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ABSTRACT
Clustering is often distracted by errors, frequently observed in

almost all areas, ranging from online questionnaire to sensor read-

ing in IoT. The dirty data values not only make themselves (the

corresponding tuples) outlying, but also mislead the clustering of

remaining tuples, e.g., mistakenly splitting a cluster into two or

distorting the cluster center. The reason is that the traditional clus-

tering methods either simply ignore the outliers such as DBSCAN

or assign them to the closest clusters anyway, e.g., in K-Means. In

this paper, we propose to save the outliers for better clustering.

The idea is to adjust the erroneous values (often minimally) of the

outlier in order to make it appear normally. That is, the tuples after

adjusting values are no longer outlying, and thus will be clustered

without distracting others. The outlier saving by value adjustment

is designed to work with any clustering methods (e.g., DBSCAN

or K-Means). Our technical contributions include: (1) showing NP-

hardness of the outlier saving problem for clustering, (2) deriving

lower and upper bounds of the optimal solutions, and (3) devising

approximation algorithm with performance guarantees referring

to the aforesaid bounds. Experiments on datasets with real-world

outliers demonstrate the higher accuracy of our proposal, com-

pared to the state-of-the-art approaches. Remarkably, we show that

the adjusted data with outlier saving indeed improve significantly

clustering, as well as other applications such as classification and

record matching.
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1 INTRODUCTION
Noisy data have been widely recognized [32] and obviously damage

the downstream applications such as clustering [31]. For example,

consider the Iris dataset in Figure 1(a), to cluster iris plants accord-

ing to the petal length and width. Errors may occur occasionally

in the data, e.g., owing to mistakenly recording the width in inch
instead of cm. As shown in Figure 1(b), due to the errors, the corre-

sponding tuples become outlying denoted by red triangles, while
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(a) Clusters in ground truth
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(b) Clusters in dirty data
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(c) Clusters in data cleaned by DORC
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(d) Clusters with outlier saving by DISC
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(e) Clusters in data cleaned by HoloClean
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(f) Clusters in data cleaned by ERACER
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Figure 1: Clusters in (a) ground truth, (b) dirty data with out-
liers, (c)-(d) with outliers handled by various approaches

the remaining data are improperly split into three clusters, in the

density-based DBSCAN clustering [21]. For K-Means clustering

[26] with K=2, it is still possible to segment the clusters. For in-

stance, in Figure 1(b), if the points at (3, 1) and (5, 1.5) are selected

as the cluster centers, the points in C1 (black) and C2 (blue) will

form a cluster whereas the points in C3 (orange) form another. That

is, C2 and C3 belonging to the same cluster in ground truth are still

split. Similar examples are also illustrated in Figure 1 in [43].

1.1 Outlier Saving for Clustering
To save the outlier for better clustering, in this paper, we propose

to adjust the erroneous values of the outlier to make it an inlier. For

example, as shown in Figure 1(d), by adjusting the erroneous width

values in inch to cm, denoted by red arrows, the outlying points

become inliers. Two clusters are returned correctly as the ground

truth in Figure 1(a).

The existing method DORC [45] also proposes to find sufficient

neighbors in a cluster by cleaning the noisy data. It substitutes
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Figure 2: Saving outliers t13 and t24 by the proposed DISC
with value adjustment (returning t ′

13
and t ′

24
) and the existing

DORC [45] with tuple substitution (returning t12 and t21)

(error) tuples by the other (non-error) ones, in order to form clusters.

That is, all the attribute values in the tuple are substituted by those

of another existing tuple, known as tuple substitution. In practice,

however, errors may occur only in some attributes, e.g., usually

only one or several sensors are broken at a time among hundreds

of sensors packed in a wind turbine. In Figure 1(c), the blue arrow

denotes that by substituting both Petal width and length values,

the natural outlier is moved to an existing dirty outlier tuple in the

newly formed cluster C4. Unfortunately, owing to the excessive

tuple substitution, the four-clusters results are still wrong.

Example 1. Consider a real dataset of GPS readings with three
attributes (Time, Longitude, Latitude), where real-world errors are
observed owing to device issues. Figure 2(a) shows the latitude and
longitude values of the observations, i.e., black dots connected by lines
with consecutive timestamps. Figure 2(b) plots parallel coordinates,
showing the tuples in three dimensions (Time, Longitude, Latitude).

There is an obvious error occurring on the longitude value of tuple
(point) t13. A possible DISC adjustment of t13 is tuple t ′

13
, denoted by

red square, which is produced by adjusting the longitude value of t13
from 838 to 807. The adjusted t ′

13
is no longer outlying. It will not split

erroneously the trajectory into two segments (clusters).
Similarly, an error may also occur on the timestamp of tuple t24,

and again mistakenly splits the trajectory into segments (clusters).
The DISC adjustment t ′

24
states that the erroneous timestamp value

18 of t24 should be adjusted to 23 to meet the distance constraints. It
is worth noting that the longitude and latitude values do not need to
change, as t ′

24
illustrated in Figure 2.

The existing DORC method [45] substitutes t13 and t24 by some
other tuples t12 and t21, respectively, i.e., over-changing all three at-
tributes as shown in Figure 2(b). The excessive yet inaccurate cleaning
does not avoid erroneously splitting the trajectory into segments (clus-
ters), again similar to Figure 1(c).

Recall that the error in t24 occurs on the timestamp, while its lon-
gitude and latitude values are correct. That is, as illustrated in Figure
2(b), t24 should occur at Time 24, but was erroneously recorded with

Time 18. The method DORC finds an existing tuple, which is closest
to t24 on all the three attributes Time, Longitude and Latitude, i.e.,
t21 to substitute the erroneous tuple t24. It is worth noting that DORC
finds the closest tuple on all three attributes, not on the Longitude and
Latitude attributes only as illustrated in Figure 2(a), since errors may
occur on any attribute including Time.

Our proposal supports not only numeric data but also textual /

categorical data. For instance, in the Restaurant dataset, typos in

zip code RH1O-OAG, where letters O should be digits 0, make the

corresponding restaurants outlying and difficult to identify. After

saving the outliers, e.g., by adjusting the erroneous RH1O-OAG to

RH10-0AG as illustrated in Section 2.2, the record matching applica-

tion is improved in Figure 8 in Section 4.2.5 of experiments.

The target of adjusting values in outliers is to form meaningful

clusters. Adjusting values (essentially making new tuples) does not

harm the analysis tasks, which usually do not focus on individ-

ual tuples. Therefore, as illustrated in Section 4.2, saving outlier

by value adjustment is beneficial for not only clustering but also

classification and record matching. However, the adjustment of

individual tuples may not be one hundred percent accurate, as pre-

sented in Section 4.3, and thus not applicable to the transactional

tasks, such as alarm system based on individual sensor readings.

1.2 Dirty Outliers versus Natural Outliers
To identify dirty versus natural outliers, we observe the number of

attributes that result in the outlier and need adjustment to become

an inlier. Intuitively, errors may occur only in some attributes, e.g.,

usually only one or several sensors are broken at a time among

hundreds of sensors packed in a wind turbine. In contrast, natural

outliers often show separability in a large number of attributes. e.g.,

a point from another wind farm or of extreme weather would be

outlying with values on temperature, wind speed, deflection angle

and so on all distant from the current observations.

For the example in Figure 1(b), to handle the errors introduced

by mistakenly recording the width in inch instead of cm, we only

need to adjust the width value to make the (error) point an inlier.

