
From Minimum Change to Maximum Density: On

S-Repair under Integrity Constraints

Yu Sun

Tsinghua University

sy17@mails.tsinghua.edu.cn

Shaoxu Song

Tsinghua University

sxsong@tsinghua.edu.cn

Abstract—To clean dirty data, integrity constraints are often
employed. A typical S-repair model removes a minimal set of
tuples (to avoid excessive removal and information loss) such that
the integrity constraints are no longer violated in the remaining
tuples. However, multiple candidates of minimal removal sets
exist and are difficult to determine. We intuitively notice that a
clean tuple often has more close neighbors (i.e., higher density)
than dirty tuples. In this sense, our study proposes to return the S-
repair under integrity constraints with the highest density, among
various minimal removal sets. We explicitly analyze the hardness
of maximizing S-repair density under integrity constraints, to-
gether with efficient approximation. Extensive experiments over
real datasets collected from industry with real-world errors show
that our proposal can achieve higher accuracy in cleaning dirty
tuples, compared to the state-of-the-art methods.

I. INTRODUCTION

Dirty data have been widely observed for various reasons,

such as value misplacement [19], sensor failure [18], disguised

missing value [15], etc. For instance, Figure 1 illustrates some

example subway data, which are collected by our partner

company. It collects Load sensor readings in subway trains

and the corresponding passenger Count in factory pressure

testing. Owing to sensor failure, the Load values in tuples t1,

t2, t3, t4 are missing and recorded using a disguised value 0.

Moreover, the Count values of t5, t6 are misplaced in entry.

It is not surprising that such dirty tuples affect downstream

applications, such as passenger count monitoring or query

processing [9].

Integrity constraints are often employed to identify the

errors. For example, in Figure 1, a functional dependency (FD)

Load → Count identifies t1, t2, t3, t4 in violation with t0,

which have the same Load 0 but different Count. Similar

violations are noticed in t5, t7 w.r.t. the FD as well as in t6, t8.

To tackle the errors, the S-repair model [11] removes a

minimal set of tuples such that the remaining tuples satisfy

the constraints, in order to avoid excessive removal and

information loss [2]. For instance, by removing t1, t2, t3, t4,

t5, t6, it is sufficient to eliminate the violations w.r.t. the FD,

and there is no need to further remove t0, t7, t8 in the aforesaid

violations. However, multiple candidates of minimal removal

sets exist. That is, other minimal removal sets include {t0, t2,

t3, t4, t5, t6}, {t0, t1, t3, t4, t5, t6}, {t0, t1, t2, t4, t5, t6}, and

so on. Unfortunately, without further knowledge, it is difficult

for S-repair to determine which removal set is indeed proper.

Fig. 1. Example subway data with tuples t0, t1, t2, t3, t4 in violation to an
FD Load → Count

The widely used minimum change criteria [11] does not help,

given the same size 6 of all the minimal removal sets.

Recent study [19] shows that distances to neighbors could

be a good signal of identifying dirty data. Intuitively, a clean

tuple (e.g., t0) often has more close neighbors than dirty tuples

(such as t1, t2, t3, t4). Therefore, in this study, we investigate

the density of tuples w.r.t. their nearest neighbors. Informally,

the closer a tuple is to its k neighbors, the higher the density

is (see formal Definition 3). Figure 2 ranks the density of

sample tuples from the subway data. As shown, dirty (red)

tuples with errors have generally lower density than the clean

ones in blue.1 In this sense, we can determine a proper S-repair

by observing the corresponding density.

Hence, in this paper, we propose to find the optimal S-repair

under integrity constraints with the highest density. That is, the

minimal removal set {t1, t2, t3, t4, t5, t6} will be returned,

while the remaining tuples {t0, t7, t8, . . .} satisfy the FD and

have the highest density.

Contribution: To summarize, we make the following con-

tributions. (1) We formalize the density maximization problem

for S-repair under integrity constraints in Section II. It is to

determine the minimal removal set such that the remaining

tuples satisfy the constraints and have the maximum density.

