
Representing Temporal A�ributes for Schema Matching

Yinan Mei
BNRist, Tsinghua University

Beijing, China

myn18@mails.tsinghua.edu.cn

Shaoxu Song
BNRist, Tsinghua University

Beijing, China

sxsong@tsinghua.edu.cn

Yunsu Lee
Samsung Research

Seoul, South Korea

yunsu16.lee@samsung.com

Jungho Park
Samsung Research

Seoul, South Korea

j0106.park@samsung.com

Soo-Hyung Kim
Samsung Research

Seoul, South Korea

sooh0721.kim@samsung.com

Sungmin Yi
Samsung Research

Seoul, South Korea

sungmin.yi@samsung.com

ABSTRACT

Temporal data are prevalent, where one or several time attributes

present. It is challenging to identify the temporal attributes from

heterogeneous sources. The reason is that the same attribute could

contain distinct values in different time spans, whereas different

attributes may have highly similar timestamps and alike values.

Existing studies on schema matching seldom explore the temporal

information for matching attributes. In this paper, we argue to or-

der the values in an attribute A by some time attribute T as a time

series. To learn deep temporal features in the attribute pair (T ,A),

we devise an auto-encoder to embed the transitions of values in the

time series into a vector. The temporal attributematching (TAM) is

thus to evaluate matching distance of two temporal attribute pairs

by comparing their transition vectors. We show that computing

the optimal matching distance is np-hard, and present an approx-

imation algorithm. Experiments on real datasets demonstrate the

superiority of our proposal in matching temporal attributes com-

pared to the generic schema matching approaches.

CCS CONCEPTS

• Information systems→Mediators and data integration.

KEYWORDS

Data Integration; Schema Matching; Temporal Data

ACM Reference Format:

YinanMei, Shaoxu Song, Yunsu Lee, Jungho Park, Soo-Hyung Kim, and Sung-

min Yi. 2020. Representing Temporal Attributes for Schema Matching. In

Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery

and Data Mining (KDD ’20), August 23–27, 2020, Virtual Event, CA, USA.

ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3394486.3403115

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00
https://doi.org/10.1145/3394486.3403115

R instore-time order-time prod cost-price order-price

t1 03-01 03-02 N7 $489 $499
t2 03-12 03-04 S9 $599 $579
.

U purch-time sell-time item purch-price sell-price

u1 03-08 03-01 GalaxyS9 $599 $589
u2 03-01 03-03 Note7 $479 $509
.

Figure 1: Order tuples (hole circles) by different time attributes to

capture various temporal features for schemamatching between R

(pink) and U (blue)

1 INTRODUCTION

Temporal data arewidely collected fromvarious sources and stored

in heterogeneous databases, ranging from traditional sale or pro-

duction records to the emerging sensor readings of IoT devices. It

is highly demanded to integrate the temporal data for various data

mining tasks.

However, schema matching over temporal data could be very

challenging. (1) Different attributes may have highly similar times-

tamps and alike values, e.g., cost price vs. sell price of the same

products in a similar period. (2) On the other hand, the same at-

tribute for matching may contain distinct values in different time

spans. For instance, temperatures of the same wind turbine would

be very different in summer and winter. While generic schema

matching has been extensively studied [3], exploring the tempo-

ral information for matching attributes is surprisingly untouched.

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

709

https://doi.org/10.1145/3394486.3403115
https://doi.org/10.1145/3394486.3403115

1.1 Motivation

Consider two relations1 R and U of sales records collected from

different retailers in Figure 1. There are multiple attributes with

confusing names and values, which prevent the existing schema

matching approaches [3] from performing.2 For instance, bothprod

inR and item inU denote the name of products.However, they are

challenging to identify since product names from heterogeneous

sources could be diverse. On the other hand, time attributes are

hard to distinguish given the very close timestamp values, e.g., in

purch-time or sell-time. Various price attributes are similar as well.

Intuitively, we explore the temporal information over various

time attributes for schema matching. Interesting patterns could

be observed after ordering the tuples by the corresponding times-

tamps. For instance, after ordering the products by instore-time

in R in Figure 1(a), we notice that the same products are always

purchased in a batch such as t1, t3, t5. Similar patterns are also ob-

served when ordered by purch-time in U in Figure 1(b). It is dif-

ferent from the ordering by order-time or sell-time in Figure 1(c)

or (d), since products could be sold in any order. That is, by consid-

ering together the time attributes with others, we can successfully

match (instore-time, prod) and (purch-time, item).

To give another example, we consider the price attributes with

similar values.3 After ordering the tuples by order-time in R , there

is no particular pattern on the cost-price attribute, as shown in Fig-

ure 1(e). However, an interesting pattern of consecutive tuples, t3,

t4, t5, t6 with the same order-price value, is observed in Figure 1(g),

since product N7 is occasionally on sale promotion in that period.

In Figure 1(h), we observe the similar patterns in the sell-price at-

tribute ordered by sell-time in U. The attribute pairs (order-time,

order-price) and (sell-time, sell-price) can thus be matched.

Motivated by both examples,4 we propose to consider an at-

tribute together with some time attribute, namely a temporal at-

tribute pair. In addition to comparing single attributes, schema

matching is enhanced by comparing the temporal features of tem-

poral attribute pairs, e.g., (instore-time, prod) vs. (purch-time, item).

1.2 Contribution

Our contributions in this paper are summarized as follows. Figure 2

in Section 2 presents an overview of our proposal.

We propose a novel value transition graph to capture the tempo-

ral information in a temporal attribute pair. Values in an attribute

are ordered as a time series by the other time attribute in the pair.

We extract the fine-grained irregular time intervals of value transi-

tions in the time series as discriminative features for representing

the temporal attribute pair. For instance, in the time series ordered

by instore-time in Figure 1(a), the transitions between N7 and S9

are infrequent with long time intervals. In contrast, there are more

transitions between N7 and S9 with short time intervals in the tem-

poral attribute pair (order-time, prod) in Figure 1(c).

1There are often a huge number of relations for integration, e.g., hundreds of sensors
(attributes) from thousands of wind turbines (relations) with evolving schemas during

maintenance. Manually matching or labeling the attributes is not practical.
2 It is notable that considering the correlations between attributes [18] may not help.
The instore-time is not necessary to be earlier than order-time, since some products

are pre-ordered. And cost-price is not always lower than order-price, in case of sales.
3For numerical attributes, we often discretize them into a finite number of value in-
tervals. See Section 5.2.1 for details.
4 See the experiments in Section 5 for more examples, e.g., in mobile data or IoT data.

We devise an auto-encoder to learn the deep temporal features

from the time intervals of value transitions in the time series. In-

tuitively, the number of transitions between the two values could

be various. For example, N7 and S9 have only one transition in Fig-

ure 1(a), while there are (at least) two transitions between Note7

and GalaxyS9 in Figure 1(b). To enable the comparison over var-

ious numbers of transitions and capture deep temporal features,

an auto-encoder naturally fits by embedding the time intervals of

transitions (varied in number) into a unified vector.

We evaluate the matching distance of two temporal attribute

pairs by matching their graphs of value transitions. It is to find the

minimum matching distances on the aforesaid embedded vectors

between two transition graphs. We show np-hardness of the opti-

mal matching problem (Theorem 1 in Section 4.2) and develop an

approximate algorithm (Algorithm 1 in Section 8.2).

Experiments on real datasets demonstrate that our proposal can

successfully distinguish the attributes with similar values, as well

as time attributes with similar timestamps. On the other hand, we

can alsomatch the attributeswith distinct values and distant times-

tamps. Remarkably, our temporal attribute matching (TAM) com-

plements and cooperates with the existing schema matching ap-

proaches such as TAM(FOD) and TAM(LSTM) to achieve the best

performance.

2 TAM OVERVIEW

In this section, we first present an overview of temporal attribute

matching (TAM) in Figure 2. It includes two steps, (1) matching

temporal attribute pairs from two relations in Section 2.1, and (2)

matching transition graphs of two temporal attribute pairs in Sec-

tion 2.2. Details of each step are presented in Sections 3 and 4, re-

spectively.

2.1 Matching Temporal Attribute Pairs

Consider two relations with schemas

R(T1, T2, . . . ,A1,A2, . . .),

U(S1, S2, . . . , B1,B2, . . .)

for schema matching, where T1, T2, . . . and S1, S2, . . . are time at-

tributes. When two relations R and U have a different number of

attributes, virtual attributes are often introduced to make them the

same size [7].

