
Why Not Match: On Explanations of Event Pa�ern�eries

Shaoxu Song
Tsinghua University

Beijing, China
sxsong@tsinghua.edu.cn

Ruihong Huang
Tsinghua University

Beijing, China
hrh16@mails.tsinghua.edu.cn

Yu Gao
Tsinghua University

Beijing, China
gaoyu15@mails.tsinghua.edu.cn

Jianmin Wang
Tsinghua University

Beijing, China
jimwang@tsinghua.edu.cn

ABSTRACT

Queries over event data are posed in a form of event patterns,

for example, to retrieve the flights from IAH to LGA without a

stopover. If the expected answer is not returned, one may ask why

not, also known as explanations of non-answers. Analogous to the

relational data, the explanations over event data lie in two aspects.

(1) The pattern consistency explanation indicates that the patterns

specified in the query are wrong (inconsistent), that is, there ex-

ists no tuple of events that can match the query. (2) The timestamp

modification explanation speculates that the instance of event tu-

ple is incorrect, for example, the timestamps of some events are

imprecise and need modification. To the best of our knowledge,

this is the first study on explaining non-answers over event data.

We prove that both explanation problems are np-complete. By en-

coding event patterns as a novel notation, we identify the special

cases that can be efficiently solved or approximated. General cases

are addressed by utilizing the solutions of special cases. Extensive

experiments over real and synthetic datasets demonstrate both ef-

fectiveness and efficiency of our proposal.

ACM Reference Format:

Shaoxu Song, Ruihong Huang, Yu Gao, and Jianmin Wang. 2021. Why Not

Match: On Explanations of Event PatternQueries. In Proceedings of the 2021

International Conference on Management of Data (SIGMOD ’21), June 20–25,

2021, Virtual Event, China. ACM, New York, NY, USA, 13 pages. https://doi.

org/10.1145/3448016.3452818

1 INTRODUCTION

Event patterns [12] are often employed to specify the queries over

event data in complex event processing [5, 6], where event data

are the instances of events associated with the corresponding oc-

currence timestamps and event patterns specify the constraints on

event occurrence. Let us consider a motivating example of event

patterns on flights for tracing COVID-19 cases.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’21, June 20–25, 2021, Virtual Event, China

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00
https://doi.org/10.1145/3448016.3452818

Table 1: Tuple t1 of flights on 07/01 matches the patterns of

the query in Example 1. Another expected to match tuple t2
does not and thus needs explanation.

Tuple E1 (UA104

arrival)

E2 (AA514

departure)

E3 (UA729

arrival)

E4 (CO193

departure)

t1 (07/01) 17:08 18:58 17:25 19:13

t2 (07/02) 17:06 18:54 17:24 20:08 (19:08)

Example 1. Suppose that there are COVID-19 cases reportedwho

transferred in LGA and stayed there for at least one hour. Let E1
denote the arrival event of flight UA104 and E2 be the departure

event of flight AA514, taken by the reported passenger. The other

passengers transferring in a similar period should be traced, by a

query with pattern

p0 : SEQ(AND(E1, E3) WITHIN 30 minutes,

AND(E2, E4) WITHIN 30 minutes) ATLEAST 2 hours

where E3 is the arrival time and E4 is the departure time of the

traced passenger. The keyword SEQ denotes the sequential occur-

rence of events or patterns, while AND means concurrent occur-

rence. WITHIN and ATLEAST specify the maximum and minimum

timestamp distances of events occurring in the corresponding pat-

tern, respectively. The nested sub-pattern AND(E1, E3) WITHIN 30

minutes states that two passengers can arrive in any order within

30 minutes. Likewise, AND(E2, E4) WITHIN 30 minutes means that

they depart again in any order with time difference no greater than

30 minutes. The SEQ pattern requires that the arrival time of both

passengers should be earlier than both their departure time, in par-

ticular, E1 of the reported passenger earlier than E4 of the traced

passenger, and similarly E3 earlier than E2. In other words, the

transfer periods of two passengers overlap. The term ATLEAST 2

hours of SEQ implies that the overlap time is at least 1 hour, given

the aforesaid WITHIN 30minutes of bothAND sub-patterns. Although

the pattern cannot exactly find out all the contacts, it helps reduc-

ing the search space. �

1.1 Explanations of Non-Answers

Unfortunately, for various reasons as illustrated below, some ex-

pected answers of the user may be absent. Existing studies on non-

answer explanations of database queries are mainly in two aspects,

that is, (1) query explanation that focuses on the issues in query

[10, 27], and (2) data explanation that addresses the issues in the

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1705

https://doi.org/10.1145/3448016.3452818
https://doi.org/10.1145/3448016.3452818
https://doi.org/10.1145/3448016.3452818

data [18, 19]. Analogously, in this paper, for the non-answers to

event pattern queries, we also study (1) the pattern consistency

explanation on queries and (2) the timestamp modification expla-

nation over data. It is worth noting that only when given a set of

consistent event patterns, the explanation on data modification is

possible. Moreover, imprecise timestamps are prevalent in practice

and often lead to non-answers [32]. In this sense, the studied ex-

planations are the two top problems for explaining event pattern

queries, analogous to the two modes of query and data explana-

tions for database queries, respectively.

1.1.1 Pa�ern Consistency Explanation. The pattern consistency ex-

planation is to determine whether there exists an assignment of

timestamps that can satisfy the given query patterns, also known

as the pattern consistency problem. If the query pattern is not con-

sistent, it naturally explains why non-answers.

During the query development time, the pattern consistency ex-

planation could be used to avoid an inconsistent pattern and help

the developer pose the desired query. Suppose that the following

event pattern query is developed to trace the passengers trans-

ferred in LGA, again in monitoring COVID-19 cases in Example 1.

SEQ(AND(E1, E3) ATLEAST 30 minutes,

AND(E2, E4) ATLEAST 30 minutes) WITHIN 45 minutes

The pattern consistency explanation could directly tell the devel-

oper that no answer will be returned for this inconsistent pattern,

without evaluating in the data. That is, no events could satisfy the

condition specified in the pattern, since the events in two AND pat-

terns need at least 30+30 minutes which is unlikely to occur in a

total of 45 minutes in sequence (SEQ).

1.1.2 Timestamp Modification Explanation. The timestamp modi-

fication explanation is tominimallymodify the timestamps of events,

in order to make them match the given event patterns, also known

as the timestamp modification problem. It explains that the times-

tamps are wrong and should be modified to make the tuple an an-

swer to the query.

During debugging, if an expected result is not returned, the times-

tamp modification explanation could help the developer in finding

out the problems in data. Consider again the scenario of monitor-

ing potential COVID-19 cases by the event pattern query p0 in Ex-

ample 1. Suppose that the user already knew some suspected pas-

sengers transferred in LGA, but not returned in the aforesaid event

pattern query. The timestamp modification explanation suggests

that it is because the departure time t2[E4] = 20:08 of flight CO193

is wrong (e.g., owing to semantics ambiguity, out-of-date data or

pure errors [24]) and should bemodified to 19:24 in order to appear

as the expected result in the aforesaid event pattern query.

It is true that arbitrary changes of timestamps to satisfy the

query patterns do not make sense. For example, an explanation

excessively modifying the timestamps of all flights in a day (the

whole t2 in Table 1) to any other day (such as t1 that matches the

pattern) is meaningless. Therefore, rather than considering all the

possible worlds with an arbitrary combination of all timestamps

[32], the possible explanations (by modifying the data in databases

[18]) need to be ranked [23]. In our scenario of events, we propose

to obtain the most likely modification explanation of imprecise

timestamps to satisfy the query pattern, following the minimum

change idea in data cleaning [13]. The rationale is that people or

systems always try tominimize their mistakes in practice. Without

further knowledge (on the truth 19:08 in Table 1), the minimally

modified explanation t′
2
[E4]=19:24 is the best attempt to match the

query pattern and avoid over-modifying the timestamps.

If even the minimum change explanation needs to significantly

modify the timestamps on a great many of events, the non-answers

may not be caused by imprecise timestamps and the timestamp

modification explanation does not apply. It is interesting to inves-

tigate further explanation types in the future study.

1.2 Application Scenarios

Data-driven or data-informed decisionmaking has become increas-

ingly important recently [25]. In order monitoring [12], an event

pattern query could be

SEQ(AND(SEQ(E1, E2), SEQ(E3, E4)), E5) WITHIN 12 hours.

It monitors the cancelled orders that involve the participation of

both suppliers and remote stocks. E1, E2 denote the events of order-

ing from the supplier and generating the quote with a high price,

respectively. E3, E4 are the events of using remote stock and gen-

erating invoice, respectively. E5 means the event of cancelling the

order. Frequent occurrences of such patternsmay indicate the need

for an immediate inventory management. (1) With the pattern con-

sistency explanation in Section 1.1.1, the user will notice the in-

consistency if the sub-pattern is mistakenly written as SEQ(E1, E2)

ATLEAST 24 hours in the query. (2) If it is already known that the lo-

cal inventory is insufficient, but no answer is returned in the afore-

said alert query, with the help of timestamp modification explana-

tion in Section 1.1.2, one may identify that the timestamp of event

E4 (generate invoice) is reset to 00:00 and should be modified.

In vehicle tracking [20], an event pattern query could be

SEQ(E1, AND(E2, E3) ATLEAST 30 minutes, E4) WITHIN 2 hours,

where E1, . . . , E4 denote the check points of excavation, weighting,

height measuring and unloading, separately. Subpattern AND(E2, E3)

implies that E2 (weighting) and E3 (height measuring) could take

place in any order, both of which should occur after E1 (excavation)

before E4 (unloading) referring to the SEQ predicate. The pattern

query is used to count the number of complete trips. (1) Again, in-

consistency such as ATLEAST 30 hours rather than minutes in the

query can be identified by the pattern consistency explanation in

Section 1.1.1. (2) If the count of matched trips is less than expected,

the timestamp modification explanation in Section 1.1.2 may indi-

cate the incomplete timestamp 11:– as well as its modification.