However, for a natural outlier of another petal type with both width

and length values distinct from other observations, such as t1, one
has to adjust both width and length values to make it an inlier. To

give another real-world example in Figure 2, only one error on the

longitude value occurs in the dirty outlier t13, while another dirty
outlier t24 has erroneous timestamp value but correct longitude and

latitude values. In contrast, a point from another trajectory (natural

outlier) would be outlyingwith Time, Longitude and Latitude values

all distant from the current observations, such as t29 or t30.
Nevertheless, we observe the number of attributes that have to

be adjusted to make outlying tuples inliers in the experiments in

Section 4.3. For the Letter dataset in Figures 10 (c) and (d), only

about 2 attributes need to be adjusted among 10, while the GPS

dataset in Figure 9 only needs to adjust about 1 attribute.

In this sense, to avoid excessively adjusting the natural outliers,

one can choose to return only the adjustment on no more than κ
attributes (of the dirty outliers), following the minimum change

criteria in data cleaning [23].

It is also suggested in [25] that if the outlier indicates a typograph-

ical error by an entry clerk then the entry clerk can be notified and
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simply correct the error so the outlier will be restored to a normal

record. However, for the natural outliers, it may be worth flagging

for further verification. In this sense, we propose to adjust the dirty

outliers while leaving the natural outliers unchanged.

1.3 Contribution
Our major contributions in this study are as follows.

We formalize the outlier saving problem, i.e., adjusting values

under DIStance constraints for better Clustering (DISC), and show

that finding the minimum adjustment is NP-hard in Theorem 1.

We capture the lower and upper bounds of the optimal adjust-

ment. Efficient pruning and approximation are then devised upon

these bounds in Algorithm 1. In particular, we show that the approxi-

mate algorithm is a constant-factor polynomial-time approximation

in certain settings in Proposition 7.

We report an extensive experimental evaluation over several

real datasets with real-world outliers. Compared to the state-of-the-

art methods such as DORC [45], the proposed DISC shows clearly

better clustering performances. Remarkably, outlier saving signifi-

cantly improves not only clustering but also other applications like

classification and record matching.

2 PROBLEM STATEMENT
We start by introducing some preliminaries on distance constraints

for clustering in Section 2.1, and then formalize the problem of

value adjustment under distance constraints for outlier saving in

Section 2.2, together with the hardness analysis in Theorem 1. It

leads to the development of approximation algorithm in Section 3.

2.1 Preliminaries on Distance Constraints
Let us first introduce some preliminaries on distance constraints in

clustering and outlier detection.

2.1.1 Distance Function. Consider a relation scheme R with m at-

tributes. For each attribute A ∈ R, we associate with a distance

function, denoted by ∆(t1[A], t2[A]), satisfying (1) non-negativity,
∆(t1[A], t2[A]) ≥ 0, (2) identity of indiscernibles,∆(t1[A], t2[A]) = 0

iff t1[A] = t2[A], (3) symmetry, ∆(t1[A], t2[A]) = ∆(t2[A], t1[A]),
(4) triangle inequality, ∆(t1[A], t3[A]) ≤ ∆(t1[A], t2[A]) + ∆(t2[A],
t3[A]), where t1, t2, t3 are tuples from R. For instance, we may use

edit distance [36] for string values or absolute difference for nu-

merical values.

The distance of t1, t2 on a set of attributes X ⊆ R, denoted by

∆(t1[X ], t2[X ]), aggregates the distance on each attribute A ∈ X .
For example, we may employ Lp metrics. L1 norm is simply the

sum of the distance on each attribute A ∈ X , ∆(t1[X ], t2[X ]) =∑
A∈X ∆(t1[A], t2[A]). L2 norm is the Euclidean length,

∆(t1[X ], t2[X ]) =
√∑

A∈X

(
∆(t1[A], t2[A])

)
2

. (1)

In the following, by default, we consider L2 norm as the distance

function on multiple attributes. It is worth noting that all the four

properties of the distance function on single attribute are also valid

for multiple attributes. In addition, we have another monotonicity

property, i.e., ∆(t1[X ], t2[X ]) ≤ ∆(t1[X ∪ {A}], t2[X ∪ {A}]).

In consequence, ∆(t1[R], t2[R]) is the distance of two tuples on

all attributes in R, or simply ∆(t1, t2).

2.1.2 Distance Constraints. In order to save the outliers for better

clustering, in this paper, we propose to study the distance con-

straints between tuples in clusters. Intuitively, a tuple in a cluster

usually has a considerable number of neighbors, whereas data er-

rors or abnormal behaviors rarely occur and thus are often outlying,

e.g., as illustrated in Figure 1(b). Therefore, following the notations

in clustering [21], we consider the neighbors of a tuple with dis-

tances no greater than ε , namely ε-neighbors. Statistically speaking,

a tuple (object) keeping track of the number of nearest neighbors

(with distance ≤ ε) may notice an average number of k neighbors.

Observing any particular neighbor does not affect the observa-

tion of future neighbors. In this sense, the appearance of nearest

neighbors can be approximated with Poisson process [39]. It is not

only theoretically analyzed [39] but also practically observed in

real datasets as illustrated in Figure 5, That is, the number N (ε) of
ε-neighbors follows a Poisson distribution, having

p(N (ε) = k) =
(λε)k

k!
e−λε . (2)

Referring to the cumulative distribution function, the probability

of a tuple having at least a number η of ε-neighbors is

p(N (ε) ≥ η) = 1 − e−λε
⌊η−1⌋∑
i=0

(λε)i

i!
, (3)

For the example in Figure 5(a) over the Letter dataset, the average

number of neighbors with distances no greater than ε = 3.0 is 51.36,

i.e., λε = 51.36. The probability of a tuple having at least a number

η = 18 of ε-neighbors is 0.99.
Let r be a set of n tuples over R. For a tuple t over R, we denote

rε (t) = {ti ∈ r | ∆(t, ti ) ≤ ε} (4)

the ε-neighbors of t in r , i.e., the set of tuples ti ∈ r whose distances
∆(t, ti ) to t are no greater than a distance threshold ε . The number

N (ε) of ε-neighbors of t is thus |rε (t)|.

Definition 1 (Distance Constraints). Referring to Formula
3, the distance constraints state that if a tuple t has ε-neighbors in
r no less than a neighbor threshold η, i.e., |rε (t)| ≥ η, then the tuple
should belong to a cluster in a high probability p(N (ε) ≥ η).

The determination of distance threshold ε and neighbor thresh-

old η for clustering and outlier detection [27, 29] could also be

interpreted by the probability p(N (ε) ≥ η). Referring to the Poisson
distribution, i.e., in Figure 5, a larger ε or a smaller η leads to higher

p(N (ε) ≥ η). The higher probability means more confident that the

tuples satisfying the distance constraints indeed belong to a cluster.

However, setting ε and η with too high probability would result in

that those slightly low confidence outliers will not be detected as

violations to the distance constraints. Consequently, by observing

Figure 5, a distance threshold ε = 3.0 is preferred, where a limited

number of data points in the left part of the blue line could be

identified as outliers. It further determines a neighbor threshold

η = 18, leading to a sufficiently high probability 0.99 of belonging

to a cluster. Similar to Figure 5(a) over the Letter dataset, Figure

5(b) indicates that ε = 5 leads to too many outliers with limited

neighbors, while ε = 15 fails to detect sufficient outliers given a

Research Data Management Track Paper  SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1694



threshold of neighbors. A moderately large ε = 10 is preferred.

Consequently, we have η = 31, referring to the high probability

p(N (ε) ≥ η) = 0.99, given the probabilistic distribution with ε = 10

in Figure 5(b).

