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Abstract—Misplaced data in a tuple are prevalent, e.g., a value
“Passport” is misplaced in the passenger-name attribute,
which should belong to the travel-document attribute instead.
While repairing in-attribute errors have been widely studied, i.e.,
to repair the error by other values in the attribute domain,
misplacement errors are surprisingly untouched, where the true
value is simply misplaced in some other attribute of the same tu-
ple. For instance, the true passenger-name is indeed misplaced
in the travel-document attribute of the record. In this sense,
we need a novel swapping repair model (to swap the misplaced
passenger-name and travel-document values “Passport”
and “John Adam” in the same tuple). Determining a proper
swapping repair, however, is non-trivial. The minimum change
criterion, evaluating the distance between the swapping repaired
values, is obviously meaningless, since they are from different
attribute domains. Intuitively, one may examine whether the
swapped value (“John Adam”) is similar to other values in the
corresponding attribute domain (passenger-name). In a holistic
view of all (swapped) attributes, we propose to evaluate the
likelihood of a swapping repaired tuple by studying its distances
(similarity) to neighbors. The rationale of distance likelihood
refers to the Poisson process of nearest neighbor appearance.
The optimum repair problem is to find a swapping repair
with the maximum likelihood on distances. Experiments over
datasets with real-world misplaced attribute values demonstrate
the effectiveness of our proposal in repairing misplacement.

I. INTRODUCTION

Misplaced attribute values are commonly observed, e.g.,

owing to filling mistakes in Web forms, mis-plugging cables

of sensors, or missing values of sensors during transfer.

Downstream applications built upon the misplaced data are ob-

viously untrusted. Cleaning such misplacement is demanded.

A. Sources of Misplaced Attribute Errors

Misplaced attribute values could be introduced generally in

all ETL steps, ranging from data production to consumption.

1) Entry Error: Misplaced attribute values may occur when

data are entered into the database. For instance, a value

“Passport”, which should be input in the attribute travel-

document, is mistakenly filled in attribute passenger-name.

Similar examples are also observed in medical data [31] and

procurement data [7]. Even in the IoT scenarios, since workers

may occasionally mis-plug the cables of sensors during equip-

ment maintenance, misplacement occurs frequently (200 out of

5.2k tuples in the real Turbine dataset used in the experiments

as introduced in Section VII-A1).

2) Extraction Error: When integrating data from various

sources, information extraction and conversion frequently in-

troduce misplaced attribute values. For instance, CSV files

from different sources often have various delimiters and abuse

is difficult to avoid [40]. It needs great effort to manually

correct them step by step. Similarly, misplaced errors may also

occur when performing Optical Character Recognition (OCR)

on handwritten forms [23]. Inaccurate rectangle labeling ob-

viously leads to misplaced errors.

3) Shift Error: In the IoT scenario, data are often trans-

ferred in the form of comma separated records, and parsed

as database tuples when received (see Example 1 below).

If an attribute value is missing owing to sensor failure or

replacement, the values next to the missing/replaced one are

shifted to wrong places, a.k.a. shift error. Similar examples

are also observed in medical data [31] and government data

[20]. In the real FEC dataset [20], since commas in values are

mistakenly interpreted as separators, a number of 3.3k tuples

are observed with misplacement out of 50k (see details in

Section VII-A1 of experiment datasets).

B. Challenges

1) In-attribute errors vs. Misplaced-attribute errors: While

misplaced attribute values are commonly observed in practice,

they are surprisingly untouched in research studies. To the best

of our knowledge, existing data repairing approaches [15],

[25], [33], [38], [39], [41] (see Section VIII-A for a short

survey) often focus on in-attribute errors, and thus repair the

error by other values in the attribute domain. For example,

use some value of passenger-name to repair the value

“Passport”. Or similarly, use some other voltage value to

repair t0[voltage] = 13.7 in Figure 1 below.

For the misplaced-attribute errors, however, the true values

are indeed in the tuple but in wrong places. That is, we

can significantly narrow down the candidates for repairing

misplaced attribute values. Obviously, swapping the data in

the tuple is preferred to repair the misplaced attribute values.