In monitoring the job execution in a cluster [16], suppose that a

maximum number of two concurrent jobs are allowed at the same

time. The following event pattern detects the termination of the

first submitted job due to two new high priority jobs being sched-

uled, which takes at least 2 minutes,

SEQ(E1, AND(E2, E3), E4) ATLEAST 2 minutes

where E1, E4 denote the submission and termination of the first job,

and E2, E3 denote the submissions of the second and third jobs. The

AND(E2, E3) pattern implies that two new jobs could be submitted in

any order. (1) The pattern consistency explanation in Section 1.1.1

could easily detect the trivial inconsistency like ATLEAST 2 minutes

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1706

Table 2: Major results (complex temporal networks ⊃ simple temporal networks)

Event

pattern

Temporal

network

Pattern consistency

problem

Pattern consistency

Algorithm 1

Timestamp modification

problem

Timestamp modification

Algorithm 2

general [12] (Definition 1) complex

(Definition 5)

np-complete

(Theorem 2)

exact O (f |Γ |n3) np-complete

(Theorem 3)

exact (approximate by single

binding, Definition 8)

no SEQ embedded in AND complex

(Definition 5)

– exact O (f |Γ |n3) – optimal by single binding,

Proposition 8

no AND simple [11]

(Definition 6)

ptime

(Section 4.1)

exact O (n3) – exact by ilp in Formula 3 (lp-

relaxation)

WITHIN 1 minute. (2) If the user had a job terminated but failed to

know why (no matched result of the aforesaid pattern query), the

timestamp modification explanation in Section 1.1.2 may suggest

the reverse order of E4 (old job termination) and E3 (new job sub-

mission), owing to latency or out-of-order messages.

1.3 Contributions

To the best of our knowledge, this is the first study on explaining

non-answers over event data. Table 2 summarizes themajor results.

The “–” entry in Table 2 means that the theoretical bound is not

established yet, and the corresponding problem is still open.

(1)We analyze the complexity of the studied problems in Section

2. The pattern consistency problem for query pattern explanation

is np-complete (Theorem 2). The timestamp modification problem

for tuple timestamp explanation is not only np-complete but also

np-hard to approximate to within any constant factor (Theorems 3

and 4).

(2) We present an encoding of event patterns in Section 3. The

benefit is to identify the special cases that can be efficiently solved

or approximated. It enables us to address the general case, by as-

sembling the solutions of the aforesaid special cases.

(3) We show that the existing constraint [11] on event pairs is

a special case. Existing cubic-time algorithm [11] is thus used for

pattern consistency checking. Moreover, we devise an integer lin-

ear programming (ilp) formulation and the corresponding efficient

lp-relaxation for generating timestamp modification.

(4)We devise exact and approximate algorithms for general cases

by using the solutions in special cases. The approximation not only

achieves good performances on pattern consistency checking and

tuple timestamp modification (Section 6), but also guarantees the-

oretically the optimal solution in some case (Proposition 8).

Finally, we report an extensive experimental evaluation, in Sec-

tion 6, to demonstrate the efficiency and effectiveness of explain-

ing non-answers over event data. While existing studies on expla-

nations of relational queries are not directly applicable over event

data, we discuss the connections to related studies in Section 7.

2 PROBLEM STATEMENT AND ANALYSIS

Let E = {E1, . . . , En} be a set of n events and T be the domain of

timestamps (non-negative integers). A tuple is a sequence of event

instances over E, having no duplicated events. There is a one-to-

one mapping from E to T , i.e., t : E → T , where t[Ei] denotes the

occurrence timestamp of event Ei ∈ E. For example, the arrival

event E1 of a flight is associated with one timestamp t[E1], while

another departure event E2 has its own timestamp t[E2].

2.1 Event Pattern Query

We use an existing language of event patterns in complex event

processing [8, 12], presented in Definition 1. For better solution

and approximation, we create a novel notation of complex tempo-

ral networks to encode event patterns, in Definition 5 in Section 3.

Definition 1 (Event Pattern). An event pattern p0 over E specifies

particular occurrence orders of events in E, defined recursively:

(1) p0 = E is an event pattern with a single event E ∈ E;

(2) p0 = SEQ(p1, . . . , pk) [ATLEAST a] [WITHIN b] is an event pattern

in which the patterns pi , i ∈ 1, . . . ,k, occur sequentially [in a time

period with length ≥ a and ≤ b];

(3) p0 = AND(p1, . . . , pk) [ATLEAST a] [WITHIN b] is an event pattern

in which the patterns pi , i ∈ 1, . . . ,k, occur concurrently [in a time

period with length ≥ a and ≤ b];

where [ATLEAST a] or [WITHIN b] is optional in a pattern, and a ≤ b.

Other attributes could be used in the query language [12, 30],

such as SEQ(E1, E2) WHERE E1.gate=“H15”. TheWHERE clause fil-
ters or considers a property of an event. In such a scenario, the ex-

isting studies on database query explanations [10, 18, 19, 27] could

be applied first to explain the filtering on property gate of event

E1 in theWHERE clause. Then, our explanations on the event pat-

terns are performed over the filtered events. In this sense, our pro-

posal complements the existing database query explanations (on

attribute filtering) by supporting event pattern explanations.

Definition 2. A tuple (trace) t matches a pattern p0, denoted by

t � p0, if

(1) for p0 = E, it has t[ps
0
] = t[pe

0
] = t[E], where t[ps

0
] is the start

timestamp of p0, t[p
e
0
] is the end timestamp of p0, and t[E] is the

timestamp of E recorded in the tuple;

(2) for p0 = SEQ(p1, p2, . . . , pk) [ATLEAST a] [WITHIN b], it has

t[ps
0
] = t[ps

1
], t[pe

0
] = t[pe

k
],

t[ps
1
] ≤ t[pe

1
] ≤ t[ps

2
] ≤ t[pe

2
] ≤ · · · ≤ t[ps

k
] ≤ t[pe

k
],

t � p1, . . . , t � pk

[and a ≤ t[pe
0
] − t[ps

0
] ≤ b];

(3) for p0 = AND(p1, p2, . . . , pk) [ATLEAST a] [WITHIN b],

t[ps
0
] = min(t[ps

1
], t[ps

2
], . . . , t[ps

k
]),

t[pe
0
] = max(t[pe

1
], t[pe

2
], . . . , t[pe

k
]), t � p1, . . . , t � pk

[and a ≤ t[pe
0
] − t[ps

0
] ≤ b].

Occurring concurrently in AND pattern means that pi (if occurs)

could be in any order, such as (p1, p2, . . . , pk) or (p2, p1, . . . , pk).

Referring to Definition 2, it is not surprising that whether a tuple

matches the event pattern can be efficiently checked.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1707

Proposition 1. Given a tuple t and a pattern p0, the determination

of whether t � p0 can be solved in O(n2) time, where n = |E|.

Due to space limitations, we prove Proposition 1 in the technical

report [3].

2.2 Pattern Consistency Explanation

In the why-not explanations for relational data queries, the query

explanation finds the issues in the query [10] and modifies the

query to make a non-answer an answer [15]. In this paper, as the

first study ofwhy-not-match explanations for event pattern queries,

we propose to take the first step on whether the given event pat-

tern query is satisfiable and leave the event query modification as

the future study. The reasons are as follows. (1) The satisfiability of

the event pattern query should be first checked before conducting

the timestamp (data) modification explanation. That is, no times-

tamp modification explanation could be generated when given an

inconsistent event pattern query. (2) The consistency checking for

event pattern queries are already hard, as illustrated in Theorem 2

below. Thereby, we leave the challenging problem of event pattern

query modification explanation as the future study.

The pattern consistency explanation indicates that no answers

are returned since the patterns specified in the query are simply

wrong (unsatisfiable). Indeed, determining whether a query is sat-

isfiable has also been studied in semantic query optimization [17]

to explain why a query has no need to be conducted (since unsatis-

fiable). For instance, the SQL query over relation Goods, [SELECT
* FROM Goods WHERE Sale_Price ≤ 120 AND Sale_Price > 220]
is unsatisfiable and has no need to be performed.

Likewise, in the why-not-match explanation for event pattern

queries, our pattern consistency explanation determines whether

there exists an assignment of timestamps that can satisfy the given

query patterns. Only for those consistent event patterns such as

p0 in Example 1, the timestamp (data) modification explanation

(presented in Section 2.3 below) is meaningful.

Problem 1. Given a set P of event patterns, the pattern consistency

problem is to decide whether there exists a tuple t of events over E

such that t � P .

If not exist, i.e., P is inconsistent, it naturally explains why there

is non-answer to the query with P . Simple invalid patterns may

be easily identified, such as ATLEAST 20 WITHIN 10, referring to the

constraint a ≤ b in Definition 1. For the general case, however, the

pattern consistency problem is hard.

Theorem 2. The pattern consistency problem is np-complete.

Proof sketch. To show the hardness of the pattern consistency prob-

lem, we present a reduction from the 3SAT problem, which is one

of Karp’s 21 NP-complete problems [22]. Consider a CNF formula

C = c1 ∧ · · · ∧ cm , where each clause ci = li1 ∨ li2 ∨ li3 have three

literals, i = 1, . . . ,m, and each literal li j is either x or ¬x for some

variable x ∈ X ,n = |X |. The 3SAT problem is to determinewhether

there exists an assignment to make all the clauses satisfied.

