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ABSTRACT

Missing values may appear in various attributes. By “various”, we
mean (1) different types of values in a tuple, such as numerical
or categorical, and (2) different attributes in a tuple, either the de-
pendent or determinant attributes of regression models or depen-
dency rules. Such varieties unfortunately prevent the imputation
performing. In this paper, we propose to study the distance models
that predict distances between tuples for missing data imputation.
The immediate benefits are in two aspects, (1) uniformly process-
ing and collaboratively utilizing the distances on all the attributes
with various types of values, and (2) rather than enumerating the
combinations of imputation candidates on various attributes, we
can directly calculate the most likely distances of missing values
to other complete ones and thus infer the corresponding imputa-
tions. Our major technical highlights include (1) introducing the
imputation statistically explainable by the likelihood on distances,
(2) proving NP-hardness of finding the maximum likelihood im-
putation, and (3) devising the approximation algorithm with per-
formance guarantees. Experiments over datasets with real missing
values demonstrate the superiority of the proposed method com-
pared to 11 existing approaches in 5 categories. Our proposal im-
proves not only the imputation accuracy but also the downstream
applications such as classification, clustering and record matching.
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1 INTRODUCTION

Missing data are prevalent, for instance, owing to device issues
in sensor readings, transmission problems in networks, or privacy
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Street No. Longitude Latitude

t1 Hospital Street 3© 9 1
t2 Hospital St. 4© 8 3
t3 Hospital Street 5© 6 4

t4 New York Street 6 0 1

t5 New York St. 5 2 2

t6 New York St. 4 3 4

t7 New York Street 3 4 5

t8 – (New York Street) 2 5 6
t9 Hospital Street 6© – (5) – (5)

Figure 1: Example POI data with missing values denoted by

– and the corresponding truths in (·).

concerns in survey questionnaire [18]. Thesemissing values would
obviously encumber subsequent applications. The incomplete data
affect not only the induced knowledge in the training phase, but
also the application to the test data where missing values may also
appear. It is not surprising that more accurate missing data impu-
tation generally leads to better performance in downstream appli-
cations, such as classification, clustering or record matching. 1

1.1 Challenges

In practice, missing values could appear in various attributes.
(1) The incomplete attribute could either be categorical or nu-

merical, e.g., categorical Street in t8 or numerical Longitude in
t9 denoted by – in Figure 1. The existing value regression model-
based approaches such as [5, 34] impute numerical values but can-
not handle the categorical ones.

(2) Missing values could appear in various attributes of tuples,
e.g., on Street in t8 but Longitude and Latitude in t9 in Figure 1.
A regression model or dependency rule [28] may use (Street) No.
and Longitude to infer the Latitude value. However, Longitude and

1See an empirical study in Section 5.2.
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Figure 2: Incomplete values appear in both the determinant

attribute Aq and dependent attribute Ap of the value regres-

sion model gp and distance regression model hip

Latitude values are often missing together in GPS readings. With
the missing determinant attribute Longitude, the aforesaid depen-
dency or regression based approaches would not perform. 2

1.2 Proposal

Rather than directly inferring the missing values by using a de-
pendency rule or regression model (gp), as illustrated in Figure 2,
we propose to predict the distances between missing values and
complete ones. The missing values are then imputed according to
the inferred distances. Benefits of using distance regression models
(hip) are in two aspects.

(1) Both the categorical and numerical values can be uniformly
processed and collaboratively utilized. For instance, both the dis-
tances on the categorical attribute Street and the numerical at-
tribute No. are utilized to predict the distance on Latitude. In con-
trast, a value regression model as aforesaid can infer only among
numerical attributes No., Longitude and Latitude, but not the cat-
egorical Street.

(2) Both the determinant and dependent attributes could be ef-
ficiently imputed, i.e., t0[Aq] and t0[Ap] in Figure 2, respectively.
Instead of enumerating all the possible t0[Aq] to determine t0[Ap],
we directly calculate the most likely distances of the missing values
t0[Aq] and t0[Ap] to the complete ones. The imputations are then

determined referring to the estimated distances. 3

Example 1. Consider a point-of-interest (POI) dataset with four

attributes, Street,No., Longitude and Latitude, in Figure 1. Each black

circle© with street number indicates the location (longitude and lati-

tude values) of a POI in theHospital Street. Similarly, the black square

� with street number denotes the location of POI in the New York

Street. The POI data are collected by check-in activities, from various

service apps, with distinct information formats. Some information

may be absent, e.g., the longitude and latitude values of t9 are miss-

ing (we manually label the corresponding truths by red circle ©).

To utilize and impute all the attributes, we study the distances on

attributes between tuples, e.g., ∆Street or ∆Latitude. Regression models

are learned over the distances, such as h(∆No.,∆Longitude,∆Latitude) →

∆Street. The distance of t8[Street] and t7[Street] can thus be predicted

referring to their distances on No., Longitude, Latitude. Based on the

2Please refer to Table 2 in Section 5 for a summary of existing representativemethods
in dealing with various incomplete attributes.
3See Section 4 for the approach in detail.

predicted distance (e.g., edit distance 1), we determine the most likely

imputation t8[Street] = New York Street.

Moreover, the determinant attributes of the aforesaid distance re-

gression model h could also be missing, such as t9[Longitude] and

t9[Latitude]. A natural idea is to enumerate the possible GPS loca-

tions, and determine the most likely one that can accurately predict

the distances between t9 and other tuples on Street using h. Instead

of the costly enumeration, we show in Section 4 how to directly calcu-

late the most likely distances, e.g., ∆Longitude(t9, t2) = 2.792 (without
normalization). Similar to the aforesaid imputation of Street, we have

t9[Longitude] = 5 based on the distances.

The example illustrates that with distance models, we can uni-
formly handle various types of missing values and efficiently im-
pute various attributes of incomplete data.

1.3 Contribution

Our major contributions in this study are as follows.
(1)We formalize the likelihood of a tuplew.r.t. the distance mod-

els for predicting distances between tuples in Section 2. An imputa-
tion statistically explainable by the likelihood on distances is then
derived, which illustrates the rationale of the proposal.

(2) We analyze the hardness of finding the imputation with the
maximum likelihood (Theorem 1) in Section 3. The reduction from
the 3-SAT problem [15]motivates us to relax the problemby imput-
ing individually the incomplete attributes in a tuple, to eliminate
candidate value combinations.

(3) We develop an approximation algorithm by the aforesaid
problem relaxation in Section 4. The bound of approximation ra-
tio is studied in general cases (Proposition 4).

(4) We conduct an extensive evaluation, in Section 5, to demon-
strate the superiority of our proposal in both imputation accuracy
and the improvement of downstream classification, clustering and
record matching applications. The experiments run on a number
of real datasets with (a) artificial missing values knowing the truth,
(b) real missing values having manually labeled truth, and (c) real
missing values without labeled truth but having class labels for ap-
plications.

2 LIKELIHOOD ON DISTANCES

In this section, we first formalize distance models for predicting
distances. Likelihood is then studied w.r.t. the distance predictions.

Consider a relation instance r = {t1, . . . , tn} over schema R =

(A1, . . . ,Am)with complete values. We denote dom(A) the domain
of each attributeA ∈ R. Let t′0 be another tuple over R, e.g., a candi-

date for imputing the incomplete tuple t0. 4We study the likelihood
of t′0 by evaluating its distances to tuples in r .

