
10

Stream Data Cleaning under Speed and Acceleration

Constraints

SHAOXU SONG and FEI GAO, Tsinghua University, China

AOQIAN ZHANG, Beijing Institute of Technology, China

JIANMIN WANG, Tsinghua University, China

PHILIP S. YU, University of Illinois at Chicago, USA

Stream data are often dirty, for example, owing to unreliable sensor reading or erroneous extraction of stock

prices. Most stream data cleaning approaches employ a smoothing filter, which may seriously alter the data

without preserving the original information. We argue that the cleaning should avoid changing those origi-

nally correct/clean data, a.k.a. the minimum modification rule in data cleaning. To capture the knowledge

about what is clean, we consider the (widely existing) constraints on the speed and acceleration of data

changes, such as fuel consumption per hour, daily limit of stock prices, or the top speed and acceleration

of a car. Guided by these semantic constraints, in this article, we propose the constraint-based approach for

cleaning stream data. It is notable that existing data repair techniques clean (a sequence of) data as a whole

and fail to support stream computation. To this end, we have to relax the global optimum over the entire se-

quence to the local optimum in a window. Rather than the commonly observed NP-hardness of general data

repairing problems, our major contributions include (1) polynomial time algorithm for global optimum, (2)

linear time algorithm towards local optimum under an efficient median-based solution, and (3) experiments on

real datasets demonstrate that our method can show significantly lower L1 error than the existing approaches

such as smoother.

CCS Concepts: • Information systems→ Data cleaning;

Additional Key Words and Phrases: Data repairing, speed constraints, acceleration constraints

ACM Reference format:

Shaoxu Song, Fei Gao, Aoqian Zhang, Jianmin Wang, and Philip S. Yu. 2021. Stream Data Cleaning under

Speed and Acceleration Constraints. ACM Trans. Database Syst. 46, 3, Article 10 (September 2021), 44 pages.

https://doi.org/10.1145/3465740

This work is supported in part by the National Key Research and Development Plan (2019YFB1705301, 2019YFB1707001),

the National Natural Science Foundation of China (62072265, 71690231), the MIIT High Quality Development Program

2020, NSF under grants III-1763325, III-1909323, and SaTC-1930941.

Authors’ addresses: S. Song, F. Gao, and J. Wang, Tsinghua University, Beijing Key Laboratory for Industrial Bigdata

System and Application, School of Software, Tsinghua University, Beijing, China; emails: sxsong@tsinghua.edu.cn, gao-

f16@mails.tsinghua.edu.cn, jimwang@tsinghua.edu.cn; A. Zhang, Beijing Institute of Technology, Beijing, China; email:

aoqian.zhang@uwaterloo.ca; P. S. Yu, University of Illinois at Chicago, Chicago, USA; email: psyu@uic.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0362-5915/2021/09-ART10 $15.00

https://doi.org/10.1145/3465740

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

https://doi.org/10.1145/3465740
mailto:permissions@acm.org
https://doi.org/10.1145/3465740

10:2 S. Song et al.

1 INTRODUCTION

Dirty values commonly exist in data streams, for example, in traditional sensor data, due to the
unreliable readers [19]. A large amount of inconsistent data is surprisingly observed in the domains
of stock and flight [22]. According to the study, the accuracy of stock in Yahoo! Finance is 0.93,
and the flight data accuracy in Travelocity is 0.95. Reasons for imprecise values include ambiguity
in information extraction, unit error or pure mistake. For instance, the price of SALVEPAR (SY)
is misused as the price of SYBASE, which is denoted by SY as well in some sources. (See more
examples of data errors in the following.) Such inaccurate values, e.g., taken as the 52-week low
price, may seriously mislead business investment.

A temporal smoothing filter, such as exponentially weighted moving average (EWMA) [14],
may modify almost all the data values, most of which are originally correct/clean. It thus seriously
damages the precision of individual data points (such as daily stock prices). Indeed, to preserve the
original clean information as much as possible, the minimum modification rule is widely considered
in improving data quality [5].

To capture the knowledge about what is clean, we notice that the “jump” of values in a stream
is often constrained, so-called speed constraints and acceleration constraints. For the example of
speed constraints, in financial and commodity markets, prices are only permitted to rise or fall by
a certain number of ticks per trading session. In environment monitoring, temperature difference
of any two days in a week should not be greater than 20 degrees. The fuel consumption of a
crane should not be negative and not exceed 40 liters per hour. Moreover, for the example of
acceleration constraints, we consider the trajectory of a van. The speed constraints state that the
GPS value change of two points should not exceed 100 km/h, while the acceleration constraints
further require that the difference on speeds between two consecutive points in a second is no
greater than 10 km/h. That is, the increase/decrease of speeds in a second cannot be greater than 10
km/h. We believe that with these meaningful constraints on value change speed and acceleration,
the cleaning could be more accurate.

Example 1.1. Consider the prices of a stock in 32 trading days, in Figure 1. As illustrated, large
spikes appear in the dirty data (in black), e.g., in day 15, owing to ambiguity in information extrac-
tion as discussed or pure mistake. It may also be raised by temporary loss of data (days 23 to 26)
and the subsequent coding of these missing values as zero by the data collection system.

The smoother method (in orange) modifies almost all the price values, most of which are indeed
accurate. Without preserving the original clean price of each day, the modified data values become
useless. It is obviously not the best way for cleaning the stream data.

The speed constraints derived from price limit1 state that the price difference of two consecutive
trading days should not be greater than 0.15. The maximum speed smax = 0.15 specifies that the
increase amount is no larger than 0.15 in a single trading day from the previous day’s settlement
price. The minimum speed smin = −0.15 indicates that the decrease should be within 0.5. More-
over, the acceleration constraints can also be obtained, e.g., discovered from data.2 The maximum
acceleration amax = 0.1 indicates that the increase of speed should be within 0.1, and the minimum
acceleration amin = −0.1 means that the decrease of speed should be no faster than 0.1.

With speed and acceleration constraints, the imprecise value of day 15 can be detected. It obvi-
ously increases too much from the price of the previous day 14. As shown, the speed constraint-
based repair preserves more originally clean price values (in blue). Moreover, with both speed and
acceleration constraints, since more constraints are utilized, the corresponding repair (in red) is

1In some markets, the price limit is specified by a certain percentage.
2See Section 5.3 for obtaining the max/min speeds and accelerations on price limit.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

Stream Data Cleaning under Speed and Acceleration Constraints 10:3

Fig. 1. Smoothing filter seriously alters the original correct data, while the minimum repair under speed

(and acceleration) constraints aim to preserve the original information as much as possible.

more accurate than considering the speed constraints solely. In Figure 1, only one point in day
27 is erroneously modified, which is indeed correct. The point in day 28 keeps unchanged when
given both speed and acceleration constraints. Such a point, however, is erroneously modified
when given only speed constraints.

1.1 Challenges

Unlike the existing techniques on smoothing time series [14], we propose to minimally modify the
data values such that the declared speed and acceleration constraints are satisfied. This constraint-
based cleaning, however, is non-trivial and challenging especially in the following aspects:

(1) Soundness. Owing to the inherent hardness of general data repair problems, a greedy strategy
is employed in the existing repair [8]. It modifies values to eliminate currently observed violations
(w.r.t. the given constraints) in each round, which may introduce new violations to other data
points, and thus evokes another round of repairing. In particular, the greedy repair could be trapped
in local optima, and thus cannot eliminate all the violations. In other words, the soundness w.r.t.
satisfaction of (speed and acceleration) constraints is not guaranteed.

(2) Online Computing. Typically, data repair techniques consider a global optimization function
on modifying the entire data [5]. It has to first collect all the data, and then repair them as a whole.
Online cleaning on the streaming data is not supported. To enable streaming computation, we have
to decompose the global optimum into a list of local optimums on each data point, respectively.
Integral cleaning can thus be applied by incrementally computing the local optimal repair on every
data point of the sequence in turn.

1.2 Contributions

The preliminary conference version of this article [32] focuses on cleaning the dirty stream data
under speed constraints. In this study, along with the speed constraints, we further consider the
constraints on acceleration of value changes. A linear time, constant space cleaning approach is
presented under both the speed and acceleration constraints. Our main contributions are summa-
rized as follows:

(1) We formalize the repair problem under both the speed and acceleration constraints (in
Section 2). By considering the entire sequence as a whole, the monolithic cleaning finds a repaired
sequence that minimally differs from the input. Unlike NP-hardness of general data repair

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

10:4 S. Song et al.

problems [21, 25], we show that stream data cleaning under speed and acceleration constraints
can be modeled as a linear programming problem, i.e., polynomial time solvable.

(2) We devise an online cleaning algorithm (in Section 3). To support integral cleaning (i.e.,
incrementally repair one data point a time in the sequence rather than monolithic cleaning as a
whole), we relax the global optimum over the entire sequence to the local optimum in a window.
The main idea is to locally compute a data point repair, which is minimal w.r.t. the upcoming data
points in a window and also compatible with the previously repaired data points. In particular,
to efficiently compute the local optimum, we propose a novel median-based solution, following
the intuition that a solution with the minimum distance (i.e., as close as possible to each point)
probably lies in the middle of the data point candidates. It is notable that soundness w.r.t. speed
and acceleration constraints satisfaction is guaranteed in the devised algorithm.

(3) Experiments on real data (in Section 5) demonstrate that our proposal achieves significantly
lower L1 error than the existing smoother method [14]. Moreover, compared to the state-of-the-
art data repair method [8], the proposed method with local optimum shows up to two orders of
magnitude improvement in time costs and much lower L1 error. In addition to evaluating directly
the repair performance with synthetic and real-world errors, we further investigate the classifica-
tion accuracy over the data without/with cleaning. A method improving most the classification
accuracy indicates that its repairing is more effective.

1.3 Extensions with Acceleration Constraints

The versions of Proposition 3.1, Proposition 3.3, Lemma 3.4, Proposition 3.5, and Proposition 3.6
appear in Reference [32] for only speed constraints. All the proofs are given in the journal version
for the first time. The Local Algorithm 1 is also extended where the returned repair satisfies both
the given speed and acceleration constraints. Proposition 3.8 analyzes the correctness of Algo-
rithm 1 w.r.t. the definition of Problem 2. Moreover, in Section 3.3.2, we present a method of online
determining dynamic constraints such that the repairing could adapt to the constraint changes in
a streaming setting.

The extensions on the proofs w.r.t. acceleration constraints are significant and heavy. (1) In the
proof of Proposition 3.1, we show that considering the latest point is sufficient to determine the
candidate range. While the case of speed constraint is straightforward using the first two formulas,
the proof for acceleration constraints is more complicated, taking almost one page, starting from
page 10. (2) In the proof of Proposition 3.3, we illustrate that the optimal solution of other points
xi in a window could be derived from the current xk not only for speeds (Formulas 23 and 24) and
accelerations (Formulas 25 and 26) individually, but also for the case with both speed and acceler-
ations (Formulas 27 and 28). (3) In the proof of Lemma 3.4, we prove that an optimal solution can
always be found from the defined set of candidates. When given speed or acceleration constraints
only, as illustrated by dot or solid lines in Figure 9, the candidate suggested by cj+1 is always
larger the corresponding candidate by cj . However, if both speed and acceleration constraints are
specified, then the candidates by cj+1 and cj interact with each other. The problem of whether an
optimal solution can be found from the candidates is still open. (4) In the proof of Proposition 3.5,
we illustrate the monotonicity of repair costs w.r.t. the corresponding repair values. Similar to the
proof of Lemma 3.4, when given speed or acceleration constraints only, the monotonicity can be
proved by considering the three cases presented in Figures 11. Again, if both speed and accelera-
tion constraints are specified, then the candidates w.r.t. speed and acceleration interact with each
other. The problem of whether the monotonicity still holds is an open problem.

Experiments are conducted over two more datasets, OliveOil and Trace, in addition to Stock and
GPS reported in the conference version [32].

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

Stream Data Cleaning under Speed and Acceleration Constraints 10:5

Table 1. Notations

Symbol Description

x sequence

x[i], xi value of the ith data point in x

t[i], ti timestamp of the ith data point in x

s speed constraints

a acceleration constraints

w window size of speed and acceleration constraints

n length of a finite sequence

x ′ repair of sequence x

Xi a set of candidates for x ′i

2 MONOLITHIC CLEANING

In this section, we consider all the data in a sequence as a whole, and perform the monolithic
repair towards a globally minimum repair distance. Table 1 lists the notations frequently used in
this article.

2.1 Preliminary

Consider a sequence x = x[1], x[2], . . . , where each x[i] is the value of the ith data point. Each
x[i] has a timestamp t[i]. For brevity, we write x[i] as xi , and t[i] as ti . By default, the sequence is
ordered by timestamp, i.e., for any i < j, we have ti < tj .

The speed constraints s = (smin, smax) with window size w specify the minimum speed smin and
maximum speed smax over the sequence x. Likewise, the acceleration constraints a = (amin, amax)
denote the minimum acceleration amin and maximum acceleration amax.

We say that a sequence x satisfies the speed constraints s, denoted by x � s, if for any xi , xj in a
window, i.e., ti < tj ≤ ti +w , the corresponding speed has

smin ≤
xj − xi

tj − ti

≤ smax. (1)

Similarly, a sequence x satisfies the acceleration constraints a, denoted by x � a, if for any xi , xj

in a window, i.e., ti < tj ≤ ti +w , the acceleration has

amin ≤
xj−xi

tj−ti
− xi−xi−1

ti−ti−1

tj − ti

≤ amax, (2)

where xi−1 and xi are in the same window as well, ti − w ≤ ti−1 < ti . Intuitively, the speed
constraints restrict the value changes (from xi to xj) over time, while the acceleration constraints

limit the speed changes (from xi−xi−1

ti−ti−1
to

xj−xi

tj−ti
) over time.

Intuitively, the acceleration constraint on a point xi is not defined symmetrically for several rea-
sons. (1) The considered sequence x is often with irregular time intervals. For example, in Figure 2,
we cannot find a point at time 4 to define symmetrically the acceleration of point x3 at time 3, given
point x2 at time 2. (2) The repair of xi is determined not only by the subsequent xi+1, symmetric
to xi−1, but also xi+2, xi+3, . . . in a window, as illustrated in Figure 7. (3) Symmetric definition w.r.t.
the index i is not always possible. For instance, again in Figure 2, we cannot find a point x0 to
define symmetrically the acceleration of x3, given the subsequent x6.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

10:6 S. Song et al.