The hardness of the problem is explicitly analyzed (Theorem

2). (2) We devise a heuristic solution in Section III, referring to

the aforesaid hardness analysis. The heuristic algorithm indeed

returns the optimal solution in certain cases (Proposition 5). (3)

We conduct an extensive experimental evaluation in Section

1Outliers such as t9 in Figure 1 may have low density in Figure 2. However,
it does not violate the FD and thus will not be repaired.

D
en

si
ty

Tuples

Clean tuple
Dirty tuple

Fig. 2. Density of some clean (blue) and dirty (red) tuples in the subway
data

IV, over real datasets collected from industry with real-world

errors. The experiments demonstrate the superiority of our

proposal in accurately cleaning dirty tuples.

II. PROBLEM STATEMENT

In this section, we introduce the terminology used in

this paper and formalize the density maximization problem.

Consider a relational instance I = {t1, . . . , tn} over schema

A = (A1, . . . ,Am). Each tuple ti ∈ I is a collection of cells

{ti[A1], ti[A2], . . . , ti[Am]}, where ti[Aj] denotes the value

of attribute Aj in tuple ti. Let us first introduce S-repair for

cleaning and density over I .

A. S-repair under Integrity Constraints

We employ a general notation of denial constraints (DC) [5]

to represent the integrity constraints. The reason is that DC

subsumes several types of integrity constraints such as func-

tional dependencies (FD), conditional functional dependencies

(CFD) [3], fixing rules [20] and metric functional dependencies

[10]. Therefore, DC is widely used in various state-of-the-art

data cleaning approaches [6], [16]. Given a set of operators

B = {=, 6=, >,<,≥,≤,≈}, the binary denial constraint is a

formula of the form ϕ : ∀ti, tl ∈ I ,¬(P1∧· · ·∧Pj∧· · ·∧PJ),
where each predicate Pj is of the form v1φv2 or v1φh with

v1, v2 ∈ ti[Aj], ti ∈ I ,Aj ∈ A, and h is a constant.

For any tuples ti, tl ∈ I and a denial constraint ϕ defined

over A, we say tuples ti and tl violate the constraint ϕ, denoted

by (ti, tl) 6� ϕ, if these two tuples satisfy all the violation

conditions defined in the predicates (P1 ∧ · · ·∧Pj ∧ · · · ∧PJ)
in ϕ. Otherwise, we write (ti, tl) � ϕ to denote tuples ti and

tl satisfy the constraint ϕ. For a relational instance I of A, we

write I 6� ϕ if there exists at least a pair of tuples ti, tl ∈ I

having (ti, tl) 6� ϕ. Otherwise, if no tuple in I violates the

constraint ϕ, we use I � ϕ to denote that the instance I

satisfies constraint ϕ. If we have a set of denial constraints

Σ, I � Σ if and only if I satisfies each constraint in Σ, i.e.,

∀ϕ ∈ Σ, I � ϕ. Otherwise, we say the instance I violates the

constraints Σ, i.e., I 6� Σ.

To eliminate the violations, the removal set IN is a subset of

I such that the remaining tuples in I \IN satisfy the constraints

of Σ.

Definition 1 (Removal Set). Given a set of integrity con-

straints Σ defined over schema A, and an instance I of A,

IN ⊂ I is a removal set w.r.t. Σ if I \ IN � Σ.

Intuitively, the removal set denotes the tuples with potential

errors, introducing violations to the integrity constraints Σ.

Obviously, the removal should not be excessive to avoid

information loss [2]. The S-repair model [11] thus considers

the minimal removal set.

Definition 2 (Minimal Removal Set). A removal set IN is

minimal if there does not exist any other removal set I ′N of I ,

such that I ′N ⊂ IN .

That is, a minimal removal set IN does not contain any

tuple that can be put back without introducing violations to the

integrity constraints Σ. Unfortunately, multiple candidates of

minimal removal sets may exist for eliminating the violations.

Without further knowledge, it is often difficult for S-repair to

determine which minimal removal set is indeed proper.

Example 1. Consider the relational instance I in Figure 1.