Let ∆k be a distance metric for each attribute Ak ∈ R, denoted
by ∆k(t

′
0[Ak], ti[Ak]) or simply ∆k(t

′
0, ti), having 0 ≤ ∆k(t

′
0, ti) ≤ 1,

where t′0, ti are tuples from R. For instance, it can be a normaliza-
tion distance [13] for numerical values,

∆k(t
′
0, ti) =

|t′0[Ak] − ti[Ak]|

maxa,b∈dom(Ak) |a − b|
, (1)

4See Section 3.1 for imputation candidates in detail.
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or a n or m ali z e d dist a n c e [ 1 7] f or stri n g v al u es,

∆ k (t ′
0 , ti) =

2 · dis t(t ′
0 [A k ], ti[A k ])

|t ′
0 [A k ]| + |ti[A k ]| + d ist(t ′

0 [A k ], ti[A k ])
, ( 2)

w h er e dist (a , b ) c o ul d b e e dit dist a n c e, c o si n e si mil arit y, j a c c ar d
c o e ffi ci e nt or a n y ot h er stri n g si mil arit y m e as ur es [ 2 1].

2. 1 Di st a n c e M o d el s

I nst e a d of t h e v al u e r e gr essi o n m o d el g t h at dir e ctl y pr e di ct s t h e
missi n g v al u e, w e st u d y t h e dist a n c e r e gr essi o n m o d el [ 6, 7] t h at
pr e di ct s t h e dist a n c es of t ′

0 t o t u pl es ti ∈ r . S u c h pr e di cti o ns o n
dist a n c es ar e t h e n utili z e d t o d et er mi n e t h e m o st li k el y i m p ut ati o n
i n S e cti o n 3. 2.

N ot e t h at di ff er e nt t u pl es m a y h a v e disti n ct dist a n c e r el ati o n-
s hi p s t o n ei g h b or s. F or e x a m pl e, t h e m o d el f or pr e di cti n g t h e dis-
t a n c es t o t8 at t h e cr o ssr o a d s i n Fi g ur e 1 is di ff er e nt fr o m t h at f or
t1 . T h er ef or e, f or e a c h t u pl e ti ∈ r , A p ∈ R , w e c o nsi d er a dist a n c e
r e gr essi o n m o d el h i p. It pr e di ct s t h e dist a n c e ∆ p (t ′

0 , ti) o n attri b ut e
A p , r ef erri n g t o t h eir dist a n c es o n t h e ot h er attri b ut es R \ { A p }
b et w e e n t ′

0 a n d ti,

h i p( {∆ k (t ′
0 , ti) | A k ∈ R \ { A p } }) → ∆ p (t ′

0 , ti).

F or i nst a n c e, h i p c a n b e a p ol y n o mi al r e gr essi o n [ 2], l o gisti c r e gr es-
si o n or si m pl y li n e ar r e gr essi o n [ 2 0].

We d e n ot e x 0 i a v e ct or of dist a n c es o n all t h e attri b ut e A k ∈
R \ { A p } b et w e e n t ′

0 a n d ti ∈ r , t o g et h er wit h a c o nst a nt t er m 1,

x 0 i = (1 x 0 i1 x 0 i2 . . . x 0 i k . . . x 0 i,n − 1 )⊤ ,

w h er e x 0 i k = ∆ k (t ′
0 , ti). L et y 0 i p = ∆ p (t ′

0 , ti) b e t h e dist a n c e t o
pr e di ct b et w e e n t u pl es t ′

0 a n d ti o n attri b ut e A p ∈ R .
T h e dist a n c e r e gr essi o n m o d el h i p of t h e c o m pl et e t u pl e ti ∈ r ,

f or pr e di cti n g dist a n c e ∆ p (t ′
0 , ti) o n attri b ut e A p , is

y 0 i p = h i p(x 0 i) + ε i p, ( 3)

w h er e ε i p is a n err or t er m.

E 2. C o nsi d er t h e r el ati o n r = { t1 , . . . , t7 } i n Fi g ur e 1 wit h
d o m (L atit u d e ) = { 0 , 1 , . . . , 1 0 } . Acc or di n g t o F or m ul a 1, t h e n or-
m ali z e d dist a n c e b et we e n t 2 a n d t 3 o n L atit u d e is ∆ L atit u d e (t2 , t3 ) =
|3 − 4 |
|1 0 − 0 | = 0 .1 . For i n c o m pl et e attri b ut e A 4 = L atit u d e of t 9 , a li n e ar

r e gr essi o n dist a n c e m o d el h 3 4 of t h e c o m pl et e t u pl e t 3 ∈ r, f or pr e-
di cti n g dist a n c e ∆ L atit u d e (t ′

9 , t3 ) o n attri b ut e L atit u d e , c a n b e y9 3 4 =
0 .0 2 2 − 0 .3 0 2 ·∆ Str e et (t

′
9 , t3 )+ 0 .0 6 9 ·∆ N o. (t ′

9 , t3 )+ 0 .7 1 3 ·∆ L o n git u d e (t
′
9 , t3 ).

T h e l e ar ni n g of dist a n c e m o d el h i p f or e a c h ti ∈ r c a n b e p er-
f or m e d o v er a s et of t h e n e ar est n ei g h b or s tj of ti. F or e a c h tj, w e
c o m p ut e it s dist a n c es t o ti o n all attri b ut es, as t h e tr ai ni n g d at a.

U nli k e t h e c o stl y dis c o v er y of d at a d e p e n d e n ci es b y e n u m er at-
i n g t h e c o m bi n ati o ns of d et er mi n a nt attri b ut es, t h e l e ar ni n g of dis-
t a n c e m o d el n at ur all y utili z es all t h e ot h er attri b ut es i n R e x cl u di n g
A p . T h er e c o ul d b e m dist a n c e m o d el s f or e a c h t u pl e ti ∈ r .

2. 2 Di st a n c e Li k eli h o o d

We n o w pr es e nt t h e li k eli h o o d of t ′
0 , r ef erri n g t o it s dist a n c es t o

v ari o u s t u pl es ti ∈ r pr e di ct e d b y t h e c orr es p o n di n g dist a n c e r e-
gr essi o n m o d el s h i p.

F or t h e dist a n c e r e gr essi o n m o d el h i p of ti i n F or m ul a 3, w e c o n-
si d er a n or m al distri b uti o n wit h z er o m e a n a n d v ari a n c e σ i p of t h e

Pr
o
b
a
bil

it
y

ε i p

( a) A S F d at a s et

Pr
o
b
a
bil

it
y

ε i p

( b) R e st a ur a nt d at a s et

Fi g u r e 3: Di st ri b uti o n s of e r r o r t e r m ε i p i n t h e di st a n c e r e-
g r e s si o n m o d el s f r o m t w o di ff e r e nt d at a s et s

err or t er m [ 2 5], i. e., ε i p ∼ N ( 0 ,σ 2
i p). As ill u str at e d i n Fi g ur e 3, s u c h

a n or m al distri b uti o n is wi d el y o b s er v e d i n r e al d at as et s.
It f oll o w s y 0 i p ∼ N ( h i p(x 0 i), σ

2
i p), h a vi n g

f (y 0 i p | x 0 i, h i p) = 2 π σ 2
i p

− 1
2

e x p
−

(y 0 ip − h i p(x 0 i ))
2

2 σ 2
i p .