The transformation first introduces a set of events

E = {C0,C1, . . . ,Cm,X1, . . . ,Xn ,¬X1, . . . ,¬Xn},

where eachCi corresponds to a clause ci , i = 1, . . . ,m, and X j ,¬X j

represent xj ,¬xj , respectively, j = 1, . . . ,n. A set P of event pat-

terns over E are constructed as follows:

(1) For each xj ,¬xj , we introduce an event pattern

pj :SEQ(C0, AND(X j ,¬X j) ATLEAST 1 WITHIN 1) ATLEAST 3 WITHIN 3.

(2) For each clause ci = li1 ∨ li2 ∨ li3, we add an event pattern

pn+i : SEQ
(

Ci , AND(Xi1,Xi2,Xi3)
)

ATLEAST 2 WITHIN 2.

(3) For each Ci , we consider

SEQ(C0,Ci) ATLEAST 1 WITHIN 1.

Event pattern pj requires that the timestamp distance between

X j and ¬X j is exactly 1, while pn+i requires that at least one of

Xi1,Xi2,Xi3 should have timestamp distance 2 compared to Ci .

We show that the CNF formula in transformation is satisfiable

if and only if there exists a tuple t of events such that t[C0] =

s, t[Ci] = s + 1, t[Xik] = s + 3 for some Xik ,k = 1, 2, 3, i = 1, . . . ,n,

s is any timestamp in the domain, that is, t � P , the event patterns

are consistent. �

2.3 Timestamp Modification Explanation

In the why-not explanations for relational data queries, the data

modification explanation [18] finds changes in data that would

make a non-answer an answer. For instance, to figure out why

Peter does not appear as a friend of John in the SQL query over re-

lation Network, [SELECT U1_EMail, Friend, U2_Email FROMNet-
work], Herschel and Hernández [18] provide a set of data modifi-

cations so that the missing tuples can present in the query result,

such as modifying the incorrect U1_EMail of John in the relation.

Likewise, in the why-not-match explanation for event pattern

queries, our timestamp modification explanation finds changes in

timestamps of the event data that would satisfy the event pattern

query, i.e., again make a non-answer an answer. For example, in or-

der to figure out why the tuple t2 in Table 1 is not returned in the

event pattern query p0 in Example 1, a possible timestamp mod-

ification explanation is to modify the imprecise timestamp of E4
from 20:08 to 19:24.

Rather than considering all the possible worlds with an arbi-

trary combination of all timestamps [32], we propose to obtain the

most likely modification explanation of imprecise timestamps to

satisfy the query pattern, following the minimum change idea in

data cleaning [13]. Let t′ be the modified tuple of t. We define the

modification cost as

∆(t, t′) =
∑

Ei ∈E

|t[Ei] − t′[Ei]|. (1)

Problem 2. Given a tuple t and a set P of event patterns over E, the

timestamp modification problem is to minimally modify the times-

tamps of events in order to make them match the pattern, i.e., t′ � P

and ∆(t, t′) is minimized.

It explains why t is not returned as an answer to the query with

P . The reason is on the imprecise timestamps in t, that is, those

ones different from t′. In other words, by modifying t by t′, it will

be an answer to the query with P .

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1708

Theorem 3. Given a set P of event patterns, a tuple t of events over

E, and an integer k ≥ 0, the problem of determining whether there is

a modification t′ such that t′ � P with ∆(t, t′) ≤ k is np-complete.

Proof sketch. To illustrate the hardness of the timestamp modifica-

tion problem, we show a reduction from the SET COVER problem,

which is one of Karp’s 21 NP-complete problems [22].

Given a set of m elements U = {u1, . . . ,um} and n sets S =

{s1, . . . , sn} such that si ⊆ U and ∪isi = U. A set cover is a C ⊆ S

of sets whose union is stillU. The minimum set cover problem is

to identify the smallest number of sets whose union still contains

all elements in U.

Consider a set of events

E = {S1, . . . , Si , . . . , Sn , S
′
1
, . . . , S ′n ,U1, . . . ,Uj , . . . ,Um}

where each Si , S
′
i represents a set si , and Uj corresponds to an el-

ement uj . Let Ej = {Si ∈ E | uj ∈ si }, that is, all the events Si
whose corresponding si contains uj .

First, the event pattern set P is constructed as follows.

(1) For each Uj , we add into P a pattern

pj : SEQ(Uj , AND(Si1, . . . , Sik)) ATLEAST 2 WITHIN 2,

where Si1, . . . , Sik correspond to all the sets si1, . . . , sik ⊆ S con-

taining element uj .

(2) For each Uj , S
′
i , we introduce a pattern

SEQ(S ′i ,Uj) ATLEAST 1 WITHIN 1.

Next, we build a tuple t of events where t[S ′i] = 0, t[Uj] =

1, t[Si] = 2, i = 1, . . . ,n, j = 1, . . . ,m. The patterns require that

there must exist a Si ∈ Ej such that t[Si] − t[Uj] = 2, which is not

observed in the given t.

To prove np-hardness, we show that there is a set cover C of size

k if and only if there exists a tuple t′ matches the event patterns in

the transformation and ∆(t, t′) = k . �

Theorem 4. For any constant α > 1, unless p=np, there is no algo-

rithm that approximates the problem of finding the minimum mod-

ification within a factor of α , and runs in polynomial time in the

number of the input events.

Due to space limitations, we prove Theorem 4 in the technical re-

port [3]. The size of patterns, equivalent to query size, corresponds

to the SAT or SET COVER size in the reductions. In practice, event

patterns are often small. For the events in E not specified in the

pattern, since no restrictions are declared, there is no need or help

to consider or change them in the explanation. Thus, in the reduc-

tions, we assume that the set of events in patterns is the same as E.

3 ENCODING TEMPORAL NETWORKS

Referring to the hardness of pattern consistency and timestamp

modification explanations, in Theorems 2, 3 and 4, we thereby in-

vestigate techniques for efficient approximation. It is worth noting

that a canonical form of simple temporal network (Definition 6)

has been studied in [11], whose consistency checking can be done

in polynomial time. Intuitively, we identify the special event pat-

terns, i.e., without AND as illustrated in Table 2, which can be repre-

sented by simple temporal networks and thus efficiently solved. To

further represent the AND semantics, we propose to extend simple

temporal networks with binding conditions (Definition 4). Enlight-

ened by the start and end points for composite events [9], we intro-

duce two artificial events ANDsp0 and ANDep0 for each AND pattern p0,

which bind the start and end of the AND pattern, respectively. By

extending the aforesaid simple temporal networks with bindings,

it forms a general form of complex temporal network (Definition

5) to represent event patterns with both (nested) SEQ and AND. The

benefit of such an encoding is not only to identify the special cases

that can be efficiently solved or approximated (Sections 4.1 and 5.1),

but also to address the general case of pattern consistency check-

ing and timestamp modification with regard to complex temporal

networks, by enumerating the special cases (Algorithms 1 and 2),

known as full or single binding (Definitions 7 and 8).

3.1 Interval and Binding Conditions

We first define two classes of interval conditions and binding con-

ditions (in Definitions 3 and 4). Event patterns are then succinctly

encoded by complex temporal networks, using only the aforesaid

interval and binding conditions (in Section 3.2).

Definition 3. An interval condition between two events Ei and Ej
is in the form of ϕ(Ei , Ej):[a,b], or simply ϕ(Ei , Ej), where a,b are

the minimum and maximum restrictions of timestamp distances.

We say that a tuple t satisfies the interval conditionϕ(Ei , Ej):[a,b],
(

t[Ei], t[Ej]
)

� ϕ(Ei , Ej):[a,b] or simply t � ϕ(Ei , Ej),

if the distance of timestamps on Ei and Ej satisfies a ≤ t[Ej] −

t[Ei] ≤ b . A tuple t is said to satisfy a set Φ of interval conditions,

t � Φ, if t � ϕ(Ei , Ej),∀ϕ(Ei , Ej) ∈ Φ.

Definition 4. A binding condition between an event Ei and an

event set Ei is in the form of γ (Ei , Ei):min (or γ (Ei , Ei):max), where

the timestamp of Ei should be equal to the minimum (or maximum)

timestamp of events in Ei .

We say that a tuple t satisfies the minimum binding condition

γ (Ei ,Ei):min, denoted as
(

t[Ei], t[Ei]
)

� γ (Ei , Ei):min, or simply t � γ (Ei ,Ei):min,

if t[Ei] = minEj ∈Ei π (Ej). Likewise, it has t � γ (Ei ,Ei):max , if

t[Ei] = maxEj ∈Ei t[Ej]. A tuple t is said to satisfy a set Γ of binding

conditions, t � Γ, if t � γ (Ei ,Ei), ∀γ (Ei ,Ei) ∈ Γ.

3.2 Complex Temporal Networks

We now represent each event pattern p0 as the succinct encod-

ing (Φp0 , Γp0) of complex temporal networks (in Definition 5), and

show their equivalence (in Proposition 5).

Letw be themaximum distance of two timestamps. Enlightened

by the start and end points for composite events [9], we introduce

two artificial events ANDsp0 and AND
e
p0
for each AND pattern p0, which

denote the start and end of the AND pattern, respectively.