The FD Load → Count described in Section I can be

expressed by the following DC

∀ti, tl ∈ I ,¬(ti[Load] = tl[Load] ∧ ti[Count] 6= tl[Count]).

It states that for any two points having the same Load value,

there would be a violation if their Count values are different.

As shown, tuples t0− t8 are involved in violation. Constraint-

based S-repair can generate all the possible minimal removal

sets {t1, t2, t3, t4, t5, t6}, {t0, t2, t3, t4, t5, t6}, {t0, t1, t3,

t4, t5, t6}, {t0, t1, t2, t4, t5, t6}, {t0, t1, t2, t3, t5, t6}, and so

on, but fail to identify which one denotes the true error tuples.

B. Density Maximization for S-repair

Let dj (ti, tl) be any distance metric [14] to evaluate the

distance between two tuples over an attribute Aj ∈ A, having

0 ≤ dj (ti, tl) ≤ 1. We denote Lk
I (ti) the k neighbors with the

minimum distances to ti in I . The density of instance I is

thus defined as the aggregation of 1 − dj (ti, tl) of k nearest

neighbors tl for each tuple ti in I .

Definition 3 (Density). The density of a relational instance I

is

D(I) =
∑

ti∈I

∑

tl∈Lk
I (ti)

∑

Aj∈A

(1− dj (ti, tl)), (1)

where Lk
I (ti) is the k nearest neighbors for each tuple ti ∈ I .

The smaller the distances are to the k nearest neighbors, the

higher the density is. Likewise, for a removal set IN of I , the

density of remaining tuples in I \ IN is

D(I \ IN) =
∑

ti∈I\IN

∑

tl∈Lk
I\IN

(ti)

∑

Aj∈A

(1 − dj (ti, tl)). (2)

As illustrated in Section I, among multiple candidates of

minimal removal sets, we propose to determine the S-repair

such that the remaining tuples have the maximum density.

Problem 1 (Density Maximization). Given a relational in-

stance I over schema A that violates a set of integrity

constraints Σ, the density maximization problem is to find

a removal set IN of I w.r.t. Σ such that the density D(I \ IN)
is maximized.

It is worth noting that Problem 1 does not explicitly state

whether the optimal removal set IN of I is minimal or not.

Indeed, we show below that the returned removal set IN with

the maximum density is always a minimal removal set.

Proposition 1. The removal set I ∗N with the maximum density

D(I \ I ∗N) is always a minimal removal set.

In order to investigate the hardness of Problem 1, we

consider its corresponding decision problem.

Problem 2 (Density Checking). Given a relational instance

I over schema A that violates a set of integrity constraints Σ,

and a constant ζ, the density checking problem is to decide

whether there exists a removal set IN with density D(I \IN) ≥
ζ.

As illustrated below, density checking is generally hard.

Theorem 2. The density checking problem is NP-complete.

Example 2. Consider the relational instance I in Figure 1.

Suppose that we have a removal set IN = {t1, t2, t3, t4,

t5, t6}. Given k = 2, according to Formula 2, the density

of remaining tuples in I \ IN is computed by considering k

nearest neighbors Lk
I\IN

(ti) for each tuple ti ∈ I \ IN , having

D(I \ IN)

= ((1− 0.028) + (1 − 0) + (1− 0.032) + (1− 0))+

((1− 0.016) + (1 − 0) + (1− 0.024) + (1− 0))+

((1− 0.020) + (1 − 0) + (1− 0.024) + (1− 0)) + . . .

=99.002.

Consider other possible removal sets I ′N = {t0, t2, t3, t4,

t5, t6} and I ′′N = {t0, t1, t3, t4, t5, t6}. The corresponding

density values are computed,

D(I \ I ′N)

= ((1− 0.200) + (1 − 0) + (1− 0.224) + (1− 0)) + . . .

=98.638,

and similarly

D(I \ I ′′N)

= ((1 − 0.200) + (1− 0.200) + (1− 0.416) + (1− 0)) + . . .

=98.246.

Since the removal set IN leads to a higher density for the

remaining tuples in I \ IN , it will be returned as errors.