The mapping between R and U is thus a bijective function M :

R → U, i.e., one-to-one match.5 For instance, M(A) = B denotes

that an attributeA ∈ R is mapped to attribute B ∈ U; and similarly

for time attributesM(T) = S.

For any T ,A ∈ R , we call (T ,A) a temporal attribute pair. It

captures the temporal relationships between time attribute T and

some other A. Similarly, we have pairs (S,B) inU. When multiple

time attributes exist, one may also consider two time attributes

as a temporal attribute pair, such as (T1, T2). Such a relationship

between time attributes is also meaningful, e.g., production-time

is usually earlier than maintenance-time.

5We leave the more complicated many-to-one/many-to-many match as future study.

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

710

Figure 2: Overview of temporal attributematching TAM. (a) A temporal attribute pair (T ,A) in relationR consists of an attributeA together

with a time attribute T . (b) Consider all the temporal attribute pairs in R , denoted by PR . (c) For each temporal attribute pair (T ,A), we

order its values a in A by the corresponding timestamps in T as a time series. Transitions between two values ai and aj in the time series

are investigated. (d) The time series of temporal attribute pair (T ,A) is thus represented by a transition graph GTA. Each edge (ai, aj) in GTA

is associated with a sequence ∆ij of time intervals on the transitions between two values ai and aj . (e) The sequences ∆ij in various lengths

are embedded into a unified vector vij by a carefully designed transition graph AutoEncoder. (f) By comparing the distances on vectors, we

calculate the matching distance D(m) of two transition graphs GTA and GSB, representing the temporal attribute pairs (T ,A) and (S, B) of

R andU, respectively. (g) Considering the matching distances on all temporal attribute pairs, in conjunction with the traditional attribute

matching distances, we find a mapping M : R → U between R and U with the minimum matching distance D(M).

Let PR and PU be the corresponding sets of temporal attribute

pairs in R and U, respectively. To evaluate a mapping M, we con-

sider the matching distance between R and U,

D(M) =
∑

T ∈R

Ds (T ,M(T)) +
∑

A∈R

Ds (A,M(A)) (1)

+

∑

(T,A)∈PR

Dp (T ,A,M(T),M(A)).

Ds (T ,M(T)) is the distance between two time attributes T ∈ R

and M(T) ∈ U, and similarly for Ds (A,M(A)). Existing schema

matching approaches (see [26] for a survey) on evaluating the dis-

tances between two attributes can be applied, e.g., considering cor-

relation/dependency among attributes [18]. In this sense, our pro-

posal is complementary to the existing techniques.6

Dp (T ,A,M(T),M(A)) is the distance between two temporal at-

tribute pairs (T ,A) and (M(T),M(A)). It is the major focus of this

study. Please see a brief introduction below in Section 2.2 and refer

to Sections 3 and 4 for details.

The optimal schemamatching problem is thus to find amapping

M with the minimum matching distance D(M).

2.2 Matching Transition Graphs

To evaluate the distance Dp (T ,A,M(T),M(A)) between two tem-

poral attribute pairs (T ,A) and (M(T),M(A)), we propose to repre-

sent the temporal features in a temporal attribute pair. Intuitively,

we study the transition relationships between values in an attribute,

6See Section 5 for an evaluation on how this proposal improves the existing methods.

sayA, referring to time in T . It forms a transition graph7 of the tem-

poral attribute pair (T ,A), denoted by GTA = (A, E). Each vertex

a ∈ A denotes a value in the attribute. Each edge, say (ai, aj) ∈ E,

represents the transitions between values ai and aj in A on T . For

simplicity, we denote S = M(T),B = M(A). Likewise, let GSB =

(B, F) be the transition graph of temporal attribute pair (S,B).

To evaluate the distance between temporal attribute pairs, we

study the mapping between the corresponding transition graphs

m : A → B. It is again a bijective function. If attributes A and B

have a different number of values, virtual values are introduced to

make them the same size [16]. The matching distance w.r.t. m is

D(m) =
∑

ai ∈A

Dv (ai,m(ai)) +
∑

(ai,aj)∈E

De (ai, aj ,m(ai),m(aj)), (2)

where Dv (ai,m(ai)) is the distance between two values ai in at-

tributeA andm(ai) in attributeB, as defined in Formula 5 in Section

4. De (ai, aj,m(ai),m(aj)) is the distance on transitions of (ai, aj)

and (m(ai),m(aj)), as defined in Formula 6 in Section 4.

We are interested in mappingmwith theminimumD(m). While

the graph matching problem is generally hard as analyzed in Theo-

rem 1, efficient approximation is possible as presented in Section 4.

Finally, the distance between two temporal attribute pairs is given

by Dp (T ,A,M(T),M(A)) = Dp (T ,A, S,B) = D(m).

2.3 Application in Practice

Formula 1 shows that TAM is complementary to the traditional

schemamatching approaches, such as TAM(FOD) and TAM(LSTM)

7See a formal definition of transition graph in Definition 2.

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

711

in the experiments in Section 5. In practice, when the generic fea-

tures inside/among attributes fail to work, the temporal features

may perform. We can distinguish different attributes sharing simi-

lar values, given the distinct temporal features in Figures 1(e) and

(h). On the other hand, by capturing the deep temporal features on

value transitions, TAM successfully identifies same attributes with

distinct values, such as Figures 1(a) and (b).

3 REPRESENTING TEMPORAL ATTRIBUTE

As briefly mentioned in Section 2.2, we propose a transition graph

GTA to denote the transitions between values in A referring to the

time in T . In this way, we can represent the temporal features in

a temporal attribute pair (T ,A). Note that the number of transi-

tions between two values could be various in different relations,

as illustrated in Section 1.2. To enable the matching over various

transitions and capture the deep temporal features, we devise a

transition graph auto-encoder to embed the transitions (and val-

ues) into a unified space in Section 3.2. Graph matching can thus

be performed over the transition embeddings to evaluate the dis-

tance of two temporal attribute pairs in Section 4.

3.1 Transition Graph for Temporal Attribute

The tuples in a relation r with schema R can be considered as a

time series ordered by the timestamps in T . To capture the tem-

poral information in (T ,A), motivated by the state transition in a

state machine [5], we study the transitions between values (states)

of attribute A in the time series.

Definition 1 (Transition). For two values ai and aj in an at-

tribute A, we call (tk, tl) a transition between ai and aj , where tk, tl ∈

r, tk[T] < tl[T], and {tk[A], tl[A]} = {ai, aj }.

That is, a switch of values ai and aj occur on tk[A] and tl[A],

referring to {tk[A], tl[A]} = {ai, aj }. To study the temporal infor-

mation, we investigate tl[T] − tk[T] the time interval of a transi-

tion (tk, tl). It denotes how long the transition takes to switch values

ai and aj . We often consider only the transitions that occur in a

small time window tl[T] − tk[T] ≤ δ , where δ is an optional tran-

sition time threshold. The reason is that the switch of two values

too distant in time is often meaningless. For instance, studying the

transitions between Samsung SGH-A188 (around 2000) and S10

(around 2019) does not help much in representing and matching

the attributes, since the sales/production of products are seldom

affected by those in years ago.8

Instead of studying only consecutive events [31, 32], we build a

transition graph to represent the transitions on all the value pairs

as well as self-transitions on a single value.

Definition 2 (TransitionGraph). For a temporal attribute pair

(T ,A), we build an undirected transition graph GTA = (A, E), where

(1) each vertex ai ∈ A denotes a value in attribute A, and (2) each

edge eij = (ai, aj) ∈ E is associated with a sequence ∆ij of time inter-

vals on T , for representing transitions between values ai and aj .

In order to capture both the lengths and frequencies of transi-

tions, we study the sequence ∆ij of time intervals. Note that self-

edge (ai, ai) ∈ E is also associated with a sequence ∆ii of time

intervals on T , for representing self-transitions on ai .

8Please see Section 5 for an evaluation of various transition time threshold δ .

