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Abstract—Existing imputation methods generally generate sev-
eral possible fillings as candidates and determine the value from
the candidates for imputing. However, semantics are ignored in
these methods. Recently, pre-trained language models achieve
good performances in various language understanding tasks.
Motivated by this, we propose IPM that captures semantics for
Imputation with Pre-trained language Models. A straightforward
idea is to model the imputation task as a multiclass classfication
task, named IPM-Multi. IPM-Multi predicts the missing values
by fine-tuning the pre-trained model. Due to the low redundancy
of databases and large domain sizes, IPM-Multi may suffer the
over-fitting problem. In this case, we develop another approach
named IPM-Binary. IPM-Binary first generates a set of uncer-
tain candidates and fine-tunes a pre-trained language model to
select candidates. Specifically, IPM-Binary models the candidate
selection task as a binary classification problem. Unlike IPM-
Multi, IPM-Binary computes the probability for each candidate
filling respectively, by accepting both complete attributes and a
candidate filling as input. The attention mechanism enhances
the ability of IPM-Binary to capture semantic information.
Moreover, negative sampling from neighbors rather than domains
is employed to accelerate the training process and makes the
training more targeted and effective. As a result, IPM-Binary
requires fewer data to converge. We compare our proposal
IPM to the state-of-the-art baselines on multiple datasets. And
the extensive experimental results show that IPM outperforms
existing solutions. The evaluation of IPM validates our intuitions
and demonstrates the effectiveness of the proposed optimizations.

Index Terms—Imputation, Deep Learning, Pre-trained Lan-
guage Models

I. INTRODUCTION

In practice, missing data are prevalent, due to the optional
inputs in the information collection system and mismatching in
integrating heterogenous data sources, and so on. Obviously,
these missing values significantly reduce the quality of the
data and make the data hard to use.

A. Challenges

Many existing imputation techniques [2], [31] depend on the
symbolic similarity metrics, such as string edit distance and
term jaccard similarity. However, relying solely on symbolic
similarity does not always lead to accurate filling (see in
Example 1). Some imputation techniques [27], [38] inferring
corrections (including imputation) from co-occurring attribute
values suffer the sparsity problem. The co-occurrence w.r.t
values are not always available, as shown in Example 1.
Thus, we propose to impute the missing values by further
considering semantics w.r.t the fine-grained tokens.

TABLE I
EXAMPLE RELATIONAL DATA WITH MISSING VALUES.

r title category modelno price

t1

tribeca varsity jacket hard
shell case for ipod

touch dallas cowboys
Nan fva3778 18.54

t2
oklahoma sooners iphone

4 case black shell
electronics

general fva3161 29.99

t3
belkin sport armband for

ipod nano black
mp3

accessories f8z514tt064 18.88

t4
case logic 11.6 hard shell

netbook sleeve
electronics

general 154722 19.99

t5
fellowes hd precision

cordless mouse mice 98904 44.84

... ... ... ... ...

Example 1. Consider a part of the real product dataset
Walmart3 in Table I. Tuples t1-t5 represent five different prod-
ucts with four attributes. There is a missing entry t1[Acategory]
(we manually label the truth “mp3 accessories”).

The nearest neighbor based imputation, such as kNN [2],
finds top-k tuples that are most similar to t1 on the complete
attribute. The major class of the k neighbors on the to-
impute attribute “category” will be taken as the imputation
for t1[Acategory]. For example, given k = 3 and term jaccard
similarity as the similarity metric, kNN will identify t2, t3, t4
as neighbors. And “electronics general”, the major class on
the attribute “category” of the 3-NNs, will be imputed in
t1[Acategory]. It is wrong given the truth “mp3 accessories”.

The statistics-based method HoloClean [27], [38] first gen-
erates the candidates from co-occurring values and infers the
filling from candidates with statistical models. However, there
is no tuple sharing the same attribute value with t1 and thus
the statistical model does not apply. HoloClean fails to find
candidates for imputing t1[Acategory].

Recently, many approaches in Natural Language Processing
(NLP) area are good at capturing semantics. For instance,
BERT [7] and GPT [24] achieve excellent performances in
many language understanding tasks like Question Answering.
BERT [7] is trained to predict the masked token in text, and
E-BERT [41] further predicts the masked phrases during pre-
training. Nevertheless, these NLP-based approaches have not
yet been used for relational data imputation.

A natural idea is that we can take the tuple as a sentence and
predict the original value for the missing value via multiclass
classfication like Sentiment Analysis task. Owing to the low
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redundancy of databases and large domain sizes, the model is
likely to fall into the pitfall of over-fitting.

B. Our Proposal

We propose an approach named Imputation with Pre-trained
language Models (IPM) to address the above issues. Since
the pre-trained language model (LM) has been pre-trained on
a large corpus such as Wikipedia [7] and Text8 [13], it can
capture the semantics of tokens co-occurring in the corpus, as
shown in Example 2 below. IPM benefits from the semantics
in the pre-trained LMs, for determining the candidates that are
more semantically related to the complete values.
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cowboys
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Visualization of Representations in Pre-trained LM

Fig. 1. Visualization of tokens (dimension reduction via t-SNE)

Example 2. Consider again the missing t1[Acategory] in Ta-
ble I in Example 1. Referring to kNN, we have two candidates
“mp3 accessories” and “electronics general”, of which “mp3
accessories” is the truth. As shown in Figure 1, the pre-trained
LM can capture the correlation between “ipod” in t1[Atitle]
and “mp3” in the candidate to help find the correct filling.

As stated in Section III, Our proposal IPM consists of
two modules named IPM-Multi and IPM-Binary. IPM-Multi
models the imputation problem as the multiclass classfication
problem, where the number of classes is the domain size. IPM-
Multi can achieve good performance if there are sufficient
training data (see Section VI-B1 and Section VI-C1). Due
to the low redundancy of relational databases [5] and large
domain size, the training data are not always sufficient. In
this case, IPM-Multi will suffer the over-fitting problem. In
addition, it is suboptimal to take all values in the domain as
class labels without semantics. We can take advantage of this
semantic relationship to impute the missing value, as shown
in Example 1. Since IPM-Multi only considers the candidate
filling in the domain as the semantically free class label, this
kind of semantic relationship is ignored.

To better capture the semantics and avoid the over-fitting
problem, we propose IPM-Binary, which is the focus of our
study. Rather than directly predicting the missing value with
a multiclass classifier, IPM-Binary determines whether each
candidate filling is correct respectively with a binary classifier.

IPM-Binary first finds the neighbors NN (ti) of the incom-
plete tuple ti. For the missing cell ti[Ak], we collect the values
on attribute Ak from its neighbors NN (ti) as the candidates

can(ti[Ak]). Then we fine-tune a pre-trained language model
to select the final filling φ(ti[Ak]) from the candidates.