III. HEURISTIC SOLUTION

Recognizing the hardness in Theorem 2, in this section, we

first propose the HEURISTIC algorithm in Section III-A, which

always returns a minimal removal set in polynomial time.

Moreover, we study a special case of clique conflicts2 and non-

violation neighbors in Section III-B, where the HEURISTIC

algorithm indeed returns the optimal solution.

A. Heuristic Algorithm by Solving Conflicts

Let IC ⊂ I be the set of conflict tuples w.r.t. the integrity

constraints Σ, having

IC = {ti ∈ I |∃tl ∈ I , i 6= l , (ti, tl) 6� Σ}.

The following proposition first narrows down the search space

of the optimal solution, i.e., only need to search inside the

conflict tuples IC .

Proposition 3. Any optimal removal set I ∗N with the maximum

density always has I ∗N ⊂ IC .

Intuitively, in order to maximize the density of the remain-

ing tuples, we may remove first those tuples in IC with lower

density. However, referring to the density definition in Formula

1, the density of a tuple ti may be affected by the removal

of other tuples in IC , which are the k neighbors of ti. To

approximate, we simply ignore such updates on density, and

heuristically consider the k neighbors only from I \ IC of

non-conflict tuples, denoted by Lk
I\IC

(ti). Let

ρi =
∑

tl∈Lk
I\IC

(ti)

∑

Aj∈A

(1− dj (ti, tl)), (3)

be the approximate density of tuple ti w.r.t. its k neighbors in

I \ IC .

The HEURISTIC Algorithm 1 iteratively removes tuples in

IC with lower density ρi, till all the conflicts are solved. We

first sort the conflict tuples ti ∈ IC in the ascending order ρi
in Line 1. Lines 3-5 consider all the pairwise conflict tuples,

and the one with lower density between two conflict tuples

will be removed. Finally, Lines 6-8 guarantee the HEURISTIC

algorithm returns a minimal removal set.

Algorithm 1: HEURISTIC(I ,Σ)

Input: a (dirty) relational instance I , and a set of

integrity constraints Σ
Output: a removal set IN of I

1 sort conflict tuples ti ∈ IC in an ascending order of ρi;

2 IN ← ∅;
3 for each ti ∈ IC do

4 if ∃tl ∈ IC \ IN , (ti, tl) 6� Σ then

5 IN ← IN ∪ {ti};
6 for each ti ∈ IN do

7 if ∀tl ∈ IC \ IN , (ti, tl) � Σ then

8 IN ← IN \ {ti};
9 return IN

Example 3. Consider the relational instance I in Figure 1

with the DC specified in Example 1. Line 1 in Algorithm 1 first

initializes ρi for tuples ti ∈ IC = {t0, t1, t2, t3, t4, t5, t6, t7, t8}

2See the formal definition of clique conflicts in Definition 4.

and sort them in an ascending order of ρi . For instance, given

k = 2, we have ρ0 = 3.940 for tuple t0 ∈ IC and ρ1 = 3.576
for tuple t1 ∈ IC . During removal in Line 3, we first consider

the conflict tuple t4, whose ρ4 = 2.400 is smallest. Then Line 5

selects t4 as an error tuple by checking whether it has conflicts

with the other tuples in IC \IN , i.e., {t0, t1, t2, t3, t5, t6, t7, t8}.
In the second round, the next smallest t3 with ρ3 = 2.784
is considered in Line 3. Similarly, t3 having conflicts with

remaining tuples {t0, t1, t2, t5, t6, t7, t8} is identified as a

removal tuple in Line 5. Finally, since t1, t2, t3, t4, t5 and

t6 have conflicts with the remaining tuple t0, t7, t8 ∈ IC \ IN ,

Lines 6-8 do not put back any tuple in IN to the remaining

tuple set. The final result is indeed a minimal removal set.

While HEURISTIC algorithm considers the repairing over

pairwise conflict tuples, we show below that the returned

removal set is always minimal.

Proposition 4. The HEURISTIC algorithm returns a minimal

removal set with time complexity O(cnm + cn log k), where

c = |IC |, n = |I |, m = |A| and k is the number of considered

neighbors.

