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Abstract—Incomplete information often occurs alongwith many database applications, e.g., in data integration, data cleaning, or data

exchange. The idea of data imputation is often to fill themissing data with the values of its neighbors who share the same/similar

information. Such neighbors could either be identified certainly by editing rules or extensively by similarity relationships. Owing to data

sparsity, the number of neighbors identified by editing rules w.r.t. value equality is rather limited, especially in the presence of data values

with variances. To enrich the imputation candidates, a natural idea is to extensively consider the neighbors with similarity relationship.

However, the candidates suggested by these (heterogenous) similarity neighborsmay conflict with each other. In this paper, we propose

to utilize the similarity rules with tolerance to small variations (instead of the aforesaid editing rules with strict equality constraints) to rule

out the invalid candidates provided by similarity neighbors. To enrich the data imputation, i.e., imputing themissing valuesmore, we study

the problem of maximizing themissing data imputation. Ourmajor contributions include (1) the NP-hardness analysis on solving as well as

approximating the problem, (2) exact algorithms for tackling the problem, and (3) efficient approximation with performance guarantees.

Experiments on real and synthetic data sets demonstrate the superiority of our proposal in filling accuracy.We also demonstrate that the

recordmatching application is indeed improved, after applying the proposed imputation.

Index Terms—Similarity rules, similarity neighbors, data imputation

Ç

1 INTRODUCTION

INCOMPLETE data (a.k.a. null or missing values) have been
widely recognized as a typical data quality issue [1],

owing to incomplete entry, inaccurate extraction or hetero-
geneous schemas, e.g., in Web autonomous databases [2].
The idea of imputing missing values is to explore the
neighbors sharing same/similar information in the dataset.
This imputation idea has been successfully applied in
various areas such as analyzing the variance of planned
experiments, survey sampling, multivariate analysis, and
so on [3].

Example 1. Table 1 illustrates an example of incomplete
data. For instance, the value of t3 on attribute House
Number is not available, i.e., a null cell denoted by
t3½HouseNumber� ¼ ‘�’.

An editing rule [4], ðððName;NameÞ; ðStreet;StreetÞÞ
! ðHouseNumber; HouseNumberÞ; tp ¼ ðÞÞ, states that if
two tuples ti; tj share equal Name and Street values, the
missing tj½HouseNumber� can be filled by the non-null
ti½HouseNumber�.1 As a neighbor of tj, tuple ti is identified
certainly by the editing rule, given their exactly equal
Name and Street values. Unfortunately, none of the tuples

in Table 1 share the same Name and Street values with t3,
i.e., t3 has no equality neighbor and cannot be filled.

To impute the missing value in t3, the similarity-based
method [5] finds k nearest neighbors that are similar to t3
on complete attributes Name and Street. Without know-
ing which k value would lead to a better imputation for a
particular incomplete tuple, the same k value is preset
for imputing all the incomplete tuples, e.g., k ¼ 2. In this
case, not only the most similar t6 but also the second
similar t4 will be considered as the neighbors of t3.
The values 86402 and #531 of similarity neighbors
are thus considered as the candidates of imputing
t3½HouseNumber�. However, it cannot tell which one
should be the correct imputation, 86402 or #531.

Consider a similarity rule in the form of differential
dependencies (DD) [6].

dd1 : ðName; Street ! HouseNumber; h½0; 1�; ½0; 7�; ½0; 3�iÞ

It states that if two tuples have similar Name (i.e., having

Name value distance2 in the range of ½0; 1�) and Street

values (with distance in ½0; 7�), they must share similar

HouseNumber values as well (having HouseNumber

value distance in ½0; 3�).3
Referring to dd1, tuples t3 and t6, sharing similar Name

and Street values, must have similar HouseNumber
values. However, the candidate 86402 suggested by
the aforesaid similarity neighbors has distance to
t6½HouseNumber� greater than 3, i.e., violating dd1. 86402

1. ti with non-null ti½HouseNumber� is regarded as reference data [4].
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2. For example edit distance, see [7] for a survey of string similarity.
3. Similarity rules with distance thresholds can either be specified by

domain experts or discovered from data [8].
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is thus discarded, while #531 satisfying dd1 is returned as
the imputation of t3½HouseNumber�.

(See Example 2 for imputing t2. The imputation for
multiple incomplete attributes in t1 is shown in Example
4, where the incomplete attribute may appear in the left-
hand-side of a rule.)

While editing rules [4] upon equality neighbors provide
a limited number of imputations, the similarity neighbors
[5] may return more but possibly self-contradictory imputa-
tion candidates. In this study, we propose to employ similar
rules [6], which are defined on similarity rather than the
strict equality and thus can be extensively utilized to rule
out the enriched but irrational imputations.

1.1 Challenges
While similarity neighbors bring more imputation opportu-
nities, it comes with new challenges. (1) Different from the
certain fixes by equality neighbors with editing rules [4],
multiple candidates may be suggested by similarity neigh-
bors for imputing a cell. (2) The candidates for imputing
two null cells could be incompatible w.r.t. similarity rules,
owing to the complex similarity relationships4 (see exam-
ples on t2 and t3 in Example 3). Such incompatibility is not
considered in the certain fix by editing rules [4] either.

A practical question is thus whether all the null cells
could be filled due to the incompatibility w.r.t. the similarity
rules, namely full filling (Definition 3). If not, to what extend
we can fill the null cells, known as maximum filling (Defini-
tion 2). Indeed, in light of the disability in imputing missing
data (due to the aforesaid data sparsity and variety), it is
naturally desirable to gain null-cell fillings as many as pos-
sible. As verified in the experiments in Section 4, the impu-
tation performance could be significantly improved by
gaining more fillings with the extensive similarity neighbors,
compared to the equality-based barely-filled ones. Unfortu-
nately, we find that maximizing the filling gain is Max-
SNP-hard, i.e., there exists " > 0 such that achieving an
approximation factor ð1� "Þ for the maximum filling prob-
lem is NP-hard (see Section 2 for details).

1.2 Contributions
The preliminary version of this paper [9] focuses on imput-
ing single incomplete attribute, which is the right-hand-side
(RHS) attribute of the given (DDs) rules. The imputation uti-
lizes the complete left-hand-side (LHS) values to find neigh-
bors and infer the missing RHS values referring to the (DDs)
rules. This paper further extends the techniques to general

cases for imputing multiple incomplete attributes including
LHS attributes of the (DDs) rules. When LHS values are miss-
ing, we cannot rely on the DDs rules to find imputation can-
didates as in [9]. Our major contributions in this study are
summarized as follows.

(1) We analyze the hardness of the similarity rule based
imputation problem (Theorems 1 and 2) in Section 2.

(2) We present the algorithms for handlingmultiple incom-
plete attributes, where missing values may occur on the left-
hand-side attributes of the (DDs) rules, in Section 3. The major
techniques include the imputation candidate generation, an
exact imputation algorithm via integer linear programming
(ILP), its LP relaxation, and a randomized algorithm together
with its derandomization. In particular, we show (in Proposi-
tions 4, 5, 9 and Theorem 8) that the approaches for handling
multiple incomplete attributes are indeed equivalent to the
methods in the preliminary version of this paper [9] when
dealing with the special case of single incomplete attribute.
Remarkably, a deterministic approximation factor is derived
for the derandomization algorithm in Theorem10.

(3) We report an extensive experimental evaluation on
both effectiveness and efficiency, over real and synthetic
data sets, in Section 4. It is highlighted that the imputation
accuracy is improved by considering similarity neighbors
under the constraints of similarity rules. We also demon-
strate the improvement in the record matching application,
after applying the proposed imputation.

Proofs of all the theoretical results can be found in the
full version technique report [10].