Compared to IPM-Multi, IPM-Binary requires less training
data for two reasons: (1) IPM-Multi needs to learn the features
for each specific class. IPM-Binary takes the candidate filling
and the complete attribute values as the input and determines
whether they are related. The search space of IPM-Binary
can(ti[Ak]) is relatively smaller than IPM-Multi dom(Ak).
(2) IPM-Binary can capture the semantic relationship between
the correct fillings and the complete attributes values with Self-
attention mechanism. With the semantic relationship, IPM-
Binary can quickly converge with limited training data and
determine the filling accurately, as shown in Section VI-C1.

Moreover, we propose to conduct negative sampling from
the neighbors rather than from the domain. Recall that we
select imputation from candidates generated by neighbors.
Thus, the neighbor sampling strategy makes the training more
targeted and effective, as discussed in Section V-B3.

C. Contributions

Our major contributions in this study are as follows:
1. We propose a new data imputation approach, named IPM.

Compared to the existing imputation methods, IPM can
captures semantics in data for imputation with the pre-
trained language model (Section III).

2. We propose to model the imputation problem as a
multiclass classification problem when training data are
sufficient. The number of classes is the domain size
(Section IV).

3. We propose selecting the filling from candidates via a
novel binary classifier (IPM-Binary), which overcomes
the over-fitting problem due to the low redundancy of
relational databases (Section V).

4. We propose to conduct negative sampling from neighbors
rather than the domain. This sampling strategy makes the
fine-tuning more targeted so that the fine-tuned model can
better select the correct filling (Section V-B2).

5. We conduct extensive experiments on several datasets in
Section VI. The comparison with baselines shows the
superiority of our proposal.

II. PRELIMINARY

A. Pre-Trained Language Models

Recently, substantial works [37] show pre-trained language
models (pre-trained LMs) are beneficial for downstream tasks
in NLP. Pre-trained LMs are trained on a large corpus of
text and learn universal language representations. The repre-
sentations obtained by pre-trained LMs capture the semantic
connection between words in the training corpus. Thus, if
we perform downstream tasks by fine-tuning pre-trained LMs,
the training cost would be lower than training from scratch.
In addition, the models would benefit from the information
contained in the training corpus of pre-trained LMs.

Pre-trained LMs can be divided into two classes [23]. The
first generation of pre-trained LMs, such as Skip-Gram [20]
and GloVe [22], aims to learn good representations of words
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Fig. 2. The workflow of IPM. IPM consists of two alternatives, named IPM-Multi and IPM-Binary. (1) IPM-Multi plugs in a multiclass classifier into the
pre-trained language model, where the number of classes is the domain size. IPM-Multi fine-tunes the pre-trained LM and the classifier to predict the missing
values. (2) IPM-Binary first generates candidate fillings from neighbors. Each candidate filling will be combined with the values of complete attributes as
the input. IPM-Binary sets a binary classifier after the pre-trained LM. Then IPM-Binary fine-tunes all the parameters to predict whether the combination is
correct, i.e., the candidate filling is true. The filling with the highest probability outputted by the classifier will be taken as the imputation result.

from the co-occurrence/semantic relationship between them.
However, these methods fail to capture contextualized relation-
ships, useful in sentence matching [15]. The second generation
of pre-trained LMs, such as BERT [7] and RoBERTa [16],
focuses on capturing context information. These models are
stacked with multiple Transformer blocks [36], which apply
fully-connected self-attention layers, typically 12 or 24 layers.
The self-attention mechanism [36] is applied in each layer with
the self-attention function. The self-attention function can be
described as mapping a query and a set of key-value pairs to
an output, where query, keys and values are all representations
of tokens,

Attention(Q ,K ,V ) = softmax(
QK T

√
dk

)V (1)

where dk is the dimension of the representation vectors. The
self-attention layer takes a sequence of word embeddings as
inputs and calculates the correlation between each pair of
words. Then the word embeddings would be reconstructed via
a weighted sum of the inputs. In this way, the pre-trained LMs
successfully learn contextual representations.

With the self-attention mechanism, the pre-trained LMs can
be directly fine-tuned for many downstream tasks such as
Question Answering and Sequence Classification [7]. Com-
pared to training a task-specific model from scratch, fine-
tuning the pre-trained LMs can converge faster and does not
require much training data.

B. Problem Settings

Consider a relation instance r = {t1, t2, ..., tn} over
schema R = (A1, A2, ..., Am). The domain of attribute Ak
is dom(Ak). We denote the value of attribute Ak in tuple
ti as ti[Ak]. If ti[Ak] = None, then we say this cell is
incomplete. For tuple ti, we denote complete attributes as

AiC = {Ap, Aq, ...}, where ti[Ap] 6= None, ∀Ap ∈ AiC . For
each incomplete cell ti[Ak] = None, we consider a set of
candidates can(ti[Ak]) ⊆ dom(Ak) for imputing cell ti[Ak].

If we have a function p(v, ti, Ak), which can evaluate the
probability that the candidate v ∈ can(ti[Ak]) is the correct
imputation. Thus, our problem is to find the candidate v ∈
can(ti[Ak]), which maximizes p(v, ti, Ak), i.e.,

φ(ti[Ak]) = argmax
v∈can(ti[Ak])

p(v, ti, Ak)

where φ(ti[Ak]) is the imputation for the incomplete ti[Ak].

III. OVERVIEW

Figure 2 illustrates the workflow of IPM. Given an incom-
plete relation instance, IPM utilizes the pre-trained language
model to select the filling for each missing cell. IPM consists
of two alternatives named IPM-Multi and IPM-Binary. When
we have sufficient training data, IPM-Multi can achieve good
performance. Otherwise, IPM-Binary is a better choice.

A. IPM-Multi

IPM-Multi models the imputation problem as a multiclass
classfication task. The missing values will be predicted via
a softmax network, where the candidates are the domain
dom(Ak). Due to the large domain size, IPM-Multi requires
abundant data for training. IPM conducts 2 steps in IPM-Multi.

Step 1: Fine-tuning. IPM-Multi fine-tunes the pre-trained
language model to predict the original value of the missing
cell, as shown in Section IV-A.

Step 2: Imputing. After fine-tuning, IPM-Multi will select
the value corresponding to the class with the maximum
probability output by softmax as the imputation result.
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B. IPM-Binary

Without sufficient training data, IPM-Multi is likely to
fall into the over-fitting pitfall. Rather than directly selecting
the imputation value from the whole domain, IPM-Binary
evaluates the probability for a candidate value each time via a
binary classifier as stated in Section V-B. IPM-Binary requires
less training data compared to IPM-Multi. The IPM-Binary
module consists of 5 steps as follows:

Step 1, 2 and 3: Blocking, Finding Neighbors and
Generating Candidates. IPM-Binary first builds an inverted
index to store the mapping from a word to tuples containing
it. Then tuples containing any word will be added to the
blocking. We calculate the similarity between tuples in the
blocking. Given a tuple ti, we sort the tuples according to
the similarity in descending order and choose top-k tuples as
the neighbors. For the missing cell ti[Ak], IPM-Binary takes
all values on attribute Ak from the neighbors NN (ti) as the
candidates can(ti[Ak]).

Step 4: Fine-tuning. Before training the model, we need to
construct the training corpus. Complete tuples are considered
positive training samples. For each positive sample, IPM-
Binary will sample multiple negative samples. Then IPM-
Binary fine-tunes the pre-trained language model to learn the
ability of selecting the correct filling from the candidates.