For instance, the value “Passport” in the misplaced attribute

passenger-name should be swapped with the value “John

Adam” in attribute travel-document in the same tuple. 1

2) Minimum change vs. Maximum likelihood: To evaluate

whether misplacement is correctly repaired, the minimum

change criteria [9], widely considered for repairing in-attribute

errors, does not help. Measuring the swapping repaired values

“Passport” and “John Adam” is meaningless, since they are

from the domains of different attributes.

Intuitively, we may study the likelihood of a tuple by

investigating how similar/distant its values are to the values

in other tuples. The rationale of the distance likelihood refers

1Swapping may apply to multiple misplaced attributes (see Definition 1).
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(a) Comma separated records
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Fig. 1. Sensor readings from wind turbine, where misplaced attribute values
13.7, 33.3 occur in t0, and should be repaired by swapping voltage and
temperature values as in t

′
0

to the Poisson process of nearest neighbor appearance, where

the neighbors of a given tuple ti are the tuples tj having

the minimum tuple distances defined in Formula 1 to ti (see

Section II-B for details). In this sense, t0 with misplacement in

Figure 1(b) in Example 1 could be identified, since its (time,

voltage, temperature, direction) value combination is distant

from other tuples in the dataset, i.e., low likelihood.

C. Our Proposal

We notice that tuples with misplaced values are often

distant from other tuples (see motivation Example 1 below).

Intuitively, one may apply the multivariate outlier detection

techniques, e.g., distance-based [19], to detect tuples deviating

markedly from others. However, directly applying the multi-

variate outlier detection may return false-positives, i.e., true

outliers without misplaced values. In this sense, we propose to

further investigate the detected tuple by swapping its attribute

values. If the tuple after swapping has closer neighbors, e.g.,

becomes inliers, it is more confident to assert misplacement

and apply the swapping as repairs.

Informally, the swapping repair problem is thus: for each

tuple (say t0) in relation instance r , see whether there exists

a tuple t ′0 by swapping the attribute values in t0, such that t ′0
is more likely (more similar to the neighbors in r ) than t0;

if yes, we return the most likely swapping repair having the

least distances to neighbors in r .

Example 1. Consider a collection of sensor readings in wind

turbine in Figure 1, where the sensor data are transferred

from devices to data center through wireless communication

networks, in a form of comma separated records. Misplaced

values are frequently observed for various reasons. For in-

stance, shifting errors occur when the power supply of some

sensor is interrupted or some packages of a tuple are lost

in data transmission, as discussed in Section I-A. Moreover,

during equipment maintenance, workers may occasionally

mis-plug the cables of sensors for monitoring temperature

and voltage, as shown in Figure 1(a). In addition, sensor may

be reordered in the upgrade of wind turbine. While the data

collection protocol is updated immediately in the device, the

modification of schema definition in the data center is delayed.

Misplaced values are observed in a short period of schema

updating.

As shown in Figure 1(a), the voltage and temperature

values in the latest record (denoted by t0) are misplaced, which

are very different to those in the nearby tuples t5, t6, t7. A false

alarm will be triggered, owing to the sudden “changes”.

As plotted in the parallel coordinate in Figure 1(b), by

swapping the voltage and temperature values of t0 with

true misplacement, it will accord perfectly with other tuples

having similar timestamps, e.g., t5, t6, t7. In this sense, we

propose to evaluate the likelihood of repaired tuple by whether

having values (on all attributes time, voltage, temperature,

direction) similar to other tuples.

The existing in-attribute repair, e.g., constraint-based [38],

uses the value in the same attribute to repair the misplaced er-

ror in t0, i.e., t ′0[voltage] =22.9 and t ′0[temperature] =14.0.

As shown, the repair is not as accurate as the swapping repair,

where 33.3 and 13.7 are indeed the true values of voltage and

temperature, respectively, but simply misplaced.

Attribute direction reports the direction of a wind turbine

measured in degrees, with domain values ranging from 0 to

359. As shown in Figure 1(a), data entry simply changes its

pattern starting at t4, from values around 0 to values near

359. We have t4[direction] = 359, which is distant from the

previous direction values in tuples t1 to t3. However, swapping

repair will not be performed on t4, since by swapping the value

of direction with any other value in the tuple, it is still distinct

from the nearby tuples such as t1, t2, t3. That is, the likelihood

of the swapped tuple does not increase.

D. Contributions

Our major contributions in this study are as follows.