B. Special Case Performance

We show below (in Proposition 5) that the HEURISTIC

algorithm indeed returns the optimal solution, in a special

case of clique conflicts and non-violation neighbors. Let us

first formally define clique conflicts.

Definition 4 (Clique Conflicts). We call I ′C ⊆ IC clique

conflicts, if ∀ti, tl ∈ I ′C , i 6= l , it always has (ti, tl) 6� Σ.

That is, tuples in a clique I ′C conflict with each other. Such

clique conflicts are prevalent, e.g., an FD (Load → Count)

always leads to clique conflicts. Tuples sharing the same y

value but with different x form a clique I ′C of conflicts.

Proposition 5. If we have Lk
I (ti) = Lk

I\IC
(ti) for each tuple

ti ∈ I , and all the tuples in IC are involved in disjoint clique

conflicts, HEURISTIC algorithm returns an optimal solution.

The condition Lk
I (ti) = Lk

I\IC
(ti) states that each tuple

ti ∈ I only has neighbors not in violation, i.e., not in IC . The

efficient solution in such a case is not surprising, since the

density of any tuple is no longer affected by (removing) any

tuples in IC .

Example 4. Consider again the relational instance I in

Figure 1 with the DC specified in Example 1, which is indeed

an FD Load → Count. The constraint detects the conflicts

among tuples in I , having IC = {t0, t1, t2, t3, t4, t5, t6, t7, t8}
as illustrated in Example 3. It is notable that any tuple

ti ∈ I ′C = {t0, t1, t2, t3, t4} ⊂ IC has conflicts with all

the other tuples in I ′C \ {ti}. Similar clique conflicts exist in

{t5, t7} ⊂ IC and {t6, t8} ⊂ IC .

IV. EXPERIMENTS

In this section, we compare our approach HEURISTIC

against the state-of-the-art methods, in terms of data cleaning

TABLE I
DATASETS USED IN EXPERIMENTS

Name Size #Attr #FD #DC Error

Restaurant 864 4 2 7 artificial

Tax 200k 15 5 5 artificial

WindTurbine 31k 7 3 3 real/labeled

Iris 150 4 4 6 KEEL/labeled

performance, on a variety of real datasets with real-world and

synthetic errors.

A. Experimental Setup

1) Datasets: Table I lists the datasets used in the experi-

ments. Datasets Restaurant3 and Tax4 are assumed to be orig-

inally clean. Artificial errors are injected for evaluation (see

details in Section IV-A2). WindTurbine dataset is collected by

our partner company, where real-world errors are embedded

and labeled. Similarly, KEEL5 provides different versions of

dataset Iris with various errors embedded.

2) Error Generation: Since errors are not embedded in

Restaurant and Tax, to evaluate the data cleaning performance,

we use BART [1], a state-of-the-art system for benchmarking

data cleaning algorithms, to inject synthetic errors. Given a

dataset, FDs are first discovered by TANE [8]. BART then

generates FD-detectable errors.

3) Evaluation Methodology: To show the effectiveness of

S-repair, we measure the accuracy of removing errors by

Precision (Prec.), Recall (Rec.) and F1-score (F1). Referring

to the ground truth of each dataset, we determine tp - the

correctly removed tuples of errors, fp - clean tuples that are

falsely determined as errors, and fn - error tuples that are not

marked as such. The evaluation metrics are computed as

Rec. =
tp

tp + fn
, Prec. =

tp

tp + fp
, F1 =

2× Prec.× Rec.

Prec.+ Rec.
.

For the data cleaning methods which identify the specific error

cells, e.g., Holistic [6], HC [16] and Raha [12], we count the

corresponding tuples as errors. If multiple cells in one tuple

are indicated having error data, this tuple is only counted once.