2 PROBLEM STATEMENT

In this section, we formalize the problem of data imputation
with similarity rules.

2.1 Preliminaries
Consider a relation I with schemaR. Let domIðAÞ denote all
the values of an attribute A in I, i.e., domIðAÞ ¼ PAðIÞ.

2.1.1 Similarity Rules

For each attribute A 2 R, we associate a similarity/distance
metric, dA; which satisfies non-negativity, dAða; bÞ � 0; iden-
tity of indiscernibles, dAða; bÞ ¼ 0 iff a ¼ b; symmetry,
dAða; bÞ ¼ dAðb; aÞ; where a; b 2 domIðAÞ are values on attri-
bute A. For example, the metric on a numerical attribute can
be the absolute value of difference, i.e., dAða; bÞ ¼ ja� bj.
For a text attribute, we can adopt string similarity, e.g., edit
distance (see [7] for a survey).

A differential function f½A� on attribute A specifies a dis-
tance restriction by a range of metric distances over A. We
say that two tuples t1; t2 in a relation I are compatible w.r.t.
the differential function f½A�, denoted by ðt1; t2Þ � f½A� or
ðt1½A�; t2½A�Þ � f½A�, if the metric distance of t1 and t2 on
attribute A is within the range specified by f½A�, a.k.a. sat-
isfy/agree with the distance restriction f½A�. As the metric is
symmetric, it is equivalent to write ðt2; t1Þ � f½A�.

A differential function may also be specified on a set of
attributes X, say f½X�, which denotes a pattern of differen-
tial functions (distance ranges) on all the attributes inX. We
call f½A� a projection on attribute A of f½X�; A 2 X.

A differential dependency (DD) [6] over R has a form
ðX ! A;f½XA�Þ where X � R are determinant attributes,
A 2 R is the dependent attribute, and f½XA� is a differential

TABLE 1
Example Data with (Multi-)Incomplete Attributes

Name Street House Number

t1 Susan K Michel – –
t2 Susan L Frank JR –
t3 Terry Michel JR –
t4 Susan Michel JK Road 86402
t5 Susan L Frank Jordan Rd #402
t6 Terry K Michel Jordan Rd #531

4. In essence, unlike equality, transitivity is not applicable to the
similarity relationships, where similar (a, b) and similar (b, c) do not
necessary imply similar (a, c).
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function on attributes X and A. It states that any two tuples
from R satisfying the differential function f½X� must satisfy
f½A� as well, f½X� and f½A� are the projections of differential
function f½XA� onX and A, respectively.

A relation I of R satisfies a DD, denoted by
I � ðX ! A;f½XA�Þ, if for any two tuples t1 and t2 in I,
ðt1; t2Þ � f½X� implies ðt1; t2Þ � f½A�, i.e., ðt1; t2Þ � ðX !
A;f½XA�Þ. We say a relation I satisfies a set S of DDs, I � S,
if I satisfies each DD in S.

2.1.2 Rule-Based Data Imputation

A null cell in a tuple ti 2 I on attribute A 2 R is denoted by
ti½A� ¼�. It is regarded to be compatible with any other data
w.r.t. distance restrictions, i.e., always having ðti; tjÞ � f½A�.
We consider an input with null cells such that I � S.5

For each null cell ti½A� ¼�, we consider a set of imputa-
tion candidates canðti½A�Þ from domIðAÞ. It can be sug-
gested by nearest neighbors (see Section 3.1 for details).

A filling I 0 of I is also an instance ofR such that: (1) Exist-
ing non-null cells do not change, i.e., t0i½A� ¼ ti½A� if ti½A� 6¼�,
where t0i½A� is the cell in I 0 corresponding to ti½A� in I. (2) All
the filled values come from the corresponding candidate set,
i.e., t0i½A� 2 canðti½A�Þ for each ti½A� ¼�. (3) Satisfaction of DDs
is still retained, having I 0 � S.

Example 2 (Example 1 continued). Consider another dd2,
in S ¼ fdd1; dd2g, stating that two HouseNumber values
a1 and a2 in the same Street should be similar (having
dHouseNumberða1; a2Þ 	 3, with at most 3 different digits).

dd2 : ðStreet ! HouseNumber; h½0; 0�; ½0; 3�iÞ:
The relation I in Table 1 satisfies this dd2, since for any
two tuples, e.g., t5 and t6, having the same Street (dis-
tance equal to 0 in the range of ½0; 0�), it always has
ðt5; t6Þ � f½HouseNumber�, i.e., HouseNumber distance of
t5 and t6 (equal to 3) is in ½0; 3�.

Table 2 presents the sets of imputation candidates for
null cells in Table 1, where the complete values are omit-
ted by ...(see Example 4 for candidate generation).

I 00M in Table 3 presents a possible filling for the null
cells in Table 1. Each filled value, e.g., t02½HouseNumber� ¼
#402, comes from the candidate set in Table 2. The
satisfaction w.r.t. S is retained, having I 00M � S. In
particular, the similarity rule dd2 holds in the filled t02
and t03. That is, t

0
2 and t03, with the same Street, must have

similar filled HouseNumber values (#402 and #531
having distance within ½0; 3�).

2.2 Problem Statement
As discussed in the introduction, referring to the difficulty
in imputing a cell (owing to data sparsity, variety and

heterogeneity), we target on the fillings that can fill more
null cells and still satisfy the similarity rules.

Consider a relation I � S with incomplete data. Let
IM 
 I be the set of incomplete tuples with at least one
missing value. We denote DðI 0M; IMÞ ¼ ft0i½A� j t0i½A� 6¼�;
ti½A� ¼�; ti 2 IMg the difference on cells between IM and its
filling I 0M w.r.t. S. We call the total number of cells filled in
I 0M for IM , jDðI 0M; IMÞj, the filling gain.
Definition 1. A filling I 0M ismaximal if there does not exist any

other filling I 00M of IM , such that DðI 0M; IMÞ 
 DðI 00M; IMÞ.
A result of ‘�’ in a maximal fix I 0M denotes that the

cell cannot be filled with the values from the candidate
set. The reason is, as illustrated in the following exam-
ple, filling candidates in different cells may conflict with
each other.

Definition 2. A filling I 0M is maximum if there is no other fill-
ing I 00M of IM , such that jDðI 0M; IMÞj < jDðI 00M; IMÞj.
Any maximum filling must be a maximal filling as well,

according to the definitions.

Definition 3. A filling I 0M is full if every null cell in IM is filled.

Example 3 (Example 2 continued). Consider IM ¼ ft1;
t2; t3gwith null cells in Table 1.

I 0M in Table 3 presents another filling of IM . When
t02½HouseNumber� ¼ 86402, neither candidate 86402 nor
#531 for t3½HouseNumber� in Table 2 is compatible with
the existing tuples or the aforesaid filled t02 w.r.t. S.

For dd1, as presented in Example 1, candidate 86402
for t3½HouseNumber� is not compatible with t6.

For dd2, since t2 and t3 have the same Street, they
must have similar filled HouseNumber values. The other
candidate #531 for t3½HouseNumber�, having distance 5
to t02½HouseNumber� ¼ 86402, is not valid either.

Since there is no other candidate for consideration in
t3½HouseNumber�, I 0M is already a maximal filling. How-
ever, I 0M is not maximum, given the full filling (also max-
imum and maximal) I 00M in Example 2 that fills all the
null cells.

Since the filling candidates suggested by different simi-
larity neighbors may conflict w.r.t. the constraints, obtaining
the maximum filling is non-trivial.