We formalize the optimum swapping repair problem in

Section III. A pipeline is further presented to jointly repair

both misplacement and in-attribute errors.

We show that, if considering all the n tuples in r as

neighbors in evaluating a repair, the optimum repair problem

is polynomial time solvable (Proposition 1) in Section IV. This

special case is not only theoretically interesting, but also used

to efficiently solve (Algorithm 1) or approximate (Algorithm

2) the problem with any number κ of neighbors.

We present that, if considering a fixed number κ of neigh-

bors, the optimum repair problem can be solved in polyno-

mial time (Proposition 2) in Section V. Bounds of neighbor

distances are devised (Proposition 3), which enable pruning

for efficient repairing.

We develop an approximation algorithm, by considering a

fixed set of neighbors, in Section VI.

We conduct an extensive evaluation in Section VII, on

datasets with real-world misplaced attribute values. The exper-

iments demonstrate that our proposal complements the existing

data repairing by effectively handling misplacement.

Table I lists the frequently used notations.
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TABLE I
NOTATIONS

Symbol Description

R relation schema, with m attributes

r relation instance over R, with n tuples

t0 tuple in r to detect and repair misplaced attribute values

κ number of considered nearest neighbors

N
κ

r (t) κ-nearest-neighbors (κ-NN) of t from r , for simplicity N (t)

x swapping repair of t0, having repaired tuple t
′
0
= xt0

Θκ

r (x) distance cost of swapping repair x over tuples r with κ-NN,
for simplicity Θ(x)

T potential set of κ-NN, T ⊆ r

SRAN Swapping Repair with All Neighbors, in Section IV-B

SRKN Swapping Repair with κ Neighbors, Algorithm 1

SRFN Swapping Repair with Fixed Neighbors, Algorithm 2

Sample 1   Sample 2

F
re

qu
en

cy

original value

(a)

F
re

qu
en

cy

k-NN distance

(b)

Fig. 2. Inconsistent value distribution vs. consistent distance distribution of
two different samples from the same dataset

II. DISTANCE-BASED LIKELIHOOD EVALUATION

In this section, we first illustrate the deficiencies of evalu-

ating the likelihood of a tuple w.r.t. value distribution. It leads

to the intuition of considering the distances of the tuple to

its neighbors. We use the likelihood on distance to evaluate a

repair in the following Section III.

A. Why Not Using Value Distribution

To evaluate the likelihood of a tuple, a natural idea is to

investigate how likely each value in the tuple belongs to the

claimed attribute. By studying the joint distribution of values

in multiple attributes, the likelihood of the tuple is calculated

[25]. A tuple with misplaced attribute values is outlying in the

value distribution, and thus has a low likelihood.

Unfortunately, as mentioned in the Introduction, owing to

data sparsity and heterogeneity, the value distribution could

be unreliable. For instance, in Figure 2(a), we observe the

value distributions of two different samples (i.e., Sample 1 and

Sample 2) with 4k tuples randomly sampled from the Magic

dataset [4], respectively. As shown, the value distribution of

Sample 1 (red) is largely different from that of Sample 2

(blue), which are indeed two samples of the same dataset.

Some value in Sample 1 even does not appear in Sample 2.

The likelihood of a value computed based on these inconsistent

value distributions would obviously be inaccurate.

Intuitively, instead of directly evaluating how likely a tuple

contains attribute values appearing exactly in the value dis-

tribution, we may alternatively check whether the tuple has

values similar to other tuples, in order to be tolerant to data

sparsity and heterogeneity. If the tuple is distant from others,

(either misplaced-attribute or in-attribute) errors are likely to

occur. By coincidence, the tuple becomes similar to some

neighbors after swapping certain attribute values. We would

assure the misplacement and repair, such as t0 in Figure 1 in

Example 1.

Therefore, in this study, we propose to learn the distribution

of distances between a tuple and its neighbors. As illustrated

in Figure 2(b), more consistent distance distributions are

observed in two different samples. The consistent distance

distributions (in contrast to the inconsistent value distributions)

are not surprising referring to the Poisson process of nearest

neighbor appearance [28] (see explanation in Section II-B).

The likelihood computed based on the consistent distance

distribution would be more reliable.