Fig. 2. Possible repairs under speed and acceleration constraints, where red dot line denotes smax, red solid

line denotes amax, blue solid line means amin, and blue dot line means smin. The blue point is repaired by

Global (Speed+Acceleration), and red points are the repairs of Local (Speed+Acceleration).

The window w denotes a period of time. In real settings, speed and acceleration constraints are
often meaningful within a certain period. For example, it is reasonable to consider the maximum
walking speed in hours (rather than the speed between two arbitrary observations in different
years), since a person usually cannot keep on walking in his/her maximum speed for several years
without a break. In other words, it is sufficient to validate the speed (and acceleration) w.r.t. the

points xi , xj in a windoww = 24 hours, i.e., whether smin ≤
xj−xi

tj−ti
≤ smax (and amin ≤

xj −xi
tj −ti

− xi −xi−1
ti −ti−1

tj−ti
≤

amax) for ti < tj ≤ ti +w (and ti −w ≤ ti−1 < ti). In contrast, considering the speed and acceleration
w.r.t. two points in an extremely large period (e.g., two observation points in different years) is
meaningless and unnecessary. Similar examples include the speed constraints on stock price whose
daily limit is directly determined by the price of the last trading day, i.e., with window size 1.3

The speed constraints s and acceleration constraints a can be either positive (restricting increase)
or negative (on decrease). In practice, the speeds (e.g., running or driving) usually do not keep on
increasing or decreasing forever, i.e., amin ≤ 0 ≤ amax. In most scenarios, the speed and acceleration
constraints are natural, e.g., the fuel consumption of a crane should not be negative and not exceed
40 liters per hour, while some others could be derived. (See Section 5.3 for a discussion on obtaining
appropriate constraints.)

A repair x ′ of x is a modification of the values xi to x ′i where t ′i = ti . Referring to the minimum
modification rule in data repairing [5], the repair distance is evaluated by the difference between
the original x and the repaired x ′,

Δ(x, x ′) =
∑
xi ∈x

|xi − x ′i |. (3)

As illustrated in Formula 3, we use L1 norm to define the repair cost on value modification. The
reason is that the repairing problem formulated by L1 norm in Figure 3 below can thus be trans-
formed to a linear programming problem in Figure 4. Efficient algorithms apply. We time-align the
cleaned series x ′ with the dirty one x first before computing the distance. Note that we assume the
timestamp ti of each point xi to be clean in this study. Therefore, the repaired point x ′i naturally
aligns with the original xi referring to the index i . In other words, no lead and lag effects might
happen during cleaning. Nevertheless, it is an interesting topic to consider both dirty values and
dirty timestamps in the future study, where lead and lag effects need to be considered.

Example 2.1 (Constraints, Violations, and Repairs). Consider a sequence x = {0, 0.5, 2, 12, 10, 12}
of six data points, with timestamps t = {1, 2, 3, 5, 6, 7}. Figure 2 illustrates the data points (in black).

3The window size may be fixed, e.g., w = 1 for stock price daily limit.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

Stream Data Cleaning under Speed and Acceleration Constraints 10:7

Fig. 3. Global optimal repair.

Fig. 4. LP transformation.

Suppose that the speed constraints are smax = 5 and smin = −5, the acceleration constraints are
amax = 1 and amin = −1.

For a window size w = 2, data points x3 and x4, with timestamp distance 5− 3 ≤ 2 in a window,
satisfy the speed constraints but are identified as violations to amax = 1, i.e., the speed has −5 <
12−2
5−3 = 5 but the acceleration is

12−2
5−3 −

2−0.5
3−2

5−3 = 1.75 > 1. Similarly, x4 and x5 with speed −5 < 10−12
6−5 =

−2 < 5 but the acceleration
10−12
6−5 −

12−2
5−3

6−5 = −7 < −1 also violates amin = −1.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

10:8 S. Song et al.

To remedy the violation, a repair x ′ can be performed, i.e., x ′4 = 8 (the blue solid data point). As
illustrated in Figure 2, the repaired sequence satisfies both the speed and acceleration constraints.
The repair distance is Δ(x, x ′) = |12 − 8| = 4.

Note that if the window size is too small such as w = 1, then the violations between x3 and x4

could not be detected, since their timestamp distance is 2. However, if the window size is too large,
say w = 10, then all the pairs of data points in x have to be compared. Although the same repair
x ′ is obtained, the computation overhead is obviously higher (and unnecessary).

2.2 Global Optimum

The cleaning problem is to find a repaired sequence that satisfies the speed and acceleration con-
straints and minimally differs from the original sequence, called global optimum.

Problem 1. Given a finite sequence x of n data points, speed constraints s, and acceleration con-

straints a, the global optimal repair problem is to find a repair x ′ such that x ′ � s, x ′ � a and Δ(x, x ′)
is minimized.

A broad class of repair problems have been found to be NP-hard, for instance, repairing under
functional dependencies for categorized data [21], or repairing under denial constraints that sup-
ports numeric data [25]. It is not the case for repairing under speed and acceleration constraints.

The global optimal repair problem is formulated in Figure 3, where x ′i , 1 ≤ i ≤ n, are variables
in problem solving. The correctness of the result x ′ in the aforesaid problem is obvious. Formula 4
is exactly the repair distance in Formula 3 to minimize. The speed constraints in Formula 1 are
ensured in Formulas 5 and 6 by considering all the tj in the window starting from ti , for each data
point i in the sequence. And the acceleration constraints in Formula 2 are specified in Formulas 7
and 8 by considering all the tj in the window starting from ti , for each data point i in the sequence.

2.3 Transformation to LP

We transform the global optimal repair problem in Formula 4 to a linear programming (LP)

problem, so existing solvers can directly be employed.

Let ui =
|x′i−xi |+(x′i−xi)

2 and vi =
|x′i−xi |−(x′i−xi)

2 . We have |x ′i − xi | = ui + vi and x ′i − xi = ui − vi .
It follows the LP transformation in Figure 4, where ui , vi are variables in problem solving.

Example 2.2 (Global Optimum, Example 2.1 Continued). Consider again the sequence x in Ex-
ample 2.1, the speed constraints smax = 5, smin = −5, and the acceleration constraints amax = 1,
amin = −1 with window size w = 2, as illustrated in Figure 2.

According to Formulas 4 to 8, the constraint predicates declared w.r.t. smax = 5, smin = −5,
amax = 1, amin = −1 are

. . . ,
x ′4 − x ′3
5 − 3

≤ 5,

x′4−x′3
5−3 −

x′3−x′2
3−2

5 − 3
≤ 1, . . .

. . . ,
x ′4 − x ′3
5 − 3

≥ −5,

x′4−x′3
5−3 −

x′3−x′2
3−2

5 − 3
≥ −1. . . .

The corresponding transformation is as follows:

. . . ,
u4 − v4 + v3 − u3 − 2 + 12

5 − 3
≤ 5,

u4−v4+v3−u3−2+12
5−3 − u2−v2+v1−u1−0.5+2

3−2

5 − 3
≤ 1, . . .

. . . ,
u4 − v4 + v3 − u3 − 2 + 12

5 − 3
≥ −5,

u4−v4+v3−u3−2+12
5−3 − u2−v2+v1−u1−0.5+2

3−2

5 − 3
≥ −1, . . .

where . . . ,u4 =
|x′4−x4 |+(x′4−x4)

2 , v4 =
|x′4−x4 |−(x′4−x4)

2 ,

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

equation:global
equation:global-max
equation:global-min
equation:global-maxacc
equation:global-minacc
equation:global
equation:global
equation:global-minacc

Stream Data Cleaning under Speed and Acceleration Constraints 10:9

By solving the problem with these constraint predicates (using LP solvers), the global optimal
solution is exactly the repair x ′ in Example 2.1, with x ′4 = 8 and the minimum repair distance 4.

Referring to Karmarkar’s algorithm [20], it is sufficient to conclude that the global optimal repair
problem is polynomial time solvable.

Corollary 2.3. The global optimal repair can be computed in O (n3.5L) time, where n is the size

of sequence, and L is the number of bits of input.

3 INTEGRAL CLEANING

The global optimum considers the entire sequence as a whole and does not support online cleaning
over streaming data. To support integral repair w.r.t. the current short period in a stream, we study
the local optimum, which concerns only the constraints locally in a window. By sliding windows
in the sequence, the result of local optimum xlocal guarantees to satisfy the speed and acceleration
constraints in the entire sequence, i.e., also a feasible solution to the constraints in Formulas 5,
6, 7, and 8 of global optimum. Compared to the global optimum, the local optimum approach
can show significant improvement in time costs (about two orders of magnitude improvement in
Figures 17, 18, 19) but without introducing much worse L1 error.

In Section 3.1, we show that to determine the range of candidate values for a data point tk , it
is sufficient to consider the value of only the previous data point tk−1. Then, taking this candidate
range into account, we define the local optimum repair problem. Next, in Section 3.2, we prove
that an optimal solution can always be constructed w.r.t. the speed and acceleration constraints.
Finally, with the method for finding candidates set, we prove that the median of the candidates is
optimal given only speed or acceleration constraints.

3.1 Local Optimum

The integral cleaning algorithm iteratively determines the local optimal x ′
k

, for k ≥ 1. We assume

that data points come in-order, i.e., tj < ti for any j < i .4

3.1.1 Candidate Range. Consider xk , where x ′1, . . . , x
′
k−1

have been determined in the previous
steps. Referring to the speed constraints, each fixed x ′j , tk − w ≤ tj < tk , 1 ≤ j < k , indicates a

range of candidates for x ′
k

, i.e., [xmin
k, j,s
, xmax

k, j,s
], where

xmin
k, j,s = x ′j + smin (tk − tj), (10)

xmax
k, j,s = x ′j + smax (tk − tj). (11)

Likewise, for acceleration constraints, each fixed x ′j with tj −w ≤ tj−1 < tj also indicates a range

of candidates for x ′
k

, i.e., [xmin
k, j,a
, xmax

k, j,a
], where

xmin
k, j,a =

�
�amin (tk − tj) +

x ′j − x ′j−1

tj − tj−1

�
� (tk − tj) + x ′j , (12)

xmax
k, j,a =

�
�amax (tk − tj) +

x ′j − x ′j−1

tj − tj−1

�
� (tk − tj) + x ′j . (13)

4The handling of out-of-order arrival was introduced in the conference version [32]. In short, to handle an out-of-order

arrival xk , tk < tk−1, we reorder the sequence by timestamps, i.e., removing xk and inserting it as a new xl where

xl = xk , tl−1 < tl < tl+1, l < k . The updates introduced by xl include two aspects: (1) for x j , j < l , where xl suggests

candidates for determining x mid
j ; and (2) for xi , i > l , whose candidate range [x min

i , xmax
i] is influenced (directly or

indirectly) by x ′
l
.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

equation:global-max
equation:global-min
equation:global-maxacc
equation:global-minacc

10:10 S. Song et al.

To satisfy both speed and acceleration constraints, we define the joint range of candidates for x ′
k

,

[xmin
k, j
, xmax

k, j
], where

xmin
k, j = max

(
xmin

k, j,s , x
min
k, j,a

)
, (14)

xmax
k, j = min

(
xmax

k, j,s , x
max
k, j,a

)
. (15)

The following proposition states that considering the last x ′
k−1

is sufficient to determine the
candidate range of possible repairs for x ′

k
. The rationale is that for any 1 ≤ j < i < k , x ′i should

be in the range specified by x ′j as well. In other words, the candidate range of x ′
k

specified by x ′i is

subsumed in the range by x ′j .

Proposition 3.1. For any 1 ≤ j < i < k, tk − w ≤ tj < ti < tk , we have xmin
k, j
≤ xmin

k,i
, and

xmax
k,i
≤ xmax

k, j
.

Proof. The proposition can be iteratively proved by showing xmin
k, j
≤ xmin

k, j+1
and xmax

k, j+1
≤ xmax

k, j
,

where tk − w ≤ tj < tj+1 < tk , 1 ≤ j < k .

According to the definitions of xmin
k, j,s
, xmax

k, j,s
and xmin

k, j,a
, xmax

k, j,a
in Formulas 10 to 13, we can find

that

xmin
k, j,s − xmin

k, j+1,s = x ′j + smin (tj+1 − tj) − x ′j+1 ≤ 0,

xmax
k, j,s − xmax

k, j+1,s = x ′j + smax (tj+1 − tj) − x ′j+1 ≥ 0,

i.e., xmin
k, j,s
≤ xmin

k, j+1,s
and xmax

k, j,s
≥ xmax

k, j+1,s
. For acceleration, we have

xmin
k, j+1,a − xmin

k, j,a =
�
�amin (tk − tj+1) +

x ′j+1 − x ′j

tj+1 − tj

�
� (tk − tj+1) + x ′j+1−

�
�amin (tk − tj) +

x ′j − x ′j−1

tj − tj−1

�
� (tk − tj) − x ′j

= amin ((tk − tj+1)2 − (tk − tj)
2) + (tk − tj) ��

x ′j+1 − x ′j

tj+1 − tj

−
x ′j − x ′j−1

tj − tj−1

�
� .

The acceleration constraint implies
x′j+1−x′j
tj+1−tj

− x′j−x′j−1

tj−tj−1
≥ amin (tj+1 − tj). It follows

xmin
k, j+1,a − xmin

k, j,a ≥ amin ((tk − tj+1)2 − (tk − tj)
2 + (tk − tj) (tj+1 − tj))

= amin (tj+1 − tj) (tj+1 − tk) ≥ 0,

i.e., xmin
k, j,a

≤ xmin
k, j+1,a

. Similarly, we have

xmax
k, j+1,a − xmax

k, j,a =
�
�amax (tk − tj+1) +

x ′j+1 − x ′j

tj+1 − tj

�
� (tk − tj+1) + x ′j+1−

�
�amax (tk − tj) +

x ′j − x ′j−1

tj − tj−1

�
� (tk − tj) − x ′j

= amax ((tk − tj+1)2 − (tk − tj)
2) + (tk − tj) ��

x ′j+1 − x ′j

tj+1 − tj

−
x ′j − x ′j−1

tj − tj−1

�
� .