Problem 1. Given a relation I � S with incomplete data and the
candidate set canðti½A�Þ for each null cell, the full filling

TABLE 3
Example of Maximal and Maximum Fillings

I 0M ... Street House Number

t01 ... JK Road 86402

t02 ... ... 86402

t03 ... ... –

I 00M ... Street House Number

t01 ... JK Road 86402

t02 ... ... #402

t03 ... ... #531

TABLE 2
Example of Imputation Candidates

... Street House Number

t1 ... {Jordan Road, JK Road, –} {86402, #531, –}
t2 ... ... {86402, #402, –}
t3 ... ... {86402, #531, –}

5. For potential errors existing in non-null cells so that I 6� S, a data
repairing step [11] can be applied first on the non-null cells, which is
out the scope of this study on imputing null cells.
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problem is to determine whether there is a full filling I 0M of IM
w.r.t. S.

Problem 2. Given a relation I � S with incomplete data and the
candidate set canðti½A�Þ for each null cell, the maximum fill-
ing problem is to find a maximum filling I 0M of IM w.r.t. S.

The existence of a full filling can be determined by
finding the maximum filling and checking whether all
the null cells are filled. Unfortunately, both problems
are hard.

Theorem 1. The full filling problem is NP-complete.

Referring to the hardness of determining full filling, it is
not surprising to conclude the hardness of maximum filling.
Indeed, if the maximum filling can be found (efficiently), it
already determines whether a full filling exists or not.

Theorem 2. The maximum filling problem is NP-hard.

Recognizing the hardness of imputation w.r.t. DDs, we
focus on approximation approaches below. Unfortunately,
approximation of the imputation problem is also hard.

Theorem 3. The maximum filling problem is Max-SNP-hard.
That is, there exists an " > 0 such that ð1� "Þ-approximation
of the maximum filling is NP-hard.

3 IMPUTING MULTIPLE INCOMPLETE ATTRIBUTES

In this section, we devise algorithms for the imputation of
missing values on multiple attributes under DDs S with
various right-hand side attributes in R (in contrast to con-
sidering IA with missing values on only one attribute A
and a set of DDs SA having the same right-hand side attri-
bute A in Sections 3, 4, and 5 in the preliminary version
of this paper [9]).

3.1 Candidate Generation
For multiple incomplete attributes, a tuple ti may have
missing values on the left-hand side attributes of a DD,
and thus cannot rely on DDs to suggest imputation candi-
dates. Instead, we employ complete tuples similar to ti to
suggest candidates, and use DDs to rule out invalid
imputations.

3.1.1 Cell Candidates

For each tuple ti 2 IM , we denote Mi the set of attributes
having null values. Consider a distance/similarity metric
on attributes R nMi, dRnMi

, for instance, by a simple sum-
mation of dA on each complete attribute A 2 R nMi. We
find a set Ki of k complete tuples tc without null values
from I n IM , which are most similar to ti, a.k.a. k-nearest
neighbors with the minimum distance dRnMi

ðti; tcÞ.
The set of filling candidates for the null cell ti½A� is thus

given by the values of k-nearest neighbors

canðti½A�Þ ¼ ftc½A� j tc 2 Kig [ f�g:

3.1.2 Tuple Candidates

Since there may have multiple attributes with missing val-
ues in a tuple ti, we denote canðtiÞ the tuple candidate set,
by combining the cell candidates on each incomplete attri-
bute of ti.

canðtiÞ ¼
�
u 2

Y
A62Mi

fti½A�g �
Y
A2Mi

canðti½A�Þ

j ðu; I n IMÞ � S

�
:

(1)

Here, ðu; I n IMÞ � S ensures that each tuple candidate u is
not in violation to any complete tuple in I.

Example 4. Consider the imputation on multiple incom-
plete attributes in Table 1. We denote IM ¼ ft1; t2; t3g the
tuples with missing values, and M1 ¼ fStreet;
HouseNumberg the incomplete attributes in t1.

Consider S ¼ fdd1; dd2g used in Example 3. It is nota-
ble that the incomplete attribute Street (in t1) does not
appear in the RHS attributes of all DDs.

For incomplete tuple t1, tuples t4, t6 sharing similar
Name value with t1, are identified as k-nearest neighbors
(k ¼ 2) of tuple t1. JK Road of t4½Street� and Jordan Rd of
t6½Street� are thus suggested as two possible cell
candidates to t1½Street�, i.e., canðt1½Street�Þ = {JK Road,
Jordan Rd, �}. Similarly, 86402 and #531 are suggested
to t1½HouseNumber�, having canðt1½HouseNumber�Þ=
{86402, #531, �}. There are 9 possible combinations that
can be considered as tuple candidates canðt1Þ for tuple
t1. However, according to the definition in Equation (1),
the tuple candidates must be compatible with all the
complete tuples.

Fig. 1 illustrates the tuple candidates of incomplete
tuples in Table 1. Each triangle denotes a tuple candidate.
The edge between a complete tuple and a tuple candidate
denotes that some DDs apply. For instance, the first tuple
candidate of t1, (SusanKMichel, JK Road, 86402), and t4
satisfy the LHS of dd1 and dd2, denoted by black and
orange edges, respectively. With such DDs constraints, 4
tuple candidates for tuple t1 will be reserved that can
satisfy Sw.r.t. complete tuples, as illustrated in Fig. 1.

Tuple candidates for other incomplete tuples, t2 and
t3, can be obtained similarly referring to their own
k-nearest neighbors and DDs.

3.2 Maximum Filling via ILP
Referring to the discipline of maximum filling in
Section 2.2, we still expect to fill the null cells as many as
possible. Let yij ¼ 1 denote that the jth tuple candidate
uij 2 canðtiÞ is selected to fill the incomplete tuple ti,
otherwise 0. Since multiple attributes may be filled in a
tuple candidate, we introduce a weight hij for each tuple
candidate uij 2 canðtiÞ, to count how many null cells
are filled, where u½A� ¼� counts 0 in hij. In addition,

Fig. 1. Example of tuple candidates.
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instead of counting 1 for each non-null cell fill, we can
further weight the importance on each cell candi-
date u½A� ¼ al, e.g., on how many times candidate al 2
canðti½A�Þ is suggested by k-nearest neighbors.

The maximum (weighted) filling problem w.r.t. tuple
candidates is written as integer linear programming

max
Xm
i¼1

Xgi
j¼1

yijhij (2)

s:t:
Xgi
j¼1

yij ¼ 1; 1 	 i 	 m (3)

vijlkðyij þ ylkÞ 	 1; 1 	 i 	 m; 1 	 j 	 gi; (4)

1 	 l 	 m; 1 	 k 	 gl

yij 2 f0; 1g; 1 	 i 	 m; 1 	 j 	 gi;
(5)

where gi ¼ jcanðtiÞj, and vijlk is a constant such that vijlk ¼ 0
if ðuij; ulkÞ � S; uij 2 canðtiÞ; ulk 2 canðtlÞ, otherwise 1.

Referring to Equation (3),
Pgi

j¼1 yij ¼ 1, there must be
one and only one tuple candidate say uij 2 canðtiÞ selected
for imputing the incomplete tuple ti, i.e., yij ¼ 1. The second
constraint Equation (4) specifies that, if any two tuple
candidates uij 2 canðtiÞ; ulk 2 canðtlÞ are selected, i.e.,
yij ¼ ylk ¼ 1, they must satisfy all the DDs, ðuij; ulkÞ � S,
i.e., vijlk ¼ 0, in order to meet the requirement of
vijlkðyij þ ylkÞ 	 1.

By formulating the maximum filling as ILP in Equa-
tions (2), (3), (4), (5), we can employ any existing ILP solver,
e.g., [12]. Let m denote the number of incomplete tuples in
IM , g be the maximum number of tuple candidates for an
incomplete tuple in IM and sgm be the number of con-
straints in ILP. Referring to [12], time complexity is thus
Oð2ð1�polyð1=sÞÞgmÞ.