B. Likelihood on Distances to Neighbors

Consider a relation instance r = {t1, . . . , tn} over schema

R = (A1, . . . ,Am). For each attribute A ∈ R, let Δ be any

distance metric having 0 ≤ Δ(ti[A], tj[A]) ≤ 1, where ti[A]
and tj [A] are values from the domain dom(A) of attribute

A. For instance, we may use edit distance [26] or pre-trained

embedding technique [30] with normalization [22] for string

values, or the normalization distance [10] for numerical values.

By considering L1 norm the Manhattan distance [16] as the

distance function on all attributes in R, we obtain the tuple

distance Δ(ti [R], tj [R]), or simply Δ(ti , tj ),

Δ(ti [R], tj [R]) =
∑
A∈R

Δ(ti[A], tj [A]). (1)

Let N κ
r (ti) be the κ-nearest-neighbors (κ-NN) of ti from

r , denoted by N (ti) for simplicity. As illustrated in [28], the

random generation of data from a particular underlying density

function induces a density function of distance to the nearest

neighbors. In relational data, it means that the appearance of

nearest neighbors N κ
r (ti) of a tuple ti can be approximated

with Poisson process [28]. That is, the distances between a

tuple ti and its nearest neighbors tj ∈ N κ
r (ti) follow an

exponential distribution, Δ(ti , tj ) ∼ Exp(λ), and we can write

the probability distribution of the distances as

f (Δ(ti , tj )) = λ exp−λΔ(ti ,tj ), (2)

where λ > 0 is the parameter of the distribution, often called

the rate parameter.

The (log) likelihood of a tuple t0 in r is thus computed by

aggregating the probabilities f (Δ(t0, tl)) on the distances to

its neighbors tl

�̂(t0) =
∑

tl∈Nκ
r (t0)

log f (Δ(t0, tl))

= κ log(λ) − λ
∑

tl∈Nκ
r (t0)

Δ(t0, tl). (3)
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Example 2. Consider the relation r = {t1, t2, t3, t4, t5, t6,
t7, t0} with schema R ={time, voltage, temperature, di-

rection} in Figure 1. The normalized distance between

t0 and t7 on voltage is Δ(t0[voltage], t7[voltage]) =
1 − exp−|13.7−22.9| = 1. By aggregating the distances

on all attributes in R referring to Formula 1, we have

Δ(t0[R], t7[R]) = 3.061. Given κ = 3, the κ-NN of

t0 is N (t0) = {t0, t4, t7}, where Δ(t0[R], t0[R]) = 0,

Δ(t0[R], t4[R]) = 2.995, and Δ(t0[R], t7[R]) = 3.061. Sup-

pose that λ = 2 of the exponential distribution f (Δ(ti, tj)) in

Formula 2. The likelihood of distances between t0 and N (t0)
is �̂(t0) = 3 ∗ log(2)− 2 ∗ (0 + 2.995 + 3.061) = −9.112.

III. PROBLEM STATEMENT

As introduced in Section I-B1, misplacement can be re-

paired by simply swapping attribute values in a tuple. We

first formally define the swapping repair in Definition 1.

Recognizing the deficiencies of existing criteria in Sections

I-B2 and II-A, we introduce the distance likelihood in Formula

3 to evaluate a swapping repaired tuple. The optimum repair

problem is thus to find the swapping repair with the maximum

likelihood.

A. Swapping Repair

We use a m × m matrix x to denote the swapping repair

of attribute values in a tuple t0 with m attributes.

Definition 1. Swapping repair of tuple t0 is a matrix x having

m∑
i=1

xij = 1, 1 ≤ j ≤ m

m∑
j=1

xij = 1, 1 ≤ i ≤ m

xij ∈ {0, 1}, 1 ≤ i ≤ m, 1 ≤ j ≤ m

The swapping repaired tuple

t ′0 = xt0

has t ′0[Ai] = t0[Aj ] if xij = 1.

For a reliable [41] or certain [15] attribute Ai that should

not be modified in repairing, we may simply set xii = 1.