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

Stream Data Cleaning under Speed and Acceleration Constraints 10:11

Given the maximum acceleration constraint,
x′j+1−x′j
tj+1−tj

− x′j−x′j−1

tj−tj−1
≤ amax (tj+1 − tj)), it has

xmax
k, j+1,a − xmax

k, j,a ≤ amax ((tk − tj+1)2 − (tk − tj)
2 + (tk − tj) (tj+1 − tj))

= amax (tj+1 − tj) (tj+1 − tk) ≤ 0.

As a result, xmax
j,k,a

≥ xmax
j+1,k,a

. Consequently, with the definitions in Formulas 14 and 15, i.e.,

xmin
k, j = max

(
xmin

k, j,s , x
min
k, j,a

)
, xmax

k, j = min
(
xmax

k, j,s , x
max
k, j,a

)
,

xmin
k, j+1 = max

(
xmin

k, j+1,s , x
min
k, j+1,a

)
, xmax

k, j+1 = min
(
xmax

k, j+1,s , x
max
k, j+1,a

)
,

it is easy to find xmin
k, j
≤ xmin

k, j+1
and xmax

k, j
≥ xmax

k, j+1
. �

For instance, as illustrated in Figure 10, the candidate range of x ′
k

specified by x ′
k−2

,

[xmin
k,k−2
, xmax

k,k−2
], subsumes that by x ′

k−1
, [xmin

k,k−1
, xmax

k,k−1
]. Consequently, we can obtain a tight range

of repairing for x ′
k

by x ′
k−1

, i.e., [
xmin

k
, xmax

k

]
=

[
xmin

k,k−1, x
max
k,k−1

]
, (16)

where xmin
k
= xmin

k,k−1
and xmax

k
= xmax

k,k−1
as defined in Formulas 14 and 15, respectively (with

j = k − 1).
The repair problem thus becomes to find the local optimum x ′

k
in the range of [xmin

k
, xmax

k
].

3.1.2 Problem Definition of Local Optimum. We say that a data point xk locally satisfies the
speed constraints s, denoted by xk � s, if for any xi in the window starting from xk , i.e., tk < ti ≤
tk + w, it has smin ≤ xi−xk

ti−tk
≤ smax, referring to Formula 1.

Similarly, xk locally satisfies the acceleration constraints a, denoted by xk � a, if for any xi in

the window starting from xk , i.e., tk < ti ≤ tk + w, it has amin ≤
xi −xk
ti −tk

− xk −xk−1
tk −tk−1

ti−tk
≤ amax, where

tk −w ≤ tk−1 < tk , according to Formula 2.

Problem 2. Given a data point xk in a sequence x, speed constraints s, acceleration constraints

a, and a candidate range [xmin
k
,xmax

k
] for repairing xk , the local optimal repair problem is to find a

repair x ′ such that x ′
k

� s, x ′
k

� a, x ′
k
∈ [xmin

k
,xmax

k
] and Δ(x, x ′) is minimized.

Similar to the global optimum, we write the local optimal repair problem as in Figure 5, where
x ′i , k ≤ i ≤ n, are the variables in problem solving, and x ′

k−1
is a (previously repaired) value having

0 < tk − tk−1 ≤ w.
The local optimal repair in Formula 17 modifies only the data points i with tk ≤ ti ≤ tk + w in

the window of the current xk , i.e., much fewer variables. The constraints (in the window) are not
sacrificed.

Example 3.2 (Local Optimum). Consider again the sequence x = {0, 0.5, 2, 12, 10, 12} in Figure 2,
the speed constraints smax = 5, smin = −5 and the acceleration constraints amax = 1, amin = −1
with window size w = 2.

Let k = 4 be the currently considered data point. Referring to Formulas 18 to 21, the constraint
predicates declared w.r.t. smax = 5, smin = −5, amax = 1, amin = −1 are

x ′4 − x ′3
5 − 3

≤ 5,

x′4−x′3
5−3 −

x′3−x′2
3−2

5 − 3
≤ 1,

x ′4 − x ′3
5 − 3

≥ −5,

x′4−x′3
5−3 −

x′3−x′2
3−2

5 − 3
≥ −1.

The local optimal solution with the minimum distance is x ′4 = 9 (the red solid point at time 5).

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

equation:local
equation:local-speed-max-1
equation:local-acc-min

10:12 S. Song et al.

Fig. 5. Local optimal repair.

3.2 Median-based Solution

Intuitively, a solution with the minimum distance (i.e., as close as possible to each point) probably
lies in the middle of the data point candidates. We propose to efficiently search the local optimum
in the scope of such middle data points, namely, the median-based solution (in Proposition 3.6).
Following this median-based solution, we devise a linear time algorithm for computing the local
optimal repair, instead of O (n3.5L) by LP.

Before presenting the median-based solution, let us first show that computing the local optimum
w.r.t. xk is indeed equivalent to determine an optimal repair x ′

k
, where the solution of other x ′i (in

Formula 17) can be naturally derived.

3.2.1 Reformulating the Local Optimum Problem. We transform the local optimal repair prob-
lem in Formula 17 to a new form w.r.t. only one variable x ′

k
. The idea is to illustrate that there

always exists an optimal solution x ′, whose x ′i can be derived from x ′
k

.

For any tk < ti ≤ tk + w, 1 ≤ i ≤ n, let ymin
i,k,s

and ymax
i,k,s

denote the minimum and maximum

values of possible xi given x ′
k

referring to the speed constraints,

ymin
i,k,s = x ′k + smin (ti − tk), (23)

ymax
i,k,s = x ′k + smax (ti − tk). (24)

And similarly, ymin
i,k,a

and ymax
i,k,a

are the minimum and maximum values of possible xi given x ′
k

referring to the acceleration constraints,

ymin
i,k,a =

(
amin (ti − tk) +

x ′
k
− x ′

k−1

tk − tk−1

)
(ti − tk) + x ′k , (25)

ymax
i,k,a =

(
amax (ti − tk) +

x ′
k
− x ′

k−1

tk − tk−1

)
(ti − tk) + x ′k , (26)

where tk − w ≤ tk−1 < tk . Consequently,

ymax
i,k = min

(
ymax

i,k,s , y
max
i,k,a

)
, (27)

ymin
i,k = max

(
ymin

i,k,s , y
min
i,k,a

)
, (28)

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

equation:local
equation:local

Stream Data Cleaning under Speed and Acceleration Constraints 10:13

denote the maximum and minimum values of possible xi given x ′
k

referring to the speed and
acceleration constraints.

Proposition 3.3. Let x∗ be a local optimal solution w.r.t. xk . With an unlimited candidate range,

the following x ′ is also local optimal, with x ′
k
= x∗

k
, and

x ′i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ymax

i,k
, if xi > ymax

i,k

ymin
i,k
, if xi < ymin

i,k

xi , otherwise

(29)

where tk < ti ≤ tk + w, 1 ≤ i ≤ n.

Proof. We prove the correctness in two aspects.
First, x ′

k
� s and x ′

k
� a are satisfied. For any xi , tk < ti ≤ tk +w, according to Formulas 23 to 26,

we can find that

ymin
i,k,s
− x ′

k

ti − tk

= smin,

ymin
i,k,a

−x′
k

ti−tk
− x′

k
−x′

k−1

tk−tk−1

ti − tk

= amin,
ymax

i,k,s
− x ′

k

ti − tk

= smax,

ymax
i,k,a

−x′
k

ti−tk
− x′

k
−x′

k−1

tk−tk−1

ti − tk

= amax.

In addition, Formulas 28 and 27 lead to ymin
i,k
≥ ymin

i,k,s
, ymin

i,k
≥ ymin

i,k,a
and ymax

i,k
≤ ymax

i,k,s
, ymax

i,k
≤ ymax

i,k,s
.

It follows

ymin
i,k
− x ′

k

ti − tk

≥ smin,

ymin
i,k
−x′

k

ti−tk
− x′

k
−x′

k−1

tk−tk−1

ti − tk

≥ amin,
ymax

i,k
− x ′

k

ti − tk

≤ smax,

ymax
i,k
−x′

k

ti−tk
− x′

k
−x′

k−1

tk−tk−1

ti − tk

≤ amax.

Given smin ≤
x′

k
−x′

k−1

tk−tk−1
and amax ≥ 0, we have ymax

i,k,a
− ymin

i,k,s
= (amax (ti − tk) +

x′
k
−x′

k−1

tk−tk−1
− smin) (ti −

tk) ≥ 0, i.e., ymin
i,k,s

≤ ymax
i,k,a

. Similarly, with
x′

k
−x′

k−1

tk−tk−1
≤ smax and amin ≤ 0, we can also find that

ymin
i,k,a

≤ ymax
i,k,s

, since ymin
i,k,a

− ymax
k,i,s

= (amin (ti − tk) +
x′

k
−x′

k−1

tk−tk−1
− smax) (ti − tk) ≤ 0. It leads to

ymin
k,i
≤ ymax

i,k
referring to Formulas 28 and 27, having

smin ≤
ymin

i,k
− x ′

k

ti − tk

≤
ymax

i,k
− x ′

k

ti − tk

≤ smax, amin ≤
ymin

i,k
−x′

k

ti−tk
− x′

k
−x′

k−1

tk−tk−1

ti − tk

≤
ymax

i,k
−x′

k

ti−tk
− x′

k
−x′

k−1

tk−tk−1

ti − tk

≤ amax.

That is, the assignment of x ′i in Formula 29 satisfies the speed and acceleration constraints.
Second, Δ(x, x ′) is minimized. To illustrate the minimum repair distance, we consider three parts

of all data points, as indicated in Formula 29.
(1) For any xi in the window of tk < ti ≤ tk + w with xi > ymax

i,k
, e.g., as shown in Figure 6,

the assignment is x ′i = ymax
i,k

according to Formula 29, with distance |xi − x ′i | = xi − ymax
i,k

. Indeed,

referring to the derivations in the proof of the first aspect, the speed and acceleration constraints
require that possible repairs for xi must be in the range [ymin

i,k
, ymax

i,k
]. For any other repair x ′′i ,

ymin
i,k
≤ x ′′i ≤ ymax

i,k
, it is easy to see |xi − x ′′i | ≥ |xi − x ′i |. That is, x ′i in Formula 29 is minimized.

(2) Similarly, for xi < ymin
i,k

, we can show that x ′i = ymin
i,k

in Formula 29 has minimum distance.

(3) For xi having ymin
i,k
≤ xi ≤ ymax

i,k
, the unchanged assignment x ′i = xi already has the minimum

distance 0.
To sum up, since each assignment of x ′i in Formula 29 is minimized w.r.t. the fixed x ′

k
= x∗

k
, we

have Δ(x, x ′) ≤ Δ(x, x∗). Given the local optimum x∗, it is sufficient to conclude that x ′ is also
local optimal with the minimum distance Δ(x, x ′). �

Formula 29 constructs an optimal solution x ′ upon x∗
k

, where either no change or border change

w.r.t. smax, smin, amax, amin needs to be made. By border changes, we mean
x′i−x′

k

ti−tk
= smax,

x′i−x′
k

ti−tk
= smin,

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

10:14 S. Song et al.

Fig. 6. Build solution from x ′
k

, where red solid point denotes ymax
i,k

and blue solid point means ymin
i,k

.

x′
i
−x′

k
ti −tk

−
x′
k
−x′

k−1
tk −tk−1

ti−tk
= amin or

x′
i
−x′

k
ti −tk

−
x′
k
−x′

k−1
tk −tk−1

ti−tk
= amax. Intuitively, as illustrated in Figure 6, all the values in

the range of [ymin
i,k
, ymax

i,k
] are valid repair candidates for x ′i . If the speed or acceleration exceeds ymax

i,k

specified by smax or amax in Formula 27, then a repair on the “border” drawn by ymax
i,k

is obviously

the closest to xi , i.e., with the minimum repair distance. We denote

g(xi , x
′
k) = |xi − x ′i | =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xi − ymax

i,k
, if xi > ymax

i,k

ymin
i,k
− xi , if xi < ymin

i,k

0, otherwise

where tk < ti ≤ tk + w, 1 ≤ i ≤ n, ymin
i,k

and ymax
i,k

are as defined in Formulas 28 and 27 in

Proposition 3.3. The local optimal repair problem in Formula 17 can be rewritten as

min
x′

k

n∑
i=1

g
(
xi , x

′
k

)
, (30)

where x ′
k

is the only variable in problem solving.

3.2.2 Finite Set of Candidates. According to Proposition 3.3, the local optimal repair problem
is equivalent to finding a x ′

k
that minimizes Formula 30. To this end, we first capture a finite set of

candidates for x ′
k

, where the optimal solution can always be found. We define candidate sets of xk ,

Xmax
k
= {zmax

k,i | tk < ti ≤ tk + w, 1 ≤ i ≤ n}, (31)

Xmin
k
= {zmin

k,i | tk < ti ≤ tk + w, 1 ≤ i ≤ n}, (32)

where zmax
k,i
= max(zmax

k,i,s
, zmax

k,i,a
), zmin

k,i
= min(zmin

k,i,s
, zmin

k,i,a
),

zmax
k,i,s = xi − smax (ti − tk), (33)

zmin
k,i,s = xi − smin (ti − tk), (34)

are the candidates of repairing xk suggested by xi with speed constraints, and

zmax
k,i,a =

x ′
k−1

(ti − tk) − (amax (ti − tk)2 − xi) (tk − tk−1)

ti − tk−1
, (35)

zmin
k,i,a =

x ′
k−1

(ti − tk) − (amin (ti − tk)2 − xi) (tk − tk−1)

ti − tk−1
, (36)

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

equation:local

Stream Data Cleaning under Speed and Acceleration Constraints 10:15

Fig. 7. Capture candidates for x ′
k

, where blue solid points denote zmin
k,i
, zmin

k,i+1
, and red solid points are

zmax
k,i
, zmax

k,i+1
.

are the candidates suggested by xi with acceleration constraints w.r.t. the previously repaired x ′
k−1

,
having 0 < tk − tk−1 ≤ w.

Intuitively, as shown in Figure 7, each candidate in Xmax
k

(red solid points) corresponds to a
possible x ′

k
such that xi serves as a border repair w.r.t. x ′

k
(as presented in Figure 6). Referring to

the aforesaid discussion on minimum distances of border repairs, it is not surprising to have the
following conclusion:

Lemma 3.4. With speed or acceleration constraints only, and an unlimited candidate range, we can

always find a local optimal solution x∗ w.r.t. xk such that x∗
k
∈ Xmin

k
∪ Xmax

k
∪ {xk }.