2.2 Value Adjustment for Outlier Saving
An outlier tuple to does not meet the distance constraints of ε and
η w.r.t. a tuple set r , i.e., |rε (to )| < η. To save the outlier for better

clustering as mentioned in the Introduction, let t ′o be a feasible
adjustment of to on some attribute values, having |rε (t ′o )| ≥ η. That
is, tuple t ′o after value adjustment is no longer outlying and should

belong to a cluster with a high probability.

Intuitively, values are expected to be adjusted minimally, i.e., a

lower adjustment cost ∆(to , t ′o ). The rationale lies in two aspects.

(1) Errors often occur minimally on only a fraction of attributes,

since human or machines always try to avoid mistakes in practice

[15]. For example, usually only one or several sensors are broken

at a time among hundreds of sensors in a wind turbine, where each

sensor corresponds to an attribute. (2) The value change is expected

to be minimized, following the intuition that the adjustment should

avoid losing information of the original data [23]. For instance,

RH10-0AG is preferred as an adjustment of RH1O-OAG, rather than
some arbitrary RH1X-XAG, given the smaller distance between letter

O and digit 0 by the Needleman-Wunch measure [36, 37].

Definition 2 (Outlier Saving). The problem of saving outlier
to under DIStance constraints (ε,η) for Clustering (DISC) is to find the
optimal value adjustment t ′o of to that meets the distance constraints
|rε (t ′o )| ≥ η and has the minimum adjustment cost ∆(to , t ′o ).

In practice, there may exist multiple outlier tuples in a given

dataset that do not meet the distance constraints for clustering. We

split the dataset into two parts, r of non-outlying tuples and s of
outliers. The non-outlying r satisfying the distance constraints are

employed to save the outliers (violation tuples) in s one by one.

2.3 Hardness Analysis
Unfortunately, the problem of finding the optimal value adjustment

under distance constraints for clustering is generally hard.

Theorem 1. Given an outlier tuple to with distance constraints
(ε,η) over r of m attributes and a constant δ , the problem of deter-
mining whether there exists a value adjustment t ′o of to such that
|rε (t ′o )| ≥ η and ∆(to , t ′o ) ≤ δ is NP-complete.

Proof sketch. To prove the NP-hardness, we show a reduction

from the Minimum Valid Outlier Descriptor (MVOD) problem [19].

Given a set O of outliers, a set N of normal points, a set P of pro-
tected status variables where each p ∈ P, taking on a value from

{0,1}, specifies the coverage/explanation of points in O and N, and
an integer k ≤ |P|, the problem is to find a subset P ′ ⊆ P such that

|P ′ | ≤ k and P ′ is a valid outlier descriptor for O and N, i.e., P ′ cov-
ers only outliers and none of the normal points. We show that there

is a value adjustment t ′o with |rε (t ′o )| ≥ η and ∆(to , ti ) ≤ δ = k if

and only if the MVOD problem has a solution P ′ ⊆ P such that

|P ′ | ≤ k and P ′ is a valid outlier descriptor for O and N. □

Recognizing NP-hardness of the problem, a straightforward idea

is to enumerate the possible value adjustments and return the opti-

mal one. By considering all the values in each attribute, the approach

needs O(dmn) time, where d is the size of attribute domain, m is

the number of attributes in R, and n is the number of tuples in r .
That is, for a fixed number m of attributes, the problem becomes

tractable. For fixing the other number n of tuples, whether the

problem becomes tractable is still open. We leave this interesting

problem as the future study.

3 DISC ALGORITHM
Rather than enumerating the possible values in attributes of an

outlier tuple, in this section, we first show the lower and upper

bounds of desired adjustments in Sections 3.1 and 3.2. The developed

bounds are then utilized in pruning and approximation in Section

3.3. In particular, the upper bound itself can serve as an approximate

solution. It is a constant-factor polynomial-time approximation in

certain settings, referring these bounds, in Section 3.4.

3.1 Lower Bound
Let t1 be the η-th nearest neighbor of to in r , for example, in a two-

dimensional space as illustrated in Figure 3. The outlier tuple to
has ∆(to , t1) > ε . Intuitively, to “reach” t1 (become an ε-neighbor),
to needs to adjust at least a distance of ∆(to , t1) − ε . It serves as a
lower bound of any feasible adjustment of to .

Lemma 2. Any feasible adjustment t ′′o of to always has

∆(to , t ′′o ) ≥ ∆(to , t1) − ε,

where t1 is the η-th nearest neighbor of to in r .

Proof. For any tuple t ′o having ∆(to , t ′o ) < ∆(to , t1) − ε, we
show that it cannot be a feasible adjustment, having a number η of

ε-neighbors.
Consider any tuple t2 ∈ r with ∆(to , t2) ≥ ∆(to , t1) > ε . Re-

ferring to triangle inequality of the distance function, we have

∆(t ′o , t2) ≥ ∆(to , t2) − ∆(to , t ′o ) ≥ ∆(to , t1) − ∆(to , t ′o ) > ε .
Since to does not meet the distance constraints, there are at least

a number n − η + 1 of tuples t2 ∈ r with ∆(to , t2) ≥ ∆(to , t1) >
ε (including t1). Referring to the aforesaid derivation, we have

∆(t ′o , t2) > ε for these at least n − η + 1 of tuples t2. In other

words, tuple t ′o having ∆(to , t ′o ) < ∆(to , t1) − ε is not a feasible

adjustment. □

Example 2 (Example 1 continued). Consider tuple t13 in Fig-
ure 2. Let ε =0.28 and η =2. The second nearest neighbor of t13 is t10,
having ∆(t13, t10) =0.903. We compute a lower bound ∆(t13, t10) −
ε =0.623. Any feasible adjustment, e.g., t ′

13
=(13, 807, 165), always

has ∆(t13, t ′
13
) =0.838 no less than the lower bound 0.623.

Let X denote the set of attributes that are not adjusted. We are

interested in the bounds of all feasible adjustments with unadjusted

values to [X ] on attributes X , i.e., adjusting only the attributes R \X .
(Such bounds are useful in pruning and approximating in Section

3.3, by traversing unadjusted attributes X rather than enumerating

the huge body of values on attributes.)

Similar to the definition in Formula 4, let rε (to [X ]) denote all
the tuples in r whose distances to to on attributes X are ≤ ε . For
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Figure 3: Lower (tLo ) and Upper (tUo ) bounds of any feasible
adjustment (t ′′o ) with unadjusted attributes X . As defined in
Proposition 3, t1 is the η-th nearest neighbor of to in rε (to [X ])
having ∆(to , t1) > ε . It determines the lower bound by tLo with
adjustment cost no less than ∆(to , t1) − ε , i.e., the blue cir-
cle. Moreover, as defined in Proposition 5, t2 ∈ rε (to [X ]) is
a tuple having a number η of (ε − ∆(to [X ], t2[X ]))-neighbors
on attributes R. The little circle in black around t2 denotes a
number η of neighbors with distances ≤ ε −∆(to [X ], t2[X ]). It
determines the upper bound by tuo , i.e., the red dashed circle.

instance, in a two-dimensional space as illustrated in Figure 3, it

denotes all the tuples (points) in the shaded area.

Proposition 3. Let t1 be theη-th nearest neighbor of to in rε (to [X ])
having ∆(to , t1) > ε . Any feasible adjustment t ′′o with unadjusted
attributes X (t ′′o [X ] = to [X ]) always has

∆(to , t ′′o ) ≥ ∆(to , t1) − ε .