Example 3. Consider tuple t0 in Figure 1. Suppose that we

have a swapping repair x for t0 as follows,

x =

⎛
⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ ,

where
∑4

i=1 xij = 1, 1 ≤ j ≤ 4, and
∑4

j=1 xij = 1, 1 ≤
i ≤ 4. Each xij = 1, for instance x32 = 1, denotes that

t ′0[temperature] = t0[voltage], where A2 = voltage,A3 =
temperature. The corresponding repaired tuple is thus

t ′0 = xt0 =

⎛
⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
15:40
13.7
33.3
330

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
15:40
33.3
13.7
330

⎞
⎟⎟⎠ .

B. Repairing Problem

For any swapping repair x, the corresponding repaired tuple

t ′0 = xt0 has likelihood �̂(t ′0). It is desired to find the optimal

swapping repair x with the maximum likelihood �̂(t ′0).

Referring to Formula 3, to maximize the likelihood �̂(t ′0),
it is equivalent to minimize the distances between t ′0 and its

κ-NN in r , i.e.,∑
tl∈Nκ

r (t′0)

Δ(t ′0, tl) =
∑

tl∈Nκ
r (t′0)

∑
Ai∈R

Δ(t ′0[Ai], tl [Ai]) (4)

=
∑

tl∈Nκ
r (t′0)

∑
Ai∈R

∑
Aj∈R

xij ·Δ(t0[Aj ], tl [Ai]).

Thereby, we define the distance cost of swapping repair x

over the κ-NN of the repaired tuple t ′0 = xt0.

Definition 2. The κ-NN distance cost of a swapping repair x is

Θκ
r (x) = Θ(x) =

∑
tl∈Nκ

r (xt0)

∑
Ai∈R

∑
Aj∈R

xij ·Δ(t0[Aj ], tl [Ai]).

(5)

To find the repair x with the maximum likelihood �̂(xt0),
it is equivalent to minimize the κ-NN distance cost Θ(x).

Problem 1. For a tuple t0 in relation r over schema R, the

OPTIMUM REPAIR problem is to find a swapping repair x such

that the κ-NN distance cost Θ(x) is minimized.

The corresponding decision problem is thus to determine

whether there is swapping repaired tuple with likelihood

higher than the input tuple t0.

Problem 2. For a tuple t0 in relation r over schema R, the

REPAIR CHECKING problem is to determine whether exists a

swapping repair x with κ-NN distance cost Θ(x) ≤ Θ(I),
where I is an identity matrix (unit matrix) of size m.

Here, Θ(I) denotes the κ-NN distance cost of the input tuple

t0 = It0 without swapping.

Example 4 (Example 3 continued). Given κ = 3, the κ-NN

of the swapping repaired tuple t ′0 in Example 3 is N (t ′0) =
{t0, t1, t7}. According to Formula 5, the κ-NN distance cost is

Θ(x) = (1∗0+1∗1+1∗1+1∗0)+(1∗0.309+1∗0.503+1∗
0.918+1∗1)+(1∗0.067+1∗1+1∗0.259+1∗0.993) = 7.049.

Consider another swapping repair for t0 as follows,

x′′ =

⎛
⎜⎜⎝
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞
⎟⎟⎠ .

That is, swapping the voltage and direction attribute values.

It has N (t ′′0 ) = {t0, t4, t7} with κ-NN distance cost Θ(x′′) =
(1 ∗ 0+ 1 ∗ 1+ 1 ∗ 0+ 1 ∗ 1+ 1 ∗ 0)+ (1 ∗ 0.197+ 1 ∗ 1+ 1 ∗
0.798 + 1 ∗ 1) + (1 ∗ 0.067 + 1 ∗ 1 + 1 ∗ 1 + 1 ∗ 1) = 8.062.

As the first swapping repair x in Example 3 has

lower distance cost, it leads to the repaired tuple t ′0 =
(15:40, 33.3, 13.7, 330).
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C. Joint Repair Pipeline

In addition to the studied misplacement errors, there are a

wide range of errors that happen in real datasets, as discussed

in [7]. For instance, let t8 = (15:45, 28.5, 0, 10.1) be another

tuple appearing after t0 in Figure 1. The value 0 is not

only dirty (a default direction value returned owing to device

disturbance) but also misplaced in the temperature attribute.

While this study focuses on repairing misplacement errors, we

further consider joint repair to address other co-existing errors.

When addressing various kinds of errors, as studied in

[12], [15], the order of repair steps affects the final results.