We show that the ILP for single incomplete attribute in
Section 3 in the preliminary version of this paper [9] is
indeed a special case of the aforesaid ILP for multiple
incomplete attributes.

Proposition 4. When all the DDs in S have the same RHS attri-
bute A, each incomplete tuple only has one single incomplete
attribute A, and each non-null cell candidate counts one in hij,
then the ILP in Equations (2), (3), (4), (5) for general cases is
equivalent to the ILP in Equations (1), (2), (3), (4) for single
incomplete attribute in Section 3 in the preliminary version of
this paper [9].

Example 5. According to Equation (1) in Section 3.1.2,
each incomplete tuple ti 2 IM may own several tuple
candidates, which are compatible with all existing tuples.
However, the tuple candidates may not be compatible
with each other among different incomplete tuples, i.e.,
they may be in violation to some tuple candidates of other
incomplete tuples. For instance, as illustrated in Fig. 2, the
tuple candidates (. . ., . . ., 86402) for t2 and (. . ., . . ., #531)
for t3 are not compatible, owing to the distance restriction
of dd2. (We denote the complete attribute value by . . . for
simplicity.)

By formalizing the problem as integer linear program-
ming, each tuple candidate is associated with a variable
yij. For each pair of incompatible tuple candidates, e.g.,
the aforesaid first tuple candidates for t2 and t3, we put

y21 þ y31 	 1. That is, these two tuple candidates
cannot appear together in a solution with both y21 ¼ 1
and y31 ¼ 1.

To maximize
Pm

i¼1

Pgi
j¼1 yijhij in Equation (2), a

possible ILP solution is y11 ¼ y22 ¼ y31 ¼ 1; y12 ¼ y13 ¼
y14 ¼ y21 ¼ y23 ¼ y32 ¼ 0. It leads to a filling t01[Street] =
JK Road, t01[HouseNumber]=86402, t02[HouseNumber] =
#402, t03[HouseNumber] = #531.

3.3 Approximation by LP Relaxation and Round
Referring to the hardness of approximation, we study
heuristics for constructing feasible solutions by utilizing
linear programming (LP) relaxation of ILP, i.e., change the
constraint of yij 2 f0; 1g in Equation (5) to 0 	 yij 	 1.

We first introduce the following subsumption rela-
tionship between tuple candidates (i.e., u1 fills more
than u2).

Definition 4. A tuple candidate u1 subsumes another u2,
denoted by u1 � u2, if (1) for each u2½A� 6¼�; A 2 R, it has
u1½A� ¼ u2½A�, and (2) there exists an A 2 R such that
u1½A� 6¼�; u2½A� ¼�.

Algorithm 1. ROUND(IM;S)

Input: IM with tuple candidate sets and a set S of DDs
Output: A filling I 0M
1: let y be a solution of linear programming
2: for each ti 2 IM do
3: for each uil 2 canðtiÞ do
4: if uil 6� ti then
5: set yil to negative
6: I 0M :¼ IM
7: sort yij 2 y in descending order of yijhij
8: while I 0M is not full do
9: unchanged :¼ TRUE
10: for each yij > 0 do
11: let uij be the j-th candidate in canðtiÞ
12: if ðuij; I

0
MÞ � S then

13: t0i :¼ uij

14: set yil to negative for uil 2 canðtiÞwith uil 6� uij

15: unchanged :¼ FALSE
16: break
17: if unchanged is TRUE then
18: return I 0M

Algorithm 1 presents the pseudocode of the ROUND

algorithm for handling multiple incomplete attributes.
Line 4 first eliminates those tuple candidates uil that
have no additional contribution to the current ti, i.e.,
uil 6� ti, uil cannot fill more over ti. In each iteration, a

Fig. 2. Imputation by linear programming.
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tuple candidate uij 2 canðtiÞ with the maximum yijhij
and no violation to the other tuples w.r.t. S is assigned
as t0i. In particular, all the other candidates uil 2 canðtiÞ
that cannot fill more than uij, uil 6� uij, could not further
contribute to the filling and thus can be pruned (by set-
ting yil to negative), in Line 14.

Proposition 5. ROUND Algorithm 1 always returns a maximal
filling. When all the DDs in S have the same RHS attribute A,
each incomplete tuple only has one single incomplete attribute
A, and each non-null cell candidate counts one in hij, Algorithm
1 is equivalent to ROUND algorithm in the preliminary version of
this paper [9] for handling single incomplete attribute.

For a candidate uij, Line 12 takes OðmÞ time to check
whether it is compatible with the filled tuples in I 0M . In
the worst case, Line 10 has to traverse mg tuple candi-
dates to get a valid filling, where g is the maximum num-
ber of tuple candidates for a tuple in IM . In each iteration
of Line 8, at least one null cell is filled, i.e., having OðmÞ
iterations in worst case. The complexity of ROUND

algorithm is Oðm3gÞ.
Example 6 (Example 5 continued). Suppose that the num-

bers attached to each tuple candidate in Fig. 2 denote a
LP solution. ROUND Algorithm 1 considers the tuple can-
didate with the highest yijhij in each iteration. Referring
to the hij values given in Fig. 1, it first selects (..., JK Road,
86402) for t01, whose yijhij is the largest 2.0. The next larg-
est yijhij is then considered, say y22h22 ¼ 1:0, assigning
(. . ., . . ., #402) to t02. And similarly, we have (. . ., . . ., #531)
for t03. A full filling for incomplete data in Table 1 is
generated.

3.4 Randomized Imputation
To enrich the imputation in terms of filling gain, we study
the algorithm with performance guarantee on approximat-
ing the imputation over multiple incomplete attributes.

3.4.1 Probability

Since multiple null cells may be imputed by a tuple can-
didate, we take hij into consideration. Intuitively, the
more the null cells are filled (larger hij), the higher the
probability of the candidate being selected in randomized
imputation is.

Pr½t0i ¼ uij�

¼
yijhijþ�

ðgi�1Þ�þ1þ
Pgi

j¼1
yijhij

; 9A 2 Mi; uij½A� 6¼�

1
ðgi�1Þ�þ1þ

Pgi
j¼1

yijhij
; 8A 2 Mi; uij½A� ¼�

8><
>:

(6)

� � 0 trades off the contribution of LP estimations. A larger �
denotes weaker effect by the LP solution yij (as evaluated in
Section 4.4).

Considering all tuple candidates uij 2 canðtiÞ, we have

X
uij2canðtiÞ

Pr½t0i ¼ uij� ¼ 1: (7)

3.4.2 Random Algorithm

The candidate set canðtiÞ in RANDOM Algorithm 2 considers
all the possible tuple candidates uij for each incomplete
tuple ti 2 IM , with the probability Pr½t0i ¼ uij� > 0.

Proposition 6. There exists a randomized algorithm which finds
a full filling to any fully-fillable instance in expected time
Oðð1=pÞmÞ, where p is the minimum probability of a tuple can-
didate being selected.

Algorithm 2. RANDOM(IM;S)

Input: IM with tuple candidate sets and a set S of DDs
Output: A filling I 0M
1: initialize probabilities
2: repeat
3: for each ti 2 IM do
4: randomly draw a tuple candidate uij 2 canðtiÞ with

probability Pr½t0i ¼ uij� for t0i
5: if t0i ¼ uij is in violation with any t0l then
6: t0i½A� :¼�; A 2 Mi

7: I 0M := ROUND(I 0M;S)
8: rank I 0M in the top-k listK
9: until ‘ times
10: return the top-1 filling in K with the highest weighted fill-

ing gain

Obviously, all the possible maximal/maximum fillings
could be generated under such a consideration.