Definition 5 (Complex Temporal Networks). The temporal net-

works with regard to a pattern p0 are defined as a tuple (Φp0 , Γp0) of

interval and binding conditions, where

(1) for p0 = E, we have Φp0 = ∅, Γp0 = ∅ and Esp0 = Eep0 = E, where

Esp0 and Eep0 are the start and end events of p0, corresponding to the

conditions (1) in Definitions 1 and 2;

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1709

(2) for p0 = SEQ(p1, p2, . . . , pk) [ATLEAST a] [WITHIN b],

Φp0 ={ϕ(E
e
p1 , E

s
p2):[0,w], . . . ,ϕ(E

e
pk−1
, Espk):[0,w]}

∪ Φp1 ∪ · · · ∪ Φpk

[

∪ {ϕ(Esp0 , E
e
p0):[a, b]}

]

where Esp0 = Esp1 , E
e
p0 = Eepk , corresponding to the conditions (2) on

SEQ pattern in Definitions 1 and 2;

(3) for p0 = AND(p1, p2, . . . , pk) [ATLEAST a] [WITHIN b],

Φp0 ={ϕ(E
s
p0 , E

s
p1):[0,w],ϕ(E

e
p1 , E

e
p0):[0,w], . . . ,

ϕ(Esp0 , E
s
pk
):[0,w],ϕ(Eepk , E

e
p0):[0,w]}

∪ Φp1 ∪ · · · ∪ Φpk

[

∪ {ϕ(Esp0 , E
e
p0):[a, b]}

]

,

Γp0 ={γ (E
s
p0 , {E

s
p1 , . . . , E

s
pk
}):min,

γ (Eep0 , {E
e
p1 , . . . , E

e
pk
}):max} ∪ Γp1 ∪ · · · ∪ Γpk

where Esp0 = ANDsp0 , E
e
p0 = ANDep0 , corresponding to the conditions (3)

on AND pattern in Definitions 1 and 2.

Referring to the recursive definitions of satisfaction in Defini-

tion 2 and the encoding in Definition 5, it is easy to see the equiva-

lence of satisfaction between event patterns and the corresponding

complex temporal networks.

Proposition 5. A tuple t satisfies p0, t � p0, iff the corresponding

(Φp0 , Γp0) of p0 have t � Φp0 and t � Γp0 , denoted by t � (Φp0 , Γp0).

Due to space limitations, we prove Proposition 5 in the technical

report [3].

Example 2 (Example 1 continued). Figure 1 illustrates the com-

plex temporal network for representing the event pattern p0 in Ex-

ample 1 for monitoring COVID-19 cases. The motivation is that

some special event patterns can be represented by a canonical form

of simple temporal networks [11], in Example 3 below, and effi-

ciently solved. More importantly, for the general case, the complex

temporal network such as p0 can be equivalently represented by a

set of simple temporal networks and solved (Examples 4 and 6).

Specifically, each event corresponds to a node, such as E1, refer-

ring to item 1 inDefinition 5. For the nested pattern p1 : AND(E1, E3)

WITHIN 30 minutes, two artificial events ANDsp1 and AND
e
p1
are added,

which denote the start and end points of the AND pattern, respec-

tively. Its interval conditions areϕ(ANDsp1 , E1):[0,w], . . . , ϕ(E3, AND
e
p1
):

[0,w] inΦp1 , and the binding conditions areγ (AND
s
p1
, {E1, E3}):min,

γ (ANDep1 , {E1, E3}):max in Γp1 , according to item 3 in Definition 5.

Another interval conditionϕ(ANDsp1 , AND
e
p1
):[0, 30 minutes] is added

referring to WITHIN 30 minutes in p1. The other nested pattern

p2 : AND(E2, E4) WITHIN 30 minutes is represented similarly. For

SEQ in p0, according to item 2 in Definition 5, we add interval

conditions ϕ(ANDep1 , AND
s
p2):[0,w], in Φp0 , together with ϕ(ANDsp1 ,

ANDep2):[2 hours,w] referring to ATLEAST 2 hours of p0.

For tuple t1 � p0 in Table 1, according to the binding conditions

in item 3 in Definition 5, we have t1[AND
s
p1] = min(t1[E1], t1[E3]) =

17 : 08, and t1[AND
e
p1] = max(t1[E1], t1[E3]) = 17 : 25. For each

interval condition in Φp0 , say ϕ(ANDsp1 , AND
e
p1), it has (t1[AND

s
p1],

t1[AND
e
p1]) � ϕ(AND

s
p1 , AND

e
p1):[0, 30 minutes], namely, the time dif-

ference is within 30 minutes. In other words, t1 � (Φp0 , Γp0). �

Figure 1: Example complex temporal network with interval

conditions (arrows) and binding conditions (in dashed line)

4 PATTERN CONSISTENCY EXPLANATION

Referring to the equivalence of event patterns and complex tem-

poral networks (Proposition 5), we rewrite the pattern consistency

Problem 1: Given (Φ, Γ) of interval and binding conditions for event

patterns, to decide whether there is a tuple t such that t � (Φ, Γ).

4.1 Special Case: Simple Temporal Networks

We identify an interesting category of event patterns, where the

AND predicate does not appear (i.e., case 3 in Table 2). As illustrated

in Definition 6, the corresponding temporal networks are indeed

simple temporal networks [11] that can be represented by interval

conditions Φ only.

Definition 6 (Simple Temporal Networks). The temporal networks

of a pattern p0 without AND predicates are defined as Φp0 , where

(1) for p0 = E, Φp0 = ∅ and Esp0 = Eep0 = E, where Esp0 and Eep0 rep-

resent the start and end events of p0, corresponding to the conditions

(1) in Definitions 1 and 2;

(2) for p0 = SEQ(p1, p2, . . . , pk) [ATLEAST a] [WITHIN b],

Φp0 ={ϕ(E
e
p1 , E

s
p2):[0,w], . . . ,ϕ(E

e
pk−1
, Espk):[0,w]}

∪ Φp1 ∪ · · · ∪ Φpk

[

∪ {ϕ(Esp0 , E
e
p0):[a, b]}

]

where Esp0 = Esp1 , E
e
p0 = Eepk , corresponding to the conditions (2) on

SEQ pattern in Definitions 1 and 2;

Corollary 6. A tuple satisfies t � p0, iff the correspondingΦp0 of p0
has t � Φp0 .

Due to space limitations, we prove Corollary 6 in the technical

report [3].

Example 3 (Example 1 continued). Suppose that some passengers

are known to arrive later than E1 and also depart later than E2 (for

other cases, please see Examples 4 and 6 below). For such a special

case, the event pattern query could be simply written as

SEQ(SEQ(E1, E3) WITHIN 30 minutes,

SEQ(E2, E4) WITHIN 30 minutes) ATLEAST 2 hours

where E3 is the arrival time and E4 is the departure time of the

traced passenger. Figure 2 illustrates the corresponding simple tem-

poral network referring toDefinition 6. Since there is no AND, we do

not need to introduce the artificial events, and the binding condi-

tions denoted by dashed lines are naturally absent. We only need 4

interval conditions to represent the pattern,ϕ(E1, E3):[0, 30 minutes],

ϕ(E3, E2):[0,w],ϕ(E2, E4):[0, 30 minutes], andϕ(E1, E4):[2 hours,w].

It is easy and efficient to check the consistency of the simple tem-

poral network by [11]. �

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1710

Figure 2: Example simple temporal network

As indicated in [11], the consistency problem for a set of sim-

ple temporal networks Φ is solvable in O(n3) time, where n is the

number of events n = |E|.

4.2 General Case

In addition to the interval conditions Φ, the general case needs to

further handle the binding conditions Γ. Intuitively, we consider all

the possible bindings for binding conditions in Γ (Definition 7). The

pattern consistency problem is thus to determine whether there ex-

ists one binding with feasible timestamps of events (Proposition 7).

First, we capture below all the possible bindings in a binding

condition γ by the disjunction of interval conditions.

Definition 7 (Full binding). For a binding condition in Γ in the form

of γ (Ei ,Ei):min or γ (Ei ,Ei):max , we study a set Φγ of interval

conditions Φγ = {ϕ(Ei , Ej):[0, 0] | Ej ∈ Ei }.

Let ℵΓ = Φγ1 × · · · × Φγ |Γ | , where γ1, . . . ,γ |Γ | ∈ Γ. It denotes all

the possible bindings with regard to Γ.

Proposition 7. A tuple (Φ, Γ) of interval and binding conditions

with regard to event pattern is consistent, if and only if there exists

at least one Φk ∈ ℵΓ such that Φ ∪ Φk is consistent.

Due to space limitations, we prove Proposition 7 in the technical

report [3]. Referring to Proposition 7, Algorithm 1 determines the

consistency of (Φ, Γ), by examining the consistency on each Φk ∈

ℵΓ together with Φ in Line 2.

Algorithm 1 Consistency(Φ, Γ)

Input: A tuple (Φ, Γ) of interval and binding conditions

Output: Whether (Φ, Γ) is consistent (true or false)

1: for each Φk ∈ ℵΓ do

2: if Φ ∪ Φk is consistent then

3: return true

4: return false

Let f be the average size of Ei in the binding conditions in Γ.

That is, the average size of full binding Φγ in Definition 7 is f . The

total number of Φk in ℵΓ is thus O(f |Γ |). As presented at the end

of Section 4.1, the pattern consistency problem for a set of simple

temporal networks Φ∪Φk is solvable inO(n3) time, where n is the

number of events. Therefore, Algorithm 1 runs in O(f |Γ |n3) time.