Step 5: Imputing. With the fine-tuned model, IPM-Binary
selects the most likely filling φ(ti[Ak]) from the candidates
and impute the missing cell with it.

IV. IMPUTATION WITH PRE-TRAINED LANGUAGE
MODELS: MULTI-CLASSIFIER

A straightforward idea is that we can consider the impu-
tation problem as a multiclass classfication problem (IPM-
Multi). As stated in Section III-A, IPM-Multi consists of 2
steps, fine-tuning and imputing.

A. Fine-tuning in IPM-Multi

IPM-Multi fine-tunes the pre-trained LM to learn how to
select imputation from the domain dom(Ak).

1) Pre-trained LM in IPM-Multi: Figure 3(a) is the ar-
chitecture of the pre-trained model in IPM-Multi. Given the
incomplete cell ti[Ak], we collect the values on complete
attributes AiC in ti as the input.

(1) The pre-trained LM first serializes the input attribute
values into a sequence of tokens to conform to the input format
of the pre-trained LM. A too complicated serializing strategy
is unnecessary [4], [15]. Thereby, IPM-Multi simply serializes
the inputs as

serialize(ti[A
i
C ]) = [CLS] T1 . . .︸ ︷︷ ︸

Ti∈ti[Ap]

. . . . . .Tm︸ ︷︷ ︸
Ti∈ti[Aq ]

[SEP ] (2)

where [CLS] and [SEP ] are the start and the end of the
input, respectively, Ap,Aq ∈ AiC are the complete attributes
in ti. The pre-trained LM transforms the input tokens into
embeddings.

(2) The pre-trained LM captures the contextual information
with the self-attention mechanism and outputs contextualized
embeddings for the input embeddings.

(3) Following the existing works [7], [15], we take the
contextualized embedding E c

[CLS] of token [CLS] from the
last layer as the summarization vector of the input. The reason
is that EC[CLS] is essentially a weighted average of all token
representations, summarizing the rest of tokens. To summarize
the input sequence, simply averaging all token representations
could be suboptimal [12], since it will assign all tokens with
the same weight including some tokens that are not relevant
to the specific task. According to Formula 2, the first token
of every sequence is always the special token [CLS]. The
contextualized embedding E c

[CLS] of token [CLS], computed
using self-attention (Formula 1), is a weighted average of all
token representations. Since the weights can be calculated
for the specific task that we fine-tune on, E c

[CLS] can only
collect the relevant information from the rest of the hidden
states. Following the same line of [7], [15], which take E c

[CLS]

as the summarization of input sequence and achieve good
performance over various downstream tasks, we also take
E c
[CLS] of token [CLS] from the last hidden layer as the

summarization vector of the input.
A multiclass classifier is then built. As shown in Figure 3(a),

it takes E c
[CLS] as the input, and outputs the probability that

each value in the domain is the correct filling. The multiclass
classifier consists of linear layers and a softmax layer. It is the
softmax layer that outputs the probability of each value being
correct filling. The parameters of the multiclass classifier and
the pre-trained LM will be updated together during fine-tuning.

In conclusion, we can see the IPM-Multi as a complex
function p(m)(v , ti,Ak) that calculates the probability that
value v is the correct filling for ti[Ak].

2) Model Learning in IPM-Multi: If we impute the missing
cells in all incomplete attributes simultaneously, the domain
size will be the sum of the domain sizes of all incomplete at-
tributes. Therefore, we choose to fine-tune the model for each
incomplete attribute. Before fine-tuning the pre-trained LM,
we need to build the training corpus first. Following the state-
ment in Section IV-A1, the training example is (ti[A

i
C ], li),

where li ∈ {0, 1, ..., |dom(Ak)|−1} is the class label of ti[Ak].
We collect all the complete tuples and remove ti[Ak] from the
tuples, which will be used as the ground truths. In this way, we
can get the training corpus T (m) = {(ti[AiC ], li)}|Nc|, where
|Nc| is the amount of complete tuples.

The model is learned by minimizing the cross-entropy loss,

J (m) = −
|T (m)|∑
i=1

log(p
(m)
i [li]) (3)

where p
(m)
i [li] is the output probability of the class li.

Example 3 (Fine-tuning in IPM-Multi). Consider the running
example in Table I. To impute more accurately the missing
t1 [Acategory], we fine-tune the pre-trained LM on Acategory.
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Fig. 3. Model Architecture. (1) The pre-trained language model first serialize the values of complete attributes and the possible filling into a sequence of
tokens. Then the pre-trained LM transforms tokens into embeddings. (2) The stacked transformer layers then capture the hidden semantics between tokens
and output the contextualized embeddings for each token. (3.a) A multiclass classifier takes the Ec

[CLS]
as the input and outputs the probability that each

value in the domain is the correct filling for cell ti[Ak], as introduced in Section IV-A. (3.b) A binary classifier also takes the Ec
[CLS]

as the input and
outputs the probability that the candidate filling is the correct filling for cell ti[Ak], as introduced in Section V-B.

Without introducing additional supervision, we utilize the
complete tuples, such as t3 whose Acategory is not missing,
to fine-tune the model. The value of t3 [Acategory] is used
as the label for training. The contents of t3 are serialized
as [[CLS], belkin, sport, ..., ipod, nano, ..., 18.88, [SEP ]].
We input the tokens into the pre-trained LM and obtain the
summarization vector E c

[CLS] of the input. By taking E c
[CLS]

as the input of the multiclass classifier in IPM-Multi, the
classifier will output the probabilities of all classes being the
imputation of t3 [Acategory]. Assume that we have 4 classes
in the active domain, and the 3rd class is the correct filling
“mp3 accessories”. That is, the ground truth of t3 [Acategory]
is 2 (strating from 0). For example, if the output of the
multiclass classifier is [0.1, 0.1, 0.75, 0.05], the loss will be
0.288. The pre-trained LM and the multiclass classifier will
be updated together via backpropagation.

B. Imputing in IPM-Multi
Following the problem setting in Section II-B, we select the

value with the highest probability, i.e.,

φ(ti[Ak]) = argmax
v∈dom(ti[Ak])

p(m)(v, ti, Ak) (4)

where p(m)(v, ti, Ak) denotes the output probability of IPM-
Multi on the class whose value is v . The pseudocode of IPM-
Multi is shown in Appendix IX-A in [1].

Example 4 (Imputing in IPM-Multi). Similar to the input
of t3 in the training phase in Example 3, we also input the
complete values in t1 to the fine-tuned model. Assume that the
output of the fine-tuned model is [0.1, 0.05, 0.8, 0.05]. IPM-
Multi would impute t1[Acategory] with the 3rd class, i,e, “mp3
accessories”, referring to the highest 0.8.