Proposition 7. All the possible maximal/maximum fillings
could be generated by the RANDOM algorithm.

A maximal filling is returned by calling the ROUND algo-
rithm on I 0M in Line 7, referring to Proposition 5.

Example 7 (Example 6 continued). With the LP solution
in Fig. 2 and the corresponding hij in Fig. 1, we obtain
the probability of each tuple candidate according to
Equation (6), denoted as the numbers attached to each trian-
gle in Fig. 3 (with � ¼ 1). Algorithm 2 randomly selects a
tuple candidate with the probability for each incomplete
tuple, e.g., t01 = (. . ., JK Road, 86402), t02 = (. . ., . . ., #402),
t03 = (. . ., . . ., #531).

3.4.3 Expectation on Weighted Filling Gain E½H�
Let random variable H denote the weighted filling gain, i.e.,Pm

i¼1

Pgi
j¼1 yijhij as in Equation (2). We study the expecta-

tion of the weighted filling gain, E½H�, by the aforesaid ran-
domized imputation.

Consider an assignment t0i ¼ uij, uij 2 canðtiÞ, of any
tuple ti 2 IM . For any tuple tl in IM , the probability of
t0i ¼ uij compatible with t0l is

Pr½ðt0i ¼ uij; t
0
lÞ � S

� ¼ X
ulk2canðtlÞ;ðuij;ulkÞ � S

Pr½t0l ¼ ulk�: (8)

Fig. 3. Imputation with probability.
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The probability of t0i ¼ uij compatible with all the tuples
tl 2 IM is thus

Pr
�ðt0i ¼ uij; I

0
MÞ � S

� ¼ Y
tl2IMnti

Pr½ðt0i ¼ uij; t
0
lÞ � S�: (9)

Considering all the tuple candidates uij 2 canðtiÞ of each
ti 2 IM , with probability Pr½t0i ¼ uij�, we have

E½H� ¼
Xm
i¼1

Xgi
j¼1

hij Pr½t0i ¼ uij�Pr
�ðt0i ¼ uij; I

0
MÞ � S

�
: (10)

Example 8 (Example 7 continued). Given the tuple candi-
date probability of each incomplete tuple in Fig. 3, we
show the computation of E½H� referring to Equations (8),
(9), (10).

Consider t2 as ti and t1 as tl in Equation (8). The first
tuple candidate u21 ¼ (. . ., . . ., 86402) of t2, considered
as uij, is not in violation with any tuple candidate
of t1. The probability of t02 ¼ u21 compatible with t01 is

Pr½ðt02 ¼ u21; t
0
1Þ � S

� ¼ 1
2 þ 1

6 þ 1
6 þ 1

6 ¼ 1:

For the other incomplete tuple t3, the aforesaid
u21 2 canðt2Þ is in violation to the first candidate of t3,
i.e., (. . ., . . ., #531). Thereby, the probability of t02 ¼ u21

compatible with t03 is Pr½ðt02 ¼ u21; t
0
3Þ � S

� ¼ 1
3 :

By considering all the other incomplete tuples ft1; t3g
in Equation (9), we have the probability of t02 = u21 com-
patible with them Pr

�ðt02 ¼ u21; I
0
MÞ � S

� ¼ 1 
 1
3 ¼ 1

3 :
For each tuple candidate of all incomplete tuples, we

can compute such a probability, e.g., Pr
�ðt03 ¼ ð. . .; . . .;

#531Þ; I 0MÞ � S
� ¼ 3

4 ;Pr
�ðt01 ¼ ð. . .; JK Road; 86402Þ; I 0MÞ

� S
� ¼ 1; etc.

Finally, by the weighted filling gain definition in
Equation (10), we have E½H� ¼ 2 
 1

2 
 1þ 1 
 1
6 
 1þ 1 
 1

6 

1þ 0 
 1

6 
 1þ 1 
 1
4 
 1

3 þ 1 
 1
2 
 1þ 0 
 1

4 
 1þ 1 
 2
3 
 3

4 þ 0

1
3 
 1 ¼ 29

12 :

Theorem 8. RANDOM Algorithm 2 for multiple incomplete
attributes returns a solution with the expected weighted filling
gain E½H� � �

1
ðg�1Þ�þ1þh

�mþ1
OPT , where OPT is the optimal

(maximum) weighted filling gain and h ¼ maxijhij is the max-
imum weight of tuple candidate.

We can show that the approximation bound in Theo-
rem 8 in the preliminary version of this paper [9] is
indeed a special case of Theorem 8 in this paper, when
all the DDs in S have the same RHS attribute A, each
incomplete tuple only has one single incomplete attribute
A, each non-null cell candidate counts one in hij, and all
the tuples in IM are neighbors with each other. First, we
have h ¼ 1 since each candidate counts hij ¼ 1 with one
single incomplete attribute A. If all the tuples in IM are
neighbors, we have m ¼ b (in Theorem 8 in [9]). Since �
is also counted in tuple candidates, it follows g� 1 ¼ c
(in Theorem 8 in [9]).

3.5 Derandomization
RANDOM algorithm only has performance guarantee in the
expectation of weighted filling gain. In this section, we pres-
ent the DERAND algorithm for imputing multiple incomplete
attributes, with a deterministic bound of approximation
(Theorem 10).

3.5.1 Conditional Expectation

Let E½H j I 0i�1
M � be the conditional expectation, given a num-

ber of tuples t1; . . .; ti�1 that have been filled, denoted as
I 0i�1
M , i.e.,

E½H j I 0i�1
M � ¼ E½H j t01 ¼ u1; . . .; t

0
i�1 ¼ ui�1�;

where ul 2 canðtlÞ, l ¼ 1; . . .; i� 1, is the filled tuple of tl. It
denotes the total weighted filling gain of filled cells in
t1; . . .; ti�1 plus the expectation of weighted filling gain that
can be obtained from the remaining ti; . . .; tm. We have
E½H j I 00M � ¼ E½H� initially, and E½H j I 0mM � is the exact
weighted filling gain of the filling I 0mM .

Let t0i ¼ uij; uij 2 canðtiÞ be the next assignment. We
study the incremental computation of the conditional expec-
tation E½H j I 0iM � from E½H j I 0i�1

M � by considering the follow-
ing possible cases.

Case 1. If t0i ¼ uij is in violation with any t01 ¼
u1; . . . ; t

0
i�1 ¼ ui�1, no valid solution can be generated, i.e.,

E½H j I 0iM � ¼ 0.
Case 2. If t0i ¼ uij is compatible with existing assignments,

we further consider three sub-cases for updating the com-
patible probability in Equation (9) of remaining tuples
tl; l ¼ iþ 1; . . .;m, on candidate ulk 2 canðtlÞ.

Case 2.1. If 8ðX ! A; f½XA�Þ 2 S; ðt0i; t0l ¼ ulkÞ 6� f½X�, the
compatible probability will not change,

Pr
�ðt0l ¼ ulk; I

0
MÞ � S j I 0iM

�
¼ Pr

�ðt0l ¼ ulk; I
0
MÞ � S j I 0i�1

M

�
:

Case 2.2. If 9ðX ! A;f½XA�Þ 2 S such that
ðt0i; t0l ¼ ulkÞ � f½X� and ðt0i; t0l ¼ ulkÞ 6� f½A�, we have

Pr
�ðt0l ¼ ulk; I

0
MÞ � S j I 0iM

� ¼ 0:

Case 2.3. If 8ðX ! A;f½XA�Þ 2 S; ðt0i; t0l ¼ ulkÞ � f½X� and
ðt0i; t0l ¼ ulkÞ � f½A�, we have

Pr
�ðt0l ¼ ulk; I

0
MÞ � S j I 0iM

�

¼ Pr
�ðt0l ¼ ulk; I

0
MÞ � S j I 0i�1

M

�
Pr

�ðt0l ¼ ulk; t
0
iÞ � S j I 0i�1

M

� :
(11)

Once all Pr
�ðt0l ¼ ulk; I

0
MÞ � S j I 0iM

�
are updated in the

aforesaid cases, E½H j I 0iM � is recomputed by Equation (10).