Example 4 (Example 2 continued). While Example 3 considers

a special case, the passengers may arrive or depart either earlier

or later in the general case. According to Definition 7 and Propo-

sition 7, we can equivalently represent the complex temporal net-

work in Example 2 by a set of simple temporal networks, including

the one presented in Example 3. Specifically, consider all the bind-

ing conditions in Example 2. We have ℵΓ = Φγ1 × Φγ2 × Φγ3 ×

Φγ4 , where Φγ1 = {ϕ(ANDsp1 , E1):[0, 0],ϕ(AND
s
p1 , E3):[0, 0]}, Φγ2 =

{ϕ(ANDep1 , E1):[0, 0],ϕ(AND
e
p1 , E3):[0, 0]}, Φγ3 = {ϕ(ANDsp2 , E2):[0, 0],

ϕ(ANDsp2 , E4):[0, 0]}, and Φγ4 = {ϕ(ANDep2 , E2):[0, 0],ϕ(AND
e
p2
, E4):[0,

0]}. Algorithm 1 solves the pattern consistency checking problem

by iteratively considering all the possible bindings Φk ∈ ℵΓ in Line

1. For Φ1 = {ϕ(ANDsp1 , E1):[0, 0],ϕ(AND
e
p1
, E3):[0, 0],ϕ(AND

s
p2
, E2):[0,

0],ϕ(ANDep2 , E4):[0, 0]} in ℵΓ , we have consistent Φp0∪Φ1. The bind-

ing Φ1 corresponds to exactly the simple temporal network in Fig-

ure 2 in Example 3. Therefore, the algorithm returns true in Line 3

without considering the remaining Φk in ℵΓ . �

Randomized Algorithm. Rather than considering each Φk ∈ ℵΓ

in Line 1 in Algorithm 1, we sampleΦk fromℵΓ by randomly draw-

ing binding from Φγ in Definition 7 (with the same probability) for

each binding condition γ in Γ. If all the s random samples Φk have

inconsistent Φ∪Φk , we heuristically return inconsistency on (Φ, Γ).

It is notable that the randomized algorithm never returns false pos-

itive (FP), i.e., return consistent but the truth is inconsistent.

5 TIMESTAMP MODIFICATION
EXPLANATION

Again, using the equivalent complex temporal networks of event

patterns (Proposition 5), we rewrite the timestamp modification

Problem 2: Given a tuple t, the interval and binding conditions

(Φ, Γ), to minimally modify the timestamps of events such that t′ �

(Φ, Γ) and ∆(t, t′) is minimized.

5.1 Special Case: Simple Temporal Networks

For the special simple temporal networks, we solve the timestamp

modification problem (in Formula 3) as integer linear program-

ming (ilp). Efficient lp-relaxation can thus be applied.

For a set Φ of simple temporal networks, we rewrite the times-

tamp modification problem as:

min
∑

Ei ∈E

|t[Ei] − t′[Ei]| (2)

s.t. t′[Ej] − t′[Ei] ≥ a , ϕ(Ei , Ej):[a,b] ∈ Φ

t′[Ej] − t′[Ei] ≤ b , ϕ(Ei , Ej):[a,b] ∈ Φ

t′[Ei] ∈ T , Ei ∈ E

referring to the modification cost function in Formula 1 and the

interval conditions in Definition 3. It can be formulated as integer

linear programming (ilp). Let

ui =
|t[Ei] − t′[Ei]| + t[Ei] − t′[Ei]

2
,

vi =
|t[Ei] − t′[Ei]| − t[Ei] + t

′[Ei]

2
,

having |t[Ei] − t′[Ei]| = ui +vi and t[Ei] − t′[Ei] = ui −vi .

The timestamp modification problem is rewritten again as:

min
∑

Ei ∈E

ui +vi (3)

s.t. ui −vi +vj − uj − t[Ei] + t[Ej] ≥ a,ϕ(Ei , Ej):[a,b] ∈ Φ

ui −vi +vj − uj − t[Ei] + t[Ej] ≤ b,ϕ(Ei , Ej):[a,b] ∈ Φ

ui ,vi ≥ 0,ui ,vi ∈ T , Ei ∈ E (4)

where the modified timestamp is t′[Ei] = t[Ei] − ui +vi .

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1711

Efficient lp-relaxation can be employed by removing ui ,vi ∈ T

in Formula 4, with time cost O(n3.5L), where n is event number

and L is the number of bits of input [21].

Example 5 (Example 3 continued). Consider again the simple

temporal network in Figure 2 and the tuple t2 in Table 1. The times-

tamp modification explanation of t2 for the simple temporal net-

work is solved as follows. According to Formula 2, the conditions

(the time unit is minute) in the rewritten problem are: t′
2
[E3] −

t′
2
[E1] ≤ 30, t′

2
[E3]− t

′
2
[E1] ≥ 0, t′

2
[E2]− t

′
2
[E3] ≥ 0, t′

2
[E4]− t

′
2
[E2] ≤

30, t′
2
[E4] − t′

2
[E2] ≥ 0, t′

2
[E4] − t′

2
[E1] ≥ 2 ∗ 60. Referring to the

transformation, we have

u1 =
|t2[E1] − t′

2
[E1]| + t2[E1] − t′

2
[E1]

2
,

v1 =
|t2[E1] − t′

2
[E1]| − t2[E1] + t

′
2
[E1]

2
, . . .

The corresponding transformed conditions are u1 −v1 +v3 −u3 −

(17 ∗ 60 + 6) + (17 ∗ 60 + 24) ≤ 30 . . . By solving the transformed

problem (using lp solvers), the result is t′
2
[E1]=17:06, t

′
2
[E2]=18:54,

t′
2
[E3]=17:24, t

′
2
[E4]=19:24, with modification cost 44 minutes. �

5.2 General Case

Similar to Section 4.2, for the binding conditions Γ not considered

in the aforesaid special case, first, we capture all the possible bind-

ings in a binding condition γ by the disjunction of interval con-

ditions. The timestamp modification problem in the general case

is thus to find the timestamp modification explanation having the

minimum modification cost with regard to all the possible bind-

ings. A natural approximation idea is to consider only the most

likely binding (Definition 8) rather than all. We show that such a

binding (1) practically obtains good explanations with relatively

small modification cost in general cases (see experiments in Sec-

tion 6), and (2) theoretically guarantees the explanations with op-

timal modification cost in certain cases (Proposition 8).

5.2.1 Full Binding Algorithm. For each binding Φk ∈ ℵΓ as de-

fined in Section 4.2, we find the timestamp modification with min-

imum cost under the simple temporal networks Φ∪Φk , denoted by

t#
k
= ilp(t,Φ∪Φk). The optimal explanation is t∗ = argmint#

k
∆(t, t#

k
).

Algorithm 2Modification(t,Φ, Γ)

Input: A tuple t and a pair (Φ, Γ) of interval and binding conditions

Output: A timestamp modification explanation t′

1: for each Φk ∈ ℵΓ do

2: t#
k
= ilp(t, Φ ∪ Φk)

3: if ∆(t, t#
k
) < ∆(t, t′) then

4: t′ := t#
k

5: return t′

Let f be the average size ofEi in the binding conditions in Γ, that

is, the average size of full binding Φγ in Definition 7. The number

ofΦk inℵΓ isO(f
|Γ |). Algorithm2 runs inO(f |Γ |n3.5L) time, where

n is the number of events and L is the number of bits of input.

Example 6 (Example 5 continued). Consider again tuple t2 in Ta-

ble 1 and the complex temporal networks in Figure 1 of Example 2.

As presented in Example 4, there are 4 possible bindings in ℵΓ . For

Φ1 = {ϕ(ANDsp1 , E1):[0, 0],ϕ(AND
e
p1
, E3):[0, 0],ϕ(AND

s
p2
, E2) : [0, 0],

ϕ(ANDep2 , E4):[0, 0]} in ℵΓ , the timestamp modification explanation

for Φp0 ∪Φ1 is t
#

1
[E1]=17:06,t

#

1
[E2]=18:54,t

#

1
[E3]=17:24,t

#

1
[E4]=19:24

withmodification cost 44minutes. Similarly, forΦ2 = {ϕ(ANDsp1 , E1):

[0, 0],ϕ(ANDep1 , E3):[0, 0],ϕ(AND
s
p2
, E4):[0, 0],ϕ(AND

e
p2
, E2):[0, 0]} inℵΓ ,

the explanation is t#
2
[E1]=17:06, t

#

2
[E2] =19:06, t

#

2
[E3]=17:24,t

#

2
[E4]=

19:06 with modification cost 74 minutes. By considering all the

bindings in ℵΓ in Line 1, Algorithm 2 solves the timestamp mod-

ification problem by returning t#
1
as the optimal explanation with

the minimum modification cost. �

5.2.2 Single Binding Approximation. Rather than full binding in

Definition 7, we heuristically consider the most likely bindings for

approximation, e.g., binding only the event E with the minimum

timestamp t[E] formin binding conditions, and similarly the max-

imum one formax binding conditions.

Definition 8 (Single binding). For any binding condition in Γ in the

form ofγ (Ei ,Ei):min, we consider one bindingΦγ = {ϕ(Ei , Ej):[0, 0]},

where Ej = argminEj ∈Ei t[Ej].

Asimilar definition applies toγ (Ei , Ei):max , having one binding

Φγ = {ϕ(Ei , Ej):[0, 0]}, where Ej = argmaxEj ∈Ei t[Ej]. Instead of

O(f |Γ |) possible bindings, only one iteration will be performed in

Line 1 in Algorithm 2.

The modificationwith this single binding indeed obtains the op-

timal explanation when given AND patterns without SEQ predicate

embedded, i.e., case 2 in Table 2.

Proposition 8. For a tuple (Φ, Γ) of temporal networks correspond-

ing to an event pattern without SEQ embedded in AND, that is, in the

form of AND(E1, . . . , En), Algorithm 2 with single binding, having

only one Φ1 in ℵΓ , returns the optimal explanation for full binding.

Due to space limitations, we prove Proposition 8 in the techni-

cal report [3]. When efficient lp-relaxation is employed in Line 2,

Algorithm 2 with single binding runs in O(n3.5L) time, where n is

the number of events and L is the number of bits of input.