V. IMPUTATION WITH PRE-TRAINED LANGUAGE MODELS:
BINARY CLASSIFIER

Owing to the low redundancy of databases and large domain
sizes, training data are not always sufficient. For example,
the domain size of the “brand” attribute in Flipkart dataset
is 3453, as shown in Table II. However, there are only 8884
tuples in Flipkart dataset. It means that only about 2 tuples
are corresponding to each class. Obviously, this is not enough
to train an accurate multiclass classifier for IPM-Multi. In this
case, IPM-Multi will fall into the over-fitting problem.

In order to solve the problem, we propose an approach
named IPM-Binary, which selects imputation from neighbors
with pre-trained LMs. IPM-Binary first generates possible
fillings can(ti[Ak]) for each missing cell ti[Ak]. Then we
fine-tune a pre-trained language model to select the value
v ∈ can(ti[Ak]) with the highest probability p(v, ti, Ak).

It is worth noting that IPM-Binary does not highly depend
on redundant tuples, thanks to the abundant co-occurrence
semantics w.r.t. tokens captured by the pre-trained models
and the attention mechanism. By considering the implicit
semantics of tokens extracted in the pre-trained LM and
explicit co-occurrence of tokens in candidates and complete
values, IPM-Binary learns further the semantical relationships
between tokens in the fine-tuning process.

Furthermore, a set of possible fillings can(ti[Ak]) signif-
icantly reduce the search space of imputation compared to
dom(Ak) in IPM-Multi. The overview is in Figure 2. We will
introduce each step in detail. Section V-A contains Step 1-3.
Step 4 is in Section V-B, and Step 5 is in Section V-C.

A. Candidates Generation in IPM-Binary
There are many existing methods [8], [31], [39] that can

generate a set of possible values for imputation. A common
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approach is to generate candidates from neighbors. Similar to
many Entity Resolution works [9], finding neighbors needs to
compare pairs of tuples. The time cost of comparison will be
very high, if we have to compare each pair in a large dataset.
Assume that there exist 1000 tuples in the dataset. We need to
compare around 1000000 tuple pairs, which is unacceptable.
Therefore, the first step in IPM-Binary is blocking, which
could significantly reduce the number of comparisons.

Since IPM-Binary applies a pre-trained language model, we
need to focus on the words in the tuple. Thereby, we find
neighbors according to the word co-occurrence relationship.

First, IPM-Binary will build an inverted index Index(R),
where the key is the word w and the value are the set of tuples
containing the word {t |w ∈ t}. Tuples that exist in the same
block Index(R)[w] will be considered as neighbors. To avoid
large blocks, we ignore the word whose frequency is larger
than the given threshold τ , i.e., Wτ = {w|Index(R)[w]| ≤
τ}. Then, we can obtain the block:

C =
⋃

w∈Wτ

{(ti, tj)ti, tj ∈ |Index(R)[w]}

Second, IPM-Binary will calculate the similarity between
each pair of tuples (ti, tj) ∈ C. Following the principle that
the atomic units are tokens, we choose term jaccard similarity
as the similarity metric,

Sim(ti, tj) =
|S(ti)

⋂
S(tj)|

|S(ti)
⋃
S(tj)|

(5)

where S(ti) denotes the set of tokens in tuple ti.
Intuitively, the higher the similarity of the pair of tuples is,

the more likely they can fill each other. Thus, we sort tuples
according to their similarities in descending order and take the
top-k tuples as neighbors, i.e.,

NN(ti) = {tj |(ti, tj) ∈ C}κ

Note that a large κ will increase the time cost for candidate
selection, while a small κ may cause IPM-Binary to miss the
correct fillings. If the computing resources are sufficient, we
recommend setting κ with a large number to ensure a good
imputation result. Experiment results about the impact of κ is
in Appendix IX-E in [1].

Third, IPM-Binary will generate the possible fixes for the
missing cell ti[Ak] from its neighbors. We take the value of
all neighbors NN(ti) on the attribute [Ak] as the candidates,

can(ti[Ak]) = {tj [Ak]|tj ∈ NN(ti)}

B. Fine-tuning in IPM-Binary

1) Pre-trained LM in IPM-Binary: Deep learning based
methods, such as IPM-Multi in Section IV, naturally model
the imputation problem as a multiclass classfication problem,
where the number of classes is the domain size |dom(Ak)|.
Due to the low redundancy of databases, the number of classes
is large while training samples are relatively limited. Hence,
if we directly train a multiclass classifier for imputation, the
model will likely fall into the over-fitting pitfall. For this
reason, we generate a set of possible fillings can(ti[Ak]) ⊆

dom(Ak) for each missing cell ti[Ak]. Compared to the
domain dom(Ak), the search space of can(ti[Ak]) is signifi-
cantly smaller.

Considering the above issues, we formulate the imputation
task as a binary decision. Motivated by Next Sentence Predic-
tion (NSP) task in BERT [7], we utilize the pre-trained LM
to identify whether the candidate value is a correct filling.

(1) As Figure 3(b) illustrated, IPM-Binary also needs to
serialize the attribute values in the tuple into a sequence of
tokens. Unlike IPM-Multi, IPM-Binary takes the combination
of complete attribute values as the first “sentence” and the
candidate filling for the incomplete attribute as the second
“sentence”.

serialize(ti[A
i
C ], ti[Ak])

= [CLS]T1 . . .Tp︸ ︷︷ ︸
Ti∈ti[Ac1]

. . .Tq . . .Tm︸ ︷︷ ︸
Ti∈ti[Acx]

[SEP ]T
′

1 . . .T
′

l︸ ︷︷ ︸
Ti∈vk

[SEP ]

where Acx denotes the complete attribute in the tuple ti, vk ∈
can(ti[Ak]) denotes the candidate filling. The pre-trained LM
then transforms the input tokens into embeddings.

(2) Similar to IPM-Multi, IPM-Binary also takes the con-
textualized embedding E c

[CLS] of token [CLS] from the last
layer as the summarization vector of the input.

(3) As illustrated in Figure 3(b), a binary classifier is built
by taking E c

[CLS] as the input. The binary classifier is used
to decide whether the candidate value vk ∈ can(ti[Ak]) is a
correct filling for the missing cell ti[Ak]. The parameters of
the binary classifier and the pre-trained LM will be updated
together during fine-tuning.

In conclusion, we can see the pre-trained language model as
a complex function p(b)(vk, ti,Ak). It outputs the probability
that the candidate value fills the incomplete tuple.

2) Model Learning in IPM-Binary: Given a training corpus
T (b) = {(ti[AiC ], vk, yn)}

|T |
n=1, where ti[A

i
C ] is the combina-

tion of complete attribute values, vk denotes the candidate
filling for cell ti[Ak], and yn ∈ {0, 1} indicates whether vk is
the correct filling for ti[Ak]. We train our imputation model
by minimizing the cross-entropy objective function,

J (b) = −
|T (b)|∑
n=1

[yn log(p̂n) + (1− yn) log(1− p̂n)] (6)

where p̂n is the output of the classifier.
3) Negative Sampling: Considering that there exist differ-

ences in semantic relationships between different attributes.
We fine-tune the pre-trained language model individually for
each missing attribute. Naturally, IPM-Binary needs to build
an individual training corpus T (b) for each attribute Ak.