4) Competing Methods: We compare our proposed

HEURISTIC algorithm with the following approaches. (1)

Constraint-based MS [11]. It returns the minimum S-repair

under the guidance of FDs, following the minimum change

principle. (2) Constraint-based Holistic [6]. It performs U-

repair under denial constraints (DC). The U-repair model

updates the values of specific cells in order to eliminate

violations to the given integrity constraints. (3) Machine

Learning System HC [16]. HC is a state-of-the-art machine

learning based data cleaning system with integrity constraints,

external data and statistical analysis. (4) Machine Learning

System Raha [12]. Raha is a machine learning based error

3http://www.cs.utexas.edu/users/ml/riddle/data.html
4http://db.unibas.it/projects/bart/
5https://sci2s.ugr.es/keel/attributeNoise.php

TABLE II
PRECISION, RECALL AND F1-SCORE OF S-REPAIR OVER VARIOUS DATASETS

Approach

WindTurbine Restaurant Tax

(1,759 error tuples) (34 error tuples) (20,000 error tuples)

Precision Recall F1− score Precision Recall F1− score Precision Recall F1− score

DORC 0.877 0.405 0.544 0.038 0.909 0.073 0.233 0.064 0.101

LS 0.647 0.809 0.719 0.032 0.318 0.058 0.466 0.018 0.036

LOF 0.843 0.594 0.697 0.031 0.727 0.059 0.316 0.461 0.375

dBoost 0.568 0.521 0.544 0.047 0.147 0.071 0.414 0.049 0.087

MS 0.505 0.215 0.302 0.706 0.545 0.615 0.723 0.758 0.740

Holistic 0.584 0.239 0.340 0.722 0.591 0.650 0.726 0.760 0.743

HC 0.651 0.106 0.182 n/a n/a n/a 0.742 0.015 0.029

Raha 0.990 0.663 0.794 0.132 0.151 0.141 0.174 0.253 0.206

HEURISTIC 0.999 0.983 0.991 0.857 0.706 0.774 0.738 0.768 0.753

detection system, which needs the existing error detection

algorithms, e.g., dBoost [13], to generate sets of data errors,

and errors labeled for training model. (5) Clustering-based

DORC [17]. It divides all the tuples into three types, referring

to the clustering results. All the tuples, which are neither

core points nor border points, are identified as errors. (6)

Clustering-based LS [7]. It performs k-means clustering with

outliers. Again, the identified outliers are considered as errors.

(7) Outlier-based LOF [4]. It defines a score for each tuple

ti based on the density of those tuples in ti’s neighborhood,

in order to evaluate whether this tuple ti should be classified

as an outlier. Outliers are ranked based on their LOF scores

and treated as errors. (8) Outlier-based dBoost [13]. It is

a widely used outlier detection tool that integrates several

algorithms, including histogram, gaussian and multivariate

gaussian mixture models.

B. Cleaning Performance

Table II reports the S-repair accuracy of removing error

tuples. DORC, LS, LOF and dBoost, relying on statistical

information to identify errors, usually cannot achieve a good

performance compared to the constraint-based techniques,

such as MS or Holistic. The reason is that they often fail

to detect non-outlying errors but excessively identify all the

outlier tuples as errors.

Raha combines the efforts of existing error detection algo-

rithms, e.g., dBoost, and the manual labels. It thus achieves

a high accuracy in the WindTurbine dataset where extreme

outlier values present. Unfortunately, although it can conduct

label propagation with only 20 labeled tuples, these manually

labeled tuples cannot always cover all the error patterns,

especially for a large dataset such as Tax.

HC can also detect the conflict tuples with the help of denial

constraints. It is difficult to further distinguish which one of

the conflict tuples indeed has errors. Without strong statistical

signals supporting, e.g., in Restaurant6, the corresponding re-

sults are not available (denoted by n/a). Our HEURISTIC algo-

6The Restaurant dataset is too small with heterogeneous values.

TABLE III
F1-SCORE OF S-REPAIR UNDER VARIOUS ERROR RATES OVER IRIS DATA

Approach 5% 10% 15% 20%

DORC 0.473 0.439 0.428 0.419

LS 0.476 0.465 0.422 0.405

LOF 0.403 0.377 0.316 0.313

dBoost 0.224 0.193 0.172 0.166

MS 0.291 0.245 0.236 0.055

Holistic 0.483 0.478 0.428 0.423

HC 0.134 0.130 0.106 0.098

Raha 0.358 0.338 0.319 0.300

HEURISTIC 0.547 0.521 0.517 0.513

rithm performs significantly better than the other approaches,

e.g., in WindTurbine and Restaurant. The constraint-based

approaches MS and Holistic achieve comparable performances

with HEURISTIC over Tax dataset, since there are duplicate

values where the constraints apply to detect violations.