6 EXPERIMENTS

In this section, we evaluate the performances of our proposals,

on both pattern consistency and timestamp modification explana-

tions. All programs are implemented in Java, and the experiment

runs on a computer with 2.4GHz CPU and 16GBmemory. The code

and data are available at [4].

6.1 Implementation

Figure 3 illustrates the system structure for explaining non-answers

to event pattern queries. It takes the event pattern query and the

desired tuple that does not appear in the query answer as the input.

(1) The event patterns will first be encoded as complex temporal

networks as presented in Section 3. (2) The pattern consistency

explanation is then performed by Algorithm 1 in Section 4.2. It

utilizes (in Line 2) the consistency checking of simple temporal

networks presented in Section 4.1. If the given event patterns are

found to be inconsistent, it is directly returned as the explanation

of non-answers. (3) Otherwise, the timestamp modification expla-

nation is conducted by Algorithm 2 in Section 5.2. Again, as pre-

sented in Line 2, the ILP solution for simple temporal networks in

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1712

Figure 3: System structure

Section 5.1 is utilized. The modification of the given tuple will be

returned as the timestamp modification explanation.

6.2 Pattern Consistency Explanation

To evaluate the methods proposed in Section 4 for providing query

pattern explanations, i.e., checking pattern consistency, we employ

20 pattern sets as illustrated in Figure 4. Each pattern set has an AND

(in solid lines)

AND(SEQ(E11, E12), SEQ(E13, E14), . . . ,

SEQ(En1, En2), SEQ(En3, En4)) ATLEAST 1 WITHIN b,

and a number of SEQ conditions (in dashed lines), including

SEQ(E11, E14) ATLEAST 0 WITHIN 0, . . . ,

SEQ(En1, En4) ATLEAST 0 WITHIN 0.

It states that the timestamp distances are at least 1 between E11
and E12, as well as between E13 and E14. As illustrated in Figure 4,

E11 and E14 have the same timestamp which means that timestamp

distance between E12 and E13 is at least 2. For the first 10 pattern

sets, we have b = 1, for n = 1, . . . , 10. It implies that E12 and E13
should have timestamp distance WITHIN b = 1. That is, these 10

pattern sets are inconsistent. For the other 10 pattern sets, we have

b = 2, for n = 1, . . . , 10, which are consistent. For n = 1, the event

pattern set is defined by an AND pattern

p1 : AND(SEQ(E11, E12) ATLEAST 1, SEQ(E13, E14) ATLEAST 1)

ATLEAST 1 WITHIN b,

and a SEQ pattern p2 : SEQ(E11, E14) ATLEAST 0 WITHIN 0. Different

from the series-parallel graphs [28], the predicates WITHIN 1 and

ATLEAST b in the event patterns further specify the constraints on

timestamp distances of events.

Different binding strategies are compared, by considering vari-

ous number of random samples Φk from all the possible bindings

in ℵΓ , as shown in Section 4.2. The Full binding approach is the ex-

act algorithm considering all the possible bindings, while the other

randomized binding methods, e.g., 4-binding, consider a number of

4 random samples Φk in ℵΓ . Since the randomized binding never

returns false positive (FP), i.e., return consistent but the truth is in-

consistent, the returned results of the randomized algorithm con-

sist of true positives (TP), true negatives (TN), and false negatives

Figure 4: Pattern set for consistency evaluation

1-binding 4-binding 10-binding Full-binding

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 8 12 16 20 24 28 32 36 40

A
c
c
u

ra
c
y

of events

(a)

 0.01

 0.1

 1

 10

 100

 1000

 10000

4 8 12 16 20 24 28 32 36 40

T
im

e
 c

o
s
t

(m
s
)

of events

(b)

Figure 5: Varying the number of events in a pattern set in

consistency evaluation

(FN). Compared to the exact answers of Full binding, we study the

accuracy of Randomized binding #TP+#TN

#TP+#TN+#FN
.

As shown in Figure 5, the time cost increases with the number of

events in a pattern set. The consistency checking accuracy of vari-

ous randomized binding strategies is generally stable for different

pattern sets. The more the random samples are considered, e.g., 10-

binding, the higher the accuracy is. The corresponding time cost

is higher as well. Nevertheless, by only considering a number of

10 random samples Φk in ℵΓ , the consistency checking accuracy

is already close to 1 (the exact result with Full binding), while the

10-binding approach shows about 2 orders of magnitude improve-

ment in time cost compared to the Full binding.

In short, the method considering a number of bindings provides

a trade-off between checking accuracy (best by Full binding) and

efficiency (1-binding wins).

6.3 Timestamp Modification Explanation

To evaluate the methods proposed in Section 5 for timestamp mod-

ification explanations, we employ two real datasets, (1) the Flight

data [2] with real-world imprecise timestamps naturally embed-

ded, (2) the RTFM data [1] by synthetically introducing incorrect

timestamp, and (3) the synthetic data for various special cases.

The approaches in comparison are (1) our timestamp modifica-

tion Algorithm 2 with lp-relaxation, including Pattern(Full) using

full binding in Definition 7 and Pattern(Single) using single bind-

ing in Definition 8. (2) The brute-force algorithm adapts [32] by

enumerating the timestamps of each event as possible worlds and

returning the one with the minimum change as explanation. (3)

The greedy algorithm iteratively checks the interval condition be-

tween two events, and greedily selects the minimum change times-

tamp for either of the events if they do not satisfy the condition. It

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1713

Pattern(Full)
Pattern(Single)

Brute Force
Greedy

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55

3 4 5 6 7 8 9 10

N
o

rm
a

liz
e

d
 R

M
S

E

of events

(a)

 0.01

 0.1

 1

 10

 100

 1000

 10000

3 4 5 6 7 8 9 10

T
im

e
 c

o
s
t

(m
s
)

of events

(b)

Figure 6: Varying the number of events in Flight data with

real-world imprecise timestamps and labeled truth

is worth noting that the greedy method cannot guarantee to find

a modification explanation that satisfies the event pattern query.

We report the normalized root-mean-square error (NRMSE) [26]

between the truth timestamp t∗ and themodification t′ as NRMSE =
√

1

n

∑n
i=1(t

′[Ei]−t∗[Ei])2

1

n

∑n
i=1 |t

∗[Ei] |
, where n is the number of events in the pat-

terns. The smaller the NRMSE is, the closer the modification t′ is

to the truth t∗, and thus the better explanation for non-answer.

Apart from the streaming scenario of querying events today, in-

teractive query over historical data is also the target scenario. As

discussed in the Introduction, event pattern queries on the flights

in the past weeks are conducted to study the spread of COVID-19

cases. A lower time cost (in milliseconds or seconds rather than

hours or days) is necessary for query debugging and interactive

analysis. Thereby, we evaluate the time cost of explanations.

6.3.1 Flight Dataset with Real-World Imprecise Timestamps. Flight

dataset [2] collects the departure and arrival timestamps of flights

in a month from different sources. The whole set of flights for a

day is a single tuple, i.e., one tuple per day. The original datasets

have replicated events coming from data sources. There may ex-

ist multiple versions of the same event from heterogeneous data

sources, some of which could be imprecise (with labeled truth in

the dataset). We randomly select one of the timestamps for each

event in a tuple. Owing to the imprecise timestamps, expected an-

swers may not be returned and need explanation.

The query patterns are from real-world scenarios. For instance,

we use the pattern SEQ(EWR, MCO) ATLEAST 120 WITHIN 200 in

the Flight dataset. It specifies a query on the flights from EWR to

MCO without a stopover, taking at least 120 minutes but at most

200 minutes. All the tuples of flights from EWR to MCO should be

returned. If there is a missing answer, it should be explained why.

Figure 6 presents the results on various number of (departure or

arrival) events for flights from EWR to MCO. We do not consider a

very large number of events in a query, since the number of events

in real business processes (event patterns) is often bounded, ac-

cording to the survey [29]. Indeed, flights in different days (tuples)

do not affect each other and can be considered separately. In Fig-

ure 6(a), Pattern(Single) achieves modification accuracy compara-

ble to Pattern(Full) considering full binding, while the correspond-

ing time cost of Pattern(Single) is much lower in Figure 6(b).

For the brute-force algorithm,we enumerate possible timestamps

in a unit of 10 minutes. Even with such a coarse-grained level, the

time costs are too high to obtain an explanation with more than 5

Pattern(Full) Pattern(Single) Greedy

 0.4
 0.6

 0.8
 1

 1.2

 1.4
 1.6
 1.8

 2
 2.2

0.1 0.2 0.3 0.4 0.5

N
o

rm
a

liz
e

d
 R

M
S

E

Fault rate

(a)

 0.01

 0.1

 1

 10

 100

0.1 0.2 0.3 0.4 0.5

T
im

e
 c

o
s
t

(m
s
)

Fault rate

(b)

Figure 7: Varying fault rate over real RTFM data, with fault

distance 200, tuple number 10k

Pattern(Full) Pattern(Single) Greedy

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

160 200 240 280 320

N
o

rm
a

liz
e

d
 R

M
S

E

Fault distance (minute)

(a)

 0.01

 0.1

 1

 10

 100

160 200 240 280 320

T
im

e
 c

o
s
t

(m
s
)

Fault distance (minute)

(b)

Figure 8: Varying fault distance over real RTFM data, with

fault rate 0.1, tuple number 10k

Pattern(Full) Pattern(Single) Greedy

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

N
o

rm
a

liz
e

d
 R

M
S

E

Tuple number

(a)

 0.01

 0.1

 1

 10

 100

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

T
im

e
 c

o
s
t

(m
s
)

Tuple number

(b)

Figure 9: Varying tuple number over real RTFM data, with

fault rate 0.1, fault distance 200

events in Figure 6. The corresponding explanation RMSE is high

as well, again owing to the coarse-grained level of timestamp enu-

meration. It is not surprising that the simple greedy algorithm has

the lowest time cost, while its modification explanation accuracy

is not comparable to Pattern(Full) and Pattern(Single).