Figure 3: Transition graph for representing the temporal attribute

pair (instore-time, prod), built upon the time series of prod values

ordered by instore-time

Example 1. For the temporal attribute pair (instore-time, prod),

Figure 3 presents the time series ordered by instore-time, and the

corresponding transition graph Ginstore-time,prod. For simplicity, we

denote a1 =N7, a2 =N8, a3 =S9. Suppose that the transition time

threshold is δ = 5. For the edge e12 = (a1, a2) =(N7,N8), the first

transition between these two values occur in t3 and t4, with time in-

terval ∆1,2[1] = 5. It is worth noting that t2 and t4 is not a valid

transition, whose time interval 6 is greater than δ=5. Similarly, an-

other transition occurs between t6 and t7, but not t5 and t7 with time

interval 6. The sequence of time intervals on transitions between a1
and a2 is thus ∆1,2 = 〈5, 4〉. Self-transitions on a3 = S9 occur in

(t10, t11) and (t11, t12) with the same interval 3. The corresponding

sequence of time intervals on self-transitions is ∆3,3 = 〈3, 3〉.

3.2 Transition Graph AutoEncoder

After representing temporal attribute pairs as transition graphs, as

introduced in Section 2.2, we need to match the transition graphs

in order to evaluate the distances of two temporal attribute pairs.

Unfortunately, directly evaluating the syntactic distance [9] on ver-

tices of values ai and edges of transition time intervals ∆ij may not

perform well. The reason is that values as well as the number of

transitions on values could be distinct in different relations (see

the intuitions in detail below). To enable matching and capture the

deep temporal features, we embed vertices and edges into a low di-

mensional space. The distances of two transition graphs are then

evaluated on the embeddings vi and vij of vertices and edges, re-

spectively, in Section 4.

3.2.1 Intuition. (1) Directly evaluating the syntactic distance of

values in vertices may not work well, for two reasons. (1a) The

same values (or timestamps) in different attributes could have dif-

ferent semantics, e.g., either instore-time or order-time in Figure 1.

(1b) On the other hand, the values of the same attributes could be

distant and not overlapping in relations R andU for matching. For

example, the temperature values of the same wind turbine would

be in different ranges in summer andwinter. (2) It is difficult to eval-

uate the distance of the sequences on edges, which have different

lengths of transitions. For instance, in Figure 2, there are two tran-

sitions with time intervals ∆1,2 = 〈5, 4〉 in the edge (a1, a2), while

the edge (b1, b2) has only one value in the sequence ∆′
1,2 = 〈12〉.

In order to match various values ai and sequences ∆ij of time

intervals on transitions in different lengths, we propose to embed

vertices and edges into a unified space.

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

712

Figure 4: Structure of transition graph AutoEncoder, for learning vertex embeddings vi and edge embeddings vij . The encoder takes the

sequence of time intervals on transitions ∆ij as the input and puts it into two layers of Bi-LSTM. We concatenate and aggregate the outputs

of two Bi-LSTM layers. The output is passed to two fully connected layers (FC). The embedding vij for edge eij is obtained by aggregating the

corresponding vertex embeddings vi and vj of values ai and aj . The edge embedding vij is concatenated with the output of FC layers as the

context vector of the encoder. The decoder passes the context vector to two layers of GRU and one fully connected layer to reconstruct ∆̂ij .

Existing graph representation methods [4, 12, 30] or graph con-

volution network (GCN) [20] cannot be used to represent the tran-

sition graph. Rather than single values on edges that can be em-

bedded into an adjacent matrix, our edges eij are attached with a

sequence ∆ij of transition time intervals.

3.2.2 Embedding. Without providing labels on matched vertices

or edges, the embedding relies on unsupervised models. Given ∆ij

as a sequence, we employ sequencemodelingwith neural networks,

such as LSTM [14] and GRU [6].

Figure 4 presents our transition graph auto-encoder. It takes the

sequence ∆ij of each edge eij as the input, i.e., 〈∆ij[1],∆ij[2], . . . ,

∆ij[n]〉, and reconstruct 〈∆̂ij[1], ∆̂ij[2], . . . , ∆̂ij[n]〉, where n is the

length of ∆ij , and ∆̂ij is the reconstructed sequence. The learning

process is thus to minimize the reconstruction error,

n∑

κ=1

‖ ∆ij[κ] − ∆̂ij[κ] ‖
2

2. (3)

The output vector z of the encoder is the input of the decoder. It

is concatenated by two parts, (1) the output of the sequence embed-

ding layer w.r.t. the sequence ∆ij , and (2) the output of the value

embedding layer w.r.t. the values ai and aj in the edge eij . The in-

put vi of the value ai can be initialized by Xavier initialization [11].

By aggregating vi and vj , it forms the encoding vij of the edge eij ,

e.g., vij = vi + vj . Both the vertex and edge embeddings vi and vij

are gradually trained by back propagation.

4 DETERMINING MATCHING DISTANCE

Once the vertices and edges are represented as vectors by the tran-

sition graph AutoEncoder, as illustrated in Figure 2, we are now

ready to match two transition graphs. It is to find a mapping m

with the minimum distance D(m) between the transition graphs

of two temporal attribute pairs (T ,A) and (S,B). While the opti-

mal matching problem is generally hard (Theorem 1), we develop

an approximate matching algorithm (Algorithm 1).

4.1 Matching Distance

Given two transition graphs for matching, GTA = (A, E), GSB =

(B, F), let m : A → B be a mapping between them. We define the

distances Dv and De on vertices of values and edges on transitions,

respectively, for evaluating D(m) of transition graphs in Formula 2.

4.1.1 Vertex Distance. Given the embeddings vi of the value ai ∈

A and vmi of themapped valuem(ai) ∈ B, we calculate the distances

of two vectors, e.g., using the squared Euclidean distance [16, 17],

d(vi, v
m
i) =

n∑

k=1

(vi[k] − v
m
i [k])

2
, (4)

where vi[k] is the k-th dimension of vector vi , and similarly for

v
m
i [k].

While the vectors are embedded with temporal features of tran-

sitions, the importance of each value is not considered. Recall that

the length of sequence |∆ij | denotes how often the transitions oc-

cur. Intuitively, vertices and edges, which are involved in more

transitions, play a more critical role in matching. By considering

both the self-transitions and inter-value-transitions of a value ai ,

we define its weight in matching

∑
aj∈A

|∆ij |∑
ekl ∈E

|∆kl |
, where

∑
ekl ∈E |∆kl |

is the total number of transitions in GTA. It denotes the normalized

occurrence frequency of the value ai ∈ A. Similarly, let |∆m
ij | be

the length of sequence for transitions between the mapped values

(m(ai),m(aj)). Theweight of themapped valuem(ai) is

∑
aj∈A

|∆m
ij |∑

ekl ∈F
|∆kl |
.

The vertex distance between a value ai ∈ A and its mapped

value m(ai) ∈ B is finally given by

Dv (ai,m(ai)) = d(vi, v
m
i) ∗ (

∑
aj ∈A |∆ij |

∑
ekl ∈E |∆kl |

+

∑
aj ∈A |∆m

ij |∑
ekl ∈F |∆kl |

), (5)

i.e., the embedding distance weighted by both values.

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

713

4.1.2 Edge Distance. Similar to the vertex distance, we consider

the embeddings vij of an edge (ai, aj) ∈ E and vmij of the correspond-

ing mapped edge (m(ai),m(aj)) ∈ F . The vector distance d(vij, v
m
ij)

is first calculated.

To evaluate theweight of the edge (ai, aj) ∈ E, we again consider

|∆ij | with normalization
|∆ij |∑

ekl ∈E
|∆kl |
. And similarly, the weight of

the corresponding mapped edge (m(a),m(aj)) ∈ F is
|∆m

ij |∑
ekl ∈F

|∆kl |
.

The weighted edge distance between (ai, aj) ∈ E and its mapped

(m(ai),m(aj)) ∈ F is given by

De (ai, aj,m(ai),m(aj)) (6)

= d(vij, v
m
ij) ∗ (

|∆ij |∑
ekl ∈E |∆kl |

+

|∆m
ij |∑

ekl ∈F |∆kl |
).

Example 2. Consider two transition graphs GT1A1
and GS2B2 in

Figure 2. Let m be the mapping in consideration, having m(a1) =

b1, m(a2) = b2, m(a3) = b3. We have
∑
ekl ∈E |∆kl | = 11 and∑

ekl ∈F |∆kl | = 11 for weight normalization. Suppose that the dis-

tance between the embeddings of a1 and b1 is d(v1, v
m
1
) = 2. The

matching distance on vertex a1 is Dv (a1,m(a1)) = (
|∆1,1 |+ |∆1,2 |+ |∆1,3 |

11

+

|∆m
1,1 |+ |∆

m
1,2 |+ |∆

m
1,3 |

11) ∗ d(v1, v
m
1
) = (4

12 +
3
11) ∗ 2. Similarly, given

d(v2,3, v
m
2,3

) = 2.5, the edge distance between (a2, a3) and themapped

(b2, b3) is De (a2, a3,m(a2),m(a3)) = (
|∆2,3 |
11 +

|∆m
2,3 |

11)∗d(v2,3, v
m
2,3

) =

(1
11 +

1
11) ∗ 2.5.