For positive training samples T
(b)
p , we select all tuples

whose attribute Ak are not missing,

T (b)
p = {(ti[AiC\Ak], ti[Ak], 1)}.

To train a binary classifier, we need negative sampling to
obtain a balanced training set of positive and negative samples.
If we take all values not equal to ti[Ak] as the negative samples
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of imputation, the training corpus will be highly imbalanced
with a few positive and a large number of negative samples.
This will make the classifier biased towards negative class and
increase the time cost of training.

Following [34], IPM-Binary also samples η negative sam-
ples for each positive sample. η is a hyper-parameter named
negative sampling ratio. An intuitive idea is to sample
values not equal to the existed cell value from the do-
main. Formally, for the tuple ti whose positive sample
is (ti[A

i
C\Ak], ti[Ak], 1), we sample its negative samples

T
(b)
n [ti] from the domain.

T (b)
n [ti] = {(ti[AiC\Ak], vn, 0)}η

vn 6= ti[Ak], vn ∈ dom(Ak)

Values not equal to ti[Ak] in dom(Ak) are sampled uniformly.
However, most of the values in the domain are not se-

mantically related to the tuple in the positive sample. If
we conduct negative sampling over the domain, the negative
samples might be easy for the pre-trained language model to
distinguish. Thus, fine-tuning will be a trivial task, so that the
fine-tuned model cannot select the correct filling from several
semantically related candidates.

To resolve this, we propose to conduct negative sampling
over the neighbors NN (ti) rather than the domain dom(Ak).

T (b)
n [ti] = {(ti[AiC\Ak], v

′

n, 0)}η

v
′

n 6= ti[Ak], v
′

n ∈ can(ti[Ak])

where all values not equal to ti[Ak] in can(ti[Ak]) =
{tj [Ak]|tj ∈ NN (ti)} are sampled uniformly. Recall that
each pair of neighbors share at least one token. It means
that v

′

n and ti[Ak] are probably semantically related. In this
way, we generate a more challenging training corpus, where
the candidate values in the negative samples are likely to be
semantically related to the positive sample. During fine-tuning
on the training corpus, the model will be forced to learn to find
the correct match from several candidates that are semantically
related to the tuple. Experiment results verify the effectiveness
of this sampling strategy in Appendix IX-F in [1].

Example 5 (Fine-tuning in IPM-Binary). Consider again
the running example in Table I with missing t1 [Acategory].
We also fine-tune IPM-Binary on the complete tuples, such
as t3 , whose Acategory are not missing. First, we need
to generate the training corpus. The positive sample of
t3 is (t3 [A \Acategory],mp3 accessories, 1). Given negative
sampling ratio η = 1, we find one negative candidate
“electronics general”. The negative sample of t3 is thus
(t3 [A \Acategory], electronics general, 0). We serialize the
training samples and input them into the model for fine-tuning.
For instance, we serialize the positive training sample as
[[CLS], belkin, ..., 18.88, [SEP ],mp3 accessories, [SEP ]].
IPM-Binary inputs the token series into the pre-trained LM
and obtain the summarization vector E c

[CLS] of the input. By
taking E c

[CLS] as the input of the binary classifier in IPM-
Binary, the classifier outputs the probability that the candidate

is correct. For instance, if the binary classifier outputs 0.8
for “mp3 accessories” and 0.6 for “electronics general”, the
mean loss will be 0.570. The pre-trained LM and the binary
classifier will be updated together via backpropagation.

C. Imputing in IPM-Binary

And then, IPM-Binary will select one candidate value as the
final filling φ(ti[Ak]) for each missing cell ti[Ak] with the fine-
tuned pre-trained language model. As stated in Section V-B,
the fine-tuned pre-trained LM could be abstracted as a function
p(b)(v , ti,Ak). The output of the function is the probability
that the candidate value v is the correct filling for the missing
cell ti,Ak, i.e.,

p(b)(v , ti,Ak) = P(φ∗(ti[Ak]) = v)

where φ∗(ti[Ak]) is the true filling.
To reduce the search space, we only select the candidate

filling v from the neighbors v ∈ {tj [Ak]|tj ∈ NN (ti)}.
Intuitively, we tend to select the candidate filling with the
highest probability, i.e.,

φ(ti[Ak]) = argmax
v∈can(ti[Ak])

p(b)(v, ti, Ak) (7)

However, we cannot make sure that the candidate
can(ti[Ak]) must contain the correct filling. In this case, if we
always choose top-1 candidate as the filling, we will obtain a
wrong filling result. For many downstream tasks such as Entity
Resolution, wrong values will be more harmful than missing
values. For this reason, we suggest not to impute the missing
cell ti[Ak] whose candidate can(ti[Ak]) does not contain any
value with high confidence.

We can filter candidates with relatively low confidence by
setting a threshold ε.

can(ε)(ti[Ak]) = {v |v ∈ can(ti[Ak]), p(b)(v , ti,Ak) ≥ ε}

Note that if we set ε = 0, this is equivalent to the “top-1”
selection strategy. If the missing cell ti[Ak] whose candidate
can(ti[Ak]) does not contain any value with p(v , ti,Ak) ≥ ε,
the filtered candidate will be a empty set, i.e., can(ε)(ti[Ak]) =
∅. It means that IPM-Binary would not impute it. In this way,
we can avoid introducing too many errors during imputation.
Experiment results about the impact of this selection threshold
is in Appendix IX-G in [1]. The pseudocode of IPM-Binary
is shown in Appendix IX-B in [1].

Example 6 (Imputing in IPM-Binary). Assume that we obtain
two candidates, “mp3 accessories” and “electronics general”,
for t1[Acategory] in Table I. Similar to the samples of t3 in
the training phase in Example 5, we also input the combined
tuples of complete values and the candidates of t1 to the fine-
tuned model. If the fine-tuned model outputs 0.9 for “mp3
accessories” and 0.4 for “electronics general”, then IPM-
Binary will impute t1[Acategory] with the “mp3 accessories”.

67



TABLE II
DATASET SUMMARY

Dataset Size # Attributes # Incomplete
Attributes

Avg Domain
Size

Restaurant2 864 4 1 49
Walmart3 2300 5 2 251
Amazon3 13797 4 2 939

Buy4 651 3 1 62
Housing5 5000 11 10 966

Phone6 4312 6 1 335
Zomato7 50279 10 1 93
Flipkart8 8884 9 1 3453

VI. EXPERIMENTS

A. Experimental Settings

The experiments run on a machine with 2.1GHz CPU and
Nvidia 1080ti GPU. RoBERTa 1 is the default pre-trained LM.

1) Datasets: We employ several real datasets in experi-
ments. Table II provides statistics on data sizes (the number of
tuples), schema sizes (the number of attributes) and average
domain sizes of incomplete attributes. Such information can be
used as a justification for the choices of classifiers, IPM-Multi
or IPM-Binary, as discussed in Section VI-C1.

In particular, the Zomato dataset contains a large number
of 50279 tuples, while dataset Housing has 11 attributes.

The Phone dataset contains a number of 656 naturally
occurring missing values in attribute “brand”. We manually
label the corresponding truths of missing values for evaluation.