6.3.2 RTFM Dataset with Synthetic Imprecise Timestamps. Tuples

of activities are collected in this dataset with timestamps from the

Road Traffic Fine Management (RTFM) process [1]. Since it is origi-

nally clean, we follow the same line of randomly generating errors

for benchmarking data cleaning algorithms [7], that is, randomly

modify the timestamps of events to introduce synthetic errors. A

fault rate, say 0.1, denotes that the probability of an event having

fault timestamp introduced is 0.1. A fault distance, e.g., 200, means

that the fault timestamp is a random number t ±200, where t is the

original timestamp without fault introduced. The larger the fault

rate and the fault distance are, the more likely the tuples originally

matching the query patterns become non-answers. It is also more

difficult to explain by timestamp modification (in Figures 7 and 8).

We extract event patterns from clean data as queries and man-

ually confirm them, e.g., AND(Payment, Add penalty) ATLEAST 10

WITHIN 480. It states that “Add penalty” may occur 10 minutes be-

fore or after “Payment”, while their timestamp distance should not

exceed 480 minutes, i.e., 8 working hours in a day.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1714

Pattern(Full)
Pattern(Single)

Brute Force
Greedy

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

2 3 4 5 6 7 8 9 10

N
o

rm
a

liz
e

d
 R

M
S

E

of events

(a)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

2 3 4 5 6 7 8 9 10

T
im

e
 c

o
s
t

(m
s
)

of events

(b)

Figure 10: Varying event number n in AND with embedded

SEQ, AND(SEQ(E1, . . . , E⌊ n
2
⌋), SEQ(E⌊ n

2
⌋+1, . . . , En)) ATLEAST 900

WITHIN 1000
Pattern(Full)

Pattern(Single)
Brute Force

Greedy

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

2 3 4 5 6 7 8 9 10

N
o

rm
a

liz
e

d
 R

M
S

E

of events

(a)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x10
6

2 3 4 5 6 7 8 9 10

T
im

e
 c

o
s
t

(m
s
)

of events

(b)

Figure 11: Varying event numbern of AND conditions without

SEQ embedded, AND(E1, . . . , En) ATLEAST 900 WITHIN 1000

Figure 7 presents the results over various fault rates. As shown

in Figure 7(a), it is not surprising that the RMS error increases with

the increase of fault rate. The results are generally similar to those

on Flight data with real imprecise timestamps in Figure 6. That is,

Pattern(Single) has lower time cost than Pattern(Full) without los-

ing much accuracy.While the greedy algorithm has a low time cost

but much higher RMSE, the brute-force algorithm takes too long

to obtain an explanation in the RTFM dataset and thus is omitted.

Figure 8 reports the results with various fault distances. RMS

error increases with the increase of fault distance. It is generally

similar to those over various fault rates in Figure 7.

Figure 9 shows the average RMS error and time cost over vari-

ous numbers of tuples. The results are generally the same as in the

aforesaid experiments. The stable results demonstrate that the ap-

proaches are applicable to a large set or streaming traces of events.

6.3.3 Synthetic Data with Various Conditions. To evaluate times-

tamp modification explanation under various event patterns as il-

lustrated in Table 2, we consider synthetic data, including (1) gen-

eral case with both AND and SEQ in Figure 10, and (2) special case

with no SEQ embedded in Figure 11 Tuples are generated by ran-

domly assigning timestamps to events, which match the aforesaid

event pattern. Similar to the RTFM data in Section 6.3, we again

randomly introduce incorrect timestamps. The experiments are per-

formed over 1k tupleswith fault rate 0.4 and fault distance 500. Sim-

ilar to Figure 6 over dataset Flight, the brute-force algorithm can

return an explanation only when given a small number of events

in the synthetic data.

Figure 10 considers the general queries with both AND and SEQ(i.e.,

case 1 in Table 2). Pattern(Full) and Pattern(Single) achieve a sim-

ilar RMS error. An interesting result is that the time cost of Pat-

tern(Full) does not increase heavily with the increase of event num-

ber. The reason is that the number of events specified in binding

Pattern(Single) Greedy

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0.1 0.2 0.3 0.4 0.5

F
-m

e
a

s
u

re

Fault rate

(a)

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

160 200 240 280 320

F
-m

e
a

s
u

re

Fault distance (minute)

(b)

Figure 12: Application in event patternmatching debugging

with (a) fault distance 160, (b) fault rate 0.1

conditions is a constant 2 in the given event patterns. That is, only

4 possible bindings Φk ∈ ℵΓ need to be considered in Line 1 in

Algorithm 2. Consequently, the time cost of Pattern(Full) is about

4 times that of Pattern(Single).

Figure 11 evaluates queries without SEQ embedded in AND, i.e.,

AND(E1, . . . , En) ATLEAST 900 WITHIN 1000. As illustrated in Fig-

ure 11(a), when the event number specified in the queries is small,

e.g., 2 or 3, RMS error is lower. The reason is that the AND pattern

specifies conditions on only (two) events in E1, . . . , En with the

minimum or maximum timestamps. For the conflicts occurring on

events that are neither with the minimum nor the maximum times-

tamps, it cannot bemodified. The less the events are in the AND con-

ditions, the more likely the events have the minimum/maximum

timestamps and thus will be modified. Moreover, when the event

number is smaller, the corresponding possible bindings Φk ∈ ℵΓ

are less as well. Therefore, in Figure 11(b), the time cost of Pat-

tern(Full) reduces significantly with the decrease of event number.

Nevertheless, Pattern(Single) with single binding keeps low time

cost in all the event numbers, while the modification result for ex-

planation is as good as Pattern(Full). The result is not surprising

referring to their equivalence with regard to AND patterns without

SEQ embedded, as illustrated in Proposition 8.

To sum up, Pattern(Full) is preferred when more accurate modi-

fication is desired. However, in most cases, Pattern(Single) is good

enough due to its lower time cost without losing much accuracy.

6.4 Application

To evaluate how a human perceives the different responses, we re-

port the accuracy of event pattern query over the explained tuples

with various RMSE. As the scenario introduced in the Introduc-

tion, tuples are modified to explain why expected answers of an

event pattern query are absent. Therefore, we evaluate the accu-

racy of query answers over the data after the timestamp modifi-

cation explanation. Let truth be the set of expected answers and

found be the set of returned tuples over the data after the modifi-

cation explanation. The accuracy of query answering after expla-

nation is evaluated by f-measure [14], precision =
|found∩truth |

|found |
,

recall =
|truth∩found |

|truth |
, f-measure = 2

precision·recall
precision+recall . The higher the

accuracy is, the better the explanation performs.

Figure 12 reports the accuracy of event pattern queries over

the RTFM dataset in Section 6.3.2. Since the RMSE results of Pat-

tern(Full) and Pattern(Single) explanations are close, we compare

Pattern(Single) with Greedy which has a higher RMSE. As shown,

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1715

the Pattern(Single) explanations with lower RMSE in Figures 7(a)

and 8(a) have a clearly better query accuracy than Greedy.

In summary, the timestamp modifications with lower RMSE in-

deed lead to more accurate event pattern query answers after per-

ceiving these data explanations.

7 RELATED WORK

7.1 Semantic Query Optimization

Semantic query optimization (SQO) detects unsatisfiable queries

based on application knowledge in order to avoid evaluating such

queries [17] as well. For instance, Ding et al. [12] use pre-defined

business logic or rules, such as a workflow model, as the appli-

cation knowledge, to identify and then terminate the long run-

ning query processes that are guaranteed to not lead to success-

ful matches. It requires that business events must be generated

based on pre-defined business logics, which however is not always

the case in practice. Since the event occurrence is constrained, the

consistency checking is to simply check whether the event pattern

query is compatible to the event constraints, which can be done in

polynomial time [12].

In contrast, in this study, we determine the consistency of an

event pattern query without such an assumption of event data

generation. The novelty of Algorithm 1 is thus we do not need

to pre-compute and check any query failure conditions based on

pre-defined business logics. Indeed, without the assumption of pre-

defined models on event occurrence, more combinations of events

need to be considered in a larger space. Therefore, it is not sur-

prising that the consistency checking problem of SEQ and AND pat-

terns in general is more challenging (np-complete) compared to

the polynomial time solvable case (with pre-assumed application

knowledge) in prior work on SQO [12].

7.2 Imprecise Timestamps

Zhang et al. [32] employ a temporal uncertainty model that assigns

a time interval to each event to represent all of its possible occur-

rence times. The event pattern matching is thus evaluated in a set

of possible worlds with deterministic timestamps. A confidence of

match is computed by counting the possible worlds of matches,

rather than explaining why the event pattern does not match.

Indeed, not each (matched) possible world is meaningful, with

an arbitrary combination of all timestamps. Instead, our timestamp

modification explanation proposes to consider themost likelymod-

ification of imprecise timestamps to satisfy the query pattern, fol-

lowing the minimum change idea in data cleaning [13] and time

series repairing [31]. The rationale is that people or systems al-

ways try to minimize their mistakes in practice. Remarkably, with

such a minimum modification intuition, we do not need to specify

any knowledge on the time interval of possible occurrence times

for each event (often impractical). While enumerating the possible

worlds is no longer necessary, the timestamp modification prob-

lem is still challenging, not only np-complete but also np-hard to

approximate to within any constant factor (Theorems 3 and 4).