4.2 Hardness Analysis

As stated in Sections 2.1 and 2.2, the optimal graph matching is to

find a mapping with the minimum distance D(m) or D(M). While

the bipartite graph matching that can be efficiently solved in poly-

nomial time [21], it is not the case for transition graph matching.

We need to further evaluate the matching on edges referring to the

mappings on vertices. Given the hardness of the subgraph isomor-

phism problem [19], it is not surprising to show the hardness of

matching the transition graphs.

Theorem 1. Given two transition graphs, GTA=(A, E), GSB=(B, F),

with vertex and edge embeddings, the problem to determine whether

there is a mapping m : A → B such that D(m) = 0 is np-complete.

4.3 Approximate Matching

Referring to the hardness in Theorem 1, we focus on approxima-

tion algorithms for graph matching. While the matching with both

vertex and edge distances is generally hard, as discussed before

Theorem 1, the matching considering only vertex distances could

be efficient. Intuitively, we may start from a relatively good map-

ping using only the vertex matching, and then gradually improve

thematching considering edge distances. Algorithm1 in Section 8.2

presents the pseudo-code of approximation.

To obtain an initial mappingm, we consider only the vertex dis-

tances Dv (ai,m(ai)) in Formula 5. That is, the matching distance is

D′(m) =
∑

ai ∈A

Dv (ai,m(ai)) (7)

in contrast to the one with edge distances in Formula 2. For each

pair of values ai ∈ A and bj ∈ B, from graphs GTA and GSB, respec-

tively, we calculate Dv (ai, bj). By calling the Kuhn-Munkres algo-

rithm [21], it returns an initial mappingmwith theminimumD′(m).

Next, we gradually improve the initial mapping m. Consider

each value pair ai, aj ∈ A of the graph GTA(A, E). By swapping

the mapping of these two values, we obtain a new candidate map-

pingm. As illustrated in Line 5 in Algorithm 1 in Section 8.2, if the

new mapping has a better distance D(m) ≤ D(m′), it will replace

m′ as the new improved mapping. Note that D(m) is the matching

distance with both vertex and edge distances in Formula 2.

For each pair of values ai ∈ A and bj ∈ B, the distance Dv (ai, bj)

can be calculated inO(|A|2) time, referring to Formula 5, where |A|

is the total number of values in attribute A.9 Considering all the

value pairs in A needsO(|A|4) time. The Kuhn-Munkres algorithm

[21] can find the initial mapping m with the minimum D′(m) in

O(|A|3) time. The approximation complexity is thusO(|A|4). To fur-

ther improve the mapping, we may call Algorithm 1 several times.

Example 3. Consider initial mapping m on two transition graphs

GT1A1
andGS2B2 in Figure 2, havingm(a1) = b1, m(a2) = b2, m(a3) =

b3. The corresponding matching distance is D(m) = 3. Let m′ be an-

other mapping by swapping the matching on a1 and a2, i.e., m
′(a1) =

b2, m
′(a2) = b1, m

′(a3) = a3. If we have D(m
′) = 2.9 < D(m) = 3,

then m′ is an improvement of m with smaller matching distance.

5 EXPERIMENT

In the experiments, we compare our proposal to the existing schema

matching approaches over general data without considering the

temporal information, as well as deep learning methods for cap-

turing temporal features in schema matching. The settings of the

experiments are described in Section 8.3.

5.1 Comparison with Existing Approaches

In this experiment, we compare our approach to the uninterpreted

schema matching methods, OPAQUE [18] and FOD [17], for gen-

eral data without considering the temporal information. The rea-

son is that sensor readings have measurement errors, e.g., distinct

temperatures may be returned by different sensors in the same

place. Uninterpreted methods without inferring the meaning of

each value are thus preferred.10 To capture the temporal features,

we consider STS3 [24] in time series matching, which outperforms

the dynamic time warping (DTW) algorithm as reported in [24].

LSTM [14] is also compared as the embedding approach.

Tables 1, 2 and 3 present thematching results over theWindTur-

bine, MotionSense and Excavator datasets, respectively. By vary-

ing the settings of each method,11 we report the best results.

FOD and OPAQUE perform well over the WindTurbine dataset

in Table 1. The reason is that the igbt attribute has a distribution

different from those of topbox and pbox1, as shown in Figure 7(a).

FOD and OPAQUE, investigating the distributions of value occur-

rences, show high accuracy in matching the igbt attribute. Our

9Including the virtual values in Section 3.1 to make attributes A and B the same size.
10See Section 6 for an introduction on uninterpreted schema matching.
11 See Section 5.2 for an evaluation of our proposal under various settings.

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

714

Table 1: Average matching accuracy in WindTurbine (since there

is only one time attribute, its matching accuracy is always 1), with

5 vertices, threshold δ = 200, 1 iteration for TAM

Method time topbox pbox igbt Average

OPAQUE 1.00 0.47 0.47 1.00 0.73

FOD 1.00 0.53 0.49 0.89 0.73

FOD(concat) 1.00 0.35 0.28 0.28 0.48

STS3 1.00 0.40 0.30 0.36 0.51

LSTM 1.00 0.40 0.46 0.27 0.53

TAM(–) 1.00 0.61 0.78 0.57 0.74

TAM(FOD) 1.00 0.75 0.85 0.79 0.85

TAM(LSTM) 1.00 0.61 0.78 0.57 0.74

Table 2: Average matching accuracy in MotionSense (since there

is only one time attribute, its matching accuracy is always 1), with

7 vertices, threshold δ = 1.0 and 1 iteration for TAM

Method time acc.x acc.y acc.z Average

OPAQUE 1.00 0.35 0.47 0.34 0.54

FOD 1.00 0.38 0.36 0.28 0.51

FOD(concat) 1.00 0.35 0.28 0.28 0.48

STS3 1.00 0.86 0.97 0.88 0.93

LSTM 1.00 0.80 0.89 0.91 0.90

TAM(–) 1.00 0.80 0.92 0.77 0.87

TAM(FOD) 1.00 0.70 0.82 0.65 0.79

TAM(LSTM) 1.00 0.89 0.96 0.89 0.94

TAM(FOD) also benefits from the attribute distances of FOD. More-

over, by capturing the distinct transition features of values in top-

box and pbox1 attributes, we can further distinguish these two at-

tributes. As presented in Figure 7(a) in Section 8.3, the time inter-

vals of transitions between two values in pbox1 are longer than

those in topbox.

For the same reason, FOD and OPAQUE do not work over Mo-

tionSense in Table 2, given the very similar distributions of val-

ues in Figure 7(b) in Section 8.3. Simply concatenating the time

attributes does not help, since data are collected with regular time

intervals. STS3 with time series matching distance performs well

by studying the trend of values. LSTM also shows a good perfor-

mance by embedding the deep temporal features. By investigating

the transition features of values, our TAM(LSTM) further improves

the matching accuracy.

LSTM, considering sequences with regular time intervals, does

not work over Excavator in Table 3 with irregular time intervals as

shown in Figure 7(c) in Section 8.3. Our TAM successfully handles

the irregular time intervals. By embedding the distinct features on

time intervals of two time attributes, time1 and time2, we can dis-

tinguish them.

To sum up, our proposed TAM show the best performances (to-

gether with either FOD or LSTM) in all datasets. Indeed, by using

only the transition features between values without considering

the attribute matching distance, TAM(–) already shows relatively

Table 3: Average matching accuracy in Excavator (since there are

two alternatives in matching time attributes, either both correct or

both wrong, time1 and time2 share the same matching accuracies;

and similarly for la and lo), with 10 vertices, threshold δ = 300 and

1 iteration for TAM

Method time1 time2 la lo Average

OPAQUE 0.49 0.49 0.52 0.52 0.50

FOD 0.50 0.50 0.45 0.45 0.48

FOD(concat) 0.53 0.53 0.47 0.47 0.50

STS3 0.51 0.51 0.50 0.50 0.51

LSTM 0.49 0.49 0.54 0.54 0.52

TAM(–) 0.60 0.60 0.71 0.71 0.66

TAM(FOD) 0.60 0.60 0.71 0.71 0.66

TAM(LSTM) 0.61 0.61 0.73 0.73 0.67

high accuracy. The results verify the rationale of studying the tran-

sitions of values over time in matching temporal attributes. For the

data with different value distributions in the relations to match,

such as WindTurbine data in Figure 7(a) or Excavator data in Fig-

ure 7(c), TAM(FOD) considering value distributions in attribute

matching is preferred. For those data with very similar values and

regular time intervals, e.g., the MotionSense data in Figure 7(b),

TAM(LSTM) may perform.