T h e li k eli h o o d of a t u pl e t ′
0 w.r.t. ti ∈ r r ef erri n g t o it s dist a n c e

r e gr essi o n m o d el h i p is t h u s writt e n as l o g li k eli h o o d

L( t ′
0 | ti , A p ) = l o g f (y 0 i p | x 0 i, h i p) ( 4)

= −
l o g(2 π σ 2

i p)

2
−

(y 0 i p − h i p(x 0 i))
2

2 σ 2
i p

.

C o nsi d eri n g t h e m dist a n c e m o d el s f or pr e di cti n g t h e dist a n c es
o n all attri b ut es A p ∈ R .5 Si n c e t h e dist a n c e m o d el s f or pr e di cti n g
e a c h attri b ut e A p ∈ R ar e i n d e p e n d e nt, t h e li k eli h o o d of a t u pl e t ′

0
w.r.t. ti ∈ r c a n b e writt e n as

L( t ′
0 | ti) = l o g

A p ∈ R

f (y 0 i p | x 0 i, h i p) =
A p ∈ R

L( t ′
0 | ti, A p ) ( 5)

=
A p ∈ R

−
l o g(2 π σ 2

i p)

2
−

(y 0 i p − h i p(x 0 i))
2

2 σ 2
i p

.

I n pr a cti c e, n ot all t h e t u pl es i n r m a y h a v e dist a n c e pr e di cti o n
r el ati o ns hi p s wit h t ′

0 . F or i nst a n c e, as af or es ai d, t h e dist a n c e t o t8
m a y b e pr e di ct e d b y t h e dist a n c e m o d el of t7 , si n c e b ot h of t h e m
ar e cl o s e t o t h e cr o ssr o a d s i n Fi g ur e 1, b ut n ot t1 . T h er ef or e, w e
c o nsi d er o nl y t h e t u pl es wit h t h e l ar g est li k eli h o o d s i n r f or e v al-
u ati n g a t u pl e. L et r (t ′

0 ) d e n ot e t h e s et of κ t u pl es ti ∈ r wit h t h e
l ar g est li k eli h o o d s L( t ′

0 | ti ), i. e., t o p-κ li k eli h o o d s. Si n c e t h e t u-
pl es ar e i n d e p e n d e nt, as w ell as t h e dist a n c e m o d el s, w e h a v e t h e
dist a n c e li k eli h o o d of a t u pl e t ′

0 w.r.t. r

L( t ′
0 | r ) = l o g

ti ∈ r A p ∈ R

f (y 0 i p | x 0 i, h i p) ( 6)

=
ti ∈ r (t′0 )

L( t ′
0 | ti ) =

ti ∈ r (t′0 ) A p ∈ R

L( t ′
0 | ti , A p )

=
ti ∈ r (t′0 ) A p ∈ R

−
l o g(2 π σ 2

i p)

2
−

(y 0 i p − h i p(x 0 i))
2

2 σ 2
i p

.

5 Of c o ur s e, i n pr a cti c e, o n e m a y c o nsi d er o nl y t h e di st a n c e m o d els pr e di cti n g t h e
di st a n c es o n a s u b s et of attri b ut es S ⊂ R .
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Example 3 (Example 2 continued). Consider the relation r =

{t1, . . . , t7} in Figure 1. Let t′9 = (Hospital Street, 6, 6, 4) be an im-

putation candidate for t9. Given the distance model h34 in Example

2 and the corresponding error term with variance σ234 = 0.02, re-
ferring to Formula 4, the likelihood of t′9 w.r.t. h34 of t3 is L(t′9 | t3,

Latitude) = −
log(2π∗0.002)

2 −
(0−(0.022−0.302∗0+0.069∗0.25+0.713∗0))2

2∗0.002 =

2.754. Considering all the 4 distance models, we have L(t′9 | t3) =

1.195 + 1.152 + 2.712 + 2.754 = 7.813. Given κ = 5, it follows
r(t′9) = {t3, t5, t7, t1, t4}. The likelihood is then computed by Formula

6, L(t′9 | r) = 7.813 + 4.724 + 4.098 − 0.136 − 9.234 = 7.265.

3 IMPUTATION VIA DISTANCE LIKELIHOOD
MAXIMIZATION

In this section, we propose to determine themost likely imputation
w.r.t. the aforesaid distance models. Hardness of finding the impu-
tation with the maximum likelihood is analyzed in Theorem 1.

3.1 Imputation Candidates

We consider a set of value candidates

can(t0[Aq]) ⊆ dom(Aq)

for imputing t0[Aq] in a tuple t0. It can be simply the entire domain
of attribute Aq , dom(Aq), or narrowed down by the existing impu-
tation methods (see Section 6 for a survey), for instance, filtered
by distance constraints [28], suggested by k-nearest-neighbors on
complete attributes [1], etc. For the complete attributes in t0, we
denote can(t0[Aq]) = {t0[Aq]}.

By considering all the attributes in R, we define the tuple candi-
dates for imputing t0,

can(t0) =
∏

Aq ∈R

can(t0[Aq]). (7)

Example 4 (Example 2 continued). For incomplete attributes

Longitude and Latitude in t9, with dom(Longitude) = {0, 1, . . . , 10}
and dom(Latitude) = {0, 1, . . . , 10}, we can simply utilize the do-

main of each incomplete attribute to be imputation candidates. It

leads to a number of 121 tuple candidates, i.e., can(t0) ={(Hospital

Street,6,0,0), (Hospital Street,6,0,1), . . . , (Hospital Street,6,10,10)}.

3.2 Problem Statement and Analysis

Among all the possible imputation candidates t′0 ∈ can(t0), we
propose to find the one with the maximum distance likelihood
L(t′0 | r) as defined in Formula 6.

Problem 1. Given a tuple t0 with imputation candidates on each

incomplete attribute, a set of distance models on complete tuples in

r, and a number κ of tuples considered in likelihood evaluation, the

optimum imputation problem is to find an imputation t′0 such that

the likelihood L(t′0 | r) is maximized.

The corresponding decision problem is thus:

Problem 2. Given a tuple t0 with imputation candidates on each

incomplete attribute, a set of distance models on complete tuples in r,

a number κ of tuples considered in likelihood evaluation, and a con-

stant ℓ, the imputation checking problem is to determine whether

exists an imputation t′0 with likelihood L(t′0 | r) ≥ ℓ.

The optimal imputation t′0 is statistically explainable. Referring
to Formula 6, the imputation with the maximum likelihood L(t′0 |

r) is indeed the one with the minimum deviation from the predic-
tions (y0ip − hip(x0i))

2. In this sense, an imputation with distances
to tuples in r most coincide with the underlying distance models.

Example 5 (Example 3 continued). Consider another imputa-

tion candidate t′′9 = (Hospital Street, 6, 5, 5). Similar to Example 3,

we compute the likelihood L(t′′9 | r) with r(t′′9 ) = {t2, t3, t6, t5, t7},

having L(t′′9 | r) = 9.658 + 8.501 + 7.431 + 3.101 + 3.051 = 31.742.
The likelihood is higher than that of t′9 in Example 3. Indeed, t′′9 is

the optimal imputation with the maximum likelihood.

Hardness Analysis. We show that if the number κ is considered as
an input, even for the simple linear regression models hip, the op-
timum imputation problem is NP-hard.