Proof. For any tuple t#o with t#o [X ] = to [X ] and ∆(to , t#o ) <
∆(to , t1)−ε,we show that it cannot be a feasible adjustment (having

a number η of ε-neighbors).
First, since t#o [X ] = to [X ], any tuple t ∈ r with ∆(t[X ], to [X ]) > ε

cannot be a ε-neighbor of t#o . Thereby, it is sufficient to consider

rε (to [X ]) for potential neighbors of t#o .
Following the same line of proving Lemma 2, we can show that

tuple t#o with ∆(to , t
#

o ) < ∆(to , t1)−ε cannot be a feasible adjustment

with neighbors from rε (to [X ]). □

Referring to Proposition 3, any feasible adjustment of to with

unadjusted attributes X must have an adjustment cost no less than

∆(to , t1) − ε , where t1 is the η-th nearest neighbor of to in rε (to [X ]).
That is, in Figure 3, any point with unadjusted attributes X and

lying inside the blue solid circle is not possible to have a number

η of ε-neighbors, and thus cannot be a feasible adjustment. The

point tLo with tLo [X ] = to [X ] serves as a lower bound of any feasible
adjustment whose X value is the unadjusted to [X ].

In this sense, Lemma 2 is indeed a special case of Proposition 3,

where X = ∅, i.e., all the attributes can be adjusted and we search

t1 in r (define ∆(ti [X ], tj [X ]) = 0 for X = ∅).

3.2 Upper Bound
Recall that any tuple in r meets the distance constraints and thus

could be a potential feasible adjustment. Intuitively, the one with

the minimum distance to tuple to would serve as an upper bound

of the minimum adjustment.

Lemma 4. Given an outlier-free set r of tuples meeting distance
constraints, there always exists a feasible adjustment t ′o of to having
∆(to , t ′o ) ≤ ∆(to , t2), where t2 = argmint∈r ∆(to , t).

Proof. Obviously, t2 is a feasible modification of to , which itself

satisfies ∆(to , t2) ≤ ∆(to , t2). □

While the existing DORC [45] substitutes outliers directly by the

nearest existing tuple, in this study, we consider the existing tuple

t2 as the upper bound of the optimal adjustment. In this sense, it

is not surprising that DISC proposed in this paper is more precise

than DORC, as illustrated in the experiments in Section 4.

Example 3 (Example 1 continued). Consider tuple t13 in Figure
2 given ε = 0.28 and η = 2. The nearest neighbor of t13 is t12, having
∆(t13, t12) = 0.846. It serves as an upper bound. For instance, for
t ′
13
= (13, 807, 165), we have ∆(t13, t ′

13
) = 0.838 < 0.846.

Again, we extend the upper bound in Lemma 4 for feasible ad-

justments with unadjusted attributes X .

Proposition 5. If there exists a tuple t2 ∈ rε (to [X ]) having a
number η of (ε − ∆(to [X ], t2[X ]))-neighbors on attributes R (full-
space), then to must have a feasible adjustment t ′′o with unadjusted
attributes X (t ′′o [X ] = to [X ]) and

∆(to , t ′′o ) ≤ ∆(to , tuo ),

where tuo is an upper bound adjustment having tuo [X ] = to [X ], tuo [R \
X ] = t2[R \ X ].

Proof. For any (ε −∆(to [X ], t2[X ]))-neighbor t3 on attributes R
(full-space) of t2, it has ∆(t2, t3) ≤ ε − ∆(to [X ], t2[X ]). Referring to

the aforesaid definition of tuo , we have ∆(t2, t
u
o ) = ∆(to [X ], t2[X ]).

According to triangle inequality of the distance function, it follows

∆(t3, tuo ) ≤ ∆(t3, t2) + ∆(t2, tuo ) = ε .
That is, all the η neighbors of t2 with distances no greater than

ε − ∆(to [X ], t2[X ]) are also ε-neighbors of tuo . In other words, tuo is

a feasible adjustment and can serve as an upper bound. □

For instance, in Figure 3, suppose that t2 has a number η of

neighbors with distances ≤ ε − ∆(to [X ], t2[X ]), i.e., neighbors of t2
inside the black dotted circle. All these neighbors have distances

to tuo no greater than ε , i.e., ε-neighbors of tuo . By finding such a

t2 with the minimum distance ∆(to [R \ X ], t2[R \ X ]) to to , the
corresponding tuo is an upper bound. The minimum adjustment of

to , whose X value is the unadjusted to [X ], must be inside the red

dashed circle.

Indeed, if we define ∆(ti [X ], tj [X ]) = 0 for X = ∅, Proposition 5

states that any tuple t2 in r has a number η of ε-neighbors could be

an upper bound of the optimal adjustment of to . We are interested

in the one with the minimum distance to to , i.e., exactly Lemma 4.

In other words, Lemma 4 is a special case of Proposition 5, which

illustrates the rationale of Proposition 5.
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3.3 Approximation with Bounds
As stated in Proposition 5, the upper bound tuo itself is a feasible

adjustment (if exists). Intuitively, instead of enumerating the huge

body of all values as possible adjustments, we may directly return

this upper bound tuo as the approximate solution. Remarkably, the

approximation performance is guaranteed under certain settings

in Propositions 6 and 7, referring to the aforesaid bounds.

Algorithm 1 presents the pseudocode of approximation. The

major steps are as follows.

Algorithm 1: DISC(r,X , t∗o )
Input: r a set of non-outlying tuples,

X a set of unadjusted attributes,

t∗o the currently known best solution of outlier tuple to
Output: t∗o the near optimal adjustment of tuple to
/* lower bound */

1 t1 := the η-th nearest neighbor of to in r ;
2 if ∆(to , t1) − ε ≥ ∆(to , t∗o ) then
3 return t∗o ; // Proposition 3

/* upper bound */

4 r2 := {t ∈ r | δη (t) ≤ ε − ∆(to [X ], t[X ])};
5 if |r2 | > 0 then
6 t2 := argmint∈r2 ∆(to [R \ X ], t[R \ X ]);
7 tuo [X ] = to [X ], tuo [R \ X ] = t2[R \ X ];
8 if ∆(to , tuo ) < ∆(to , t∗o ) then
9 t∗o := tuo ; // Proposition 5

10 for each A ∈ R \ X do
11 t∗o := DISC(r,X ∪ {A}, t∗o );

12 return t∗o ;

3.3.1 Enumerating Unadjusted Attributes X . To utilize and obtain

more tight upper bounds in Proposition 5, we recursively enumerate

various X ⊆ R as unadjusted attributes, starting from X = ∅.

To avoid redundant computations, the same attribute set X will

be processed at most once. The upper bound tuo for each X ⊆ R
is computed. Among them, the minimum one is returned as the

approximate adjustment.

3.3.2 Upper Bounds as Approximate Adjustment. Let t∗o be the cur-

rently known best solution. To initialize t∗o for X = ∅, we assign

t∗o = argmint∈r ∆(to , t), according to Lemma 4. With the recursive

augmentation of the unadjusted attributes X , t∗o is gradually im-

proved. If tuo of the present X in Proposition 5 has adjustment cost

lower than the currently known best solution t∗o , the lower cost t
u
o

is returned as the new best solution thus far (Line 8).

3.3.3 Lower Bounds for Pruning. Referring to the lower bound of

feasible adjustments with unadjusted attributes X in Proposition 3,

if the lower bound, ∆(to , t1)−ε , is already higher than the currently

known best solution t∗o , all the adjustments with unadjusted X can

be pruned. That is, the recursive augmentation on X stops (Line 2).