5.2 Evaluation of Proposed Methods

Next, we evaluate how the proposed method TAM performs under

various settings. In addition to the average matching accuracy, we

report the major time costs of different parts in our proposal, in-

cluding (1) training LSTM to obtain the attribute distances Ds (T ,

M(T)) and Ds (A,M(A)) as mentioned in Section 2.1, (2) training

AutoEncoder to embed the transitions of value pairs (ai, aj) into

vij in Section 3, and (3) matching transition graphs GTA and GSB

to evaluate the matching distances of two temporal attribute pairs

(T ,A) and (S,B) in Section 4. We omit the time costs of using FOD

to compute the attribute matching distances which are very effi-

cient compared to the LSTM training.

5.2.1 Varying Transition Graph Size. Recall that each vertex in the

transition graph GTA denotes a value a in the attribute A, as in-

troduced in Definition 2. For numerical attributes, we discretize

values into a finite number of intervals. That is, each value inter-

val denotes a vertex in the transition graph. By setting different

lengths of intervals, we vary the size of transition graphs.

Figures 5(a), 5(c) and 5(e), present the results by varying the

number of vertices over three datasets. When the graph size is too

small (the extreme case would have only two vertices), the fine-

grained transitions of values cannot be adequately represented. The

corresponding matching accuracy is low. On the other hand, if the

graph size is too large, the number of transitions observed between

two extremely fine-grained value intervals would be limited. With-

out sufficient observations, the training of AutoEncoder in Section

3.2 is unreliable. The matching accuracy drops.

The graph size affects the time costs of both AutoEncoder train-

ing and transition graph matching. With the increase of graph size,

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

715

T A M(-) T A M(F O D) T A M(L S T M)

L S T M A ut o E n c o d er M at c hi n g

 0. 5

 0. 5 5

 0. 6

 0. 6 5

 0. 7

 0. 7 5

 0. 8

 0. 8 5

3 5 7 9 1 1 1 3 1 5

Ac
c
ur

ac
y

V erti c e s

(a) Wi n d T ur bi n e

 0

 5 0 0

 1 0 0 0

 1 5 0 0

 2 0 0 0

 2 5 0 0

3 5 7 9 1 1 1 3 1 5
Ti

m
e

c
os

t
(s

)
V erti c e s

(b) Wi n d T ur bi n e

 0. 6

 0. 6 5

 0. 7

 0. 7 5

 0. 8

 0. 8 5

 0. 9

 0. 9 5

3 5 7 9 1 1 1 3 1 5

Ac
c
ur

ac
y

V erti c e s

(c) M oti o n S e n s e

 0

 5 0 0

 1 0 0 0

 1 5 0 0

 2 0 0 0

 2 5 0 0

 3 0 0 0

3 5 7 9 1 1 1 3 1 5

Ti
m
e

c
os

t
(s

)

V erti c e s

(d) M oti o n S e n s e

 0. 5 7
 0. 5 8
 0. 5 9
 0. 6

 0. 6 1
 0. 6 2
 0. 6 3
 0. 6 4
 0. 6 5
 0. 6 6
 0. 6 7
 0. 6 8

9 1 0 1 1 1 2 1 3 1 4

Ac
c
ur

ac
y

V erti c e s

(e) E x c a v at or

 0

 5 0 0

 1 0 0 0

 1 5 0 0

 2 0 0 0

 2 5 0 0

 3 0 0 0

 3 5 0 0

 4 0 0 0

9 1 0 1 1 1 2 1 3 1 4

Ti
m
e

c
os

t
(s

)

V erti c e s

(f) E x c a v at or

Fi g u r e 5: V ar yi n g v erti c es i n tr a nsiti o n gr a p hs

al t h o u g h t h e n u m b er of tr a nsiti o ns b et w e e n t w o v erti c es r e d u c es,
t h er e ar e m or e v erti c es a n d e d g es i n tr ai ni n g. As ill u str at e d i n Fi g-
ur es 5(b), 5(d) a n d 5(f), t h e A ut o E n c o d er tr ai ni n g ti m e c o st s g e n er-
all y i n cr e as e wit h gr a p h si z e. It is n ot s ur prisi n g t h at t h e ti m e c o st s
of tr a nsiti o n gr a p h m at c hi n g i n cr e as e h e a vil y gi v e n m or e v erti c es.

T h er e b y, a m o d er at el y l ar g e gr a p h si z e is pr ef err e d, e. g., 5 t o 1 0,
w hi c h h as a b ett er m at c hi n g a c c ur a c y a n d k e e p s ti m e c o st s l o w.
W h e n v al u es fl u ct u at e si g ni fi c a ntl y i n a s h ort p eri o d, s u c h as Wi n d-
T ur bi n e a n d M oti o n S e ns e i n Fi g ur e 7, a s m all n u m b er of v erti c es
ar e s u ffi ci e nt. O n t h e ot h er h a n d, if t h e v al u e c h a n g es ar e s m all i n
tr a nsiti o ns, e. g., i n E x c a v at or, fi n e- gr ai n e d v erti c es ar e e x p e ct e d.

5. 2. 2 V ar yi n g Tr a nsiti o n Ti m e T hr es h ol d δ . W h e n st u d yi n g tr a nsi-
ti o ns b et w e e n t w o v al u es, w e oft e n i g n or e t h o s e wit h ti m e i nt er-
v al s gr e at er t h a n a t hr es h ol d δ , as dis c u ss e d aft er D e fi niti o n 1. T h e
r el ati o ns hi p b et w e e n t w o v al u es dist a nt i n ti m e is oft e n w e a k a n d
t h u s d o es n ot h el p m u c h i n r e pr es e nti n g t h e t e m p or al attri b ut e
p air. V ar yi n g t h e tr a nsiti o n ti m e t hr es h ol d δ a ff e ct s t h e n u m b er of
tr a nsiti o ns c o nsi d er e d i n r e pr es e nti n g a t e m p or al attri b ut e p air.

Fi g ur es 6(a), 6(c) a n d 6(e) r e p ort t h e r es ult s u n d er v ari o u s t hr es h-
ol d s of tr a nsiti o n ti m e i nt er v al s. If t h e t hr es h ol d δ is t o o s m all,
o nl y t h e tr a nsiti o ns wit h v er y s h ort ti m e i nt er v al s will b e c o nsi d-
er e d. Wit h o ut s u ffi ci e nt o b s er v ati o ns, A ut o E n c o d er tr ai ni n g o v er
t h e tr a nsiti o ns i n S e cti o n 3. 2 w o ul d b e u nr eli a bl e a n d l e a d s t o l o w er
m at c hi n g a c c ur a c y. W h e n s etti n g t hr es h ol d δ t o o l ar g e, h o w e v er,

T A M(-) T A M(F O D) T A M(L S T M)

L S T M A ut o E n c o d er M at c hi n g

 0. 5 5

 0. 6

 0. 6 5

 0. 7

 0. 7 5

 0. 8

 0. 8 5

5 0 1 5 0 2 5 0 3 5 0 4 5 0 5 5 0

Ac
c
ur

ac
y

T hr e s h ol d δ

(a) Wi n d T ur bi n e

 0

 2 0 0

 4 0 0

 6 0 0

 8 0 0

 1 0 0 0

 1 2 0 0

5 0 1 5 0 2 5 0 3 5 0 4 5 0 5 5 0

Ti
m
e

c
os

t
(s

)

T hr e s h ol d δ

(b) Wi n d T ur bi n e

 0. 6

 0. 6 5

 0. 7

 0. 7 5

 0. 8

 0. 8 5

 0. 9

 0. 9 5

0. 1 0. 2 0. 4 0. 6 0. 8 1. 0 1. 2

Ac
c
ur

ac
y

T hr e s h ol d δ

(c) M oti o n S e n s e

 0

 1 0 0

 2 0 0

 3 0 0

 4 0 0

 5 0 0

 6 0 0

 7 0 0

 8 0 0

0. 1 0. 2 0. 4 0. 6 0. 8 1. 0 1. 2

Ti
m
e

c
os

t
(s

)

T hr e s h ol d δ

(d) M oti o n S e n s e

 0. 4 6
 0. 4 8
 0. 5

 0. 5 2
 0. 5 4
 0. 5 6
 0. 5 8
 0. 6

 0. 6 2
 0. 6 4
 0. 6 6

2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0

Ac
c
ur

ac
y

T hr e s h ol d δ

(e) E x c a v at or

 0

 5 0 0

 1 0 0 0

 1 5 0 0

 2 0 0 0

 2 5 0 0

 3 0 0 0

2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0

Ti
m
e

c
os

t
(s

)

T hr e s h ol d δ

(f) E x c a v at or

Fi g u r e 6: V ar yi n g t hr es h ol d δ f or tr a nsiti o n ti m e i nt er v al s

t h o s e m e a ni n gl ess tr a nsiti o ns wit h l o n g ti m e i nt er v al s w o ul d dis-
t ur b A ut o E n c o d er tr ai ni n g. T h e m at c hi n g a c c ur a c y dr o p s a g ai n.