For all datasets except Phone, we randomly remove values
from several categorical attributes. The missing rates are
applied on per incomplete attribute. For instance, if we need
to remove 10% values from the dataset Walmart, then we
will randomly remove 10% attribute values from the two
categorical attributes “category” and “brand”, respectively.
(Our proposal is robust to the missing rate as illustrated in
Appendix IX-D in [1].)

It is worth noting that imputation is not always possible,
since the randomly removed values may no longer appear in
the active domain of the attribute at hand. For such missing
values not in the active domain, our proposal IPM (as well as
HoloClean [38]) that rely on value redundancy fail to impute.

2) Criteria: We measure the accuracy on whether the
imputation results are equal to the ground truth. truth denotes
the set of truth values and imp denotes the imputed values.
The accuracy acc is calculated by acc = |truth∩imp|

|truth∪imp| , i.e.,
the proportion of missing values accurately imputed. For
datasets with several missing attributes, we report the mean

1 provided by Hugging Face: https://huggingface.co/
2https://www.cs.utexas.edu/users/ml/riddle/data.html
3https://sites.google.com/site/anhaidgroup/useful-stuff/data
4https://dbs.uni-leipzig.de/en
5https://www.kaggle.com/harlfoxem/housesalesprediction
6https://www.kaggle.com/PromptCloudHQ/amazon-reviews-unlocked-

mobile-phones
7https://www.kaggle.com/himanshupoddar/zomato-bangalore-restaurants
8https://www.kaggle.com/PromptCloudHQ/flipkart-products

accuracy of the missing attributes. To avoid randomness, all
the experiments were repeated five times. The average of the
five results will be used as the final results. To demonstrate that
the differences in algorithms are real in all the experiments,
we conduct statistical significance calculations by Student’s
Paired t-test [30]. The best performances based on Student’s
Paired t-test at 95% significance level (i.e., p < 0.05) are bold
in Tables III, IV and V.

3) Baselines: We select the state-of-the-art methods in each
category of imputation methods as summarized in Section VII
of related work. For nearest-neighbor based methods, we select
kNNE [8] and MIBOS [39]. For clustering based methods,
we use CMI [42] based on the pre-trained embeddings [16].
For statistics based methods, we choose ERACER [19] and
HoloClean [27], [38]. We report the results of the latest version
of HoloClean, i.e., attention-based HoloClean [38]. These
methods are all applicable for categorical data imputation and
often compared in the existing studies [31], [32]. We also
adapt the error correction method Baran [17] to “correct” the
null values. Following the default setting of Baran 9, we set
the number of labels as 20. In addition, we compare with
several generative model based approaches MIDAS [10], MI-
WAE [18], HI-VAE [21], DataWig [3] on numerical attributes.
(Please see implementation details in Appendix IX-C in [1].)

B. Comparison with Existing Approaches

1) Comparison over Categorical Dataset: Table III reports
the accuracy performance of the implemented baselines and
our proposal IPM-Multi and IPM-Binary. The column (#Train
/ #Total) presents how much training data was used. Among
the training set, 80% data are used for training and 20% for
validation to avoid over-fitting.

As we can see from the Table III, our proposed methods
benefit from the ability to capture semantic information in data
and outperform baselines over all datasets. Some baselines
may fail to correctly impute any value with accuracy 0.
Similarities between long texts in data cannot be accurately
evaluated by symbolic similarity functions applied in the
baselines. CMI with embeddings is still weak, since it is not
fine-tuned for the imputation task as our proposal.

The results in Table III show that our proposal outperforms
HoloClean, especially over the datasets with text attributes,
such as “title” and “description”, where the statistics fail to
work. On the dataset Zomato with redundant tuples, Holo-
Clean achieves good performance, while IPM can also benefit
from redundancy and still outperform HoloClean. Rather than
the limited co-occurrence at the attribute value level in Holo-
Clean, our IPM utilizes the abundant co-occurrence semantics
w.r.t. tokens. Thus, the accuracy of IPM on the dataset with
low redundancy such as Amazon is higher than HoloClean.

As aforesaid, the error correction method Baran [17] is
adapted to “correct” the null values. Unfortunately, in the
imputation problem, the original value is missing (null value).
Since there is no original error value to use, Baran cannot learn

9https://github.com/BigDaMa/raha/tree/master/raha
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TABLE III
IMPUTATION ACCURACY OF IPM COMPARED TO THE EXISTING APPROACHES (MISSING RATE = 10%, THE BEST PERFORMANCES BASED ON STUDENT’S

PAIRED T-TESTS AT 95% SIGNIFICANCE LEVEL ARE BOLD)

Dataset (#Train / #Total) kNNE MIBOS CMI ERACER DLM Baran HoloClean IPM-Multi IPM-Binary
Restaurant 623 / 864 0.206± 0.019 0.093± 0.025 0.560± 0.049 0.185± 0.031 0.631± 0.024 0.315± 0.044 0.331± 0.056 0.772± 0.023 0.660± 0.008
Walmart 1660 / 2300 0.207± 0.019 0.142± 0.097 0.571± 0.014 0.032± 0.000 0.641± 0.005 0.173± 0.071 0.247± 0.017 0.703± 0.039 0.822± 0.015
Amazon 9943 / 13797 0.128± 0.005 0.007± 0.001 0.533± 0.006 0.001± 0.000 0.636± 0.005 0.037± 0.004 0.095± 0.008 0.725± 0.005 0.686± 0.005

Buy 469 / 651 0.355± 0.016 0.016± 0.011 0.653± 0.029 0.003± 0.006 0.709± 0.025 0.227± 0.173 0.162± 0.043 0.637± 0.039 0.965± 0.015
Zomato 36217 / 50279 0.581± 0.005 0.024± 0.001 0.746± 0.006 0.001± 0.000 OUT OF MEMORY 0.938± 0.023 0.956± 0.005 0.995± 0.001 0.976± 0.001
Phone 2924 / 4312 0.466± 0.000 0.000± 0.000 0.404± 0.000 0.175± 0.000 0.619± 0.000 0.162± 0.073 0.130± 0.055 0.847± 0.005 0.867± 0.002

Flipkart 6408 / 8884 0.219± 0.007 0.000± 0.000 0.463± 0.024 0.000± 0.000 0.524± 0.023 0.353± 0.151 0.105± 0.033 0.206± 0.008 0.680± 0.016

the value-based model to determine corrections. Therefore,
the performance of Baran is worse than IPM as illustrated
in Table III.

The Phone dataset has a number of 656 naturally occurring
missing values in attribute “brand”, with manually labeled
truths, as introduced in Section VI-A1. The results of naturally
occurring missing values are similar to the synthetic ones in
Table III. Our proposal IPM shows an accuracy improvement
of 0.228 compared to the next-best method DLM.