Table III reports the error removal accuracy over the Iris

dataset under various error rates, where errors with various

rates are labeled by KEEL in advance. First, it is not surprising

that with the increase of error rate, the repair performance

of each method drops. The error repair accuracy in Table III

is generally proportional to the results over other datasets in

Table II. Again, our proposed HEURISTIC method is more

effective in identifying errors than the other data cleaning

approaches, with various error rates in the dataset.

Table IV presents the median runtime of different methods.

As expected, the iterative approaches such as DORC and

Holistic are slower than non-iterative ones. Our HEURISTIC

algorithm is more efficient than most of competing methods,

which is not surprising referring to the complexity analysis in

Proposition 4.

V. RELATED WORK

Constraint-based cleaning. Constraint-based methods [2],

[3], [6], [11] use integrity constraints to tackle errors. The

TABLE IV
RUNTIME (IN SECONDS) OF REPAIRING (the tiny time costs over the very

small Restaurant and Iris datasets are omitted)

Approach WindTurbine Tax

DORC 4289.39 417609.18

LS 3337.94 150659.43

LOF 13048.33 279181.31

dBoost 22.34 59.29

MS 1546.02 99142.21

Holistic 3515.70 157432.03

HC 1410.21 83256.02

Raha 286.36 16393.07

HEURISTIC 241.35 23976.83

S-repair model [11] removes a minimal set of tuples such

that the remaining tuples satisfy the constraints, in order to

avoid excessive removal and information loss. The U-repair

model Holistic [6] conducts the iterative repairing with the

help of denial constraints to construct repair context. The

minimum change criteria is often employed to avoid excessive

change and information loss [2]. Unfortunately, as illustrated

in Section I, without further knowledge, it is often difficult

for constraint-based approaches to determine a proper removal

between conflict tuples.

Labeling-based cleaning. Labeling based methods [12] often

cast the error detection task to a binary classification problem.

Raha [12] first generates a wide range of algorithm configura-

tions and encodes the output into feature vectors for all data

cells. Then the method combines clustering, label propagation,

and classification per attribute, and learns to predict the labels

of cells. HC [16] employs not only the statistical learning

but also the integrity constraints and probabilistic inference

to repair error data. However, as shown in Section IV, it

still cannot perform well without strong statistics supporting,

especially for the datasets with heterogeneous values.

Outlier-based cleaning. Outlier detection methods [4], [13]

identify the tuples containing values significantly different

from the others. For example, dBoost [13] relies on several

classical outlier detection approaches, such as histogram,

gaussian modeling and multivariate gaussian mixture models,

to analyze the data distributions for error detection. LOF [4]

utilizes the k-nearest neighbors of each tuple to measure its

density-based outlier factor. This interesting idea motivates us

to define directly the density by considering the neighbors in

our proposal. However, outliers are not always errors, while

errors may not be outlying.

Clustering-based cleaning. DORC [17] treats outliers as

errors and moves them into clusters as repairs. While core

points and border points are clustered, all the other outlying

points will be repaired. Similarly, LS [7] performs k-means

clustering with outliers. It iteratively checks if swapping one

of the current centers with a non-center and any further local

swap with the additional removal of outliers could improve the

clustering performance. If it is the case, the swap and removal

will be performed. The major issue of DORC and LS is to

excessively repair all outliers but fail to identify non-outlying

errors.

VI. CONCLUSION

In this paper, we propose to find the S-repair w.r.t. integrity

constraints that maximizes density. To solve the density max-

imization problem under integrity constraints, we analyze the

hardness of the problem in Theorem 2 and devise a heuristic

algorithm that returns the optimal solution in certain cases

in Proposition 5. Extensive experiments over datasets from

industry with real-world errors demonstrate that our proposal

improves the data cleaning accuracy compared to the existing

techniques.