Example 4 (Example 1 continued). Algorithm 1 begins with
X = ∅, to = t ′o = t13, t∗o = t12. Let A = Time be the unadjusted

attribute in Line 11 in Algorithm 1. In the next recursion, it computes
r2 = {t12}. We have ∆(to , tuo ) < ∆(to , t∗o ), where

tuo [Time] = to [Time] = 13,

tuo [Longitude, Latitude] = t12[Longitude, Latitude] = (838, 165).

Referring to Line 7, tuo =(13, 838, 165) is assigned as the new currently
known best solution. Finally, a result (13, 807, 156) will be returned.

The approximation algorithm considers only the unadjusted

attributes X in R rather than enumerating all the possible values on

all the attributes as adjustments. For the brute-force enumeration

starting from X = ∅, the algorithm runs in O(2mn) time. It is more

efficient than O(dmn) of the straightforward idea presented at the

end of Section 2.3. Moreover, as discussed in the Introduction, in

some scenarios, the user may be confidence on certain attributes.

For instance, a wind turbine would be automatically switched off,

if there are more than κ sensors broken. For this case, one knows

confidently at most κ dirty attribute values in a tuple, and does not

trust an adjustment on more than κ attributes. We may only return

those adjustments with at least m − κ unadjusted attributes. That

is, we can generate bounds only for X with |X | ≥ m − κ. Rather
than initializing X = ∅, Algorithm 1 runs for each X ⊆ R having

|X | = m − κ. By avoiding the redundant computation on the same

X , the time complexity of approximation becomes O(mκ+1n).

3.4 Approximation Performance
Let t ′o be the approximate adjustment returned by Algorithm 1, and

t∗o be the optimal solution. We utilize again the lower and upper

bounds to derive the approximation factor. It is notable that given

distancemetrics with discrete distance values, Algorithm 1 is indeed

a constant factor approximation (Proposition 7).

Proposition 6. For any tuple to with ∆(to , t2) ≥ cε , where t2 =
argmint∈r ∆(to , t) and c > 1, we have

∆(to , t ′o )
∆(to , t∗o )

≤
c

c − 1

.

In Proposition 6, t2 = argmint∈r ∆(to , t) denotes the nearest

(non-outlying) neighbor of the outlier to . It is often distant from

the outlying to . For instance, in Figure 1(b), given ε = 0.1, we have

∆(to , t2) ≥ 0.5 for the outliers, i.e., c = 5. The approximation factor

is thus
∆(to, t′o )
∆(to, t∗o )

≤ c
c−1 = 1.25. Indeed, the more the outlier to is

distant from the non-outlying tuples in r , i.e., larger c, the closer
the approximate adjustment is to the optimal solution, a smaller

approximation factor.

Proposition 7. If the unit of distance value is 1, we have approx-
imation factor

∆(to , t ′o )
∆(to , t∗o )

≤ ε + 1,

where distance threshold ε is an integer as well.

In Proposition 7, we consider the distance metrics with discrete

distance values. It is often employed in evaluating string values,

such as edit distance [36], where ∆(t1, t2) > ε implies ∆(t1, t2) ≥
ε + 1 and the distance threshold ε is also an integer. For example, as

discussed in Section 1.1, typos in zip code RH1O-OAG, where letters O
should be digits 0, have edit distance equal to 2.With such a distance

metric, the approximation factor is given by
∆(to, t′o )
∆(to, t∗o )

≤ ε + 1.
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Table 1: Real data sets used in experiments
Dataset #tuple #attribute #class #outlier |domain|

Iris [1] 150 4 3 15 23.25

Seeds [3] 210 7 4 12 182.3

WIFI [4] 2000 7 4 156 42.14

Yeast [5] 1299 8 4 39 36.63

Letter [2] 20000 16 26 1920 16

Flight [7] 200000 3 5 19920 1272

Spam [6] 4601 57 2 457 32.81

GPS 8125 3 3 837 3844

Restaurant [8] 864 5 752 86 864

4 EXPERIMENTS
The experimental evaluation proposes to validate two aspects. (1)

Could outlier saving truly improve clustering? i.e., application per-

formance. (2) Is the adjustment of potential errors in outliers close

to the truth? a.k.a. cleaning accuracy.

4.1 Experimental Settings
Table 1 lists the real datasets with outliers. We quantify the number

of outliers detected by DBSCAN. Small clusters in the Yeast dataset

are identified as outliers by DBSCAN in ground truth. To avoid

confusing, we do not consider such small clusters in evaluation.

4.1.1 Clustering Evaluation. We employ various clustering algo-

rithms such as the classical DBSCAN [21] and K-Means [26]. While

DBSCAN handles both clustering and outliers, K-Means- [13] also

extends K-Means by considering k clusters and l outliers. To ad-

dress the unbalanced clusters and outliers, CCKM [43] introduces

an auxiliary outlier cluster. SREM [40] proposes to learn hybrid

models to reduce the sensitivity of initial points. KMC [14] extracts

a small kernel set for approximating K-Means. For the clustering

methods such as K-Means with the cluster number as the input, we

set the number of clusters the same as classes, presented in Table

1. For the other methods like DBSCAN, the number of returned

clusters may be different from the given classes.

Clustering accuracy is measured by F1-score, NMI and ARI [38].

The F1-score [33] is given by F1-score = 2∗Precision∗Recall
Precision+Recall , Precision

= T P
T P+F P , Recall =

T P
T P+FN , where TP is the number of true posi-

tives, i.e., the number of pairs of points that are clustered together

in the predicted partition and in the ground truth partition, FP is

the number of false positives, i.e., the number of pairs of points

that are clustered together in the predicted partition but not in the

ground truth partition, and likewise FN is false negative.

4.1.2 Classification Evaluation. Note that besides clustering, other
applications also benefit by saving outliers. To evaluate the classi-

fication application over the data without/with outlier saving, we

employ the scikit-learn implementation[9] of decision tree [20].

Classifiers are trained with default parameters. We use 5-fold cross-

validation. Classification performance is measured by F1-score.

In particular, we do not use the cluster value in the aforesaid clus-

tering experiment as the class label in this classification experiment.

Instead, only outlier saving (but not clustering) is employed in the

classification setup. Specifically, we train the existing classifiers

over the datasets with/without outlier saving. While the training

datasets are different (under various outlier handling methods), the

prediction of class labels is done by the aforesaid trained classifiers.

Therefore, the motivation of the experiment is to show that outlier

saving (but not clustering) is beneficial to the downstream tasks

such as classification and record matching.

4.1.3 Record Matching Evaluation. Similar to classification, an-

other record matching application could also be improved by outlier

saving. A rule-based record matching method [24] is implemented,

where two tuples having similar values on all attributes are con-

sidered as matched. By “similar”, we mean the normalized n-gram

similarity of two values larger than a threshold (0.7). The record

matching accuracy is measured by F1-score.

4.1.4 Compared Methods. The proposed DISC for outlier saving

is compared to the following existing methods that may clean the

errors in outliers. DORC [45] shares the same parameters of our

proposal, i.e., distance threshold ε and neighbor threshold η. The
parameters of ERACER [34] are histograms for convolution and

coefficients for regression, which can be learned directly from the

data as suggested in [34]. Holistic [17] uses denial constraints to

steer data cleaning. The constraints are discovered from the data

[16]. HoloClean [41] have parameters of its probabilistic model,

which are computed using empirical risk minimization (ERM). As

suggested in [41], variables that correspond to clean cells are treated

as labeled examples to learn the parameters of the model.