On the dataset with a higher number of classes, IPM-Binary
still achieves good performance, while the accuracy of IPM-
Multi depends on the number of training samples in each class.
For instance, on the dataset Flipkart with 3453 classes and
only 2 training samples per class, IPM-Binary still achieves a
high accuracy 0.68, while the accuracy of IPM-Multi is only
0.21. On the other hand, IPM-Multi can also achieve good
results on the dataset such as Amazon with many classes but
abundant training samples per class. It verifies the intuition that
IPM-Multi relies on the abundant examples in each class for
training. Instead, thanks to the co-occurrence semantics w.r.t
tokens in the candidates and complete attributes, IPM-Binary
can achieve a better performance with less training data.

A large data size and schemata will not be an obstacle to
IPM, but more conducive to IPM. Given a larger dataset, IPM
will achieve better performances with more training data. And
IPM also benefits from more co-occurrences w.r.t tokens in
datasets with a large schemata. As reported in Table III, our
proposal can still achieve good performances on large datasets
such as Zomato with 50279 tuples and 10 attributes.

2) Comparison over Mixed-type Dataset: We conduct ex-
periments on more challenging dataset Housing, including
4 categorical attributes and 6 numerical attributes, in Ta-
ble IV. To handle numerical attributes, we employ the gen-
erative model based methods, MIDAS [10], MIWAE [18],
HI-VAE [21], DataWig [3], as introduced in Section VII-D.
Again, the missing rate is 10%. It is not surprising that our
proposal IPM shows higher imputation accuracy on categorical
attributes, referring to the results in Section VI-B1.

Interestingly, IPM also has lower imputation NRMS (nor-
malized Root Mean Square error) on numerical attributes,
compared to the generative model based approaches MI-
DAS [10] and HI-VAE [21], since we can handle some numer-
ical values. Our solution based on pre-trained language models
can capture some semantics on the numerical values, such as
between value “4” in attribute “bed” and value “four” in at-
tribute “description” in dataset Housing. However, IPM cannot

TABLE IV
MIXED TYPE DATA (THE BEST PERFORMANCES BASED ON STUDENT’S

PAIRED T-TESTS AT 95% SIGNIFICANCE LEVEL ARE BOLD)

Methods Categorical(Accuracy) Numerical(NRMS)
MIDAS 0.284± 0.009 0.173± 0.019
MIWAE 0.222± 0.016 0.095± 0.005
HI-VAE 0.368± 0.017 0.196± 0.053
DataWig 0.190± 0.010 0.095± 0.011

HoloClean 0.586± 0.011 0.076± 0.006
IPM-Binary 0.612± 0.040 0.159± 0.008
IPM-Multi 0.660± 0.019 0.134± 0.003

IPM-Binary+HoloClean 0.612± 0.040 0.067± 0.007
IPM-Multi+HoloClean 0.660± 0.019 0.067± 0.006

handle the numerical attributes that basically do not contain
redundant values, such as “price” and “latitude”. Nevertheless,
our proposal is complementary to the existing methods, e.g.,
IPM+HoloClean by applying IPM first on categorical attributes
and then HoloClean for numerical attributes. As shown, IPM-
Multi+HoloClean achieves the best performance on the dataset
Housing mixed with categorical and numerical attributes.

C. Evaluation of Proposed Methods

1) Varying Amount of Training Data: We also test IPM-
Binary and IPM-Multi with different amounts of training data.
Recall that the negative samples are proportional to the positive
samples. Thus, we change the amounts of training data by
adjusting the number of positive training samples.

The results over four datasets are reported in Figure 4. Both
IPM-Binary and IPM-Multi achieve better performances with
more data. As shown in Figure 4(c), we find IPM-Binary
outperforms IPM-Multi when we only use 10% training data.
As the size of training data increases, IPM-Multi gradually
catches up with IPM-Binary as illustrated in Figure 4(g).

If there is sufficient training data, IPM-Multi will achieve
better results as stated in Section VI-B1. Otherwise, the results
of IPM-Binary will be better as shown in Figure 4(a) and 4(e).
By “sufficient” we mean the number of training samples in
each class. As reported in Figure 4(h), the average number of
samples in each class is only about 10 in the Amazon dataset
with 90% training data. In contrast, IPM-Multi shows better
results in dataset Restaurant which has more samples in each
class as shown in Figure 4(d). It verifies the intuition that
IPM-Multi relies on abundant training samples in each class.

It is worth noting that IPM is a self-supervised method,
where the set of complete tuples are used as the training
data. Given a new dataset, if there exist more than 10 training
samples in each class, i.e., Data Size

Domain Size ≥ 10 according to the
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statistics in Table II, IPM-Multi may have better performance
than IPM-Binary in practice as empirically shown in Figure 4.

We can find that IPM-Binary can achieve good performance
with only 10% training data. This is because there exists a
pattern in the Buy dataset. The pattern is that the first few
words in the tuple generally denote the brand. IPM-Binary
can capture the semantic relation by inputting both values
of complete attributes and candidate values. However, IPM-
Multi just inputs the values of complete attributes and treats
all values in the domain as labels without semantics. Thus,
IPM-Multi fails to find the semantic relationship, which is
useful in imputation over the Buy dataset.

2) Varying Data Redundancy: To inspect the impact of
redundancy in the data, we conduct the experiment on vary-
ing the number of redundant tuples in dataset Zomato. For
instance, a redundancy rate 3 denotes that 3 version tuples
of the same entity are included in the test. As illustrated in
Figure 5(a), our proposal is not highly dependent on redundant
tuples. Thanks to the abundant co-occurrence semantics w.r.t.
tokens captured by the pre-trained models and the attention
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Fig. 5. Experimental results of (a) Varying data redundancy and (b) Accuracy
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TABLE V
IMPUTATION ACCURACY OF IPM WITH DIFFERENT PRE-TRAINING

TECHNIQUES (MISSING RATE = 10%, THE BEST PERFORMANCES BASED
ON STUDENT’S PAIRED T-TESTS AT 95% SIGNIFICANCE LEVEL ARE BOLD)

Dataset IPM-Multi
(DistilBERT)

IPM-Binary
(DistilBERT)

IPM-Multi
(RoBERTa)

IPM-Binary
(RoBERTa)

Restaurant 0.769± 0.038 0.711± 0.034 0.772± 0.023 0.660± 0.008
Walmart 0.676± 0.026 0.821± 0.021 0.703± 0.039 0.822± 0.015
Amazon 0.667± 0.002 0.683± 0.008 0.725± 0.005 0.686± 0.005

Buy 0.580± 0.033 0.964± 0.021 0.637± 0.039 0.965± 0.015

mechanism, our proposal achieves high accuracy even without
any redundant tuple (redundancy=1).

3) The Impact of Pre-training: To understand the impact
of pre-training, we compare the performance of IPM us-
ing different pre-training techniques, DistilBERT [28] and
RoBERTa [16]. DistilBERT is a distilled version of BERT,
pre-trained on BooksCorpus (800M words) [43] and English
Wikipedia (2,500M words) [7]. RoBERTa is pre-trained on five
English corpus (BooksCorpus [43], Wikipedia [7], Ccnews10,
OpenWebText11, Stories [35]), 160GB uncompressed text.