Proof. Let m = |{i |tk < ti ≤ tk +w, 1 ≤ i ≤ n}| be the number of data points in the window
starting from k . It is easy to see at most 2m + 1 candidates in Xmin

k
∪ Xmax

k
∪ {xk }. We sort the

candidates c1, . . . , c2m+1 in Xmin
k
∪Xmax

k
∪ {xk } for all them points after xk in the window starting

from tk , having c j ≤ c j+1, j = 1, . . . , 2m.

Consider a local optimal solution x ′ built by Formula 29 in Proposition 3.3. If x ′
k
� Xmin

k
∪

Xmax
k
∪ {xk }, then we construct in the following another repair x ′′ such that Δ(x ′′, x) ≤ Δ(x ′, x)

and x ′′
k
∈ Xmin

k
∪Xmax

k
∪ {xk }. The major construction steps are outlined as follows: First, we prove

that it always has c1 ≤ x ′
k
≤ c2m+1, with two cases x ′

k
< c1 and x ′

k
> c2m+1. Next, we prove that

c j < x ′
k
< c j+1 is not optimal, i.e., the optimal repair must be c j , j = 1, . . . , 2m+1. In this part, there

are three cases of repairing xi , (1) x ′i = xi of unchanged xi ; (2) repair by the maximum constraints,
i.e., (2a) x ′i = ymax

i,k,s
for speed and (2b) x ′i = ymax

i,k,a
for acceleration; (3) repair by the minimum

constraints, i.e., (3a) x ′i = ymin
i,k,s

for speed, and (3b) x ′i = ymin
i,k,a

for acceleration. Since there may be

several xi in the window, we should count the number of xi repaired in the above cases. For (2a)
and (3a) on speed, we have three cases (a1), (a2), and (a3) in counting. Likewise, for (2b) and (3b)
on acceleration, we count in three cases (b1), (b2), and (b3) as well.

First, we show that it always has c1 ≤ x ′
k
≤ c2m+1. For any x ′

k
< c1, if only speed constraints s

are given, then all the xi in the window from tk are modified to ymax
i,k,s

, referring to Formula 24, with

distance xi − ymax
i,k,s

as the red dot line shown in Figure 8. Likewise, if only acceleration constraints

a are given, then we can modify all the xi in the window from tk by ymax
i,k,a

, referring to Formula 26,

with distance xi − ymax
i,k,a

, as the red solid line shown in Figure 8. Following the notations of ymax
i,k,s

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

10:16 S. Song et al.

Fig. 8. Impossible case of x ′
k

smaller than the minimum candidate c1, x ′
k
< c1 ≤ xk .

and ymax
i,k,a

in Formulas 24 and 26, let

dmax
i,1,s = c1 + smax (ti − tk), dmax

i,1,a =

(
amax (ti − tk) +

c1 − x ′
k−1

tk − tk−1

)
(ti − tk) + c1

be the candidates for repairing xi suggested by c1 in tk , referring to Formulas 24 and 26. We al-
ways have xi ≥ bmax

i,1,s , xi ≥ bmax
i,1,a ; otherwise, xi will introduce some candidates < c1 referring to

Formula 31. Given x ′
k
< c1 ≤ xk , it is easy to see another solution x ′′ with x ′′

k
= c1 whose distances

are lower than x ′. It contradicts the local optimum of x ′. Similar contradiction can also be observed
for x ′

k
> c2m+1.

Next, assume that c j < x ′
k
< c j+1 for some j ∈ [1, 2m]. Let

dmin
i, j,s = cj + smin (ti − tk), (37)

dmax
i, j,s = cj + smax (ti − tk), (38)

dmin
i, j,a =

(
amin (ti − tk) +

cj − x ′
k−1

tk − tk−1

)
(ti − tk) + cj , (39)

dmax
i, j,a =

(
amax (ti − tk) +

cj − x ′
k−1

tk − tk−1

)
(ti − tk) + cj (40)

be the candidates for repairing xi suggested by cj in tk , referring to Formulas 23–26. And similarly,

dmin
i, j+1,s = cj+1 + smin (ti − tk),

dmax
i, j+1,s = cj+1 + smax (ti − tk),

dmin
j+1,i,a =

(
amin (ti − tk) +

cj+1 − x ′
k−1

tk − tk−1

)
(ti − tk) + cj+1,

dmax
i, j+1,a =

(
amax (ti − tk) +

cj+1 − x ′
k−1

tk − tk−1

)
(ti − tk) + cj+1

denote the candidates for repairing xi suggested by cj+1 in tk . For repair x ′i , we consider three cases
as follows:

(1) If the repair is unchanged x ′i = xi , then it must have

x ′k + smin (ti − tk) ≤ cj+1 + smin (ti − tk) = dmin
i, j+1,s ≤ xi ≤ dmax

i, j,s = cj + smax (ti − tk) ≤ x ′k + smax (ti − tk)

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

Stream Data Cleaning under Speed and Acceleration Constraints 10:17

Fig. 9. Moving between candidates.

when given speed constraints s, or(
amin (ti − tk) +

cj+1 − x ′
k−1

tk − tk−1

)
(ti − tk) + cj+1 = d

min
i, j+1,a ≤ xi ≤ dmax

i, j,a

=

(
amax (ti − tk) +

cj − x ′
k−1

tk − tk−1
) (ti − tk

)
+ cj

for acceleration constraints a, as case (1) illustrated in Figure 9.
For the other cases, such as

dmax
i, j,s = cj + smax (ti − tk) ≤ x ′k + smax (ti − tk) < xi ≤ cj+1 + smax (ti − tk),

xi would introduce a candidate between c j and c j+1 according to the definitions of Xmin
k

and Xmax
k

in Formulas 31 and 32. Consequently, we can construct another repair with x ′′
k
= c j or c j+1 such

that x ′′i = xi is still unchanged on data point i and the distance is the same, |x ′′i −xi | = |x ′i −xi | = 0.
(2a) For the repair x ′i = ymax

i,k,s
when given speed constraints s only, the distance is |xi − x ′i | =

xi − ymax
i,k,s

. It always has xi ≥ dmax
i, j+1,s , as case (2) illustrated in Figure 9. For other cases such as

dmax
i, j,s < xi < dmax

i, j+1,s , xi would introduce a candidate between c j and c j+1. To construct another

repair with x ′′
k
= c j or c j+1, we have x ′′i = d

max
i, j,s or x ′′i = d

max
i, j+1,s , for data point i . The corresponding

distance is |x ′′i − xi | = |x ′i − xi | − c j + x ′
k

or |x ′′i − xi | = |x ′i − xi | − c j+1 + x ′
k

.
(2b) For the repair x ′i = ymax

i,k,a
under acceleration constraints a only, with distance |xi − x ′i | =

xi − ymax
i,k,a

, it always has xi ≥ dmax
i, j+1,a . For other cases such as dmax

i, j,a < xi < dmax
i, j+1,a , xi would

introduce a candidate between c j and c j+1. We construct another repair x ′′
k
= c j or c j+1 having

x ′′i = d
max
i, j,a or x ′′i = d

max
i, j+1,a , for data point i , with distance |x ′′i − xi | = |x ′i − xi | + ti−tk−1

tk−tk−1
(x ′

k
− cj) or

|x ′′i − xi | = |x ′i − xi | + ti−tk−1

tk−tk−1
(x ′

k
− cj+1).

(3a) Similarly, for the repair x ′i = ymin
i,k,s

with speed constraints s , it always has xi ≤ dmin
i, j+1,s .

For other cases such as dmin
i, j+1,s < xi < dmin

i, j,s , xi would introduce a candidate between c j and c j+1.

We construct another repair with x ′′
k
= c j or c j+1 having x ′′i = dmin

i, j,s or x ′′i = dmin
i, j+1,s as case (3)

illustrated in Figure 9. The repair distance on data point i is thus |x ′′i − xi | = |x ′i − xi | + c j − x ′
k

or
|x ′′i − xi | = |x ′i − xi | + c j+1 − x ′

k
.

(3b) Again, for the repair x ′i = ymin
i,k,a

under acceleration constraints a only, it always has xi ≤
dmin

i, j+1,a . For other cases such asdmin
i, j+1,a < xi < dmin

i, j,a , xi would introduce a candidate between c j and

c j+1. To construct another repair with x ′′
k
= c j or c j+1, we can also have x ′′i = d

min
i, j,a or x ′′i = d

min
i, j+1,a .

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

10:18 S. Song et al.

The corresponding repair distance on data point i is |x ′′i − xi | = |x ′i − xi | + ti−tk−1

tk−tk−1
(cj − x ′

k
) or

|x ′′i − xi | = |x ′i − xi | + ti−tk−1

tk−tk−1
(cj+1 − x ′

k
).

Now, we count the number of data points i of type (2a) and type (3a) repairs, when given speed
constraints s only.

(a1) If the counts of type (2a) and type (3a) are equal, then we choose c j or c j+1, which is more
close to xk , as x ′′

k
. When choosing c j , the corresponding repair distance is thus

Δ(x, x ′′) = Δ(x, x ′) − (x ′k − c j) < Δ(x, x ′).

When choosing c j+1, the corresponding repair distance is

Δ(x, x ′′) = Δ(x, x ′) − (c j+1 − x ′k) < Δ(x, x ′).

(a2) If the count of type (2a) is greater than that of type (3a), then we choose x ′′
k
= c j+1. The

corresponding repair distance is

Δ(x, x ′′) ≤ Δ(x, x ′) − c j+1 + x ′k + |c j+1 − x ′k | ≤ Δ(x, x ′).

(a3) If the count of type (2a) is less than that of type (3a), then similarly, we choose x ′′
k
= c j . The

repair distance is

Δ(x, x ′′) ≤ Δ(x, x ′) + c j − x ′k + |c j − x ′k | ≤ Δ(x, x ′).

Likewise, for acceleration constraints a, we count the number of data points i of type (2b) and
type (3b) repairs.

(b1) If the count of type (2b) equals to that of type (3b), then we choose c j or c j+1, which is more
close to xk , as x ′′

k
. When choosing c j , the corresponding repair distance is still

Δ(x, x ′′) = Δ(x, x ′) − (x ′k − c j) < Δ(x, x ′).

When choosing c j+1, the corresponding repair distance is again

Δ(x, x ′′) = Δ(x, x ′) − (c j+1 − x ′k) < Δ(x, x ′).

(b2) If the count of type (2b) is greater than that of type (3b), then we choose x ′′
k
= c j+1. Its repair

distance is

Δ(x, x ′′) ≤ Δ(x, x ′) +
ti − tk−1

tk − tk−1
(x ′k − c j+1) + |c j+1 − x ′k | ≤ Δ(x, x ′).

(b3) If the count of type (2b) is less than that of type (3b), then we choose x ′′
k
= c j , with repair

distance

Δ(x, x ′′) ≤ Δ(x, x ′) +
ti − tk−1

tk − tk−1
(c j − x ′k) + |c j − x ′k | ≤ Δ(x, x ′).

To sum up, we build a repair x ′′ with x ′′
k
= c j or c j+1, and Δ(x, x ′′) ≤ Δ(x, x ′). �

3.3 Streaming Computation

The integral cleaning algorithm iteratively determines the local optimal x ′
k

, for k ≥ 1. We assume
that data points come in-order, i.e., tj < ti for any j < i .

3.3.1 Optimal Solution in Candidate Range. From Lemma 3.4, we can find the local optimal
solution w.r.t. xk is in the set of Xmin

k
∪Xmax

k
∪{xk }. Further, for any x ′

k
, the construction of solution

x ′ is indeed to “shrink” data points in violation to the border. Intuitively, a candidate in the middle
of all data points xi probably has less shrink distances.

Let xmid
k

denote the median of all candidates,

xmid
k
= median

(
Xmax

k
∪ Xmin

k
∪ {xk }

)
. (41)

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

Stream Data Cleaning under Speed and Acceleration Constraints 10:19

Fig. 10. Candidate range for x ′
k

, [xmin
k
, xmax

k
] specified by x ′

k−1
under speed and acceleration constraints.

Since Formula 16 indicates a candidate range [xmin
k
, xmax

k
] specified by xk−1 before xk , if the

suggested solution xmid
k

in Formula 41 drops into the range of [xmin
k
, xmax

k
] in Formula 16, then the

optimal solution is directly obtained, i.e., x ′
k
= xmid

k
. Otherwise, we need to re-calculate the repair

w.r.t. the range [xmin
k
, xmax

k
].

Fortunately, we have the following monotonicity of the function in Formula 30.

Proposition 3.5. With speed or acceleration constraints only, for anyu1,u2,v1,v2 ∈ Xmin
k
∪Xmax

k
∪

{xk } such that u1 ≤ u2 ≤ xmid
k
≤ v1 ≤ v2, we have

n∑
i=1

g(xi ,u1) ≥
n∑

i=1

g(xi ,u2) ≥
n∑

i=1

g(xi , x
mid
k

),
n∑

i=1

g(xi , x
mid
k

) ≤
n∑

i=1

g(xi ,v1) ≤
n∑

i=1

g(xi ,v2).

Proof. Following the same line of proving Lemma 3.4, with speed or acceleration constraints,
we sort all the candidates c1, . . . , c2m+1 in Xmin

k
∪ Xmax

k
∪ {xk }, i.e., c j ≤ c j+1, j = 1, . . . , 2m.

Consider any c j ≤ c j+1. Let x ′ be a repair with x ′
k
= c j and x ′′ be another repair with x ′′

k
= c j+1.

For speed constraints only, referring to the proof of Lemma 3.4, there are three cases for repairing
a point i .

(a1) For dmin
i, j+1,s ≤ xi ≤ dmax

i, j,s as case (1) illustrated in Figure 9, the assignment of xi is unchanged,

with distance 0 for both x ′i = xi and x ′′i = xi .
(a2) For xi ≥ dmax

i, j+1,s in case (2) in Figure 9, we have |x ′i −xi | = xi−dmax
i, j,s and |x ′′i −xi | = xi−dmax

i, j+1,s .

(a3) For xi ≤ dmin
i, j,s in case (3) Figure 9, we have |x ′i − xi | = dmin

i, j,s − xi and |x ′′i − xi | = dmin
i, j+1,s − xi .

