Aug 2014, pp. 382–391. ACM (2014)

11. Chomicki, J., Marcinkowski, J.: On the computational complexity
of minimal-change integrity maintenance in relational databases.
In: Inconsistency Tolerance [Result from a Dagstuhl Seminar], pp.
119–150 (2005)

12. Chu, X., Ilyas, I.F., Papotti, P.: Discovering denial constraints.
PVLDB 6(13), 1498–1509 (2013)

13. Chu, X., Ilyas, I.F., Papotti, P.: Holistic data cleaning: putting viola-
tions into context. In: 29th IEEE International Conference on Data
Engineering, ICDE 2013, Brisbane, Australia, 8–12 April 2013,
pp. 458–469 (2013)

14. Dechter, R.,Meiri, I., Pearl, J.: Temporal constraint networks.Artif.
Intell. 49(1–3), 61–95 (1991)

15. Ding, L., Chen, S., Rundensteiner, E.A., Tatemura, J., Hsiung,
W., Candan, K.S.: Runtime semantic query optimization for event
stream processing. In: Proceedings of the 24th International Con-
ference on Data Engineering, ICDE 2008, 7–12 April 2008,
Cancún, Mexico, pp. 676–685 (2008)

16. Duan, L., Pang, T., Nummenmaa, J., Zuo, J., Zhang, P., Tang,
C.: Bus-OLAP: a data management model for non-on-time events
query over bus journey data. Data Sci. Eng. 3(1), 52–67 (2018)

17. Dyreson, C.E., Snodgrass, R.T.: Supporting valid-time indetermi-
nacy. ACM Trans. Database Syst. 23(1), 1–57 (1998)

18. Fan, W.: Dependencies revisited for improving data quality. In:
Proceedings of the Twenty-Seventh ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS
2008, 9–11 June 2008, Vancouver, BC, Canada, pp. 159–170
(2008)

19. Fan, W.: Constraint-driven database repair, 2nd edn. In: Encyclo-
pedia of Database Systems (2018)

20. Jin, T., Wang, J., Wen, L.: Efficiently querying business process
models with beehivez. In: Proceedings of the Demo Track of
the Ninth Conference on Business Process Management 2011,
Clermont-Ferrand, France, August 31st, 2011 (2011)

21. Karp, R.M.: Reducibility among combinatorial problems. In:
Proceedings of a symposiumon theComplexity of Computer Com-
putations, Held 20–22 March 1972, at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York, USA, pp. 85–103
(1972)

22. Rogge-Solti, A., Mans, R., van der Aalst, W.M.P., Weske, M.:
Improving documentation by repairing event logs. In: The Practice
of Enterprise Modeling—6th IFIP WG 8.1 Working Conference,
PoEM 2013, Riga, Latvia, 6–7 Nov 2013, Proceedings, pp. 129–
144 (2013)

23. Song, S., Cao, Y., Wang, J.: Cleaning timestamps with temporal
constraints. PVLDB 9(10), 708–719 (2016)

24. Song, S., Zhang, A., Wang, J., Yu, P.S.: SCREEN: stream data
cleaning under speed constraints. In: Proceedings of the 2015ACM
SIGMOD International Conference on Management of Data, Mel-
bourne, Victoria, Australia, May 31–June 4, 2015, pp. 827–841
(2015)

25. Sun, P., Liu, Z., Davidson, S.B., Chen, Y.: Detecting and resolv-
ing unsound workflow views for correct provenance analysis. In:
Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2009, Providence, Rhode Island,
USA, June 29–July 2, 2009, pp. 549–562 (2009)

26. Tang, L., Li, T., Shwartz, L.: Discovering lag intervals for temporal
dependencies. In: The 18th ACM SIGKDD International Confer-
ence onKnowledgeDiscovery andDataMining,KDD’12,Beijing,
China, 12–16 Aug 2012, pp. 633–641 (2012)

27. Yakout, M., Berti-Équille, L., Elmagarmid, A.K.: Don’t be scared:
use scalable automatic repairing with maximal likelihood and
bounded changes. In: Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD 2013, New
York, NY, USA, 22–27 June 2013, pp. 553–564 (2013)

28. Zhang, H., Diao, Y., Immerman, N.: Recognizing patterns in
streams with imprecise timestamps. PVLDB 3(1), 244–255 (2010)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://ampds.org/
http://db.csail.mit.edu/labdata/labdata.html
http://iot.ee.surrey.ac.uk:8080/datasets.html
https://archive.ics.uci.edu/ml/datasets/gas+sensors+for +home+activity+monitoring
https://archive.ics.uci.edu/ml/datasets/gas+sensors+for +home+activity+monitoring
https://github.com/rui-hrh/timestamp
https://physionet.org/data/

	Cleaning timestamps with temporal constraints
	Abstract
	1 Introduction
	1.1 Temporal constraints
	1.2 Timestamp repairing
	1.3 Contributions
	2 Preliminaries
	2.1 Temporal constraints
	2.2 Repair model

	3 Solution transformation
	3.1 Tightly connected nodes
	3.2 Transformation without increasing cost
	3.3 Transformation algorithm

	4 Candidate generation
	4.1 Candidates from tight chains
	4.2 Towards more concise candidates
	4.3 Candidate generation algorithm

	5 Exact algorithm
	5.1 Repair algorithm
	5.1.1 Branch and bound
	5.1.2 Candidate pruning during repairing
	5.1.3 Repairing with pruning

	5.2 Indexing optimal solutions
	5.2.1 Index on optimal solutions for subproblems
	5.2.2 Enhance reuseability
	5.2.3 Repairing with index and pruning

	5.3 Putting techniques together
	5.3.1 Consolidated repairing procedure
	5.3.2 Components of temporal constraints

	5.4 Running examples
	5.4.1 Temporal constraints
	5.4.2 Solution transformation
	5.4.3 Candidate generation
	5.4.4 Repairing with pruning
	5.4.5 Indexing optimal solutions

	6 Approximate algorithm
	6.1 Simple heuristic repair
	6.2 Linear programming approximation
	6.2.1 Linear programming relaxation
	6.2.2 Rounding by transformation

	7 Streaming algorithm
	8 Experiment
	8.1 Evaluation on candidate generation
	8.2 Efficiency of proposed techniques
	8.3 Evaluation on indexing solutions
	8.4 Evaluation on cost functions
	8.5 Evaluation on various error cases
	8.6 Comparison to existing methods
	8.7 Evaluation in streaming setting
	8.8 Applicability beyond timestamps

	9 Previous work
	10 Conclusion
	Acknowledgements
	A Proofs
	A.1 Proof of Theorem 1
	A.2 Proof of Proposition 2
	A.3 Proof of Proposition 3
	A.4 Proof of Lemma 4
	A.5 Proof of Corollary 5
	A.6 Proof of Lemma 6
	A.7 Proof of Proposition 7
	A.8 Proof of Proposition 8
	A.9 Proof of Proposition 9
	A.10 Proof of Proposition 10
	A.11 Proof of Lemma 11
	A.12 Proof of Proposition 12
	A.13 Proof of Proposition 13
	References