The choosing of parameters is independent of method. That

is, different methods may use different parameter settings for the

highest cluster accuracy. As illustrated in Figures 4, 8 and 10, we

search the settings of distance threshold ε and neighbor threshold

η with the best performance for DORC and DISC. For ERACER,

Holistic and HoloClean, as aforesaid, their parameters are directly

learned/computed from data.

4.2 Application of Saving Outliers
This experiment demonstrates how clustering as well as other ap-

plications are improved by saving outliers.

4.2.1 Clustering. Table 2 presents the DBSCAN clustering results

over the raw data without outlier saving, the data with outlier

saving by the proposed DISC, and the data cleaned by various

existing methods DORC, ERACER, HoloClean and Holistic. The

results on F1-score, NMI and ARI measures are generally similar.

As shown, the clustering accuracy after outlier saving by DISC

is higher than directly performing over the raw data. The results

verify the rationale of outlier saving for better clustering.

The general purpose data cleaning methods do not consider

the improvement of the downstream applications. For instance, as

illustrated in Figure 1, while the data cleaning methods modify the

data to meet the cleaning criteria, the modified data may not always

be accurate and thus not help in improving clustering (one cluster

still splits into two). Indeed, the methods in data cleaning may

modify all the outliers either introduced by errors (dirty outliers)

or simply true abnormal behaviors (natural outliers). For example,

as introduced in Section 1.2, t1 in Figure 1, t29 and t30 in Figure 2

are natural outliers not introduced by errors but modified by the
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Table 2: Clustering over raw data without / with outlier saving or data cleaning by various approaches

Data NMI (DBSCAN) ARI (DBSCAN)

Raw DISC DORC ERACER HoloClean Holistic Raw DISC DORC ERACER HoloClean Holistic

Iris 0.6123 0.6947 0.6611 0.5023 0.6612 0.6426 0.5615 0.6511 0.6104 0.4880 0.6308 0.6052

Seeds 0.5098 0.5908 0.5228 0.5076 0.5098 0.5021 0.4242 0.5220 0.4538 0.4016 0.4299 0.4381

WIFI 0.7245 0.7891 0.6778 0.6536 0.7349 0.7310 0.5990 0.6975 0.5730 0.5296 0.5933 0.5655

Yeast 0.2728 0.3237 0.2794 0.2936 0.2628 0.2416 0.2573 0.2914 0.2391 0.2197 0.1894 0.1793

Letter 0.6696 0.7153 0.6725 0.5927 0.6194 0.6272 0.5674 0.6849 0.6285 0.4837 0.5048 0.5367

Flight 0.5245 0.5721 0.5425 0.5199 0.5238 0.5172 0.5151 0.5715 0.5315 0.4948 0.5061 0.5017

Spam 0.6618 0.7059 0.6961 0.6231 0.6602 0.6552 0.5918 0.6527 0.6258 0.5523 0.5893 0.5819

GPS 0.6089 0.6721 0.6402 0.5504 0.5782 0.5828 0.5825 0.6293 0.5709 0.5014 0.5376 0.5483

Data F1-score (DBSCAN) Time cost (s) (DBSCAN)

Raw DISC DORC ERACER HoloClean Holistic Raw DISC DORC ERACER HoloClean Holistic

Iris 0.7784 0.8508 0.7862 0.7003 0.7461 0.7509 0.0009 0.0735 0.0153 0.0316 0.1813 1.0281

Seeds 0.7054 0.7963 0.6388 0.6312 0.7054 0.6813 0.0012 0.0945 3.5618 0.0527 0.2371 3.0393

WIFI 0.8441 0.9089 0.7742 0.7222 0.8544 0.8517 0.0112 0.3235 23.613 0.4692 0.2251 25.391

Yeast 0.6453 0.7162 0.6551 0.5700 0.5548 0.5417 0.0022 0.2903 19.275 0.2866 0.2765 18.256

Letter 0.7377 0.7739 0.7260 0.6285 0.6529 0.6812 0.0353 1.9921 844.76 0.7727 0.3056 70.375

Flight 0.7157 0.7487 0.7239 0.6936 0.6498 0.6706 0.0563 1.8911 1583.2 0.8327 0.2659 150.13

Spam 0.7509 0.8305 0.7722 0.6952 0.7959 0.8174 0.0236 5.0317 2646.3 1.1201 0.2176 125.42

GPS 0.6715 0.7331 0.7078 0.5845 0.6012 0.6304 0.0393 1.6139 1267.9 0.8173 0.1903 130.52

Table 3: Clustering by various methods over raw data without / with outlier saving

F1-score DBSCAN K-Means K-Means- CCKM SREM KMC

Data Raw DISC Raw DISC Raw DISC Raw DISC Raw DISC Raw DISC

Iris 0.7784 0.8508 0.8206 0.8677 0.8375 0.8685 0.8253 0.8712 0.8307 0.8919 0.8213 0.8567

Seeds 0.7054 0.7963 0.5682 0.6564 0.5634 0.6611 0.5645 0.6804 0.6388 0.7265 0.5455 0.6436

WIFI 0.8441 0.9089 0.9152 0.9247 0.8964 0.9186 0.9137 0.9226 0.9279 0.9391 0.9085 0.9287

Yeast 0.6453 0.7162 0.6668 0.6781 0.6684 0.7126 0.6728 0.7458 0.7078 0.7605 0.6515 0.6991

Letter 0.7377 0.7739 0.6318 0.6419 0.6258 0.6317 0.6320 0.6778 0.6857 0.7285 0.6352 0.6735

Flight 0.7157 0.7487 0.6517 0.6946 0.6676 0.6803 0.6712 0.7096 0.7065 0.7682 0.6514 0.6859

Spam 0.7509 0.8305 0.7626 0.8164 0.7598 0.8061 0.7519 0.8275 0.7929 0.8738 0.7565 0.8168

GPS 0.6715 0.7331 0.6212 0.7563 0.5807 0.7349 0.6742 0.7488 0.6774 0.7819 0.6077 0.7678

data cleaning methods. Therefore, as also indicated in [31], data

cleaning does not necessarily improve the quality of downstream

ML models. It explains why the state of the art methods in data

cleaning may perform worse on downstream tasks after cleaning.

Our DISC proposes to distinguish the dirty and natural outliers.

As mentioned in Section 1.2, we choose to only adjust minimally a

few attributes of the dirty outliers (introduced by errors such as t13
and t24 in Figure 2). In contrast, we leave the natural ones (of true

abnormal behaviors, e.g., t29 and t30 in Figure 2) unchanged, which

need to adjust a large number of attributes to become inliers.

For datasets with larger domain sizes of attributes, such as Flight

and GPS illustrated in Table 1, the corresponding performances

are not high in Table 2. The reason is that with more candidates in

the domain of attributes, it is more difficult to determine the right

adjustment for outliers.

As illustrated in Table 2, while the differences on time costs

over small datasets are not clear, the density-based DORC and the
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Figure 4: Clustering over raw data without/with outlier sav-
ing or data cleaning, wherem=16, n=1000, (a) η=18, (b) ε=3

Table 4: Performance of parameter determination

Data Sample Time (s) ε , η Clustering F1-score

Rate Tuples DISC DB DISC DB Optimal DISC DB Optimal

Letter 1% 200 0.015 0.014 3, 18 0.41, 24 3, 18 0.774 0.319 0.774

Letter 10% 2k 0.167 0.168 3, 18 0.42, 24 3, 18 0.774 0.326 0.774

Letter 100% 20k 1.494 1.514 3, 18 0.43, 24 3, 18 0.774 0.335 0.774

Flight 0.1% 200 0.066 0.061 10, 31 60.1, 240 10, 35 0.732 0.291 0.749

Flight 1% 2k 0.612 0.615 10, 31 62.7, 240 10, 35 0.732 0.294 0.749

Flight 100% 200k 53.202 53.172 10, 31 62.2, 240 10, 35 0.732 0.293 0.749

constraint-based Holistic show significantly higher time costs in

larger datasets, such as Letter. Our proposal DISC has time perfor-

mance comparable to the statistics-based ERACER and HoloClean.