Theorem 1. If the number κ of largest likelihood in L(t′0 | r)

is considered as an input, the imputation checking problem is NP-

complete. (Please see Section A.1 for the proof sketch.)

4 APPROXIMATION WITH INDIVIDUAL
ATTRIBUTES

In this section, rather than enumerating all the tuple candidates
t′0 ∈ can(t0) and computing their tuple likelihoods, we relax the
setting by computing the individual likelihood of each value candi-
date t′0[Aq] ∈ can(t0[Aq]). That is, all the incomplete attributes are
imputed separately by maximizing the value likelihood, given lin-
ear regression distance models hip . We show that with maximizing
the value likelihood over individual attributes, the approximation
performance is guaranteed (Proposition 4).

4.1 Likelihood over Individual Attributes

Let us first introduce the individual likelihood of each value can-
didate t′0[Aq] ∈ can(t0[Aq]) w.r.t. r , denoted by L(t′0[Aq] | r). The
imputation via maximizing the value likelihood is then presented
in Algorithm 1 in Section 4.2.

4.1.1 Value Likelihood Definition. For each attribute Ak ∈ R and
tuple ti ∈ r , we define

δmin
0ik = min

t′0[Ak ]∈can(t0[Ak ])
∆k(t

′
0, ti), (8)

δmax
0ik = max

t′0[Ak ]∈can(t0[Ak ])
∆k(t

′
0, ti), (9)

which denote the lower and upper bounds of distances on attribute
Ak between ti and the possible imputation t′0, respectively. For com-
plete attributes Al and the currently considered value candidate
t′0[Aq], we have

δmin
0il =δ

max
0il = ∆l(t0, ti) = ∆l(t

′
0, ti),

δmin
0iq =δ

max
0iq = ∆q(t

′
0, ti) = ∆q(t

′
0[Aq], ti[Aq]).

Any imputation t′0 with value t′0[Aq] must have distances δmin
0ik

≤

∆k(t
′
0, ti) ≤ δmax

0ik
for all attributes Ak ∈ R.

Consider a linear regression distance model hip with parameter
Φip, i.e.,

y0ip = hip(x0i) + εip = x
⊤
0iΦip + εip,
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where

Φip = (ϕip0 ϕip1 . . . ϕipk . . . ϕip,m−1)
⊤
. (10)

Instead of enumerating t′0 ∈ can(t0) and computing the likeli-
hood L(t′0 | ti ,Ap) of each tuple candidate in Formula 4, we study

directly the most likely distance values in the range of [δmin
0ik , δ

max
0ik

]

on all attributes, to estimate the value likelihood of t′0[Aq] w.r.t. ti
and distance model Φip

L(t′0[Aq] | ti,Ap) = max
δmin
0ip ≤y0ip≤δ

max
0ip ,

δmin
0ik ≤x0ik≤δ

max
0ik

log f (y0ip | x0i,Φip) (11)

= −
log(2πσ2ip)

2
−

1

2σ2ip
min

δmin
0ip ≤y0ip≤δ

max
0ip ,

δmin
0ik ≤x0ik≤δ

max
0ik

(y0ip − x
⊤
0iΦip)

2
.

Similar to tuple likelihood in Formula 6, we define the value

likelihood of t′0[Aq] w.r.t. r

L(t′0[Aq] | r) =
∑

ti ∈r(t
′
0[Aq])

L(t′0[Aq] | ti) (12)

=

∑

ti ∈r(t
′
0[Aq])

∑

Ap ∈R

L(t′0[Aq] | ti,Ap),

where L(t′0[Aq] | ti) is the value likelihood w.r.t. all the distance
models of ti , and r(t′0[Aq]) is the set of κ tuples in r with the largest
value likelihoods L(t′0[Aq] | ti).

Finally, as illustrated in Algorithm 1 in Section 4.2, rather than
considering tuple candidates t′0 ∈ can(t0), we find the imputation
t′0[Aq] ∈ can(t0[Aq])with themaximumvalue likelihoodL(t′0[Aq] |

r) individually for each incomplete attribute Aq.

Example 6 (Example 2 continued). Consider the incomplete

tuple t9 in Figure 1 with can(t9[Longitude]) = {0, 1, . . . , 10} and

can(t9[Latitude]) = {0, 1, . . . , 10}. For complete attributes of t9, e.g.,

A2 = No., we have the bounds of distances between t′9 and t3, δ
min
932 =

δmax
932 = ∆No.(t9, t3) = 0.25. Similarly, for the currently considered

value candidate, e.g. t′9[Longitude] = 5, we have δmin
933 = δmax

933 =

∆Longitude(t
′
9, t3) = 0.1. For the other incomplete attribute, t9[Latitude],

we have δmin
934 = 0 and δmax

934 = 1. To compute the value likelihood

L(t′9[Longitude] | t3, Longitude), the distance of each attribute be-

tween t′9 and t3 can be any value in the range [δmin
93k
, δmax

93k
],Ak ∈ R,

in order to maximize the likelihood. (See Example 7 below for calcu-

lation in detail.)

4.1.2 Value Likelihood Calculation. To calculate the value likeli-
hood L(t′0[Aq] | r) in Formula 12, it is indeed to solve

min
δmin
0ip ≤y0ip≤δ

max
0ip ,

δmin
0ik ≤x0ik≤δ

max
0ik

(y0ip − x
⊤
0iΦip)

2

in Formula 11 for L(t′0[Aq] | ti,Ap).
To minimize the aforesaid squared value, we consider the maxi-

mum and minimum values of error term εip in the distance model

in Formula 3, i.e.,

ϵmax
0ip (t′0[Aq]) = max

δmin
0ip ≤y0ip≤δ

max
0ip ,

δmin
0ik ≤x0ik≤δ

max
0ik

y0ip − x
⊤
0iΦip (13)

=δmax
0ip −

∑

ϕipk>0

δmin
0ik ϕipk −

∑

ϕipk<0

δmax
0ik ϕipk,

ϵmin
0ip (t′0[Aq]) = min

δmin
0ip ≤y0ip≤δ

max
0ip ,

δmin
0ik ≤x0ik≤δ

max
0ik

y0ip − x
⊤
0iΦip (14)

=δmin
0ip −

∑

ϕipk>0

δmax
0ik ϕipk −

∑

ϕipk<0

δmin
0ik ϕipk .

The derivations on both formulas are natural, given that δmax
0ip ≥

δmin
0ip ≥ 0 and δmax

0ik ≥ δmin
0ik ≥ 0 are non-negative distance values.

Lemma 2. If ϵmin
0ip (t′0[Aq]) ≤ 0 ≤ ϵmax

0ip (t′0[Aq]), there must exist

an assignment of y0ip and x0i having y0ip − x
⊤
0iΦip = 0.

We consider all three possible cases, (1) both ϵmin
0ip (t′0[Aq]) and

ϵmax
0ip (t′0[Aq]) are positive, (2) both of them are negative, and (3)

otherwise ϵmin
0ip (t′0[Aq]) ≤ 0 ≤ ϵmax

0ip (t′0[Aq]). Referring to Lemma 2,

the value likelihood in Formula 11 can be directly calculated.