In a similar way, for acceleration constraints only, there are 3 cases for repairing a point xi .
(b1) For dmin

i, j+1,a ≤ xi ≤ dmax
i, j,a , the assignment of xi is unchanged, with distance 0 for both x ′i = xi

and x ′′i = xi .
(b2) For xi ≥ dmax

i, j+1,a , we have |x ′i − xi | = xi − dmax
i, j,a and |x ′′i − xi | = xi − dmax

i, j+1,a .

(b3) For xi ≤ dmin
i, j,a , we have |x ′i − xi | = dmin

i, j,a − xi and |x ′′i − xi | = dmin
i, j+1,a − xi .

Note that there should not exist any other xi besides these aforesaid cases, according to the
definition of Xmin

k
and Xmax

k
.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

10:20 S. Song et al.

Fig. 11. Relationship of (a) xi and c j , (b) x≥ (c j), and c j , (c) x≤ (c j) and c j .

Referring to Formulas 23 to 26, we define

dmin
i, j,s = cj + smin (ti − tk), (42)

dmax
i, j,s = cj + smax (ti − tk), (43)

dmin
i, j,a =

(
amin (ti − tk) +

cj − x ′
k−1

tk − tk−1

)
(ti − tk) + cj , (44)

dmax
i, j,a =

(
amax (ti − tk) +

cj − x ′
k−1

tk − tk−1

)
(ti − tk) + cj , (45)

the candidates of xi suggested by any candidate cj of xk . For speed constraints only, we define two
sets below w.r.t. candidate c j

x≥ (c j) = {xi | xi ≥ dmax
i, j,s , tk ≤ ti ≤ tk + w}, x≤ (c j) = {xi | xi ≤ dmin

i, j,s , tk ≤ ti ≤ tk + w}.
Similarly, for acceleration constraints only, let

x≥ (c j) = {xi | xi ≥ dmax
i, j,a , tk ≤ ti ≤ tk + w}, x≤ (c j) = {xi | xi ≤ dmin

i, j,a , tk ≤ ti ≤ tk + w}.
It is notable that xk is also included in x≥ (c) or x≤ (c) with tk ≤ ti , since xk is a candidate as well.

Analogous to Formulas 33 and 34, we define

cmin
k,i,s = xi − smin (ti − tk), cmax

k,i,s = xi − smax (ti − tk),

the candidates of xk suggested by xi on speed constraints s, and

cmin
k,i,a =

x ′
k−1

(ti − tk) − (amin (ti − tk)2 − xi) (tk − tk−1)

ti − tk−1
,

cmax
k,i,a =

x ′
k−1

(ti − tk) − (amax (ti − tk)2 − xi) (tk − tk−1)

ti − tk−1
,

the candidates suggested by acceleration constraints a.
Referring to the definition of median in Formula 41, we consider the three cases for speed con-

straints only.
(1) If dmin

i, j,s ≤ xi ≤ dmax
i, j,s , then the candidates of xk generated by xi w.r.t. speed constraints s are

cmax
k,i,s
≤ cj and cmin

k,i,s
≥ cj , as shown in Figure 11(a). They do not affect whether cj is xmid

k
or not.

(2) If xi > dmax
i, j,s , which means xi ∈ x≥ (c j), then the candidates of xk generated by xi are greater

than < cj , i.e., cmax
k,i,s
> cj and cmin

k,i,s
> cj , as shown in Figure 11(b).

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

Stream Data Cleaning under Speed and Acceleration Constraints 10:21

(3) Similarly, if xi < dmin
i, j,s , i.e., xi ∈ x≤ (c j), then both candidates generated by xi are lower than

c j , having cmax
k,i,s
< cj and cmin

k,i,s
< cj , as shown in Figure 11(c).

Consequently, we can count xi in types (2) and (3) w.r.t. c j .

(a) When c j = xmid
k

, the number of candidates greater than c j is equal to the number of candidates
less than c j . It means that the aforesaid cases (2) and (3) generate the same number of candidates,
i.e., |x≥ (c j) | = |x≤ (c j) |.

(b) When c j ≤ xmid
k

, there are more candidates greater than c j . That is, the number of candidates

generated from (2) is greater than that generated from (3), having |x≥ (c j) | ≥ |x≤ (c j) |.
(c) When c j ≥ xmid

k
, i.e., there are more candidates less than c j . The number of candidates

generated from (2) is less than that generated from (3), having |x≥ (c j) | ≤ |x≤ (c j) |.
Similar results could be derived when given acceleration constraints a only, which are also pre-

sented in Figure 11. As a result, we have

|x≥ (c j) | = |x≤ (c j) |, for c j = xmid
k
,

|x≥ (c j) | ≥ |x≤ (c j) |, for c j ≤ xmid
k
,

|x≥ (c j) | ≤ |x≤ (c j) |, for c j ≥ xmid
k
.

Moreover, for any c j ≤ c j+1 under speed constraints, since c j+1 + smin (ti − tk) ≥ c j + smin (ti − tk),
we can find |x≤ (c j+1) | ≥ |x≤ (c j) |. And with c j + smax (ti − tk) ≤ c j+1 + smax (ti − tk), it is easy to see
|x≥ (c j+1) | ≤ |x≥ (c j) |. Similarly, for acceleration constraints,

(
amin (ti − tk) +

cj − x ′
k−1

tk − tk−1

)
(ti − tk) + cj ≤

(
amin (ti − tk) +

cj+1 − x ′
k−1

tk − tk−1

)
(ti − tk) + cj+1,

(
amax (ti − tk) +

cj − x ′
k−1

tk − tk−1

)
(ti − tk) + cj ≤

(
amax (ti − tk) +

cj+1 − x ′
k−1

tk − tk−1

)
(ti − tk) + cj+1

imply |x≤ (c j+1) | ≥ |x≤ (c j) | and |x≥ (c j+1) | ≤ |x≥ (c j) |.
Considering the aforesaid three repairing types for all xi with tk ≤ ti ≤ tk + w, the repair

distances of x ′ and x ′′ have

Δ(x, x ′′) − Δ(x, x ′) =
∑

xi ∈x≥ (c j+1)

c j − c j+1 +
∑

xi ∈x≤ (c j)

c j+1 − c j

= (|x≥ (c j+1) | − |x≤ (c j) |) · (c j − c j+1)

For c j ≤ c j+1 ≤ xmid
k

, we have |x≥ (c j+1) | ≥ |x≤ (c j+1) | ≥ |x≤ (c j) |. It follows

Δ(x, x ′′) − Δ(x, x ′) ≤ 0. Similarly, for xmid
k
≤ c j ≤ c j+1, it has |x≥ (c j+1) | ≤ |x≥ (c j) | ≤ |x≤ (c j) |, i.e.,

Δ(x, x ′′) − Δ(x, x ′) ≥ 0. �

That is, under certain constraints, for any candidate u < xmax
k

< xmid
k

, it always has∑n
i=1 g(xi ,u) ≥ ∑n

i=1 g(xi , x
max
k

). In this case, xmax
k

is the optimal solution in the range of

[xmin
k
, xmax

k
]. Similar conclusion can also be made for v > xmin

k
> xmid

k
.

Proposition 3.6 (Median-based Solution). With speed or acceleration constraints only, and an

unlimited candidate range, a solution x ′ with x ′i determined by Formula 29 and x ′
k
= xmid

k
is local

optimal.

Proof. According to Lemma 3.4, with speed or acceleration constraints only, there must exist
an x ′

k
∈ Xmin

k
∪ Xmax

k
∪ {xk } that can build a local optimum x ′ by Formula 29 in Proposition 3.3.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

10:22 S. Song et al.

Fig. 12. Capture candidates for x ′4 under speed and acceleration constraints.

Referring to Proposition 3.5, with speed or acceleration constraints only, for any u,v such that
u ≤ xmid

k
≤ v , we have

∑n
i=1 g(xi ,u) ≥ ∑n

i=1 g(xi , x
mid
k

) ≤ ∑n
i=1 g(xi ,v). That is, xmid

k
always has

the minimum repair distance among all the candidates in x ′
k
∈ Xmin

k
∪ Xmax

k
∪ {xk }. �

Example 3.7 (Candidates and Local Repair). Consider another sequence x = {0, 0.5, 2, 6.3, 6, 7, 8},
in Figure 12. Let w = 2. For data points 5 and 6, whose timestamps are within t4 + w, w.r.t. the
current k = 4. Each data point suggests two candidates w.r.t. smin = −5, amin = −1 and smax = 5,
amax = 1 for Xmin

4 and Xmax
4 , respectively.

For instance, x5 = 6 contributes zmax
4,5,s = 6 + 5(4 − 5) = 1 according to Formula 33, and zmin

4,5,s =

6−5(4−5) = 11 according to Formula 34, given the speed constraints s. For acceleration constraints
a, x3 = 2 and x5 = 6 lead to zmin

4,5,a = (−1(5− 4)2 (4− 3) − 6(4− 3) − 2(5− 4))/(3− 5) = 4.5 according

to Formula 36, and zmax
4,5,a = (1(5 − 4)2 (4 − 3) − 6(4 − 3) − 2(5 − 4))/(3 − 5) = 3.5 according to

Formula 35. As a result, we have zmax
4,5 = 3.5 and zmin

4,5 = 4.5.

Similarly, x6 = 7 contributes zmax
4,6,s = 2, zmin

4,6,s = 12 with speed constraints. By x3 = 2 and x6 = 7,

we can also compute zmax
4,6,a = 2.33, zmin

4,6,a = 5 with acceleration constraints, likewise, zmax
4,6 = 2.33

and zmin
4,6 = 5.

It follows Xmin
4 = {4.5, 5}, Xmax

4 = {2.33, 3.5}, and xmid
4 = 4.5 according to Formula 41 with x4 =

6.3. Referring to Proposition 3.6, by x ′4 = xmid
4 and Formula 41, we build a solution x ′4 = 4.5, x ′5 = 6

and x ′6 = 7.

Consequently, according to Propositions 3.5 and 3.6, the local repair is directly computed by

x ′k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xmax

k
, if xmax

k
< xmid

k

xmin
k
, if xmin

k
> xmid

k

xmid
k
, otherwise.

(46)

Algorithm 1 presents the integral repair of a sequence x under the speed and acceleration con-
straints s and a. For each data pointk in the sequence,k = 1, 2, . . . ,n, Line 3 computes the candidate
range with Formula 16. By considering all the succeeding data points i in the window of k , Lines 4
to 17 calculate the candidates. With all the candidates captured, we can get xmid

k
by Formula 41.

Finally, x ′
k

is obtained following the computation in Formula 46.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

Stream Data Cleaning under Speed and Acceleration Constraints 10:23

ALGORITHM 1: Local(x, s, a)

Input: an ordered sequence x, speed constraints s and acceleration constraints a

Output: a repair x ′ of x

1 for k ← 1 to n do

2 Xmin
k
← ∅; Xmax

k
← ∅;

3 Compute xmin
k

and xmax
k

with Formula 16;

4 for i ← k + 1 to n do // compute candidates
5 if ti > tk + w then

6 break;

7 end

8 if 0 < ti − tk ≤ w, 0 < tk − tk−1 ≤ w then

9 Compute zmin
k,i,a
, zmax

k,i,a
with Formulas 35–36;

10 end

11 else

12 zmin
k,i,a

= ∞, zmax
k,i,a

= −∞;

13 end

14 Compute zmin
k,i,s
, zmax

k,i,s
with Formulas 33–34;

15 Xmin
k
← Xmin

k
∪ {min(zmin

k,i,s
, zmin

k,i,a
)};

16 Xmax
k
← Xmax

k
∪ {max(zmax

k,i,s
, zmax

k,i,a
)};

17 end

18 Compute xmid
k

with Formula 41;

19 Compute x ′
k

with Formula 46;

20 end

21 return x ′

Referring to Proposition 3.5, Algorithm 1 returns the local optimum repair when given speed or
acceleration constraints only. It is easy to see that the number of distinct data points in a window
is at most w. The median in the window can be trivially found inO (w), i.e., the average complexity
of quickselect [16]. Considering all the n data points in the sequence, Algorithm 1 runs in O (nw)
time. For a fixed w, it is a linear time, constant space algorithm.

Proposition 3.8 (Correctness of Algorithm 1). The repair x ′ returned by Algorithm 1 always

satisfies both speed constraints s and acceleration constraints a, and is local optimal when given speed

or acceleration constraints only.

Proof. To show the correctness of Algorithm 1, we need to prove x ′
k

� s, x ′
k

� a, x ′
k
∈

[xmin
k
,xmax

k
] and minimized Δ(x, x ′), as specified in Problem 2.

First, we prove x ′
k
∈ [xmin

k
,xmax

k
]. Referring to Formula 46 in Line 18, the solution x ′

k
must be

in the candidate range [xmin
k
,xmax

k
]. According to the definition of [xmin

k
,xmax

k
] in Formula 16 and

Proposition 3.1, it is sufficient to show that x ′
k

satisfies both speed and acceleration constraints
with the previously repaired x ′

k−1
, x ′

k−2
,

Next, we show x ′
k

� s and x ′
k

� a. Referring to the computation of x ′i , tk < ti ≤ tk + w, in
Formula 29 in Proposition 3.3, it is sufficient to show that x ′

k
satisfies both speed and acceleration

constraints with x ′
k+1
, x ′

k+2
, . . . after x ′

k
in a window.

Finally, we prove that Δ(x, x ′) is minimized in the special case of specifying speed constraints s

or acceleration constraints a only. For the last case in Formula 46, Proposition 3.6 states that xmid
k

is

local optimal. For the first two cases w.r.t. the candidate range [xmin
k
,xmax

k
] in Formula 46, referring

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

10:24 S. Song et al.

Fig. 13. Capture candidates for x ′3 under speed and acceleration constraints (xmid
3 out of the candidate range

[ymin
3 , ymax

3]).

to the monotonicity in Proposition 3.5, the bounds of the candidate range lead to the minimum
repair cost. �

In practice, to minimize the changes, we may heuristically skip the repairing on those points xk

that satisfy the speed and acceleration constraints with its neighbors, i.e., xmin
k
≤ xk ≤ xmax

k
and

xmin
k+1
≤ xk+1 ≤ xmax

k+1
.