Example 9 (Example 8 continued). Suppose that we select
t02 ¼ ð. . .; . . .; 86402Þ as the first assignment in Fig. 3. We
illustrate how E½H j t02 ¼ ð. . .; . . .; 86402Þ� is computed.

Since t02 = (. . ., . . ., 86402) is not compatiblewith t03 = (. . .,
. . ., #531) in Fig. 2, i.e., Case 2.2, we have Pr

�ðt03 ¼
ð. . .; . . .; #531Þ; I 0MÞ � S j t02 ¼ ð. . .; . . .; 86402Þ� ¼ 0:

For a candidate ulk 2 canðtlÞ compatible with t02, e.g.,
Pr

�ðt01 ¼ ð. . .; JK Road;86402Þ; I 0MÞ � S
� ¼ 1, we update it

by dividing Pr½ðt01 ¼ ð. . .; JK Road; 86402Þ; t02Þ � S
� ¼ 1,

i.e., Case 2.3. It has Pr
�ðt01 ¼ ð. . .; JKRoad; 86402Þ;

I 0MÞ � S j t02 ¼ ð. . .; . . .; 86402Þ� ¼ 1:
Finally, we have E½H j t02 ¼ ð. . .; . . .; 86402Þ� ¼ 2 
 1

2 

1 þ 1 
 1

6 
 1þ 1 
 1
6 
 1þ 0 
 1

6 
 1þ 1þ 1 
 2
3 
 0þ 0 
 1

3 

1 ¼ 7

3 .

3.5.2 Imputation Guided by Conditional Expectation

Consequently, the DERAND algorithm chooses in each
iteration an assignment that can maximize the expected
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weighted filling gain of the remaining unassigned tuples.

t0i ¼ argmax
uij2canðtiÞ

E½H j t01 ¼ u1; . . .; t
0
i ¼ uij� (12)

Algorithm 3. DERAND(IM;S)

Input: IM with tuple candidate sets and a set S of DDs
Output: A filling I 0M
1: initialize probabilities
2: for each ti 2 IM do
3: Emax :¼ 0
4: for each uij 2 canðtiÞ do
5: E : = CONEXPðE½H j I 0i�1

M �; ti; uij; hijÞ
6: if E > Emax then
7: Emax :¼ E
8: t0i :¼ uij

9: E½H j I 0iM � :¼ Emax

10: I 0M := ROUND(I 0M;S)
11: return I 0M
Procedure CONEXP(E; ti; uij; hij)
Input: E denotes E½H j I 0i�1

M � and assignment uij of ti with
confidence hij

Output: E½H j t01 ¼ u1; . . .; t
0
i�1 ¼ ui�1; t

0
i ¼ uij�

1: E := E �P
k hik Pr½t0i ¼ uik�Pr

�ðt0i ¼ uik; I
0
MÞ � S j I 0i�1

M

�
2: E :¼ E þ hij
3: for each tl 2 IM , l ¼ iþ 1; . . .;m do
4: for each ulk 2 canðtlÞ do
5: E := E � hlk Pr½t0l = ulk�Pr

�ðt0l = ulk; I
0
MÞ � S j I 0i�1

M

�
6: if ðt0i ¼ uij; t

0
l ¼ ulkÞ � S then

7: update Pr½ðt0l = ulk; I
0
MÞ � S j I 0iM � by Equation (11)

8: E := E þ hlk Pr½t0l = ulk�Pr
�ðt0l = ulk; I

0
MÞ � S j I 0iM

�
9: return E

Example 10 (Example 9 continued). Consider an assign-
ment of t2, e.g., t

0
2 ¼ ð. . .; . . .; #402). Line 5 in Algorithm 3

computes its E½H j t02 ¼ ð. . .; . . .; #402Þ� ¼ 2 
 1
2 
 1þ 1 
 1

6 

1þ 1 
 1

6 
 1þ 0 
 1
6 
 1þ 1þ 1 
 2

3 
 1þ 0 
 1
3 
 1 ¼ 3.

For the other candidate, i.e., t02 ¼ ð. . .; . . .;� Þ, we have
E½H j t02 ¼ ð. . .; . . .;� Þ� ¼ 2 
 1

2 
 1þ 1 
 1
6 
 1þ 1 
 1

6 
 1þ 0 

1
6 
 1þ 0þ 1 
 2

3 
 1þ 0 
 1
3 
 1 ¼ 2. As E½H j t02 ¼ ð. . .; . . .;

#402Þ� ¼ 3 is larger, t02 ¼ ð. . .; . . .; #402Þ is assigned.
For the next tuple t3, we have

E½H j t02 ¼ ð. . .; . . .; #402Þ; t03 ¼ ð. . .; . . .; #531Þ� ¼ 10

3
;

E½H j t02 ¼ ð. . .; . . .; #402Þ; t03 ¼ ð. . .; . . .; Þ� ¼ 7

3
:

As the first conditional expectation is larger, we select (...,
..., #531) as the assignment for t3.

Finally, it leads to E½H j t01 ¼ ð. . .; JK Road; 86402Þ;
t02 ¼ ð. . .; . . .; #402Þ; t03 ¼ ð. . .; . . .; #531Þ� ¼ 4, where all
null cells are filled.

Proposition 9. When all the DDs in S have the same RHS attri-
bute A, each incomplete tuple only has one single incomplete
attribute A, and each non-null cell candidate counts one in hij,
then the DERAND algorithm for multiple incomplete attributes
(Algorithm 3) is equivalent to Algorithm 3 in the preliminary
version of this paper [9] for single incomplete attribute.

3.5.3 Correctness and Performance Analysis

Finally, by showing that the maximum conditional expecta-
tion is non-decreasing, we can conclude that the final

E½H j I 0mM � returned by the DERAND algorithm is no less than
the initial E½H j I 00M � ¼ E½H�.
Theorem 10. DERAND Algorithm 3 for multiple incomplete

attributes guarantees to output a solution with weighted filling
gain � E½H�.
The conditional expectation can be computed by consid-

ering all the other incomplete tuples except ti and their cor-
responding tuple candidates with complexity OðmgÞ.

Considering all the m tuples in IM and their tuple candi-
dates, the complexity of the DERAND algorithm for multiple

incomplete attributes (Algorithm 3) is Oðm2g2 þm3gÞ,
where the last ROUND step in Line 10 takes Oðm3gÞ time as
analyzed at the end of Section 3.3.

4 EXPERIMENTS

This section reports the experiments on both effectiveness
and efficiency of the proposed approaches. All programs
are implemented in Java and the experiments were per-
formed on a PC with 3.1 GHz CPU and 16 GB RAM.

4.1 Experimental Settings
We employ real and synthetic datasets, including the

Restaurant6 dataset with name, address, type and city infor-

mation of 864 restaurants, the ASF dataset7 consisting of 1.5
k tuples with 6 numerical attributes, and a synthetic dataset
generated by the UIS database generator.7

Following the same line of evaluating data repairing
techniques by artificially injecting errors [13], we randomly
remove values from various attributes as missing data.