L(t′0[Aq] | ti ,Ap) = (15)





−
log(2πσ 2

ip)

2 − 1
2σ 2

ip

(ϵmin
0ip (t0[Aq]))

2, 0 < ϵmin
0ip (t0[Aq])

−
log(2πσ 2

ip)

2 − 1
2σ 2

ip

(ϵmax
0ip (t0[Aq]))

2, ϵmax
0ip (t0[Aq]) < 0

−
log(2πσ 2

ip)

2 , otherwise

The bounds of distances δmin
0ik and δmax

0ik
can be determined by

can(t0[Ak]) in O(c) time, referring to Formulas 8 and 9. Consider-
ing all the m attributes, it costs O(cm) to compute δmin

0ik and δmax
0ik

for all the attributes Ak ∈ R. Together with the cost O(m) for com-
puting ϵmin

0ip (t′0[Aq]) and ϵmax
0ip (t′0[Aq]), the time complexity of com-

puting L(t′0[Aq] | ti ,Ap) is O(cm).

Example 7 (Example 6 continued). Given the incomplete tuple

t9 with δmin
93k and δmax

93k w.r.t. tuple t3 ∈ r for each attribute Ak ∈

R. Consider again the value candidate t′9[Longitude] = 5, we have
ϵmax
933 (t′9[Longitude]) = 0.1 − (−0.065+ 0 ∗ 0.483+ 0.25 ∗ 0.010+ 0 ∗

1.241) = 0.162 and ϵmin
933 (t

′
9[Longitude]) = 0.1−(−0.065+0∗0.483+

0.25 ∗ 0.010 + 1 ∗ 1.241) = −1.079. Since ϵmin
933 (t

′
9[Longitude]) < 0 <

ϵmax
933 (t′9[Longitude]), according to Formula 15, the value likelihood

has L(t′9[Longitude] | t3, Longitude) = −
log(2π∗0.004)

2 = 2.683.

4.2 Approximation Algorithm

Algorithm 1 in Section A presents the imputation via maximizing
the value likelihood on each incomplete attribute individually. In-
stead of enumerating tuple candidates t′0 ∈ can(t0), DLM investi-
gates each value candidate t′0[Aq] ∈ can(t0[Aq]) separately, in Line
3.With Formulas 12 and 15, the value likelihoodsL(t′0[Aq] | ti,Ap),
L(t′0[Aq] | ti) and L(t′0[Aq] | r) are calculated. Line 10 finds the
imputation with the maximum L(t′0[Aq] | r), for each incomplete
attribute Aq ∈ U in t0 in Line 2.
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As illustrated in Section 4.1.2, Line 6 in Algorithm 1 costs O(cm)

to calculate the likelihood L(t′0[Aq] | ti ,Ap). Similar to the cost of
computing the tuple likelihood, a value likelihood L(t′0[Aq] | r)

can thus be calculated in O(cm2n + n logκ) time. By considering c

value candidates for incomplete attribute Aq , the time complexity
of Algorithm 1 is O(cm(cm2n + n logκ)), i.e., runs in polynomial
time.

Example 8. Rather than considering and evaluating all the possi-

ble 121 tuple candidates in can(t9) of t9 as in Examples 4, Line 10 in

Algorithm 1 finds an imputation with the maximum value likelihood

for each incomplete attribute, i.e., L(t′9[Longitude] = 5 | r) = 52.496
and L(t′9[Latitude] = 5 | r) = 50.135.

4.3 Performance Analysis

Consider the tuple likelihood L(t′0 | r) defined in Formula 6 of
the imputation t′0 returned by approximation Algorithm 1, which
maximizes the value likelihoodL(t′0[Aq] | r) in Formula 12 instead.
Let L(t∗0 | r) be the tuple likelihood of the optimum imputation t∗0 .

Lemma 3. For any Aq ∈ R, the approximate imputation t′0 and

the optimal solution t∗0 have

L(t′0 | r) ≤ L(t∗0 | r) ≤ L(t∗0 [Aq] | r) ≤ L(t′0[Aq] | r).

By Lemma 3, we obtain an upper bound of the maximum tuple
likelihood. To capture more precisely the relationships between
L(t′0 | r) and L(t∗0 | r), we further investigate the bounds of

ϵmax
0ip (t′0[Aq]) and ϵmin

0ip (t′0[Aq]) for error terms in Formulas 13 and

14, respectively, which are used to calculate the value likelihood
L(t′0[Aq] | ti ,Ap) in Formula 15. For each Φip , the parameter of
distance model hip in Formula 10, let φmax

ip = 1 −
∑
ϕipk<0 ϕipk and

φmin
ip = −

∑
ϕipk>0 ϕipk , havingφ

min
ip ≤ ϵmin

0ip (t0[Aq]), ϵ
max
0ip (t0[Aq]) ≤

φmax
ip .We show that the approximation performance is bounded.

Proposition 4. Approximation Algorithm 1 returns an approxi-

mate imputation t′0, having

L(t′0 | r) ≥
α

β
L(t∗0 | r),

where

α = min
ti ∈r,Ap ∈R

(

−
log(2πσ2ip)

2
−
max((φmin

ip )2, (φmax
ip )2)

2σ2ip

)

,

β = max
ti ∈r,Ap ∈R

(

−
log(2πσ2ip)

2

)

,

are the minimum and maximum log likelihoods of a tuple referring

to the distance regression model in Formula 4.

5 EXPERIMENT

In this section, we compare our proposal DLM with the existing
approaches, in terms of both imputation accuracy and improve-
ment of downstream applications. The experiments run on a ma-
chine with 3.1GHz CPU and 16GB memory. Table 1 summarizes
the datasets used in the experiments. Table 2 lists the major com-
petitors. Please see Section A.5 for detailed experimental settings.

Table 1: Dataset summary

Dataset |r | |R| Data Type Missing Value

Restaurant 864 4 categorical artificial
Solar-Flare 1.4k 10 categorical artificial
Mushroom 5.6k 22 categorical artificial
ASF 1.5k 6 numerical artificial
Letter 20k 16 numerical artificial
GPS 328 3 numerical real, labeled truth
MAM 1k 5 numerical real, no truth
Adult 49k 14 both real, no truth

Table 2: Representative imputation methods on various in-

complete attributes with various value types

Method Category Data Type Incomplete Type

kNNE [8] neighbor both various
MIBOS [31] neighbor categorical various
GMM [33] cluster numerical various
CMI [35] cluster categorical various
LOESS [5] regression numerical fixed
IIM [34] regression numerical fixed
ERACER [19] statistical both fixed
MC [4] statistical numerical various
ER [12] constraint categorical fixed
HoloClean [24] constraint categorical fixed
DD [28] constraint both fixed
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Figure 4: Varying the number of complete tuples in r, over