T h e ti m e c o st of A ut o E n c o d er tr ai ni n g i n cr e as es sli g htl y wit h
t h e t hr es h ol d δ , si n c e m or e tr a nsiti o ns ar e c o nsi d er e d i n tr ai ni n g.
It is n ot si g ni fi c a nt, gi v e n t h e fi x e d gr a p h si z e.

6 R E L A T E D W O R K

S c h e m a M at c hi n g. G e n eri c s c h e m a m at c hi n g a cr o ss r el ati o n al d at a-
b as es h as b e e n wi d el y st u di e d [2, 3, 2 6]. A n at ur al i d e a is t o r e pr e-
s e nt e a c h attri b ut e, e. g., eit h er b y t h e attri b ut e n a m e or t h e v al u es
a p p e ari n g i n t h e attri b ut e. O n c e t h e attri b ut es ar e r e pr es e nt e d, at-
tri b ut es wit h s m all er m at c hi n g dist a n c es o n r e pr es e nt ati o ns will
b e m at c h e d [2 2]. Si n c e d at a v al u es fr o m h et er o g e n e o u s s o ur c es
m a y h a v e disti n ct e n c o di n g, u ni nt er pr et e d m at c hi n g t e c h ni q u es
ar e pr o p o s e d. F O D [1 7] e m pl o ys t h e pr o b a bilit y m ass f u n cti o n a n d
t h e pr o b a bilit y d e nsit y f u n cti o n t o r e pr es e nt attri b ut es. O P A Q U E
[1 8] utili z es i nt er- attri b ut e d e p e n d e n c y r el ati o ns i n c o m p uti n g t h e
m at c hi n g dist a n c es of t w o r el ati o ns. H o w e v er, all t h e m et h o d s ar e
d e di c at e d t o t h e g e n er al d at a, w hil e t h e t e m p or al attri b ut e m at c h-
i n g c o nsi d er e d i n t his p a p er is n ot st u di e d. As ill u str at e d i n t h e I n-
tr o d u cti o n, c a pt uri n g t h e t e m p or al i nf or m ati o n is ess e nti al i n r e p-
r es e nti n g a n d m at c hi n g t e m p or al attri b ut es. O ur pr o p o s e d T A M
c o m pl e m e nt s a n d c a n al s o utili z e t h e e xisti n g t e c h ni q u es o n m at c h-
i n g attri b ut es, e. g., T A M(F O D) i n t h e e x p eri m e nt s.

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

716

Learning over Data Sequences. To represent temporal features, ma-

chine learning techniques over data sequences can be considered.

With the feedback loop network structure, Recurrent Neural Net-

work (RNN) performswell on various types of sequential data such

as text [23], video [8], time series [13, 25], etc. Long-Short Term

Memory (LSTM) [14] is one such popular variant that can han-

dle long term event dependencies by utilizing a gated architecture.

LSTM-based AutoEncoder has been proposed to learn representa-

tions of video sequences [29]. However, these RNN (LSTM) models

assume regular time intervals between consecutive data in a se-

quence. Time-Aware LSTM [1], a variant of LSTM, takes irregular

time intervals of data as inputs. Unfortunately, such a model can

only represent the irregular temporal information between consec-

utive tuples.

GraphMatching. As shown in Figure 2, our TAM framework needs

to match two transition graphs, in order to determine the match-

ing distance of two temporal attribute pairs. It is worth noting that

both vertices and edges in the transition graph are labeled with

embeddings, conventional algorithms such as graph edit distance

(GED) [9, 27] do not apply. Graph matching is also used in match-

ing event data [28, 33]. However, the event data dependency graph

[10, 32] does not capture the extensive transition information as in-

troduced in Section 3.1 in this paper. Moreover, different from the

bipartite graph matching [15], edge matching distances need to be

studied. Nevertheless, by considering only the vertex matching dis-

tances as bipartite graph matching, Kuhn-Munkres algorithm [21]

provides an initial mapping for our approximation in Section 4.3.

7 CONCLUSIONS

In this paper, we study the matching of temporal attributes from

heterogeneous sources. The problem is particularly challenging

since values as well as timestamps from different attributes could

be similar. On the other hand, values of the same attribute may un-

fortunately be distinct in different time spans and thus difficult to

identify. Intuitively, we can rely on the temporal information em-

bedded in the attribute values. Existing generic schema matching

techniques, however, seldom take account of such temporal infor-

mation. In this sense, we propose to represent an attribute A to-

gether with a time attribute T to capture the temporal information,

namely a temporal attribute pair (T ,A). Values in A are ordered as

a time series referring to the corresponding timestamps in T . To

capture the temporal features, we embed the fine-grained transi-

tions between two values in the time series into a unified vector.

The matching distance of two temporal attribute pairs (T ,A) and

(S,B) is thus evaluated by comparing their transition embeddings.

While computing the optimal matching distance is np-hard (Theo-

rem 1), we devise an approximate matching algorithm (Algorithm

8.2).. Experiments on several real-world datasets demonstrate that

our proposal can successfully distinguish different attributes with

similar values and timestamps, and match the same attributeswith

distinct values and timestamps.

Acknowledgement. This work is supported in part by the National

Key Research and Development Plan (2019YFB1705301), the Na-

tional Natural Science Foundation of China (61572272, 71690231),

and Samsung Research, Samsung Electronics Co., Ltd.

REFERENCES
[1] I. M. Baytas, C. Xiao, X. Zhang, F.Wang, A. K. Jain, and J. Zhou. Patient subtyping

via time-aware LSTM networks. In SIGKDD, pages 65–74. ACM, 2017.
[2] Z. Bellahsene, A. Bonifati, and E. Rahm, editors. Schema Matching and Mapping.

Data-Centric Systems and Applications. Springer, 2011.
[3] P. A. Bernstein, J. Madhavan, and E. Rahm. Generic schema matching, ten years

later. PVLDB, 4(11):695–701, 2011.
[4] S. Bonner, I. Kureshi, J. Brennan, G. Theodoropoulos, A. S. McGough, and

B. Obara. Exploring the semantic content of unsupervised graph embeddings:
An empirical study. Data Science and Engineering, 4(3):269–289, 2019.

[5] K. Cheng and A. S. Krishnakumar. Automatic generation of functional vectors
using the extended finite state machine model. ACM TODAES, 1(1):57–79, 1996.

[6] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio. Empirical evaluation of gated
recurrent neural networks on sequence modeling. CoRR, abs/1412.3555, 2014.

[7] H. Elmeleegy, M.Ouzzani, andA. K. Elmagarmid. Usage-based schemamatching.
In ICDE, pages 20–29, 2008.

[8] Y. Fan, X. Lu, D. Li, and Y. Liu. Video-based emotion recognition using CNN-
RNN and C3D hybrid networks. In ICMI, pages 445–450, 2016.

[9] X. Gao, B. Xiao, D. Tao, andX. Li. A surveyof graph edit distance. PAA, 13(1):113–
129, 2010.

[10] Y. Gao, S. Song, X. Zhu, J. Wang, X. Lian, and L. Zou. Matching heterogeneous
event data. IEEE Trans. Knowl. Data Eng., 30(11):2157–2170, 2018.

[11] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In AISTATS, pages 249–256, 2010.

[12] A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In
SIGKDD, pages 855–864. ACM, 2016.

[13] N. Gugulothu, V. TV, P. Malhotra, L. Vig, P. Agarwal, and G. Shroff. Predicting
remaining useful life using time series embeddings based on recurrent neural
networks. CoRR, abs/1709.01073, 2017.