It is worth nothing that our proposal of outlier saving is com-

plementary to the existing clustering (as well as classification and

recordmatching) methods, i.e., first apply adjustment for outlier sav-

ing, and then perform clustering over the adjusted data. As shown

in Table 3, the clustering performance is more or less improved

by first applying outlier saving (the DISC columns), compared to

directly conducting clustering over the raw data without outlier

saving (the corresponding Raw columns). The clustering algorithm

with better performance over raw data, e.g., SREM+Raw, generally

shows higher accuracy as well after outlier saving, i.e., SREM+DISC.
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(c) Letter dataset, sample rate = 0.1
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 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0  100  200  300  400  500  600

P
ro

b
a

b
ili

ty

Number of neighbors

ε = 2.5
ε = 3.0
ε = 3.5

(e) Letter dataset, sample rate = 0.01
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(f) Flight dataset, sample rate = 0.001

Figure 5: Distribution on the number of ε-neighbors over (a)
Letter and (b) Flight, with different sampling rates

4.2.2 Parameter Determination. As discussed at the end of Section

2.1, the determination of parameters η and ε in distance constraints

is to observe the probability p(N (ε) ≥ η) in the distribution, e.g., in

Figure 5(a) over the Letter dataset.

First, let us present the F1-score, precision and recall of clustering

under various ε and η settings in Figure 4. These parameters also

affect DORC which considers the number of neighbors in density-

based clustering and cleaning. The results of other data cleaning

approaches ERACER, Holistic and HoloClean are irrelevant to these

parameters and reported as baselines.

For the distance threshold ε , as illustrated in Figure 5(a), when

ε is small, e.g., ε = 2.5, the probability of a tuple having limited

neighbors is high. In other words, a large number of tuples would

have insufficient neighbors. As a result, many tuples without errors

are adjusted, i.e., over-change, and the clustering accuracy is low in

Figure 4(a). On the other hand, when ε is large, such as ε = 3.5, most

tuples have a large number of neighbors as observed in Figure 5(a).

Only a few tuples will be adjusted, and thus the overall clustering

accuracy is low. Consequently, as discussed at the end of Section

2.1, a moderately large ε = 3 is preferred to detect and clean dirty

outliers in a high probability.

For the neighbor threshold η, again, referring to Figure 5(a), for

a fixed ε = 3, a larger threshold η on the number of neighbors

means that more tuples will have insufficient neighbors and thus

be adjusted. Similar to Figure 4(a), a large η leads to over-change

in Figure 4(b), while a small η fails to identify erroneous tuples

for adjustment. Consequently, a threshold η = 18 is selected with

p(N (ε) ≥ η) = 0.99 as discussed at the end of Section 2.1.
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Moreover, we show that sampling is applicable to obtain the

probability distribution in Figure 5(a). As presented in Figure 5(c),

with a sampling rate 0.1, i.e., counting the ε-neighbors for only 10%

tuples, a similar distribution is still observed. The corresponding

time cost (for determining parameters) is significantly reduced in

Table 4. Indeed, by observing about 2k samples, we could clearly

obtain the distribution for parameter determination, which is also

observed in another dataset Flight in Figure 5(d), i.e., a sampling

rate 0.01 over 200k tuples.

Finally, we consider an existing parameter determinationmethod

(DB) based on Normal distribution [27, 29]. As shown in Table 4,

time cost of DB with Normal distribution estimation is similar to

our DISC using Poisson distribution. The corresponding F1-score of

clustering, using the parameters ε andη determined by our proposal,

is higher, almost close to the optimal one (found by testing various

ε and η combinations in Figure 4).

4.2.3 Scalability. We evaluate the impact of large data sets, Flight

and Spam, in Figures 6 and 7. The results are generally similar to

Table 2 over other datasets.

Figure 6 reports clustering F1-score and the corresponding time

cost on dataset Flight with up to 200k tuples. The results are gener-

ally similar to Table 2. While our DISC scales well as the statistics-

based ERACER and HoloClean, the density-based DORC cannot

obtain a result in more than one hour with data sizes larger than 50k.

Figure 7 considers dataset Spam with up to 57 attributes. Again,

our DISC shows good scalability w.r.t. the number of attributes,

thanks to the effective approximation in Section 3.4.

Moreover, we implement the exact algorithm by considering the

values in each attribute as possible adjustments, introduced at the

end of Section 2.3 after analyzing the intractability in Theorem 1.

As presented in Figures 6 and 7, while the Exact algorithm shows

Table 5: Classification over raw data without / with outlier
saving or data cleaning by various approaches

Data F1-score (Decision Tree)

Raw DISC DORC ERACER HoloClean Holistic

Iris 0.9357 0.9576 0.9470 0.8605 0.9477 0.9262

Seeds 0.8407 0.9687 0.8541 0.8189 0.8541 0.8272

WIFI 0.9598 0.9777 0.9675 0.9646 0.9672 0.9634

Yeast 0.8946 0.9152 0.8972 0.86134 0.8523 0.8372

Letter 0.9345 0.9421 0.9381 0.9053 0.8923 0.8789

Flight 0.9207 0.9356 0.9317 0.9068 0.9132 0.9171

Spam 0.9033 0.9296 0.9178 0.8969 0.9068 0.9015

better clustering F1-score than the approximate DISC, the corre-

sponding time cost is higher. It illustrates the trade-offs between

the improvement in time performance and the loss in accuracy by

the approximation algorithm DISC.

It is not surprising that the time cost of the Exact algorithm

increases proportionally as the approximate DISC in Figure 6(b),

given its time complexity O(dmn), i.e., linear w.r.t. the number of

tuples. On the other hand, the time cost of the Exact algorithm

increases exponentially in the number of attributes m, as shown in

Figure 7(b). It also illustrates the boundaries in terms of resources

when the Exact method is applied to large datasets, i.e., on a larger

number of attributes.

4.2.4 Classification. In addition to clustering, Table 5 presents the

classification results performed over the raw data without outlier

saving and the data with outliers saved by DISC and cleaning by

various approaches. The results are generally similar to the cluster-

ing in Table 2. It is not surprising that dirty data would also distract

classifier training while saving outliers helps. DISC with the best

clustering performance again reaches the highest classification

accuracy, in all the experiments.

Inaccurate cleaning may mislead not only clustering but also

other downstream tasks [31] such as the training and scoring of

classifiers. Therefore, as illustrated in Table 5, the general purpose

data cleaning methods may show worse classification results in

some tests compared to the Raw data without cleaning. By pre-

cisely saving outliers introduced by errors but not true abnormal

behaviors, our DISC helps in improving the training and scoring of

classifiers as well.

4.2.5 Record Matching. Figure 8 reports the record matching re-

sults over again the raw data without outlier saving and the data

with outlier saving / data cleaning. The results may vary under

different distance and neighbor threshold settings. Our DISC again

significantly improves the matching accuracy, compared to match-

ing over the raw data without outlier saving. It is analogous to

the improvement of clustering and classification in Tables 2 and 5,

respectively.