Letterwith 1k incomplete tuples, 1 incomplete attribute and

κ = 10

5.1 Comparison with Existing Imputation

Tables 3 and 4 report the performance of imputing numerical and
categorical values, respectively, over the datasetswith known truths
as listed in Table 1. For numerical values, we report the RMS er-
ror between the imputation and the corresponding truth, while
categorical values use the accuracy measure as introduced in Sec-
tion A.5.4. Approaches supporting the corresponding data types
are considered in Table 2. Please see Section 6 for explanations on
categorizing these 11 existing imputation approaches, and Section
A.5.5 for the corresponding implementation details.
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Table 3: Imputation RMS error of DLM compared to the existing approaches summarized in Table 2, over various numerical

datasets with known truth as listed in Table 1

Dataset kNNE GMM LOESS IIM ERACER MC DD DLM

GPS 1.37*10−5 6.05*10−5 1.91*10−5 1.74*10−5 3.62*10−5 2.57*10−4 1.15*10−5 6.42*10−6

Letter 2.515 2.104 1.556 0.903 1.424 2.475 1.750 0.385

ASF 19.804 39.336 9.102 7.731 36.835 101.587 10.057 1.054

Table 4: Imputation Accuracy of DLM compared to the existing approaches summarized in Table 2, over various categorical

datasets with known truth as listed in Table 1

Dataset kNNE MIBOS CMI ERACER ER HoloClean DD DLM

Solar-Flare 0.539 0.396 0.380 0.601 0.330 0.287 0.428 0.780

Mushroom 0.785 0.477 0.614 0.701 0.364 0.228 0.486 0.910

Restaurant 0.388 0.212 0.124 0.368 0.076 0.016 0.408 0.504
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Figure 5: Varying the number of complete tuples in r, over

Solar-Flare with 100 incomplete tuples, 1 incomplete at-

tribute and κ = 10
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Figure 6: Varying the number of complete tuples in r, over

Mushroom with 1k incomplete tuples, 1 incomplete at-

tribute and κ = 5

Figures 4, 5 and 6 present the results over the relatively larger
data sizes. With the increase of complete tuples available in r , the
imputation performance of all approaches improves. The result
is not surprising, since the imputation techniques more or less
rely on the complete tuples, either on their values or their mod-
els. When the size of complete tuples is larger, e.g., Letter in Fig-
ure 4, the result becomes stable. The corresponding time costs of
imputation increase.
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Figure 7: Varying the number of incomplete attributes |U |,

over ASF with 100 incomplete tuples, 1.4k complete tuples

in r and κ = 5
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Figure 8: Varying the number of incomplete attributes |U |,

over Solar-Flare with 100 incomplete tuples, 1.3k complete

tuples in r and κ = 10

Figures 7 and 8 report the results on various numbers of incom-
plete attributes. Some approaches are omitted, since they can only
be applied to impute a fixed set of incomplete attributes, as sum-
marized in Table 2. It is not surprising that the imputation perfor-
mance drops when more attributes are incomplete.

Our proposed DLM algorithm consistently shows the best im-
putation accuracy over various numerical and categorical datasets,
as well as various sets of incomplete attributes. Similar results are
observed over the GPS data with real missing values in Table 3.
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Table 5: Application accuracy without/with imputation over various numerical datasets

Application Dataset Missing kNNE GMM LOESS IIM ERACER MC DD DLM

Classification MAM 0.818 0.824 0.827 0.827 0.828 0.828 0.821 0.822 0.838

Classification Letter 0.736 0.804 0.805 0.817 0.850 0.819 0.801 0.808 0.871

Clustering ASF 0.880 0.958 0.933 0.971 0.977 0.935 0.892 0.970 0.995

Table 6: Application accuracy without/with imputation over various categorical datasets

Application Dataset Missing kNNE MIBOS CMI ERACER ER HoloClean DD DLM

Classification Adult 0.791 0.799 0.799 0.803 0.805 0.798 0.796 0.798 0.813

Classification Mushroom 0.647 0.729 0.692 0.710 0.717 0.687 0.673 0.695 0.752

Matching Restaurant 0.765 0.811 0.809 0.793 0.809 0.776 0.769 0.814 0.824

5.2 Application Case Study

To validate the effectiveness of applying imputation in real appli-
cations, we consider three case studies on clustering, classification
and record matching.

5.2.1 Clustering with/without Imputation. The clustering experi-
ment is performed over the ASF data. We use the k-means cluster-
ing implementation [30]. Since the ASF dataset is originally com-
plete, we consider the clustering results over the original data as
the truth of clusters. A total number of 100 clusters are obtained,
which could be determined according to [23]. Artificial missing
values are then introduced as mentioned in Section A.5.1, and im-
puted by using various approaches. The clustering algorithm is
conducted again over the data with missing values and the im-
puted dataset. The purity [13] measure is employed, which counts
for each cluster the number of data points from the most common
class (truth cluster). The higher the purity is, the better the im-
putation improves clustering. The accuracies of clustering results
without/with imputation are reported in Table 5.

It is not surprising that approaches with better imputation per-
formance in Table 3 generally have higher clustering accuracy as
well in Table 5. Our proposal DLM again shows the best clustering
performance.

5.2.2 Classificationwith/without Imputation. The classification ap-
plication is first performed over the MAM and Adult datasets with
real-world missing values. Rather than labeling the truth of miss-
ing values, the datasets provide the class labels of tuples instead.
Thereby, we use f1-score of classification to evaluate the imputa-
tion performance. Again, the classification is performed over the
data without/with various imputations. We employ the kNN classi-
fier implementation [30], and conduct 5-fold cross validation.More-
over, the Letter and Mushroom datasets also include class labels.
Tables 5 and 6 report the classification accuracy over Letter and
Mushroom with 1k incomplete tuples (artificially introduced as
mentioned in Section A.5.1).

The proposed DLM approach indeed leads to the best classifica-
tion accuracy. The results demonstrate again the superiority of our
proposal in imputing real missing values, as well as in improving
the downstream applications.

5.2.3 RecordMatching with/without Imputation. The recordmatch-
ing [9] is performed over the Restaurant data. Missing values are
artificially introduced as mentioned in SectionA.5.1.We use the ex-
isting rule-based implementation [11] and perform over the data
without/with imputation.

As shown in Table 6, the record matching accuracy (f-measure)
is generally related to the imputation accuracy in Table 4. With im-
putation, somemissing data could be repaired and thematching ac-
curacy is improved compared to Missing without imputation. Our
proposed DLM, having the most accurate imputation in Table 4,
leads to the highest matching f-measure as well.

6 RELATED WORK

Table 2 summarizes the typical data imputation methods, together
with well supported data types (categorical/numerical). Some ap-
proaches can impute themissing values on various attributes,while
the others support only a fixed set of incomplete attributes.

Nearest Neighbor-based. The nearest neighbor-based imputation
(kNN) [1] finds a set of neighbors ti for the tuple t0 with miss-
ing values t0[U ], referring to its complete attributes t0[R \U ]. The
values on attribute A ∈ U of the neighbors are then aggregated as
the imputation of the missing value t0[A]. MIBOS [31] computes
a tuple-similarity which is indeed defined on value equality, i.e.,
by counting the number of attributes with equal values. The kNN
Ensemble [8] explores more neighbors on various subsets of the
complete attributes R \ U . The major problem of the kNN-based
imputation is that the candidates suggested by neighbors may dis-
tant with each other, and thus the aggregated value is not accurate.

Clustering-based. Instead of finding nearest neighbors on various
subsets of the complete attributesR\U , clusteringmethods are also
employed to explore different groups of neighbors, e.g., by kernel
function imputation strategy [35], fuzzy k-means [16] and its itera-
tive manner [22], or the advanced Gaussian mixture model (GMM)
[33]. Again, values of neighbors from various clusters are aggre-
gated. It still suffers from the aforesaid problem of distant values
from various neighbors.