[14] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computa-
tion, 9(8):1735–1780, 1997.

[15] A. Itai, M. Rodeh, and S. L. Tanimoto. Some matching problems for bipartite
graphs. J. ACM, 25(4):517–525, 1978.

[16] A. R. Jaiswal, D. J. Miller, and P. Mitra. Uninterpreted schema matching with
embedded value mapping under opaque column names and data values. IEEE
TKDE, 22(2):291–304, 2010.

[17] A. R. Jaiswal, D. J. Miller, and P. Mitra. Schema matching and embedded value
mapping for databases with opaque column names and mixed continuous and
discrete-valued data fields. ACM TODS, 38(1):2:1–2:34, 2013.

[18] J. Kang and J. F. Naughton. On schema matching with opaque column names
and data values. In SIGMOD, pages 205–216. ACM, 2003.

[19] R. M. Karp. Reducibility among combinatorial problems. In 50 Years of Integer
Programming 1958-2008 - From the Early Years to the State-of-the-Art, pages 219–
241. Springer, 2010.

[20] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolu-
tional networks. In ICLR. OpenReview.net, 2017.

[21] H. W. Kuhn. The hungarian method for the assignment problem. In 50 Years
of Integer Programming 1958-2008 - From the Early Years to the State-of-the-Art,
pages 29–47. Springer, 2010.

[22] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph
matching algorithm and its application to schemamatching. In ICDE, pages 117–
128. IEEE Computer Society, 2002.

[23] R. O. Messina and J. Louradour. Segmentation-free handwritten chinese text
recognition with LSTM-RNN. In ICDAR, pages 171–175. IEEE Computer Society,
2015.

[24] J. Peng, H. Wang, J. Li, and H. Gao. Set-based similarity search for time series.
In SIGMOD, pages 2039–2052. ACM, 2016.

[25] Y. Qin, D. Song, H. Chen, W. Cheng, G. Jiang, and G. W. Cottrell. A dual-stage
attention-based recurrent neural network for time series prediction. In IJCAI,
pages 2627–2633. ijcai.org, 2017.

[26] E. Rahm and P.A. Bernstein. A surveyof approaches to automatic schemamatch-
ing. VLDB J., 10(4):334–350, 2001.

[27] A. Sanfeliu and K. Fu. A distance measure between attributed relational graphs
for pattern recognition. IEEE SMC, 13(3):353–362, 1983.

[28] S. Song, Y. Gao, C. Wang, X. Zhu, J. Wang, and P. S. Yu. Matching heterogeneous
events with patterns. IEEE TKDE, 29(8):1695–1708, 2017.

[29] N. Srivastava, E. Mansimov, and R. Salakhutdinov. Unsupervised learning of
video representations using lstms. In ICML, pages 843–852, 2015.

[30] D. Wang, P. Cui, and W. Zhu. Structural deep network embedding. In SIGKDD,
pages 1225–1234. ACM, 2016.

[31] J. Wang, S. Song, X. Zhu, X. Lin, and J. Sun. Efficient recovery of missing events.
IEEE TKDE, 28(11):2943–2957, 2016.

[32] X. Zhu, S. Song, X. Lian, J. Wang, and L. Zou. Matching heterogeneous event
data. In SIGMOD, pages 1211–1222. ACM, 2014.

[33] X. Zhu, S. Song, J. Wang, P. S. Yu, and J. Sun. Matching heterogeneous
events with patterns. In IEEE 30th International Conference on Data Engineer-
ing, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014, pages 376–387, 2014.

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

717

8 SUPPLEMENT

8.1 Proof of Theorem 1

Proof. The problem is clearly in np, since D(m) can be com-

puted by Formulas 2, 5 and 6 in O(|A|2) time, where |A| is the

number of total values.

To prove the np-hardness, we build a reduction from the sub-

graph isomorphismproblem,which is one of Karp’s 21np-complete

problems [19]. Given two graphs G1 = (V1,E1) and G2 = (V2, E2),

it is to determine whether there is a subgraphG0 = (V0,E0) : V0 ⊆

V2, E0 ⊆ E2 ∩ (V0 × V0) such that there is a mapping π : V1 → V0

having (vi ,vj) ∈ E1 ⇔ (π (vi),π (vj)) ∈ E0.

We build two transition graphs GTA = (A, E) , GSB = (B, F),

having V1 ⊆ A, E1 ⊆ E, V2 = B, E2 ⊆ F . Each ai ∈ A has |∆ii | = 1

and vi = (1), and similarly for bi ∈ B. For each (vi, vj) ∈ E1, the

corresponding (ai, aj) ∈ E has |∆ij | = 1 and vij = (2). For each

(vi, vj) ∈ E2, the corresponding (bi, bj) ∈ F has |∆ij | = 0 and vij =

(2). For the other edges in both graphs, we set |∆ij | = 0 and having

vij = (0) or vij = (1).

We show that there is a mapping π having (vi ,vj) ∈ E1 ⇔

(π (vi),π (vj)) ∈ E0 if and only if there is a mapping m for GTA =

(A, E) and GSB = (B, F) having D(m) = 0.

First, if there exists a mapping π , for each vi ∈ V1, we can find

a π (vi) ∈ V2 that corresponds to ai ∈ A and ami ∈ B, respectively,

having vi = (1) and vmi = (1) referring to the transformation. It fol-

lows Dv (ai,m(ai)) = 0 according to Formula 5. For each (vi, vj) ∈

E1 with vij = (2), the corresponding (π (vi), π (vj)) ∈ E2 has v
m
ij =

(2) referring to the transformation. That is,De (ai, aj ,m(ai),m(aj)) =

0 according to Formula 6. For the other (vi, vj) < E1, we have |∆ij | =

0, |∆m
ij | = 0 in transformation. It leads to De (ai, aj ,m(ai),m(aj)) =

0 as well. To sum up, we have D(m) = 0.

Next, if there exists a mapping m with D(m) = 0, we could find

(π (vi),π (vj)) ∈ E0 for each (vi ,vj) ∈ E1. According to the non-

negative distances, for any (vi ,vj) ∈ E1, it always has De (ai, aj,

m(ai),m(aj)) = 0. Referring to the transformation, the correspond-

ing (m(ai),m(aj)) ∈ F should have |∆m
ij | = 0 and v

m
ij = (2). That is,

we have (π (vi),π (vj)) ∈ E0. �

8.2 Approximate Matching Algorithm

We show below the simple approximate matching algorithm as in-

troduced in Section 4.3. The code is available online.12

Algorithm 1 ImproveMatching(GTA,GSB,m)

Input: An initial mapping m between graphs GTA and GSB

Output: An improved mapping m′ with D(m′) ≤ D(m)

1: m′
= m

2: for each ai, aj ∈ A of GTA(A, E) do

3: m(ai) = m′(aj)

4: m(aj) = m′(ai)

5: if D(m) ≤ D(m′) then

6: m′
= m

7: end if

8: end for

9: return m′

12https://github.com/EliasMei/TAM/

8.3 Experimental Settings

The experiments run on a machine with 2.1GHz CPU and 128GB

memory.

8.3.1 Datasets. We employ three real datasets in experiments.

WindTurbineData. In this dataset, we collect a number of 36,285

tuples over four attributes (time, topbox, pbox1, igbt) from the sen-

sors of a wind turbine. The tuples are recorded with regular time

intervals (every 7 seconds). Figure 7(a) presents the sample data,

where each time series corresponds to a temporal attribute pair,

such as (time, topbox). To evaluate schema matching, we split the

dataset into 10 parts in time order as 10 relations R1,R2, . . . ,R10.

Schema matching is performed over different pairs of relations,

e.g., between R2 and R3. As discussed at the beginning of this pa-

per, the schema matching over temporal data could be very chal-

lenging. Different attributes topbox and pbox1 have similar values,

while the values of the same attribute igbt in various relations for

matching are very different.

MotionSenseData. 13 The dataset collects the readings ofmotion

sensors in smartphones when the users are walking. Each user has

about 6,500 records over four attributes (time, acceleration.x, ac-

celeration.y, acceleration.z). It is also collected with regular time

intervals of 0.02 second. Figure 7(b) presents the sample data in

time series. As shown, the accelerations on three dimensions are

very similar and hard to distinguish using only the value distance.

Again, the data of a user are split into 10 parts in time order as

10 relations R1,R2, . . . ,R10 for schema matching. We repeat the

experiments on 2 users and report the average results.