7.3 Event Pattern Representation

The series-parallel graphs [28] can also capture the sequential and

parallel relationships among vertexes, analogous to SEQ and AND

over events in our study. In addition to SEQ and AND, the predi-

cates WITHIN and ATLEAST in event patterns further specify the

constraints on timestamp distances of events. It corresponds to the

intervals attached on edges in the complex temporal networks, for

example, in Figure 1, which are not considered in the series-parallel

graphs.While the nested SEQ and AND patternsmay be consistent, it

is not in the presence of WITHIN and ATLEAST, as illustrated in Sec-

tion 1.1.1. Owing to such differences in characterization properties,

the (consistency checking) algorithms for series-parallel graphs

are not applicable in our study.

Simple event patterns can be represented as SQL queries using

a greater or less than filter expression, but with great complexity.

Similar to introducing the MIN and MAX aggregation functions in

SQL, the SEQ and AND patterns are introduced [12]. For example,

a simple pattern AND(E1, E2) WITHIN 30 is equivalent to the compli-

cated SQL query over relation Flight in Table 1, SELECT * FROM

FlightWHERE (E1 ≥ E2 AND E1 ≤ E2+30) OR (E2 ≥ E1 AND E2 ≤

E1 + 30). However, such SQL notations for event patterns are not

supported in the existing studies of explanations. Different from

checking the consistency of the conjunctive query [17], the SQL

representation of event pattern could also involve the disjunction

of predicates, each of which corresponds to a possible binding. Ex-

isting data modification explanation [18] considers again a con-

junction of predicates, which specify the relationship between an

attribute and a constant. The event pattern needs to further handle

the disjunction of predicates, comparing two timestamp attributes

in a tuple.

8 CONCLUSIONS

In this paper, we study the non-answer explanations on event pat-

tern queries. To this end, a number of theoretical results are first

presented, including np-hardness of pattern consistency explana-

tion, timestampmodification explanation and approximation (The-

orem 2-4). We then encode event patterns by a novel notation of

complex temporal networks, such that interesting special cases as

summarized in Table 2 are identified for solving the problems in

the general case. In particular, for the special case of simple tempo-

ral networks, the timestampmodification problem can be solved as

ilp and approximated by lp-relaxation. The general case is hence

addressed by assembling the explanations of special cases. Remark-

ably, the single binding approximation returns the optimal explana-

tion in certain cases (Proposition 8). Extensive experiments demon-

strate that the approximate approaches return explanations com-

parable to the exact ones, but more efficient in time cost.

A possible constraint for the target environment could be the

response time owing to the high complexity of generating expla-

nations for event patterns. As analyzed in Theorems 2, 3 and 4, the

explanation problems are generally hard. It limits the supported

query patterns, for instance, Kleene star [33] is not considered in

the current solution. We leave this challenging problem as the fu-

ture study.

Acknowledgement
This work is supported in part by the National Key Research and Develop-

ment Plan (2019YFB1705301), the National Natural Science Foundation of

China (62072265, 61572272, 71690231), and the MIIT High Quality Devel-

opment Program 2020.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1716

REFERENCES
[1] http://data.4tu.nl/repository/uuid:270fd440-1057-4fb9-89a9-b699b47990f5.
[2] http://lunadong.com/fusionDataSets.htm.
[3] https://explanation-event-pattern.github.io/explanation/full.pdf.
[4] https://github.com/explanation-event-pattern/explanation.
[5] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient pattern matching

over event streams. In SIGMOD Conference, pages 147–160, 2008.
[6] M. Akdere, U. Çetintemel, and N. Tatbul. Plan-based complex event detection

across distributed sources. PVLDB, 1(1):66–77, 2008.
[7] P. C. Arocena, B. Glavic,G.Mecca, R. J.Miller, P. Papotti, andD. Santoro. Messing

upwith BART: error generation for evaluating data-cleaning algorithms. PVLDB,
9(2):36–47, 2015.

[8] R. S. Barga, J. Goldstein, M. H. Ali, and M. Hong. Consistent streaming through
time: A vision for event stream processing. In CIDR 2007, Third Biennial Confer-
ence on Innovative Data Systems Research, Asilomar, CA, USA, January 7-10, 2007,
Online Proceedings, pages 363–374, 2007.

[9] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S. Kim. Composite events for
active databases: Semantics, contexts and detection. In VLDB, pages 606–617,
1994.

[10] A. ChapmanandH. V. Jagadish. Why not? In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, SIGMOD 2009, Providence, Rhode
Island, USA, June 29 - July 2, 2009, pages 523–534, 2009.

[11] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artif. Intell.,
49(1-3):61–95, 1991.

[12] L. Ding, S. Chen, E. A. Rundensteiner, J. Tatemura,W. Hsiung, and K. S. Candan.
Runtime semantic query optimization for event stream processing. In ICDE,
pages 676–685, 2008.

[13] W. Fan. Constraint-driven database repair. In Encyclopedia of Database Systems,
pages 458–463. 2009.

[14] W. B. Frakes and R. Baeza-Yates. Information retrieval: data structures and algo-
rithms. 1992.

[15] Y. Gao, Q. Liu, G. Chen, B. Zheng, and L. Zhou. Answering why-not questions
on reverse top-k queries. Proc. VLDB Endow., 8(7):738–749, 2015.

[16] L. George, B. Cadonna, and M. Weidlich. Il-miner: Instance-level discovery of
complex event patterns. Proc. VLDB Endow., 10(1):25–36, 2016.

[17] S. Guo, W. Sun, and M. A. Weiss. On satisfiability, equivalence, and impication
problems involving conjunctive queries in database systems. IEEE Trans. Knowl.
Data Eng., 8(4):604–616, 1996.

[18] M. Herschel andM. A. Hernández. Explaining missing answers to SPJUA queries.
Proc. VLDB Endow., 3(1):185–196, 2010.

[19] J. Huang, T. Chen, A. Doan, and J. F. Naughton. On the provenance of non-
answers to queries over extracted data. Proc. VLDB Endow., 1(1):736–747, 2008.

[20] R. Huang. Approximate event pattern matching over heterogeneous and dirty
sources. In M. d’Aquin, S. Dietze, C. Hauff, E. Curry, and P. Cudré-Mauroux,
editors, CIKM ’20: The 29th ACM International Conference on Information and
Knowledge Management, Virtual Event, Ireland, October 19-23, 2020, pages 3237–
3240. ACM, 2020.

[21] N. Karmarkar. A new polynomial-time algorithm for linear programming. In
STOC, pages 302–311, 1984.

[22] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W.
Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum
Press, 1972.

[23] S. Lee, B. Ludäscher, and B. Glavic. Approximate summaries for why and why-
not provenance. Proc. VLDB Endow., 13(6):912–924, 2020.

[24] X. Li, X. L. Dong, K. Lyons, W. Meng, and D. Srivastava. Truth finding on the
deep web: Is the problem solved? PVLDB, 6(2):97–108, 2012.

[25] C. H. B. Liu, B. P. Chamberlain, and E. J. McCoy. What is the value of experi-
mentation and measurement? Data Sci. Eng., 5(2):152–167, 2020.

[26] X. Ma, L. Zhang, L. Xu, Z. Liu, G. Chen, Z. Xiao, Y. Wang, and Z. Wu. Large-scale
user visits understanding and forecasting with deep spatial-temporal tensor fac-
torization framework. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK,
USA, August 4-8, 2019, pages 2403–2411, 2019.

[27] Q. T. Tran and C. Chan. How to conquer why-not questions. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, SIGMOD
2010, Indianapolis, Indiana, USA, June 6-10, 2010, pages 15–26, 2010.

[28] J. Valdes, R. E. Tarjan, and E. L. Lawler. The recognition of series parallel di-
graphs. In Proceedings of the 11h Annual ACM Symposium on Theory of Comput-
ing, April 30 - May 2, 1979, Atlanta, Georgia, USA, pages 1–12, 1979.

[29] J. Wang, T. Jin, R. K. Wong, and L. Wen. Querying business process model repos-
itories - A survey of current approaches and issues. World Wide Web, 17(3):427–
454, 2014.

[30] E. Wu, Y. Diao, and S. Rizvi. High-performance complex event processing over
streams. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, Chicago, Illinois, USA, June 27-29, 2006, pages 407–418, 2006.

[31] A. Zhang, S. Song, J.Wang, and P. S. Yu. Time series data cleaning: Fromanomaly
detection to anomaly repairing. Proc. VLDB Endow., 10(10):1046–1057, 2017.

[32] H. Zhang, Y. Diao, and N. Immerman. Recognizing patterns in streams with
imprecise timestamps. PVLDB, 3(1):244–255, 2010.

[33] H. Zhang, Y. Diao, and N. Immerman. On complexity and optimization of ex-
pensive queries in complex event processing. In International Conference on
Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014, pages
217–228, 2014.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1717

	Abstract
	1 Introduction
	1.1 Explanations of Non-Answers
	1.2 Application Scenarios
	1.3 Contributions

	2 Problem Statement and Analysis
	2.1 Event Pattern Query
	2.2 Pattern Consistency Explanation
	2.3 Timestamp Modification Explanation

	3 Encoding Temporal Networks
	3.1 Interval and Binding Conditions
	3.2 Complex Temporal Networks

	4 Pattern Consistency Explanation
	4.1 Special Case: Simple Temporal Networks
	4.2 General Case

	5 Timestamp Modification Explanation
	5.1 Special Case: Simple Temporal Networks
	5.2 General Case

	6 Experiments
	6.1 Implementation
	6.2 Pattern Consistency Explanation
	6.3 Timestamp Modification Explanation
	6.4 Application

	7 Related Work
	7.1 Semantic Query Optimization
	7.2 Imprecise Timestamps
	7.3 Event Pattern Representation

	8 Conclusions
	References