Regression-based. Rather than simply aggregating the values sug-
gested by neighbors, LOESS [5] learns a regression model from
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nearest neighbors, for predicting the missing value t0[A] referring
to the complete attributes t0[R \ U ]. Unfortunately, as aforesaid
in the kNN imputation [1], the neighbors found by the complete
attributes R \ U may be distant with each other, and thus do not
share the same/similar value regression model. Thereby, IIM [34]
learns an individual regression model for each complete tuple, re-
ferring to its nearest neighbors. It is notable that the regression-
based method cannot handle categorical data.

Statistics-based. The methods based on statistical models [19, 32]
capture the probabilistic correlations between reliable attributes
with correct values and flexible attributes with dirty values. The
imputation is thus to find the values that can maximize the likeli-
hood w.r.t. the probabilistic correlations. A complex relational de-
pendency network is considered in [19] to model the probabilistic
relationships among attributes. As reported in [32], ERACER [19]
shows better performance than [32]. MC [4] formulates the impu-
tation problem as a task of filling the missing entries of a partially
observed matrix. Given an incomplete matrix with missing values,
the matrix completion problem is to find the corresponding lowest
rank matrix. Again, it imputes only numerical values.

Constraint-based. To determine certain fixes, editing rules (ER) and
certain regions [12] are considered, based on the equality relation-
ships between the incomplete tuples and reference data. Fixing
rules [29] and Sherlock rules [14] can also determine certain impu-
tations for missing values, relying on experts to specify evidence
and negative patterns or seed rules. Unfortunately, the heteroge-
neous values with various information formats oftenmake the null
cells barely imputed, owing to the strict value equality relation-
ships considered in editing/fixing rules. For the same reason, the
imputation is not accurate by HoloClean [24] in Section 5.1. To
deal with the similarity relationships between heterogeneous val-
ues, differential dependencies (DD) are employed for imputation
[28]. However, for those values satisfying the constraints, the DD
rules treat them equally and cannot further distinguish which one
should be the true imputation.

7 CONCLUSIONS

In this paper, we study the imputation of incomplete data in (1) var-
ious types of values and (2) various attributes of tuples. To address
both variety issues, the likelihood on distances is investigated. The
distance likelihood can be uniformly defined over various types of
values, and efficiently calculated without enumerating the combi-
nations of imputation candidates on various incomplete attributes.
To find the optimum imputation with the maximum distance like-
lihood, we (1) analyze NP-hardness of the problem in Theorem 1;
(2) propose an approximation algorithmwith performance guaran-
tee in Proposition 4. Extensive experiments on datasets (with real
missing values) show that our proposal DLM improves the imputa-
tion accuracy compared to 11 existing approaches in 5 categories,
and improves the downstream applications such as classification,
clustering and record matching.
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A REPRODUCIBILITY

The code implementation of our method is publicly available.6

A.1 Proof Sketch of Theorem 1

The problem is clearly in NP. Given an imputation t′0, it can be
verified in polynomial time whether its likelihood has L(t′0 | r) ≥

ℓ.
To prove the NP-hardness, we show a reduction from the 3-SAT

problem, which is one of Karp’s 21 NP-complete problems [15].
Let C = C1 ∧C2 ∧ · · · ∧Cv be a Boolean formula in 3-CNF with

v clauses, where Ci = l i1 ∨ l i2 ∨ l i3 for each clause Ci , i = 1, . . . ,v .

Each literal l ij , j = 1, 2, 3, is either z or ¬z for some variable z. We

create a relation schema R = (A,Z1, . . . ,Zw ,B1, . . . ,Bv ), where
each attributeZk corresponds to variablezk ,k = 1, . . . ,w . For each
clause Ci , we place three complete tuples ti1, ti2 and ti3 in r (|r | =
3v). For the literal l ij in the form of zk in Ci , we assign ti j [Zk ] = 1,

while the literal in the form of ¬zk in Ci leads to ti j [Zk ] = −1.
For the other zk that does not appear in Ci , it has ti j [Zk ] = 0. We
show that C has a satisfying assignment if and only if t0 has an
imputation t′0 with likelihood L(t′0 | r) ≥ ℓ.

A.2 Proof of Lemma 2

Continuous variables y0ip and x0ik denote the distance values in

the ranges of [δmin
0ip , δ

max
0ip ] and [δmin

0ik , δ
max
0ik

], respectively. Note that

y0ip−x
⊤
0iΦip is a linear function. Given themaximumandminimum

values of y0ip − x
⊤
0iΦip having ϵmin

0ip (t′0[Aq]) ≤ 0 ≤ ϵmax
0ip (t′0[Aq]),

according to the intermediate value theorem [26], there must exist
a solution of variables y0ip and x0ik such that y0ip − x

⊤
0iΦip = 0.

A.3 Proof of Lemma 3

According to Formula 6, the optimal imputation t∗0 ∈ can(t0) has

L(t∗0 | r) =
∑

ti ∈r(t
∗
0 )

∑

Ap ∈R

−
log(2πσ2ip)

2
−
(y∗0ip − (x∗0i)

⊤
Φip))

2

2σ2ip
.

Combining Formulas 11 and 12, we obtain

L(t∗0 [Aq] | r) =
∑

ti ∈r(t
∗
0 [Aq])

∑

Ap ∈R

L(t∗0 [Aq] | ti,Ap)

=

∑

ti ∈r(t
∗
0 [Aq])

∑

Ap ∈R

−
log(2πσ2ip)

2
−

1

2σ2ip
min

δmin
0ip ≤y0ip≤δ

max
0ip ,

δmin
0ik ≤x0ik≤δ

max
0ik

(y0ip − x
⊤
0iΦip)

2
.

Moreover, for any tuple ti ∈ r , it always has

(y∗0ip − (x∗0i)
⊤
Φip))

2 ≥ min
δmin
0ip ≤y0ip≤δ

max
0ip ,

δmin
0ik ≤x0ik≤δ

max
0ik

(y0ip − x
⊤
0iΦip)

2
.

It follows

L(t∗0 | ti) ≤ L(t∗0 [Aq] | ti).

6https://github.com/DLMImputation/DLM

Referring to the aforesaid definitions, we have

L(t∗0 | r) =
∑

ti ∈r(t
∗
0 )

L(t∗0 | ti) ≤
∑

ti ∈r(t
∗
0 )

L(t∗0 [Aq] | ti)

≤
∑

ti ∈r(t
∗
0 [Aq])

L(t∗0 [Aq] | ti) = L(t∗0 [Aq] | r).

Since t∗0 is the optimum imputation with the maximum tuple
likelihood L(t∗0 | r), for any approximate imputation t′0 ∈ can(t0),
it always has

L(t′0 | r) ≤ L(t∗0 | r).

Finally, Algorithm 1 finds the imputation t′0[Aq] with the maxi-
mum value likelihood L(t′0[Aq] | r) for each incomplete attribute
Aq of t0, i.e.,

L(t∗0 [Aq] | r) ≤ L(t′0[Aq] | r).

The conclusion is proved.

A.4 Proof of Proposition 4

According to the definition of L(t′0 | r) in Formula 6 and the defi-

nitions of δmin
0ik and δmax

0ik
in Formulas 8-9, we have

L(t′0 | r) =
∑

ti ∈r(t
′
0)

∑

Ap ∈R

−
log(2πσ2ip)

2
−
(y0ip − hip(x0i))

2

2σ2ip

≥
∑

ti ∈r(t
′
0)

∑

Ap ∈R

−
log(2πσ2ip)

2
−

1

2σ2ip
max

δmin
0ip ≤y0ip≤δ

max
0ip ,

δmin
0ik ≤x0ik≤δ

max
0ik

(y0ip − x
⊤
0iΦip)

2

≥
∑

ti ∈r(t
′
0)

∑

Ap ∈R

min
ti ∈r,Ap ∈R

(

−
log(2πσ2ip)

2
−
max((φmin

ip )2, (φmax
ip )2)

2σ2ip

)

= καm.