Let truth be the set of removed cell values and fill be the
set of filling results returned by imputation algorithms. The

accuracy is given by accuracy ¼ jtruth\fillj
jtruthj , i.e., the proportion

of null cells that are accurately filled or recovered. If a null
cell is failed to fill (leave ‘_’ unchanged) or filled incorrectly,
it will be counted negatively toward the accuracy as the
wrong imputation. Moreover, to evaluate the imputation
accuracy for numerical dataset, e.g., ASF dataset, we
compare the imputed tuple t0i to the corresponding truth t#i ,
using the RMS (root-mean-square) error, i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
A2R

ðt0i½A� � t#i ½A�Þ2
jRj

vuut

Enlightened by discovering FDs from the complete part of
incomplete data [2], DDs used in the experiments are also
obtained by applying the discovery techniques [6], [8] (with
manual verification, see the full version technique
report [10] for discovery details and discovered rules).

4.2 Comparison with Existing Techniques
This experiment compares our proposed method with exist-
ing approaches. (1) Certain fixes are determined by using
editing rules [4]. We consider all the complete tuples as
reference data and discover FDs from the complete tuples
(by [14]) as editing rules. (2) ERACER [15] iteratively learns
statistical models and performs data imputation at the same
time. The left-hand-side attributes of the aforesaid

6. http://www.cs.utexas.edu/users/ml/riddle/data.html
7. http://archive.ics.uci.edu/ml/datasets/
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discovered FDs are utilized as the determinant attributes in
the relational dependency network for ERACER. (3) MIBOS
[16] considers the tuples similar to the incomplete tuple,
where tuple similarity is defined on value equality. The
complete tuple tj having the maximum number of same val-
ues on complete attribute R nMi with the incomplete tuple
ti will be identified to impute the incomplete ti½A�; A 2 Mi.
It is worth noting that all the previous approaches are
defined on the equality of attribute values, while our pro-
posal further employs DD rules which can address similar
attribute values. In order to conduct more fair comparison,
we further study the methods with the consideration of
attribute value similarity. (4) KNN [5] imputes incomplete
tuples according to their k-nearest neighbors with the
minimum distances over the complete attributes. We test
various number k of neighbors, and report the one with best
performance. (5) CMI [17] employs k-Means clustering to
divide the dataset (including the instances with missing
values) into clusters. The complete tuples in the same
cluster will be used to impute the incomplete tuples. Again,
we select the number of clusters having the best perfor-
mance. To guarantee the fairness, the initial cluster centers
are randomly assigned and the experiments are repeated 10
times. The mean value of imputation accuracy is returned
to represent the performance for CMI. (6) CF [18] estimates
prediction values by collecting preferences from collaborat-
ing users (analogous to tuples in imputation). We also
consider the number of users (tuples) having the best
performance for CF.

Fig. 4 reports the results of various missing rates. A miss-
ing rate, say 0.1, denotes that a cell has probability 0.1 of
being a null cell. As shown, it is not surprising that the
imputation accuracy drops with the increase of missing
rate. (Detailed description of each method is given below.)

To evaluate scalability over larger data sizes, Fig. 5
reports the results on up to 100k tuples over UIS data. As
shown, the imputation accuracy is generally stable. (See
time cost explanation of Derand below.)

Certain [4], the constraint-based data cleaning method
with editing rules, performs upon the equality relationships
between tuples. With a limited number of equality neighbors,
it is difficult to generate filling candidates and cannot lead to
a unique fix when there are more than one candidate.

ERACER [15], the statistical-based approach over equal
values, again shows lower imputation accuracy than our
proposed Derand. The results verify our intuition on spar-
sity presented in the Introduction.

MIBOS [16] considers tuple similarity defined on value
equality. With a very limited number of equal attribute val-
ues, the imputation is difficult. In contrast, our DDs-based
Derand shows significantly higher accuracy owing to the
successful identification of value similarity neighbors.

CMI [17] considers similarities over all the attributes,
and thus has more opportunities in imputing missing val-
ues with higher accuracy (compared to MIBOS). However,
strictly considering similarities over all the attributes,
including those irrelevant ones, limits the power of finding
similarity neighbors by CMI. Instead, by explicitly using
only the (subset of) attributes specified in DDs, our Derand
can identify and utilize more partially similar neighbors
that do not belong to the same cluster. Thereby, the accu-
racy of Derand is higher. The CMI method also shows
higher time cost over larger data sizes. The reason is that
the k-means clustering algorithm in CMI converges more
slowly over a large number of tuples (or with a higher
duplication rate).

KNN [5] algorithm imputes incomplete tuples according
to their k-nearest neighbors with the minimum distance
over the complete attributes, rather than clusters in CMI.
However, not all the candidates suggested by similarity
neighbors are valid. By using DDs similarity rules, our pro-
posed Derand approach can successfully rule out some irra-
tional imputations referring to the constraints, and thus
shows higher imputation accuracy in almost all the tests.

CF [18] makes predictions about the interests (analogous
to missing values in the imputation problem) of a user
(tuple) by collecting preferences from many collaborating
users (tuples). It selects the users (tuples) which have simi-
lar preferences with the target user (incomplete tuple), and
estimates the predictions based on the user (tuple) similar-
ity, i.e., neighbors with higher similarity are more valuable
for estimations. Unfortunately, similar to the KNN method,
since the prediction values suggested by users (tuples) may
conflict with each other owing to the heterogeneity issue,
the imputation accuracy of CF is not high (close to KNN).

Fig. 6 evaluates the performance by varying the number
of tuples over numerical data. As shown, our proposed
method, selecting the best candidate, is more effective but
takes more time than aggregating the k most similar candi-
dates. The candidates suggested by k-nearest neighbors
could be heterogeneous and conflict with the candidates of
other tuples. Aggregating all these (potentially invalid) can-
didates to provide a filling for a missing cell is not accurate.
On the contrary, our proposed Derand method can resolve

Fig. 4. Varying missing rates (Restaurant).
Fig. 5. Varying data sizes (UIS).

Fig. 6. Varying data sizes (ASF).
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such conflict by considering the compatibility among candi-
dates w.r.t. DDs. The selected best candidates thus have
higher imputation accuracy. The corresponding time costs
however are higher, which is not surprising referring to the
hardness analyzed in Theorems 1-3.

4.3 Application in Record Matching
To further validate the effectiveness of applying imputation
in real applications, we consider the accuracy of record
matching application [19]. An existing rule-based record
matching method [20] is directly implemented in the experi-
ment, which utilizes matching dependencies (MDs) [21] to
guide how records should be compared. It is performed
over the Missing data without imputation, the imputed
data by Certain [4], ERACER [15], MIBOS [16], CMI [17],
KNN [5], CF [18], and our proposed Derand.

As shown in Fig. 7, the record matching accuracy
(f-measure) is generally related to the filling accuracy in
Fig. 4. Our Derand with higher imputation accuracy leads
to better matching f-measure as well.

4.4 Performance of Proposed Techniques
This experiment evaluates the performance of different
techniques in our proposal with various parameter settings.
Fig. 8 provides an overview of all the approaches. Integer
linear programming can be implemented by branch and
bound, and linear programming employs simplex. When
computing Pr by Equation (6), as introduced at the begin-
ning of Section 3.4.1, for a large �, each uij 2 canðtiÞ has a
similar probability 1

gi�1 of being selected. We consider partic-
ularly this large � case (namely LE), as its Pr can be directly
computed without calling the costly LP solver.