Example 3.9 (xmid
k

Out of Candidate Range). Consider a new sequence x = {0, 0.5, 2.5, 6.9, 6} in
Figure 13. Data points 4 and 5 are within t3 + w w.r.t. the current k = 3 and w = 2. According
to Formulas 10 to 15, we computed xmin

3,2,a = 0, xmax
3,2,a = 2 and xmin

3,2,s = −4.5, xmax
3,2,s = 6.5, and the

candidate range [xmin
3 , x

max
3] = [0, 2].

Following the same line of Example 3.7, we compute Xmin
3 = {4, 4.2} and Xmax

3 = {1.33, 3.2} by

points 4 and 5 that are in the window of point 3. It follows zmid
3 = 3.2, which is out of the candidate

range [0, 2]. According to Formula 46, the local repair on k = 3 is x ′3 = 2.
The integral repair moves on to the next k = 4 and terminates when reaching the end of the

sequence. A repaired sequence {0, 0.5, 2, 4.5, 6} is finally returned.

3.3.2 Dynamic Constraints. In this section, we propose to employ different constraints on speed
and acceleration at different times. Specifically, in the example of GPS data of a smartphone, the
speed and acceleration could be very different when the user is walking or not. A static constraint
on speed or acceleration over the entire sequence cannot detect such differences of moving status.
As introduced in Section 5.3, the constraints can be derived from the statistical distribution of
speed and acceleration. In this sense, we can derive different constraints on speed and acceleration
at different times (for various moving status). Let [sk

min, s
k
max] and [ak

min,a
k
max] be the speed and

acceleration constraints at time tk . They are derived online from the statistical distribution of
the data before time tk (optionally after time tk − wd where wd is the window size for online
adjusting the constraints). The local repair by Algorithm 1 is then performed on xk w.r.t. the online
determined constraints [sk

min, s
k
max] and [ak

min,a
k
max].

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

Stream Data Cleaning under Speed and Acceleration Constraints 10:25

4 LIMITATIONS

As illustrated in Proposition 3.8, the proposed Algorithm 1 guarantees to return the optimal solu-
tion when given only speed or acceleration constraints. By combining both the speed and acceler-
ation constraints, the candidates suggested by two constraint types may interact with each other,
as illustrated in Figure 7 in the proof of Lemma 3.4. The median of the suggested candidates cannot
guarantee to be optimal. Therefore, in the general case of specifying both speed and acceleration
constraints at the same time, our proposal returns a repair that always satisfies both constraints
but may not be the optimal.

As a constraint-based method, the proposed method will not perform if the speed and acceler-
ation constraints are incorrectly specified. Although we have techniques for determining proper
constraints by observing the statistical distributions of speed and constraints, as presented in Sec-
tion 5.3, the results are still sensitive to the constraint settings.

Our constraint-based proposal cannot detect the dirty points indeed satisfying the constraints,
e.g., lying in the range of [xmin

k
,xmax

k
]. Moreover, the proposed method may also repair too much

when dirty points arrive consecutively, e.g., days 27 and 28 are also modified in Figure 1 while
they are not dirty points. In this sense, the repairing under the speed and acceleration constraints
would be useful for addressing large spike errors, such as day 15 in Figure 1. For the use cases
with small or consecutive errors, it will be a promising future study on extending the speed and
acceleration constraints to support such cases.

5 EXPERIMENT

In the experimental evaluation, we employ four real datasets: OliveOil, Stock, Trace, and GPS. The
evaluation compares not only the L1 error between the repair result and truth data, but also the
classification accuracy over the data with/without repair.

5.1 Experimental Settings

All programs are implemented in Java. Experiments were performed on a server with 2.1 GHz CPU
and 128 GB RAM.

5.1.1 Real Dataset Preparation. The Stock5 dataset records the daily prices of a stock from 1984–
09 to 2010–02, with 12,826 data points in total. Since the Stock data is originally clean, following
the same line of precisely evaluating the repair effectiveness [3], errors are injected by randomly
replacing the values of some data points. For example, an error rate 0.1 denotes that 10% data point
values are replaced. For each replaced data point, it takes a random value between the minimum
and maximum values in the dataset.

The OliveOil and Trace datasets are from the UCR Time Series Classification Archive.6 Both
datasets have two parts, training set and testing set, which will be used to evaluate the classification
over the repaired results. To perform classification, the OliveOil dataset is segmented into 60 time
series with the same length 570, and the Trace dataset splits into 200 time series with length 275.
Similar to the Stock dataset, we assume that the datasets are originally clean and manually inject
errors as aforesaid. Various repairing methods are then performed on each time series.

To evaluate over a real dataset with true errors (instead of synthetically injected errors), a real
GPS dataset is collected by a person carrying a smartphone and walking around at campus. Since
we know exactly the path of walking, a number of 394 dirty points are manually identified (among

5http://finance.yahoo.com/q/hp?s=AIP.L+Historical+Prices.
6https://www.cs.ucr.edu/~eamonn/time_series_data.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

http://finance.yahoo.com/q/hp?s=AIP.L+Historical+Prices
https://www.cs.ucr.edu/~eamonn/time_series_data

10:26 S. Song et al.

Table 2. GPS Data with Manually Labeled

Ground Truth

Method L1 error Time cost

Global(Speed+Acceleration) 0.0183 220.3

Global(Speed) 0.0193 200.8

Local(Speed+Acceleration) 0.0187 2.8

Local(Speed) 0.0195 0.8

Holistic 0.2757 88.2

Sequential 0.3193 0.4

EWMA 2.9979 0.2

Median Filter 0.0195 0.1

Savitzky-Golay Filter 0.1132 0.2

Kalman Filter 0.637 0.5

Kernel Smoother 0.0463 1.3

HoloClean 0.0258 9.2

IMR 0.0199 0.15

a total of 2,409 points in the trajectory). True locations of dirty points are also manually labeled,
as ground truth.

5.1.2 Evaluation Criteria. Let xtruth be the ground truth of clean sequence, and xrepair be the
repaired sequence. To evaluate the closeness of repair to the truth, we use the L1 error between
the ground truth xtruth and the repaired sequence xrepair. The lower the L1 error between the repair
and truth value is, the closer (more accurate) the repair is to the ground truth.

For the classification over datasets, we use the class labels provided in OliveOil and Trace from
the UCR Time Series Classification Archive. KNN [37] and XGBoost [7] are employed as the clas-
sifiers, with k-fold Cross Validation [34] over the originally Clean data, the Dirty data with errors
injected, and the repaired data by various approaches. We use the classification accuracy [30] as

follows: accuracy =
number of correctly classified objects

total number of objects .

5.2 Comparison to Existing Approaches

In this experiment, we compare our proposed methods Global (Speed+Acceleration), Global
(Speed) and Local (Speed+Acceleration), Local (Speed) repairs to the existing approaches, (1)
smoother and filter-based EWMA [14], Median Filter [33], Kalman Filter [27], Savitzky-Golay Fil-
ter [1], Kernel Smoother [9], IMR [36], and (2) constraint-based Holistic repair [8], HoloClean [28],
repair with Sequential Dependency [15].7

To tune the parameter of window sizes for each of the smoothing and filtering methods, we
conduct a grid search and report the best results. For instance, the tuned window sizes are 5 for
Median Filter, 7 for Kernel Smoother, and 5 for Savitzky-Golay Filter.

For our proposed methods, the speed constraints are smax = −smin = 0.5 for Stock, smax =

−smin = 0.6 for OliveOil, smax = −smin = 7 for GPS, smax = −smin = 0.3 for Trace. For accel-
eration constraints, we use amax = −amin = 0.4 for Stock, amax = −amin = 0.1 for OliveOil,
amax = −amin = 6 for GPS, amax = −amin = 0.1 for Trace. All these constraints are pre-defined by
observing the speed and acceleration statistical distributions of the datasets in Figures 22 and 24,
respectively. In short, we use the rule of three standard deviations [26] to choose the constraints.

7See a detailed introduction of the compared methods in Section 6.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

Stream Data Cleaning under Speed and Acceleration Constraints 10:27

Fig. 14. Varying error rates, over Stock data with size 12k.

Details for choosing the constraints are presented below (in Section 5.3). Since there are too many
approaches in comparison, we only plot the important baselines in Figures 14, 15, 16, and so on,
while giving the detailed results in tables. That is, in addition to our proposed Global(Speed+Acc),
Local(Speed+Acc), Global(Speed), Local(Speed), we highlight the typical baselines Kalman Filter
in the category of smoothing-based methods in Section 6.1 and HoloClean in the category of
constraint-based methods in Section 6.2.

5.2.1 Repair Performance. Figures 14, 15, and 16 consider various error rates (denoting the
amount of injected errors) with data sizes (the number of data points/the length of the sequence)
12k, 34k, and 55k, in Stock, OliveOil, and Trace, respectively. Figures 17, 18, and 19 study the scal-
ability by varying data sizes (with error rates 0.1, 0.05, and 0.05, respectively). Table 2 presents the
results over the GPS dataset with manually labeled ground truth. Note that the errors in the GPS
data are real (394 out of 2,409 points). Therefore, we do not have the experiment on varying the
rate of synthetically injected errors, e.g., Figure 14 over the Stock data.

For method of EWMA, the L1 error of this smoother method is high, compared with our pro-
posed Global or Local (e.g., in Table 2). The reason is that smoother modifies almost all the data
points (mostly are indeed correct data), while the true errors cannot be fully addressed, as illus-
trated in Figure 1. The corresponding repair L1 error of smoother is thus significantly higher than
our proposal in Figures 14(a), 15(a), and 16(a).

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

10:28 S. Song et al.

Fig. 15. Varying error rates, over OliveOil data with size 34k.

Among the statistical filtering and smoothing methods, Median Filter [33] performs better than
others such as Kalman Filter [27], Savitzky-Golay Filter [1], and Kernel Smooth [9]. The reason
is that errors often deviate more significantly from the truth than noises. Such errors in neighbor
points as repair candidates affect less in finding the median. It also verifies the rationale of our
median-based solution, from the candidates suggested by speed and acceleration constraints.

The Holistic repair, similar to our Global method, considers the data stream as a whole. The
corresponding time cost is thus high. It is also notable that data points may still be involved in
violations of the speed and acceleration constraints after repairing by Holistic. Thereby, the L1
error of Holistic is not as low as our speed/acceleration methods.

Sequential Dependencies (SDs) consider the constraints on value difference (e.g., ≤ 5) of two
consecutive data points, ordered by timestamps. When the time interval of any two consecutive
data points is the same, SDs denote the semantics similar to the speed constraints. However, SDs
cannot express the semantics on acceleration, i.e., the difference on speeds. Consequently, Sequen-
tial is not as effective as our proposal, even worse than EWMA in Figures 17(a) and 19(a).

HoloClean [28] shows a result similar to the Holistic cleaning [8], as shown in Figures 14(a), 15(a),
and 16(a) over various datasets. The result is not surprising, since both methods use the (extended)
denial constraints (DCs). While both HoloClean [28] and Holistic [8] are proposed for (approxi-
mately) cleaning general (tabular) data, our median-based algorithm specialized for repairing data
sequences finds more accurate repairs.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

Stream Data Cleaning under Speed and Acceleration Constraints 10:29

Fig. 16. Varying error rates, over Trace data with size 55k.

IMR [36] performs similarly as the weakly supervised HoloClean [28], as illustrated in Fig-
ures 14(a), 15(a), and 16(a). Following the settings in Reference [36], we label about 15% errors
in the experiments. Since extensively labeling the errors with truths is unlikely in a streaming
setting, the IMR repair is not as accurate as our proposal. Since IMR needs to conduct iterative
repairing, its time costs are significantly higher.

The L1 error of Global (Speed+Acceleration) is lowest in all the experiments. Nevertheless, the
L1 error of Local (Speed+Acceleration) are similar to Global methods, especially compared with
the other baseline approaches in Figures 14(a), 15(a), and 16(a). The corresponding time costs of
Local methods are significantly lower than the Global methods, comparable to the efficient EWMA
in Figures 17, 18, and 19. The results demonstrate the time performance of Local methods without
introducing much L1 error compared to Global in practice.

Note that for the local algorithm, if a previous point xk is erroneously repaired, then it may
propagate the error to the subsequent repair on xk+1. Given an erroneous xk , the repair on xk+1

would be unreliable even with more accurate constraints on both speed and acceleration. There-
fore, in some extreme cases, it is possible that Local(Speed+Acceleration) may perform worse than
Local(Speed).

In addition to the L1 errors, we also compare the techniques along their L2 errors in Fig-
ures 14, 15, and 16. Since there are too many lines in the figures, we plot the most important
baselines, i.e., the typical baselines Kalman Filter in the category of smoothing-based methods in

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

10:30 S. Song et al.

Fig. 17. Scalability over Stock data with error rate 0.05.

Section 6.1 and HoloClean in the category of constraint-based methods in Section 6.2. While some
larger differences will increase L2 to a greater extent than L1 [13], as shown in subfigures (b), two
groups of techniques in L2 errors are still observed as those in L1 errors, i.e., the baselines and our
more advanced proposals.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

Stream Data Cleaning under Speed and Acceleration Constraints 10:31

Fig. 18. Scalability over OliveOil data with error rate 0.05.

5.2.2 Application Performance. In addition to evaluating directly the repair performance with
synthetic and real-world errors, we further investigate the classification accuracy over the OliveOil
data and Trace data without/with data cleaning. There are four classes in OliveOil dataset and four
classes in Trace dataset. Since the UCR datasets are already split in training and testing sets, we
directly use the already split training set and testing set in the datasets. In the training phase, the

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

10:32 S. Song et al.

Fig. 19. Scalability over Trace data with error rate 0.05.

classifiers KNN [37] and XGBoost [7] are learned over three types of data, (1) the Clean data of the
original datasets, (2) the Dirty data with errors injected in the original datasets, and (3) the data
with injected errors repaired by different approaches, as reported in Section 5.2.1. In the testing
phase, these learned models are then evaluated over the clean testing data. It is not surprising
that a method repairing the dirty data more accurately improves more the classifier training and
thus the classification accuracy (i.e., closer to Clean). In this sense, the relationships among all the

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

Stream Data Cleaning under Speed and Acceleration Constraints 10:33

methods in the new Figures 20 and 21 are generally similar to those with models trained over clean
data and tested in clean/dirty/repaired data,

Figure 20 presents the classification results over the datasets injected with various rates of er-
rors. First, it is not surprising that the more the errors are injected, the lower the classification
accuracy will be. By repairing the errors, the classification is more or less improved compared to
the Dirty data. The results verify the necessity of conducting (accurate) data cleaning. Indeed, the
classification accuracy is generally proportional to the repair performance in Figures 15 and 16.
That is, the Global (Speed+Acceleration) method showing the best L1 error in repairing has the
highest classification accuracy (closest to Clean) as well.