Compared to DistilBERT, RoBERTa is a larger LM pre-
trained on a larger corpus and achieves better performances
on various NLP tasks as reported in [16], [28]. Therefore,
by capturing more and better semantics, the accuracy of
IPM(RoBERTa) is slightly higher than IPM(DistilBERT) as
reported in Table V. In short, the pre-training technique
showing better performance in the original NLP tasks leads
to better imputation results as well.

4) The Impact of Out-of-vocabulary Words: To handle the
values that are enterprise-specific and out of the vocabulary
(OOV) of the pre-trained models, we employ Byte-Pair En-
coding (BPE) [25], [29]. BPE is a hybrid between character-
and word-level representations, often used for handling large
vocabularies [7], [16], [28].

As illustrated in Figure 5(b), compared to deleting (DEL)
and replacing the OOV words with the special token < unk >
(UNK), IPM with BPE achieves a significantly higher ac-
curacy. Recall that IPM-Binary relies on the co-occurrence
semantics w.r.t. tokens. By considering OOV words with BPE,
IPM-Binary can utilize more co-occurrence w.r.t tokens, and
thus improve the performance sharply.

10http://commoncrawl.org/2016/10/newsdataset-available
11https://skylion007.github.io/OpenWebTextCorpus/
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VII. RELATED WORK

A. Imputation based on Neighbors

The intuition to impute missing values is to retrieve the
complete values and find similar neighbors for imputation. The
k-nearest-neighbor approach (kNN) [2] tries to find the nearest
neighbors of a tuple ti with the smallest distance on complete
attributes ti [A

i
C ], and then utilizes the complete values on

missing attributes ti [R\AiC] to impute. The kNN Ensemble
(kNNE) [8], a variation of kNN, then enhances kNN by retriev-
ing more neighbors over various subsets and then combines the
results. Moreover, MIBOS [39] designs another criterion for
similarity according to the undifferentiated set of tuples, which
is actually the number of the consistent attributes between
tuples. However, the limitation is that the neighbor-based
approaches generate imputation candidates only according to
given similarity functions, whereas the similarity functions are
not always effective on target datasets and not capable to deal
with semantical similarity.

B. Imputation based on Clustering

The clustering-based imputation methods employ clustering
techniques to divide tuples into groups and then perform
imputation on groups respectively. For instance, fuzzy k-
means [14] and GMM [40] are applied to provide clustering
results for imputation on numerical data. CMI [42] adopts
k-means and g-means first and then applies kernel function
imputation strategy to impute categorical data. Clustering-
based imputation methods still suffer from the aforementioned
limitation due to the same similarity strategies for imputation.

C. Imputation based on Statistical Models

The imputation methods based on statistical models learn
from the correlated values of different attributes, both within
and across tuples (e.g., ERACER [19]). After building the
models, statistical inferences (i.e., candidates) could be gen-
erated. And then the candidate that maximizes the likelihood
of the probabilistic models will be selected to fill the miss-
ing entries. Different from likelihood on attributes, distance
likelihood maximization (DLM) [31] proposes to consider the
likelihood on distances, which outperforms existing methods
both on categorical and numerical data.

HoloClean [27], [38] performs statistical inference on the
factor graph generated by rules. It also utilizes the attention
mechanism to learn structural properties of the data distri-
bution and impute missing values with the learned structure.
The differences between HoloClean and our proposal IPM are
as follows. (1) The granularity of co-occurrence is different.
HoloClean considers each attribute value as a whole and
studies the co-occurrence of different attribute values, while
our IPM utilizes the co-occurrence of more fine-grained tokens
in attribute values, such as between “hdmi cables” and “tv
accessories”. Thanks to the pre-trained language models, such
co-occurrence semantics may not necessarily appear in the
dataset but have already been captured over the huge corpus
where the language models are pre-trained. (2) The attention
mechanism w.r.t. co-occurrence is different. Due to lack of

co-occurrences of attribute values, HoloClean [38] compro-
mises to learn the attention weights that are only dependent
on attributes rather than values. In contrast, thanks to the
more abundant co-occurrences w.r.t. tokens in the dataset,
IPM is able to employ the attention mechanism, at a finer
granularity, to capture further semantics. In summary, rather
than the limited co-occurrence at the attribute value level in
HoloClean, IPM utilizes the abundant co-occurrence semantics
w.r.t. tokens that are (1) implicitly extracted in the pre-trained
language models and (2) explicitly exist in the dataset at hand.

D. Imputation based on Generative Models

The imputation methods based on generative models em-
ploy deep generative models to learn latent distribution
from the observations. For instance, MIDAS [10] employs a
class of denoising autoencoders to perform multiple imputa-
tion. MIWAE [18] leverages importance-weighted autoencoder
(IWAE), a kind of deep latent variable model, to learn the
latent distribution of the data. In HI-VAE [21], variational
autoencoders are utilized to capture the latent structure and
then solve the imputation tasks. By combining deep learning
based feature extractors with automatic hyperparameter tuning,
DataWig [3] provides an end-to-end framework to impute
missing values. While these methods naturally apply to nu-
merical data, to deal with the categorical data, they have to
use one-hot encoding, i.e., fail to capture semantics in words.
In contrast, our IPM benefits from the semantics, and thus
outperforms these methods on imputing categorical data.

E. Error Correction based on Classification

Baran [17] transforms the error correction problem from
a multiclass classification task to binary classification. The
differences between Baran and our IPM-Binary are as follows.
(1) The problem input is different. The error correction prob-
lem studied by Baran needs a pair of error and its correction
as the input, while the imputation problem considered in this
study has no original value (missing) in the input. (2) The pre-
training mechanism is different. Baran pre-trains models based
on Wikipedia revisions of error and correction pairs. Since
there is no original value available in imputation, we employ
the models pre-trained on various corpus such as BooksCor-
pus [43] and Wikipedia [7] to capture token semantics.

It is worth noting that Baran [17] relies on external infor-
mation to handle out of domain corrections. Baran collects out
of domain candidates by mapping the original error values to
the revision history, e.g., in Wikipedia. Such original error
values, however, are not available in the imputation problem.
We leave this challenging study of leveraging external sources
for imputation as future work.

VIII. CONCLUSION

In this paper, to determine a better filling for the missing
cell in relational data, we propose to take advantage of se-
mantics to improve the accuracy. The existing data imputation
methods determine the filling via symbolic similarity, which
is not effective for data containing long texts as illustrated in
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Example 1. For this reason, our proposal IPM, consisting of
IPM-Multi and IPM-Binary, is the first work of imputing data
with semantics. To reduce the requirement of training data, we
use pre-trained LMs to capture semantics. A straightforward
solution is to input the tuple as a sequence of words and predict
the missing values via a multiclass classifier (IPM-Multi).
IPM-Multi achieves good performance with sufficient training
data. However, this condition is difficult to meet due to the low
redundancy of databases and large domain sizes. IPM-Multi
may fall into the pitfall of over-fitting. To solve this problem,
we propose IPM-Binary, which identifies whether the possible
fillings in the candidates is correct via a binary classifier.
Compared to IPM-Multi, IPM-Binary requires less training
data. The comparisons with existing approaches demonstrate
that semantics are significant for imputation. The extensive
experiments verify the rationality of our proposal.
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