Fig. 9 reports the results over various � which tunes the
contribution of initial assignment yij in the probability of
random selection in Equation (6). With the increase of �, the
contribution of yij by LP decreases, and the accuracy of
Random(LP) drops in Fig. 9a. When � is extremely large,
Random(LP) shows almost the same result as Random
(LE), which simply considers the equal probability.
Round approach, not relying on the probability, does not
change in this experiment. Remarkably, Derand(LE)
approach shows the same result with Derand(LP) not
only with large � but also smaller ones. The results

demonstrate the robustness of Derand. In particular, since
LE approaches simply assigning the same probability
without calling the LP solver, the corresponding time
costs are significantly lower. In this sense, Derand(LE)
without calling the LP solver is preferred in practice, hav-
ing lower time cost but higher accuracy.

Fig. 10 presents the results over UIS dataset where vari-
ous similarity metrics are utilized in our proposed algo-
rithms, i.e., Euclidean distance, cosine similarity, Jaccard
coefficient [7]. As shown, the imputation methods show
similar performance under different similarity functions. By
default, for the similarity computing, we utilize 3-grams to
divide each attribute value into a set of tokens and then
compute the cosine similarity with tf-idf weighting.

To observe the accuracy of the proposed methods under
different rules (presented in [10]), Fig. 11 reports the results
on various numbers of DDs. In general, the imputation accu-
racy could be improved by given more reasonable rules.
However, redundant semantics may exist among rules,
which will not further improve the chance of imputation. In
Fig. 11, given more than 3 DDs, the imputation accuracy can-
not be further improved until the 16th DD is applied. In this
sense, some DDs rules do affect the results more than others.
The time cost increases when more DDs rules are given for
examination. In practice, we can apply the existing techni-
ques [6], [8] for reasoning about rules to eliminate redun-
dant semantics, which is out the scope of this study.

Fig. 7. Application in record matching (Restaurant & UIS).

Fig. 8. Overview of approaches.

Fig. 9. Varying � (Restaurant).

Fig. 10. Comparison on various similarity metrics (UIS).

Fig. 11. Varying the number of used DDs (Restaurant).
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Fig. 12 reports the results on various numbers of attrib-
utes used for nearest neighbor computation. We randomly
select the attributes for a tuple according to the given num-
ber of attributes. The number of attributes, e.g., 3, denotes
that there are three attributes randomly selected from the
given schema for each tuple in nearest neighbor computa-
tion. With a moderate number of attributes, sufficient infor-
mation can be utilized for nearest neighbor computation,
and the selected nearest neighbors will be reliable. The
imputation accuracy thus increases. However, with even
higher dimensionality, finding appropriate neighbors is not
trivial. By further increasing the number of attributes, the
improvement on imputation accuracy is limited.

Fig. 13 observes the accuracy and average time cost of
our proposed approach Derand with different levels of data
correlation. Three points from higher to lower of each bar
denote the maximum, average, minimum imputation accu-
racy and average time cost. The Restaurant dataset origi-
nally contains at most two tuples (versions) denoting one
entity. To study various data distributions in terms of differ-
ent levels of data correlation, we enrich more tuples for an
entity by randomly choosing two alternative values
(versions) on each attribute. As shown in Fig. 13a, with the
increase of correlation rate, the imputation accuracy
increases as well. It is not surprising since there are more
reliable/correlated neighbors for candidate generation and
more invalid candidates can be ruled out. Moreover, the
corresponding average time cost of imputing an incomplete
tuple drops in Fig. 13b, since more irrelevant candidates are
filtered with higher correlation rates.

5 RELATED WORK

The rule-based repairing, e.g., the certain fixes based on
editing rules [4], could be applied to missing value imputa-
tion. However, as discussed in [9], the editing rules are built
upon value equality relationships. Without sufficient neigh-
bors, the null cells could barely be filled (i.e., lower imputa-
tion accuracy as observed in the experiments).

To find more neighbors for imputation, the similarity
neighbor-based approaches [5], [16], [17] consider the tuples
with high tuple-similarities defined over the complete
attributes of the incomplete tuple. MIBOS [16] computes a
tuple-similarity which is indeed defined on value equality,
i.e., by counting the number of attributes with equal values.
CMI [17] further considers clusters of most similar tuples,
while KNN [5] employs only the k-nearest neighbors. The
values of these similar tuples are aggregated as the imputa-
tion results of the incomplete tuple. It is worth noting that
the suggested value candidates may conflict with each
other. By applying the similarity rules, we can further rule

out those irrational imputation candidates, and thus lead to
more accurate imputation (in the experiments).

Statistical-based repairing [15], [22], [23] may support
imputing missing values. Probabilistic correlations between
reliable attributes with correct values and flexible attributes
with dirty values are modeled in [22]. Repairing (and impu-
tation) is thus to find the values that can maximize the
likelihood. A complex relational dependency network is
considered in [15] to model the probabilistic relationships
among attributes. The cleaning process in [15] performs iter-
atively and terminates when the divergence of distributions
is sufficiently small. As reported in [22], the approach [15]
shows better performance in imputation. However, equality
relationships among values are still considered in modeling
the probabilities, without tolerance to small variances on
values (the edit distance is only used to measure the similar-
ity between a repair and its original value in [23] which is
not applicable to imputation as aforesaid). Consequently,
our Derand with extensive similarity neighbors show better
imputation performance than the statistical-based [15].

It is also possible to utilize external sources of data for the
imputation problem. Such methods match the incomplete
tuples with the external information in master data [4],
domain experts [24] and knowledge bases [25], for imputing
null cells. [4] employs the matches between master data and
the incomplete tuples, under the guidance of editing rules.
In order to resolve ambiguity, expert feedback is involved
in the cleaning process to confirm the results suggested by
constraint-based cleaning techniques [24]. [25] interprets
table semantics, maps it to the knowledge base, and gener-
ates imputation values from the knowledge base. In general,
these methods heavily rely on the quality of external resour-
ces, which are usually expensive to employ for many
domains. Since this study considers only the information
available inside the dataset, we omit the unfair comparison
to the methods with external sources in the experiments.

6 CONCLUSIONS

Imputing missing values of a tuple replies on others (neigh-
bors) sharing the same/similar information. While candi-
dates suggested by various similarity neighbors could
conflict with each other due to heterogeneity, we propose to
utilize similarity rules to rule out invalid candidates. In this
paper, we (1) analyze the hardness of computing the maxi-
mum/maximal fillings (Theorems 1 and 2) as well as its
approximation (Theorem 3); (2) present an exact algorithm
by ILP and its LP relaxation; and (3) devise a randomized
algorithm together with derandomization. In particular, the
efficient approximation algorithms are devised with certain
performance guarantees (Theorem 10). Experiments on real
and synthetic data demonstrate that (1) our proposed meth-
ods such as Derand(LE) show higher imputation accuracy

Fig. 12. Varying the number of attributes used for nearest neighbor com-
putation in a tuple (UIS).

Fig. 13. Varying correlation rates (Restaurant).
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and scale well in large data sizes; and (2) the accuracy of
record matching application can be improved if we apply
our proposal to fill the missing data first.

In this study, we consider only the accurate DD rules as
constraints, to rule out the imputation candidates that do
not satisfy the given constraints. It is promising to further
employ imprecise DDs with the consideration of rule confi-
dence. The trade-off between the accuracy of imputation
results and getting more null cell filled seems non-trivial.
For instance, a candidate a1 may satisfy dd1 with higher
confidence but violate dd2 with lower confidence. How-
ever, the imputation of tuple t1 by candidate a1 may pre-
vent the imputation of another tuple t2. On the other
hand, the imputation of t1 by another candidate a2 viola-
tes the high confidence dd1 but satisfies the low confi-
dence dd2. Nevertheless, it does not affect imputing t2,
i.e., both t1 and t2 can be filled. In this sense, advanced
investigation is necessary on how to balance the rule
accuracy and imputation gain. We leave this complicated
scenario as the future study.
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