According to Lemma 3, we have

L(t∗0 | r) ≤ L(t′0[Aq] | r) =
∑

ti ∈r(t
′
0[Aq])

∑

Ap ∈R

−
log(2πσ2ip)

2
−

1

2σ2ip
min

δmin
0ip ≤y0ip≤δ

max
0ip ,

δmin
0ik ≤x0ik≤δ

max
0ik

(y0ip − x
⊤
0iΦip)

2

≤
∑

ti ∈r(t
′
0[Aq])

∑

Ap ∈R

max
ti ∈r,Ap ∈R

(

−
log(2πσ2ip)

2

)

= κβm.

Combining the aforesaid derivations, it concludes

L(t′0 | r) ≥
καm

κβm
L(t∗0 | r) =

α

β
L(t∗0 | r).

A.5 Experimental Settings

A.5.1 ArtificialMissing Values. Datasets Restaurant7, Mushroom8,
Solar-Flare9, ASF10 and Letter11 are datasets originally complete.
Following the same line of evaluating data repairing techniques by

7http://www.cs.utexas.edu/users/ml/riddle/data.html
8https://sci2s.ugr.es/keel/dataset.php?cod=178
9http://archive.ics.uci.edu/ml/datasets/solar+flare
10http://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise
11https://archive.ics.uci.edu/ml/datasets/letter+recognition
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Algorithm 1: DLM(r, t0,κ)

Input: r a set of complete tuples,
t0 a tuple with incomplete attributes U ,
κ the number of tuples with the largest likelihood
considered for evaluating a candidate
Output: an imputation t′0 of t0 with the maximum value

likelihood
1 t′0 ← t0;

2 for each incomplete attribute Aq ∈ U in t0 do

3 for each t′0[Aq] ∈ can(t0[Aq]) do

4 for each ti ∈ r do

5 for each Ap ∈ R do

6 L(t′0[Aq] | ti ,Ap) ← likelihood computed

by Formula 15;

7 L(t′0[Aq] | ti ) ← likelihood computed by

aggregating L(t′0[Aq] | ti ,Ap);

8 r(t′0[Aq]) ← set of tuples ti ∈ r with κ-largest

likelihoods L(t′0[Aq] | ti );

9 L(t′0[Aq] | r) ← likelihood computed by

aggregating L(t′0[Aq] | ti ) in Formula 12;

10 t′0[Aq] = argmaxt′0[Aq]∈can(t0[Aq])
L(t′0[Aq] | r);

11 return t′0

artificially injecting errors [3], we randomly remove values from
various attributes in tuples as incomplete data.

A.5.2 RealMissing Values and Labeled Truth. GPS is a datasetman-
ually collected by carrying a GPS device and walking around the
campus. The GPS readings are often temporally unavailable, ow-
ing to various reasons such as low battery, energy saving or weak
signals. There are 54 incomplete tuples with real missing values on
Longitude and Latitude naturally embedded in the dataset. The cor-
responding timestamp is available as the complete attribute, since
the collecting program intends to record the GPS readings in every
second. Moreover, as we know exactly the trajectory, truths of the
missing values are manually labeled.

A.5.3 RealMissing Values without Ground Truth. DatasetsMAM12

and Adult13 are two datasets with 13.63% and 7.41% real-world
missing values. MAM contains a BI-RADS assessment, which can
be used to predict the severity (benign or malignant) of a mam-
mographic mass lesion from BI-RADS attributes and the patient’s
age. Adult is extracted from census data of the United States in
1994, describing some social information about the citizens. Rather
than comparing the imputation accuracy, we study the classifica-
tion over the datasets without/with various imputation methods.
A higher classification accuracy [13] generally indicates the better
effectiveness of imputation.

A.5.4 Criteria. For numerical values, to evaluate the imputation
accuracy, we compare the imputation t′0 to the corresponding truth

t#0 , using the root-mean-square error,RMS =

√
∑
A∈U

(t′0[A]−t
#
0 [A])

2

|U |
.

12https://sci2s.ugr.es/keel/dataset.php?cod=86
13https://sci2s.ugr.es/keel/dataset.php?cod=192

For categorical datasets, e.g., Restaurant, we measure the accu-
racy on whether an imputation equals exactly the ground truth.
Let truth be the set of truth values for incomplete data and found

be the set of results returned by imputation algorithms. The accu-

racy is given by accuracy =
|truth∩found |

|truth |
, i.e., the proportion of

incomplete values accurately imputed.

A.5.5 Implementation Details. As listed in Table 2, the major com-
petitors of our proposal are as follows.

(1) Neighbor-based kNN Ensemble (kNNE) [8] employs differ-
ent subsets of complete attributes in the incomplete tuple, to gen-
erate a diverse set of NN classifiers for ensemble learning.

(2) Tuple similarity-based MIBOS [31] finds the complete tu-
ples having the maximum number of same values on complete at-
tributes with the incomplete tuple, to impute the missing values.

(3) Gaussian mixture model-based GMM [33] clusters the com-
plete data based on EM algorithm. The incomplete data are clas-
sified according to the result of clustering. The complete tuples
closest to the incomplete tuple in the same cluster are utilized to
impute the missing values.

(4) Clustering-based CMI [35] employs k-Means clustering to di-
vide the dataset (including the instances with missing values) into
clusters. The complete tuples in the same cluster are used to im-
pute the incomplete tuples.

(5) Value regression model-based LOESS [5] learns regression
models among nearest neighbors to impute missing values, where
the incomplete attributes are used as the dependent attributes and
all the other complete attributes are regarded as the determinant
attributes of the regression models.

(6) Individual regression-based IIM [34] learns individual regres-
sion models for each complete tuple, whose determinant and de-
pendent attributes are the complete and incomplete attributes of
incomplete tuples, respectively.

(7) Statistics-based ERACER [19] iteratively learns a global rela-
tional dependency model, i.e., linear regression for numerical data
and relational dependency network for categorical data in our ex-
periments, to infer the probabilistic relationships among attributes.

(8) Matrix completion via convex optimization MC [4] forms
a convex relaxation of the matrix completion problem and min-
imizes the nuclear norm. The convex relaxation is solved using
semidefinite programming.

(9) ER [12] finds certain fixes with editing rules defined by value
equality. We consider all the complete tuples as master data and
discover CFDs from r (by [10]) as editing rules.

(10) HoloClean [24] employs not only the aforesaid discovered
CFDs as constraints but also the statistical learning and probabilis-
tic inference to impute missing values.

(11) Similarity constraint-based DD [28] imputes missing values
with differential dependencies, discovered by [27].

The imputation candidates of DLM are given by the kNN neigh-
bors as introduced in Section 3.1. Similar to distance models in our
DLM, the models in the GMM approach could be offline learned.
In order to mitigate the risk of a sub-optimal configuration and
insufficient rules in the case of rule-based tools, each approach in
comparison has been configured in a best-effort fashion (e.g., by
iteratively choosing good parameters or by defining a reasonable
set of quality rules).
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