Excavator Data. We collect the locations of excavators in amine.

Unlike the aforesaid datasets, it has two time attributes, stamped

by CAN bus and device, respectively. The time intervals are irreg-

ular. There are 20 relations (about 12,000 tuples) collected from

two excavators in 10 days over four attributes (time1, time2, lo,

la). Figures 7(c) and (d) present the time series of different tempo-

ral attribute pairs, such as (time1, lo) or (time2, lo). As shown, the

timestamps of two time attributes are slightly different, and thus

difficult to distinguish. Instead of matching Ri from the same con-

text as the previous datasets, the schema matching is performed

between relations Ri and Rj from two excavators, respectively.

8.3.2 Criteria. The accuracy of schemamatching over an attribute

A is evaluated by the proportion of correct mappings

accuracy(A) =

∑n
i=1

∑n
j=i+1 1Ri .A=Mi j (Rj .A)

n ∗ (n − 1)

where n = 10 is the total number of relations for matching, and

1Ri .A=Mi j (Rj .A) is an indicator function having 1Ri .A=Mi j (Rj .A) =

1 if Ri .A = Mi j (Rj .A), otherwise 0. If A is correctly matched in

all relations, we have accuracy(A) = 1. Instead, accuracy(A) = 0

denotes that none of the matches for the attribute is correct.

8.3.3 Implementation Details. FOD [17] represents each attribute

by a probability mass function (PMF) over the values in the at-

tribute. The distance between any two attributes is thus calculated

on their PMFs, i.e., bothDs (T ,M(T)) for time attribute T ∈ R and

13https://www.kaggle.com/malekzadeh/motionsense-dataset

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

718

0 5000 10000 15000 20000 25000 30000 35000

Time

0

5

10

15

20

25

A
tt

ri
b
u
te

 v
a
lu

e

(a) WindTurbine data

(time, topbox)

(time, pbox1)

(time, igbt)

0 25 50 75 100 125 150 175

Time

0.0

0.2

0.4

0.6

0.8

1.0

A
tt

ri
b
u
te

 v
a
lu

e

(b) MotionSense sample data

(time, acceleration.x)

(time, acceleration.y)

(time, acceleration.z)

10-1
4 08

10-1
4 10

10-1
4 12

10-1
4 14

10-1
4 16

10-1
4 18

10-1
4 20

10-1
4 22

Time (time1 or time2)

0.0

0.2

0.4

0.6

0.8

1.0

A
tt

ri
b
u
te

 v
a
lu

e

(c) Excavator sample data 1

(time1, La)

(time1, Lo)

(time2, La)

(time2, Lo)

12-1
2 00

12-1
2 02

12-1
2 04

12-1
2 06

12-1
2 08

12-1
2 10

12-1
2 12

12-1
2 14

12-1
2 16

12-1
2 18

12-1
2 20

Time (time1 or time2)

0.0

0.2

0.4

0.6

0.8

1.0

A
tt

ri
b
u
te

 v
a
lu

e

(d) Excavator sample data 2

(time1, La)

(time1, Lo)

(time2, La)

(time2, Lo)

Figure 7: Time series of various temporal attribute pairs in WindTurbine, MotionSense and Excavator data

Ds (A,M(A)) for other attribute A ∈ R in Formula 1. The relation-

ships between attributes, however, are ignored. To utilize the tem-

poral information, a straightforward adaption is to concatenate the

values in the temporal attribute pair (T ,A), namely FOD(concat).

OPAQUE [18] considers not only the distances on two attributes

Ds (T ,M(T)),Ds (A,M(A)), but also the distances of two attribute

pairs, including the temporal attribute pairsDp (T ,A,M(T),M(A)).

However, it treats (T ,A) as normal attributes, and considers only

the co-occurrence relationships of values in attributes (T ,A), with-

out exploring the embedded temporal information.

STS3 [24] is a time series matching method. We treat each tem-

poral attribute pair (T ,A) as a time series. The time series match-

ing distance thus measures the distance of Dp (T ,A,M(T),M(A))

for temporal attribute pairs.

LSTM [14] embeds a sequence of values into a vector. Instead

of studying as time series with irregular time intervals in Figure

3, we can only treat each attribute A as a sequence ordered by the

time attribute. An embedding can thus be learned by minimizing

the mean square error (MSE) between the original sequence of the

attribute and the predicted sequence. Indeed, the time attribute T

can also be interpreted as a sequence of timestamp values, and thus

apply LSTM to generate a vector. Finally, the schema matching is

performed by comparing the vector distances of attributes. It is

worth noting that the irregular time intervals between values are

ignored as a sequence.

Our TAM can cooperate with the existing methods for evalu-

ating attribute distances, as discussed in Section 2.1. Therefore,

we have three versions, TAM(–) without using attribute distances

Ds (T ,M(T)) andDs (A,M(A)) in Formula 1, TAM(FOD) using the

attribute distances computed by FOD, and TAM(LSTM)with LSTM-

based attribute distances.14

When there are multiple time attributes, e.g., in Excavator, we

also consider two time attributes as a temporal attribute pair, i.e.,

(time1,time2), as introduced in Section 2.1. The corresponding dis-

tanceDp (time1, time2,M(time1),M(time2)) is utilized in determin-

ing the mapping.

All approaches are implemented in python and report the best

results by testing various parameter settings.

8.4 Reproducibility for Determining Iterations

of Improving Matching

In Section 4.3, we mention to call Algorithm 1 several times to it-

eratively improve the transition graph matching, i.e., m′=Improve

14See a discussion of choosing TAM(FOD) or TAM(LSTM) in practice in Section 5.1.

TAM(-) TAM(FOD) TAM(LSTM) Matching

 0.58
 0.6

 0.62
 0.64
 0.66

 0.68
 0.7

 0.72

 0.74
 0.76

1 2 3 4 5

A
c
c
u

ra
c
y

Iterations

(a) WindTurbine

 60

 80

 100

 120

 140

 160

 180

 200

 220

1 2 3 4 5

T
im

e
 c

o
s
t

(s
)

Iterations

(b) WindTurbine

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

1 2 3 4 5

A
c
c
u

ra
c
y

Iterations

(c) MotionSense

 15

 20

 25

 30

 35

 40

1 2 3 4 5

T
im

e
 c

o
s
t

(s
)

Iterations

(d) MotionSense

 0.65

 0.655

 0.66

 0.665

 0.67

 0.675

 0.68

1 2 3 4 5

A
c
c
u

ra
c
y

Iterations

(e) Excavator

 300
 350
 400
 450
 500
 550
 600
 650
 700
 750
 800
 850

1 2 3 4 5

T
im

e
 c

o
s
t

(s
)

Iterations

(f) Excavator

Figure 8: Varying iterations of improving matching

Matching(GTA,GSB,m
′). Figures 8(a), 8(c) and 8(e), present the re-

sults by varying the number of iterations in improving the transi-

tion graph matching. LSTM and AutoEncoder time costs are not

affected in this experiment on varying the iterations of improving

matching. As shown, thematching accuracy is already high by call-

ing Algorithm 1 once. The results demonstrate the effectiveness

of the approximation proposed in Section 4.3. Indeed, with the in-

crease of iterations, the matching accuracy may decrease a bit in

some cases. The reason is that no transitions are observed between

some values ai and aj , i.e., ∆ij is null. In this case, the vector vij is

simply assigned to 0, which distracts the matching. As aforesaid, it

is also the same reason why the matching accuracy drops with the

increase of graph size in Section 5.2.1. The corresponding match-

ing time cost always increases with more iterations. In this sense,

it is usually sufficient to call Algorithm 1 once in practice.

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

719

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contribution

	2 TAM Overview
	2.1 Matching Temporal Attribute Pairs
	2.2 Matching Transition Graphs
	2.3 Application in Practice

	3 Representing Temporal Attribute
	3.1 Transition Graph for Temporal Attribute
	3.2 Transition Graph AutoEncoder

	4 Determining Matching Distance
	4.1 Matching Distance
	4.2 Hardness Analysis
	4.3 Approximate Matching

	5 Experiment
	5.1 Comparison with Existing Approaches
	5.2 Evaluation of Proposed Methods

	6 Related Work
	7 Conclusions
	References
	8 Supplement
	8.1 Proof of Theorem 1
	8.2 Approximate Matching Algorithm
	8.3 Experimental Settings
	8.4 Reproducibility for Determining Iterations of Improving Matching