4.3 Accuracy of Saving Outliers
As discussed in Section 5, the existing Subspace Separability Expla-

nation (SSE) [35] identifies the attributes of an outlier that show
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outlier saving or data cleaning by various methods, where
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separability, to explain why the tuple is outlying. However, SSE

does not indicate how to save and utilize the outliers.

Nevertheless, to show that the value adjustment for outlier sav-

ing is indeed reasonable, we compare the attributes with values

adjusted by our DISC and the attributes showing separability as

explained by SSE. LetT be the set of attributes with errors in a tuple

and P be the set of attributes adjusted by DISC, or returned by SSE.

Following the same line of [35], we consider Jaccard(T , P) = |T∩P |
|T∪P | .

The larger the Jaccard index is, the more accurate the attributes are

explained by SSE / adjusted by DISC.

We consider the GPS dataset, where both dirty and natural out-

liers are observed and labeled. As illustrated in Figure 9(a), the rates

of dirty and natural outliers are similar (about 0.1). That is, about

9% points are dirty outliers with errors in some attributes, while

other 10% points are natural outliers with distinct Time, Longitude

and Latitude values (occasionally collected for device testing in

different time at various places).

Moreover, Figure 10 presents the accuracy of explanations on

attributes for outliers with randomly injected errors. Since the

adjustments on values are more strong evidence of being outliers

than simply the separability on attributes, the accuracy of attribute

explanations by DISC is a bit higher than the existing SSE. The

results demonstrate as well the rationale of our DISC. In addition,

we also report the attributes that are cleaned by various approaches.
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Figure 10: Accuracy of attribute adjustment/explanation for
outliers where n = 1000, m = 10, (a) η = 18, (b) ε = 3

Since we randomly replace the values in attributes, it is not guar-

anteed to be separable attributes after introducing synthetic errors.

Indeed, all the methods will not detect non-separable attributes

(Jaccard=1 is probably unlikely). In this sense, while non-separable

attributes are useless in evaluation, it does not hurt the comparison

of approaches in identifying other separable attributes.
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Figures 10 (c) and (d) report the number of modified attributes.

Methods like HoloClean modify about 6 attributes among 10. The

reason is that data cleaning methods follow the minimum change

idea, and avoid excessively modifying all the attributes.

We also present the magnitude of the adjustment, i.e., the ad-

justment cost ∆(to , t ′o ) in Definition 2 on how the adjusted t ′o is

distant from the original to , in Figures 10 (e) and (f). As shown, the

adjustment costs of data cleaning approaches such as HoloClean

are high, i.e., over-changed. Therefore, it is not the case that they

modify all attributes just a little.

5 RELATEDWORK
Outlier Explanation. Given an outlier detected by existing methods,

the outlier explanation [28, 35] identifies a set of attributes (sub-

space) in which the given outlier shows separability from the inliers.

Unfortunately, it fails to explain how the values should be adjusted

to become non-separable in the attributes. Therefore, the outlier

explanations cannot be directly utilized in improving clustering.

Our outlier saving method DISC further indicates the potential

values the attributes should be adjusted to so that it is no longer

outlying and thus improves clustering.

Sarawagi [44] uses the values approximated by other (parent)

tuples to explain errors. The approach explains only the problems in

aggregates but not for outliers, and thus is not directly applicable in

this study. Similarly, Daniel et al. [18] study data quality-aware re-

ports in business intelligence (BI) applications. Again, the proposal

manages quality metadata for BI applications but not outliers.

Clustering and Cleaning. To perform clustering over noisy data, DB-

SCAN [21] investigates the number η of neighbors whose distances

are no greater than the distance threshold ε . It considers a tuple as
the core point in a cluster if at least η neighbors lie in a distance

no greater than ε . Variations are derived under this intuition for

clustering such as OPTICS [10] and AMTICS [42]. In this study,

we use a similar distance-based notation as constraints to detect

and save outliers, referring to the rationale of Poisson process in

Section 2.1.2.

In addition to the core points with a number η of ε-neighbors,
DBSCAN [21] further categorizes the points (tuples) without suffi-

cient neighbors into (density-)reachable points and outliers. Only

those tuples having ε-neighbors less than η and not the ε-neighbor
of any core point will be detected as outliers. Unlike K-Means [26]

that directly clusters all points including outliers, DORC [45] pro-

poses to clean the noises by tuple substitution for clustering. For

instance, in Figure 2(b), t24 is substituted by the existing obser-

vation t21, denoted by blue triangle/line. All the attributes (Time,

Longitude, Latitude) are substituted, i.e., over-changed. Therefore,

the experiments in Section 4 show that our proposed DISC has

better performance than DORC [45].

The novelty of our proposal, compared to the EM method [40],

is the consideration of both the distance constraints for clustering

and the minimum change for cleaning. In particular, maximizing

the number of neighbors may excessively change the values of an

outlier to the densest cluster, which is distant from and not related

to the original tuple. For instance, in Figure 1(b), the red points

(errors) may be mistakenly moved to the densest cluster C1 (black

dots).

General Purpose Data Cleaning. Rather than targeting on saving

outliers for better clustering, data cleaning techniques have been

widely studied for general purpose and can be used to clean the

errors in outliers. Integrity constraints are often employed to advise

data cleaning [22]. In this study, we consider denial constraints (DC)

based Holistic cleaning [17] as the competitor since DC can cover

the semantics of several other constraint types, such as functional

dependencies [30] or conditional functional dependencies [12]. Un-

fortunately, precise data dependencies may not always be available

[11]. By declaring a very weak constraint so that it holds in the

dataset, an error tuple such as t13 in Figure 2(a) is not identified

with any violation and thus will not be cleaned. That is, the denial

constraint specifies a constraint on the walking speed of a person.

The small error on longitude value in t13 does not violate the con-
straint. Consequently, with insufficient detection, the accuracy of

cleaning under denial constraints is low in Section 4.

Statistical approaches employ statistic models for cleaning, e.g.,

the linear regression model in ERACER [34]. SCARE [46] proposes

to maximize the data likelihood w.r.t. the statistical model, which

does not show better performance than ERACER [34] as reported in

the paper. Since the statistical model is iteratively learned from the

dirty and partially cleaned data, the data could be over-changed to

fit the model. Moreover, owing to data heterogeneity and sparsity,

the learned statistical models are often inaccurate [34]. Therefore,

statistical method ERACER, as well as HoloClean [41] using both

DC rules and statistical results, may not perform.

It is worth noting that these data cleaning methods are proposed

for general purpose without particular consideration for clustering

in advance. In contrast, our proposal aims to save outliers for better

clustering under the distance constraints in the first place. Hence,

the accuracy of clustering with the proposed outlier saving is higher

than the existing methods in the experiments in Section 4.

6 CONCLUSION
In this paper, we propose to adjust the values of outliers under

distance constraints for better clustering. The distance constraints

are declared referring to the Poisson process of nearest neighbor

appearance. That is, if a tuple belongs to a cluster, it should have a

high probability (e.g., 0.99) to observe a certain number of neigh-

bors. The outlier saving is thus to minimally adjust the outlier

values in order to meet the distance constraints for clustering. To

find the minimum adjustment, we (1) analyze its NP-hardness, (2)

obtain the lower and upper bounds of optimal solutions, and (3)

devise pruning and approximation techniques. It is notable that the

algorithm is a constant-factor polynomial-time approximation in

certain settings (Proposition 7). Experiments on real datasets show

that the clustering (as well as classification and record matching)

performances are clearly improved after saving the outliers. Our

proposal is more effective than applying the general purpose data

cleaning methods which do not consider the clustering target in

advance.
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