Again, we tune the parameter of EWMA by a grid search and report the best results. Specifically,
for the tuned EWMA method, the rates of weighted descent are α = 0.072 in the Trace dataset and
α = 0.063 in the OliveOil dataset. While the tuned EWMA method has results comparable to others
smoothing/filtering methods such as Kernel Smooth, the corresponding classification accuracy is
still much lower than our proposal. The reason is that, as illustrated in the example in Figure 1, the
smoother methods may over-change almost all data points, most of which do not involve errors.

Figure 21 presents the classification accuracy with XGBoost. While XGBoost shows better per-
formance than KNN in the original Clean data, the classification accuracy of XGBoost drops more
significantly with the increase of the error rate. Nevertheless, the results of different approaches in
Figure 21 are generally proportional to those with KNN in Figure 20. That is, the proposed Global
(Speed+Acceleration) having the best repair performance in Figure 21 shows a classification accu-
racy closest to the Clean data.

5.3 Capturing Constraints

We note that in most scenarios, the speed and acceleration constraints are natural, e.g., the walk-
ing speed of a person, while some others could be derived. For dataset Stock, the speed constraints
are naturally derived by the business semantics. The price limit in the market declares that the
increase or decrease of daily price should not exceed l · r where l is the price of the last trading
day and r = 10% is a percentage. Specifically, while the daily increase or decrease of the price
should not exceed 10%, the speed constraint is declared using the absolute price value instead of
percentage. In this sense, the constraints are different for different stocks if the dataset contains
more than one stock. The GPS dataset is collected by a person carrying a smartphone and walking
around at campus. We require seven meters per second as the maximum walking speed of the per-
son. To repair two-dimensional data, we declare speed constraints separately for each dimension.
The repairing is conducted separately as well, in the sequences of longitude and latitude, respec-
tively. Such constraints on individual dimensions are stricter than the constraints defined w.r.t.
two-dimensional distance. That is, the returned repair will always satisfy (be consistent with) the
constraints on the velocity in the two-dimensional space.

Nevertheless, for a particular domain where speed and acceleration knowledge is not available,
the speed and acceleration constraints can be extracted from data. We consider the statistical dis-
tribution of speeds and accelerations by sampling data over Stock, OliveOil, GPS, and Trace in
Figures 22 and 24. The constraints smin, smax, amin and amax are determined by observing the dis-
tributions of speeds and accelerations. Referring to statistics, confidence intervals are typically
stated at the 95% confidence level [31]. In other words, 95% of the speeds are regarded as accurate
(within [smin, smax]), and similarly for acceleration (within [amin, amax]). Moreover, the rule of three
standard deviations [26] could also be applied to determine the aforesaid ranges on speeds and ac-
celerations (with confidence level 99.73% for normal distribution). It suggests smax = −smin = 0.5
for Stock, smax = −smin = 0.6 for OliveOil, smax = −smin = 7 for GPS, smax = −smin = 0.3 for Trace,
in Figure 23. Similarly, for acceleration, we have amax = −amin = 0.4 for Stock, amax = −amin = 0.1

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

10:34 S. Song et al.

Fig. 20. Classification accuracy over datasets OliveOil and Trace for various error rates with kNN.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

Stream Data Cleaning under Speed and Acceleration Constraints 10:35

Fig. 21. Classification accuracy over datasets OliveOil and Trace for various error rates with XGBoost.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

10:36 S. Song et al.

Fig. 22. Statistical distribution on speeds, (a) mean = 0.006, standard deviation = 0.167, (b) mean = -0.0006,

standard deviation = 0.2, (c) mean = 0.003, standard deviation = 2.33, (d) mean = 0.004, standard deviation =

0.03.

for OliveOil, amax = −amin = 6 for GPS, amax = −amin = 0.1 for Trace, in Figure 25. As illustrated
in Figures 23 and 25, given such speed and acceleration constraints, the L1 errors are much lower.

Generally, if the speed and acceleration constraints are set too loose, e.g., smax = −smin = 10 in
Figure 23, or amax = −amin = 10 in Figure 25, then almost everything will pass the examination
of speed and acceleration constraints without repairing, and thus the L1 error is high. However, if
the speed and acceleration constraints are too tight, say, smax = −smin = 0.1 in Figure 23(a), smax =

−smin = 0.001 in Figure 23(b) and (d), smax = −smin = 3 in Figure 23(c), or amax = −amin = 0.001 in
Figures 25(a), (b), and (d), amax = −amin = 0.3 in Figure 25(c), then most values would be regarded
as violations to such tight constraints. With over-repairing, the corresponding L1 error is high.

The experiments in Figures 23 and 25 consider various settings of constraints to illustrate the
robustness. While the repairs are not reliable given incorrect constraints (too loose or too tight),
the results are accurate under a wide range of speed and acceleration constraints. For instance, for
the Stock dataset, a number of speed constraints smax = −smin in the range of 0.4 to 0.9 achieve low
repair error in Figure 23. Likewise, the acceleration constraints amax = −amin between 0.1 and 1.0
lead to low repair error as well in Figure 25.

As aforesaid, we apply the rule of three standard deviations [26] to determine the constraints
on speeds and accelerations (with confidence level 99.73% for normal distribution). For instance,
given the mean 0 and the standard deviation 0.167 of Figure 22(a), we have the speed constraints
smax = −smin = 0.5 for Stock. In this sense, we can avoid a grid search in Figures 23 and 25 to
find the best constraints without under-repairing and over-repairing. Instead, with a confidence
level 99.73% in the statistical distribution, we determine the constraints in Figures 22 and 24, which

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

Stream Data Cleaning under Speed and Acceleration Constraints 10:37

Fig. 23. Varying speed constraints in Local (Speed+Acceleration) over Stock with amax = −amin = 0.4,

OliveOil with amax = −amin = 0.1, GPS with amax = −amin = 6, Trace with amax = −amin = 0.1.

would not be too loose (avoid under-repairing) or too tight (avoid over-repairing). Consequently,
the aforesaid chosen smax = −smin = 0.5 for Stock shows a low repair error in Figure 23(a).

Figure 26 presents the results of dynamic constraints with OliveOil compared to static con-
straints in a streaming setting. As illustrated in Figure 26(c), both speed constraints [sk

min, s
k
max]

and acceleration constraints [ak
min,a

k
max] change over time. It is not surprising that the repair per-

formances of different algorithms in Figure 26(a) are more or less improved by the more accurate
online adjusted constraints. The corresponding time costs in Figure 26(b) increase slightly for the
extra cost of adjusting the constraints online.

Figure 27 presents the results of dynamic constraints over the Stock dataset, where the speed
constraint in each day is dynamically determined by the price of the previous day, i.e., the daily
increase or decrease of the price should not exceed 10%. Similar to the results with dynamic con-
straints over the OliveOil dataset in Figure 26, the results are also more or less improved by using
dynamic constraints compared to those with static ones in the Stock data in Figure 27. The improve-
ment is again not surprising, since the dynamic constraints capture more reasonable semantics in
real world.

6 RELATED WORK

Noisy or dirty data streams have been highlighted. Techniques are developed to perform applica-
tions such as similarity matching queries directly over the noisy streams [23, 35]. However, if the
accuracy of individual data points is concerned, e.g., the precision of RFID readings [17, 18], then
repairing the individual data values is necessary. Matching learning techniques are employed to
identify noises in data streams [38], but fail to repair the potentially dirty data.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

10:38 S. Song et al.

Fig. 24. Statistical distribution on accelerations, (a) mean = 0, standard deviation = 0.13, (b) mean = 0, stan-

dard deviation = 0.03, (c) mean = 0, standard deviation = 0.03, (d) mean = 0.0003, standard deviation = 2.

6.1 Smoother and Filter-based Data Cleaning

Smoother is often considered to reduce the affects of noises, e.g., for better visualization [29]. Mov-
ing average [6] is commonly used to smooth time series data and make forecasts. A simple mov-

ing average (SMA) is the unweighted mean of the last k data points. This average is used for
forecasting the next value of the time series. Whereas in the simple moving average the past ob-
servations are weighted equally, a weighted moving average (WMA) multiplies factors to give
different weights to data at different positions in the sample window, e.g., using the inverse value of
time interval as the weight. Moreover, the exponentially weighted moving average (EWMA)

[14] assigns exponentially decreasing weights over time.
Median Filter [33] is a kind of nonlinear signal processing technology that can effectively sup-

press noises based on the sorting statistics theory. The basic principle of Median Filter is to replace
the value of a point in a sequence with the median value of its neighbor points, which can be used
to eliminate isolated noise points. Instead of the values from neighbor points as the candidates, our
median-based solution in Section 3.2 considers the candidates suggested by speed and acceleration
constraints.

Savitzky-Golay Filter [1] is based on the average trend of High-quality Normalized Difference

Vegetation Index (NDVI) time series to determine the appropriate filter parameters, using poly-
nomial to achieve the ordinary least squares in sliding window. The most important feature of
this filter is that it can keep the shape and width of the signal unchanged while filtering the noise.
Using Savitzky-Golay method can improve the smoothness and reduce the noise interference.

Kalman Filter [27] uses linear system state equations to perform optimal estimation through
observation data. It estimates the state of the dynamic system from a series of data with

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

Stream Data Cleaning under Speed and Acceleration Constraints 10:39

Fig. 25. Varying acceleration constraints in Local (Speed+Acceleration) over Stock with smax = −smin = 0.5,

OliveOil with smax = −smin = 0.6, GPS with smax = −smin = 7, Trace with smax = −smin = 0.3.

measurement noise when the measurement variance is known. The filter can be used to make
estimation for data values, i.e., predicting according to the data points before the current one.

Kernel Smoother [9] is a statistical method used to estimate real-valued equations, which is
actually a non-parametric regression. It refers to a statistical inference regression method that
does not need to know the total distribution. Kernel Smoother is used as the weighted average
of surrounding observation data. The weight is determined by the kernel, for example, the closer
the data, the greater the weight. This simple method finds the structure of the data-set without
applying parametric models.

Although the smoothing/filtering methods are very efficient, it is obvious to see that the
smoother will modify a large number of data points. Therefore, as illustrated in the example of
Figure 1, the major issue of smoother is the serious damage to the originally correct data points.
One of our major contributions in this article is the employment of speed and acceleration con-
straints to supervise the more accurate cleaning. Following the minimum modification rule in
constraint-based repairing, the original precise values are maximally preserved. The repair L1 er-
ror of our proposed method is much lower than those of smoother, as observed in our experimental
evaluation.

Deshpande et al. [11] introduces a dynamic model to predict the current point according to the
data points before it using Kalman Filter. The comparison to Kalman Filter is reported in Figures 14
to 21 and Table 2. Similarly, Considine et al. [10] approximate the network aggregation to handle
dirty values. They generalize the well-known duplicate insensitive sketches to approximate count-
ing processing. Instead of repairing data errors as in this study, the aggregation is approximated
over the data with errors.

IMR [36] is an iterative minimum repair algorithm that combines the temporal features in anom-
aly detection with the minimum modification in data repair, i.e., performing the minimum repair

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

10:40 S. Song et al.

Fig. 26. Evaluation on dynamic constraints over OliveOil.

in each error prediction iteration. As a supervised method, we need to label the errors with the
corresponding truths in a sequence. Online labeling is often unlikely in a streaming setting.

6.2 Constraint-based Data Repairing

Most data repairing techniques focus on the conventional integrity constraints, concerning equal-
ity relationships among tuples [4, 5]. The stream considered in our proposal consists of numerical

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

Stream Data Cleaning under Speed and Acceleration Constraints 10:41

Fig. 27. Evaluation on dynamic constraints over Stock.

values, where the constraints in relational settings such as functional dependencies are not appli-
cable. The temporal functional dependency [2] extending functional dependencies with temporal
information is still not applicable to our study concerning numerical values. Moreover, since the
constraints apply to any pair of tuples in a relation, the repairing problem (with the minimum
modification) is often found to be NP-hard [21, 24]. In contrast, as stated in Section 2.1, the (speed
and acceleration) constraints on data streams are usually valid to data points in a short period
(window). The corresponding repairing could also be efficient (Corollary 2.3).

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

10:42 S. Song et al.

To the best of our knowledge, Holistic cleaning [8] is the only existing constraint-based tech-
nique that can support speed and acceleration constraints (expressed by extended denial con-
straints). It is worth noting the original denial constraints (DCs) [25] supports only six operators,
=,�, <, >, ≤, ≥. To express speed and acceleration constraints in Formulas (1) and (2), respectively,

we extend denial constraints, i.e., ∀i, j,¬(
xj−xi

tj−ti
≥ smin ∧

xj−xi

tj−ti
≤ smax ∧ tj − ti > 0 ∧ tj − ti ≤ w) as

speed constraints and ∀i, j,¬(

xj −xi
tj −ti

− xi −xi−1
ti −ti−1

tj−ti
≥ amin ∧

xj −xi
tj−ti

− xi −xi−1
ti −ti−1

tj−ti
≤ amax ∧ tj − ti > 0 ∧ tj − ti ≤ w)

as acceleration constraints. The implementation of the Holistic method is adapted to support the
aforesaid extended denial constraints. Since the approach is proposed for repairing the general
(tabular) data, it cannot support the online/integral cleaning over sliding windows in streaming
data. In this sense, one of our contributions in this study is the local optimum method, which sup-
ports not only online cleaning but also out-of-order data arrival. Consequently, as illustrated in
the experiments, our proposal can show up to two orders of magnitude improvement in time costs
compared with Holistic cleaning.

HoloClean [28] is a semi-automatic data repair framework that relies on statistical learning and
inference to unify a series of data repair methods for repairing errors in structured data. Based
on the weak supervised paradigm, HoloClean uses a variety of signals, including user-defined
heuristic rules (such as general data integrity constraints) and external dictionaries to repair the
wrong data. Similar to the Holistic cleaning [8], we may use the (extended) denial constraints

(DCs) to specify the constraints on speeds.
Moreover, Sequential Dependency (SD) [15] cannot express precisely the speed constraints.