Acknowledgement: This work is supported in part

by the National Key Research and Development Plan

(2019YFB1705301) and the National Natural Science Foun-

dation of China (62072265, 61572272, 71690231).

REFERENCES

[1] P. C. Arocena, B. Glavic, G. Mecca, R. J. Miller, P. Papotti, and
D. Santoro. Messing up with BART: error generation for evaluating
data-cleaning algorithms. PVLDB, 9(2):36–47, 2015.

[2] G. Beskales, I. F. Ilyas, and L. Golab. Sampling the repairs of functional
dependency violations under hard constraints. PVLDB, 3(1):197–207,
2010.

[3] P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis.
Conditional functional dependencies for data cleaning. In ICDE, pages
746–755, 2007.

[4] M. M. Breunig, H. Kriegel, R. T. Ng, and J. Sander. LOF: identifying
density-based local outliers. In SIGMOD, pages 93–104, 2000.

[5] J. Chomicki and J. Marcinkowski. Minimal-change integrity mainte-
nance using tuple deletions. Inf. Comput., 197(1-2):90–121, 2005.

[6] X. Chu, I. F. Ilyas, and P. Papotti. Holistic data cleaning: Putting
violations into context. In ICDE, pages 458–469, 2013.

[7] S. Gupta, R. Kumar, K. Lu, B. Moseley, and S. Vassilvitskii. Local
search methods for k-means with outliers. PVLDB, 10(7):757–768,
2017.

[8] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen. TANE: an
efficient algorithm for discovering functional and approximate depen-
dencies. Comput. J., 42(2):100–111, 1999.

[9] Y. Ji, Y. Chai, X. Zhou, L. Ren, and Y. Qin. Smart intra-query fault
tolerance for massive parallel processing databases. Data Sci. Eng.,
5(1):65–79, 2020.

[10] N. Koudas, A. Saha, D. Srivastava, and S. Venkatasubramanian. Metric
functional dependencies. In ICDE, pages 1275–1278, 2009.

[11] E. Livshits, B. Kimelfeld, and S. Roy. Computing optimal repairs for
functional dependencies. In PODS, pages 225–237, 2018.

[12] M. Mahdavi, Z. Abedjan, R. C. Fernandez, S. Madden, M. Ouzzani,
M. Stonebraker, and N. Tang. Raha: A configuration-free error detection
system. In SIGMOD, pages 865–882, 2019.

[13] Z. Mariet, R. Harding, S. Madden, et al. Outlier detection in heteroge-
neous datasets using automatic tuple expansion. 2016.

[14] G. Navarro. A guided tour to approximate string matching. ACM

Comput. Surv., 33(1):31–88, 2001.
[15] A. A. Qahtan, A. K. Elmagarmid, M. Ouzzani, and N. Tang. FAHES:

detecting disguised missing values. In ICDE, pages 1609–1612, 2018.
[16] T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré. Holoclean: Holistic data

repairs with probabilistic inference. PVLDB, 10(11):1190–1201, 2017.
[17] S. Song, C. Li, and X. Zhang. Turn waste into wealth: On simultaneous

clustering and cleaning over dirty data. In SIGKDD, pages 1115–1124,
2015.

[18] S. Song, A. Zhang, J. Wang, and P. S. Yu. SCREEN: stream data
cleaning under speed constraints. In SIGMOD, pages 827–841, 2015.

[19] Y. Sun, S. Song, C. Wang, and J. Wang. Swapping repair for misplaced
attribute values. In ICDE, pages 721–732, 2020.

[20] J. Wang and N. Tang. Towards dependable data repairing with fixing
rules. In SIGMOD, pages 457–468, 2014.

	Introduction
	Problem Statement
	S-repair under Integrity Constraints
	Density Maximization for S-repair

	Heuristic Solution
	Heuristic Algorithm by Solving Conflicts
	Special Case Performance

	Experiments
	Experimental Setup
	Datasets
	Error Generation
	Evaluation Methodology
	Competing Methods

	Cleaning Performance

	Related Work
	Conclusion
	References