SDs concern the difference of two consecutive data points in a sequence. As discussed, data streams
often deliver data points in various time intervals. Given different timestamp distances, the value
difference of two consecutive points does not exactly denote the speed semantics. Owing to such
imprecise constraint knowledge, as presented in the experiments, the L1 error of SD based repair
could be much higher compared to our speed/acceleration constraint-based proposal. Our another
contribution is the employment of the more accurate speed and acceleration rather than the simple
value distance in repairing streaming data.

The preliminary conference version of this article [32] focuses on cleaning the dirty stream data
under speed constraints. It considers the constraints on the speed of data changes, such as fuel con-
sumption per hour, weekly temperature variation, or daily limit of stock prices. For example, the
fuel consumption of a crane should not be negative and not exceed 40 liters per hour. The cleaning
problem is thus to repair the data to meet the constraints of the minimum and maximum speeds.
In this journal version, along with the speed constraints, we further consider the constraints on
acceleration of value changes. For instance, consider the trajectory of a van. The speed constraints
state that the GPS value change of two points should not exceed 100 km/h, while the acceleration
constraints further require that the difference on speeds between two consecutive points in a sec-
ond is no greater than 10 km/h. That is, the increase/decrease of speeds in a second is impossible
to be greater than 10 km/h. The repairing needs to satisfy the constraints on the maximum and
minimum speeds as well as the maximum and minimum accelerations. Since more constraints are
utilized, the corresponding repair will be more accurate than considering the speed constraints
solely, as illustrated in the experiments in Section 5.

Besides our studied speed and acceleration constraints, Fischer et al. [12] proposed a nice no-
tation, Stream Schema, for representing structural and semantic constraints on data streams. The
Stream Schema concerns general constraints with various semantics such as orderings between
attribute values, while our study focuses only on the specific speed constraints over numeric val-
ues. As a promising future direction, it is interesting to extend the stream data cleaning w.r.t. the
more general Stream Schema constraints.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

Stream Data Cleaning under Speed and Acceleration Constraints 10:43

7 CONCLUSIONS

In this study, we first indicate the inappropriateness of the smoothing-based stream data cleaning.
It could not repair the dirty data such as large spikes, and even worse may seriously damage the
originally accurate values. Following the same line of employing integrity constraints for relational
data cleaning, in this article, we propose a repair method with acceleration and speed constraints.
The repairing of imprecise data is guided by the innovative constraints on speed and acceleration.
The speed and acceleration constraint semantics could be easily captured, such as daily price limit
in financial markets, or the maximum walking speed and acceleration of a person. With speed
and acceleration constraints, our method supports online streaming cleaning in linear time. In
particular, the median-based solution can fast identify the local optimum under certain constraints,
following the intuition that a solution with the minimum distance (i.e., as close as possible to each
point) probably lies in the middle of the data points. Experiments on real datasets demonstrate that
our method with speed and acceleration constraints can show significantly lower L1 error than the
smoothing-based approach and up to two orders of magnitude improvement in time performance
compared to the state-of-the-art data cleaning methods.

REFERENCES

[1] A. Savitzky A. and M. J. E. Golay. 1964. Smoothing and differentiation of data by simplified least-squares procedures.

Analyt. Chem. 8, 36 (1964), 1627–1639. DOI:http://dx.doi.org/10.1021/ac60214a047

[2] Ziawasch Abedjan, Cuneyt Gurcan Akcora, Mourad Ouzzani, Paolo Papotti, and Michael Stonebraker. 2015. Temporal

rules discovery for web data cleaning. PVLDB 9, 4 (2015), 336–347. DOI:https://doi.org/10.14778/2856318.2856328

[3] Patricia C. Arocena, Boris Glavic, Giansalvatore Mecca, Renée J. Miller, Paolo Papotti, and Donatello Santoro. 2015.

Messing up with BART: Error generation for evaluating data-cleaning algorithms. PVLDB 9, 2 (2015), 36–47. DOI:https:

//doi.org/10.14778/2850578.2850579

[4] George Beskales, Ihab F. Ilyas, and Lukasz Golab. 2010. Sampling the repairs of functional dependency violations

under hard constraints. PVLDB 3, 1 (2010), 197–207. DOI:https://doi.org/10.14778/1920841.1920870

[5] Philip Bohannon, Michael Flaster, Wenfei Fan, and Rajeev Rastogi. 2005. A cost-based model and effective heuris-

tic for repairing constraints by value modification. In Proceedings of the ACM SIGMOD International Conference on

Management of Data. 143–154. DOI:https://doi.org/10.1145/1066157.1066175

[6] David R. Brillinger. 2001. Time Series - Data Analysis and Theory. (Classics in Applied Mathematics, Vol. 36.) SIAM.

[7] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining. 785–794. DOI:https://doi.org/10.1145/

2939672.2939785

[8] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Holistic data cleaning: Putting violations into context. In Proceedings of

the 29th IEEE International Conference on Data Engineering. 458–469. DOI:https://doi.org/10.1109/ICDE.2013.6544847

[9] Moo K. Chung. 2020. Gaussian kernel smoothing. CoRR abs/2007.09539 (2020).

[10] Jeffrey Considine, Feifei Li, George Kollios, and John W. Byers. 2004. Approximate aggregation techniques for sensor

databases. In Proceedings of the 20th International Conference on Data Engineering. 449–460. DOI:https://doi.org/10.

1109/ICDE.2004.1320018

[11] Amol Deshpande, Carlos Guestrin, Samuel Madden, Joseph M. Hellerstein, and Wei Hong. 2004. Model-driven data

acquisition in sensor networks. In (e)Proceedings of the 30th International Conference on Very Large Data Bases. 588–599.

DOI:https://doi.org/10.1016/B978-012088469-8.50053-X

[12] Peter M. Fischer, Kyumars Sheykh Esmaili, and Renée J. Miller. 2010. Stream schema: Providing and exploiting static

metadata for data stream processing. In Proceedings of the 13th International Conference on Extending Database Tech-

nology. 207–218. DOI:https://doi.org/10.1145/1739041.1739068

[13] David Freedman. 1991. Statistics (2nd ed.). Norton.

[14] Roland Fried and Ann Cathrice George. 2011. Exponential and holt-winters smoothing. In International Encyclopedia

of Statistical Science. 488–490. DOI:https://doi.org/10.1007/978-3-642-04898-2_244

[15] Lukasz Golab, Howard J. Karloff, Flip Korn, Avishek Saha, and Divesh Srivastava. 2009. Sequential dependencies.

PVLDB 2, 1 (2009), 574–585. DOI:https://doi.org/10.14778/1687627.1687693

[16] C. A. R. Hoare. 1962. Quicksort. Comput. J. 5, 1 (1962), 10–15. DOI:https://doi.org/10.1093/comjnl/5.1.10

[17] Shawn R. Jeffery, Gustavo Alonso, Michael J. Franklin, Wei Hong, and Jennifer Widom. 2006. Declarative support for

sensor data cleaning. In Proceedings of the 4th International Conference on Pervasive Computing. 83–100. DOI:https:

//doi.org/10.1007/11748625_6

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

http://dx.doi.org/10.1021/ac60214a047
https://doi.org/10.14778/2856318.2856328
https://doi.org/10.14778/2850578.2850579
https://doi.org/10.14778/1920841.1920870
https://doi.org/10.1145/1066157.1066175
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1109/ICDE.2013.6544847
https://doi.org/10.1109/ICDE.2004.1320018
https://doi.org/10.1016/B978-012088469-8.50053-X
https://doi.org/10.1145/1739041.1739068
https://doi.org/10.1007/978-3-642-04898-2_244
https://doi.org/10.14778/1687627.1687693
https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1007/11748625_6

10:44 S. Song et al.

[18] Shawn R. Jeffery, Gustavo Alonso, Michael J. Franklin, Wei Hong, and Jennifer Widom. 2006. A pipelined framework

for online cleaning of sensor data streams. In Proceedings of the 22nd International Conference on Data Engineering.

140. DOI:https://doi.org/10.1109/ICDE.2006.8

[19] Shawn R. Jeffery, Minos N. Garofalakis, and Michael J. Franklin. 2006. Adaptive cleaning for RFID data streams. In

Proceedings of the 32nd International Conference on Very Large Data Bases. 163–174. Retrieved from http://dl.acm.org/

citation.cfm?id=1164143.

[20] Narendra Karmarkar. 1984. A new polynomial-time algorithm for linear programming. In Proceedings of the 16th ACM

Symposium on Theory of Computing. 302–311. DOI:https://doi.org/10.1145/800057.808695

[21] Solmaz Kolahi and Laks V. S. Lakshmanan. 2009. On approximating optimum repairs for functional dependency vi-

olations. In Proceedings of the 12th International Conference on Database Theory. 53–62. DOI:https://doi.org/10.1145/

1514894.1514901

[22] Xian Li, Xin Luna Dong, Kenneth Lyons, Weiyi Meng, and Divesh Srivastava. 2012. Truth finding on the deep web: Is

the problem solved? PVLDB 6, 2 (2012), 97–108. DOI:https://doi.org/10.14778/2535568.2448943

[23] Zheng Li, Tingjian Ge, and Cindy X. Chen. 2013. ϵ -Matching: Event processing over noisy sequences in real time. In

Proceedings of the ACM SIGMOD International Conference on Management of Data. 601–612. DOI:https://doi.org/10.

1145/2463676.2463715

[24] Ester Livshits, Benny Kimelfeld, and Sudeepa Roy. 2018. Computing optimal repairs for functional dependencies. In

Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. 225–237. DOI:https:

//doi.org/10.1145/3196959.3196980

[25] Andrei Lopatenko and Loreto Bravo. 2007. Efficient approximation algorithms for repairing inconsistent databases. In

Proceedings of the 23rd International Conference on Data Engineering. 216–225. DOI:https://doi.org/10.1109/ICDE.2007.

367867

[26] Sekander Hayat Khan M. 2011. Standard deviation. In International Encyclopedia of Statistical Science. 1378–1379.

DOI:https://doi.org/10.1007/978-3-642-04898-2_535

[27] A. K. Mahalanabis. 1986. Introduction to random signal analysis and Kalman filtering: Robert G. Brown. Autom. 22, 3

(1986), 387–388. DOI:https://doi.org/10.1016/0005-1098(86)90041-5

[28] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. HoloClean: Holistic data repairs with proba-

bilistic inference. Proc. VLDB Endow. 10, 11 (2017), 1190–1201. DOI:https://doi.org/10.14778/3137628.3137631

[29] Kexin Rong and Peter Bailis. 2017. ASAP: Prioritizing attention via time series smoothing. PVLDB 10, 11 (2017), 1358–

1369. DOI:https://doi.org/10.14778/3137628.3137645

[30] Claude Sammut and Geoffrey I. Webb (Eds.). 2017. Encyclopedia of Machine Learning and Data Mining. Springer.

DOI:https://doi.org/10.1007/978-1-4899-7687-1

[31] Michael Smithson. 2011. Confidence interval. In International Encyclopedia of Statistical Science. 283–284. DOI:https:

//doi.org/10.1007/978-3-642-04898-2_183

[32] Shaoxu Song, Aoqian Zhang, Jianmin Wang, and Philip S. Yu. 2015. SCREEN: Stream data cleaning under speed

constraints. In Proceedings of the ACM SIGMOD International Conference on Management of Data. 827–841. DOI:https:

//doi.org/10.1145/2723372.2723730

[33] John W. Tukey. 1977. Exploratory Data Analysis. Addison-Wesley. Retrieved from https://www.worldcat.org/oclc/

03058187.

[34] Tzu-Tsung Wong and Nai-Yu Yang. 2017. Dependency analysis of accuracy estimates in k-fold cross validation. IEEE

Trans. Knowl. Data Eng. 29, 11 (2017), 2417–2427. DOI:https://doi.org/10.1109/TKDE.2017.2740926

[35] Wush Chi-Hsuan Wu, Mi-Yen Yeh, and Jian Pei. 2012. Random error reduction in similarity search on time series: A

statistical approach. In Proceedings of the IEEE 28th International Conference on Data Engineering. 858–869. DOI:https:

//doi.org/10.1109/ICDE.2012.83

[36] Aoqian Zhang, Shaoxu Song, Jianmin Wang, and Philip S. Yu. 2017. Time series data cleaning: From anomaly detection

to anomaly repairing. Proc. VLDB Endow. 10, 10 (2017), 1046–1057. DOI:https://doi.org/10.14778/3115404.3115410

[37] Shichao Zhang, Xuelong Li, Ming Zong, Xiaofeng Zhu, and Debo Cheng. 2017. Learning k for kNN classification. ACM

Trans. Intell. Syst. Technol. 8, 3 (2017), 43:1–43:19. DOI:https://doi.org/10.1145/2990508

[38] Xingquan Zhu, Peng Zhang, Xindong Wu, Dan He, Chengqi Zhang, and Yong Shi. 2008. Cleansing noisy data streams.

In Proceedings of the 8th IEEE International Conference on Data Mining. 1139–1144. DOI:https://doi.org/10.1109/ICDM.

2008.45

Received February 2020; revised April 2021; accepted May 2021

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 10. Publication date: September 2021.

https://doi.org/10.1109/ICDE.2006.8
http://dl.acm.org/citation.cfm?id=1164143
https://doi.org/10.1145/800057.808695
https://doi.org/10.1145/1514894.1514901
https://doi.org/10.14778/2535568.2448943
https://doi.org/10.1145/2463676.2463715
https://doi.org/10.1145/3196959.3196980
https://doi.org/10.1109/ICDE.2007.367867
https://doi.org/10.1007/978-3-642-04898-2_535
https://doi.org/10.1016/0005-1098(86)90041-5
https://doi.org/10.14778/3137628.3137631
https://doi.org/10.14778/3137628.3137645
https://doi.org/10.1007/978-1-4899-7687-1
https://doi.org/10.1007/978-3-642-04898-2_183
https://doi.org/10.1145/2723372.2723730
https://www.worldcat.org/oclc/03058187
https://doi.org/10.1109/TKDE.2017.2740926
https://doi.org/10.1109/ICDE.2012.83
https://doi.org/10.14778/3115404.3115410
https://doi.org/10.1145/2990508
https://doi.org/10.1109/ICDM.2008.45