It is worth noting that applying first the in-attribute repair

would destroy the original ground truth of misplaced values,

e.g., modifying the true temperature value 10.1 misplaced in

direction. In this sense, the swapping repair is suggested to

be performed before handling other types of errors. Moreover,

as discussed in [13], since the in-attribute error repair can

help resolving conflicts and duplications, the imputation for

incomplete values can be enriched and improved. Therefore,

the missing data imputation could be finally performed after

swapping and in-attribute repair. (See experiments on varying

the order of repair steps in Figure 11 in Section VII-C.)

The dirty values may lead to the corresponding distances

corrupted. While the dirty values have negative effects, our

swapping repair model is compatible with existing data clean-

ing techniques to handle such a case. The rationale is that

humans or machines always try to avoid mistakes in practice

[24]. In this sense, we argue that dirty values are often not

significantly far from the corresponding truths as well as some

other values in the same attribute. For instance, a default

direction value 0 is returned rather than a random irrational

value 65536, when the device is disturbed. Although the

computed distances will also be dirty, they could be close,

e.g., the default value 0 is close to other direction values. A

correct swapping repair would lead to closer distances, while

an incorrect swapping leaves the distances large and thus will

not be performed. For instance, a correct swapping repair

t ′8 =(15:45, 28.5, 10.1, 0) of t8 has a closer neighbor distance∑
tl∈N (t′8)

Δ(t ′8, tl) = 6.926, where N (t ′8) = {t2, t3, t8},

compared to an incorrect swapping repair t ′′8 =(15:45, 10.1,

28.5, 0) with distance
∑

tl∈N (t′′8 ) Δ(t ′′8 , tl) =8.255, where

N (t ′′8 ) = {t
′
0, t3, t8}.

Given a dataset, one may first check each tuple t0 in r

whether swapping repair is applicable. If a swapping repaired

tuple t ′0 is returned with significantly higher likelihood (lower

distance cost) w.r.t. r , the tuple t0 contains misplaced attribute

values and should be repaired to t ′0. Otherwise, tuple t0 is not

changed in swapping, i.e., no misplaced attribute values found.

Example 5. Let t8 =(15:45, 28.5, 0, 10.1) be another tuple

appearing after t0 in Figure 1. The value 0 is not only

dirty (a default direction value returned owing to device

disturbance) but also misplaced in the temperature attribute.

After swapping repair by our proposal, we have t ′8 =(15:45,

28.5, 10.1, 0). Existing in-attribute repair technique, e.g., [38],

is then applied to repair the dirty value in t ′8[direction]. It

returns a jointly repaired tuple t ′′8 =(15:45, 28.5, 10.1, 330).

IV. ALL NEIGHBORS

We show (Proposition 1) that if all tuples in r are considered

as neighbors when evaluating a repaired tuple, i.e., κ = |r |,
the optimum repair problem is polynomial time solvable.

It is worth noting that the result is not only interesting for

the special case of κ = |r |, but also enables the efficient

computation for repairing with general κ (Algorithm 1 in

Section V) and the approximation (Algorithm 2 in Section VI).

In the following, we first formalize the repairing problem

as integer linear programming, which can thus be efficiently

solved as an assignment problem in Section IV-B.

A. ILP Formulation

For κ = |r |, the κ-NN distance cost in Formula 5 is rewritten

Θ|r |
r (x) =

∑
tl∈r

∑
Ai∈R

∑
Aj∈R

xij ·Δ(t0[Aj ], tl [Ai]). (6)

The optimum repair problem can be formulated as Integer

Linear Programming (ILP) [36].

min
n∑

l=1

m∑
i=1

m∑
j=1

xijdlij

m∑
i=1

xij = 1, 1 ≤ j ≤ m

m∑
j=1

xij = 1, 1 ≤ i ≤ m

xij ∈ {0, 1}, 1 ≤ i ≤ m, 1 ≤ j ≤ m

where xij = 1 denotes t ′0[Ai] = t0[Aj ], otherwise 0; and

dlij = Δ(t0[Aj ], tl[Ai]), 1 ≤ l ≤ n, 1 ≤ i ≤ m, 1 ≤ j ≤ m,

is the distance between tl[Ai] and t ′0[Ai], where t ′0[Ai] is

replaced with t0[Aj ].

Example 6. Consider tuple t0 for repairing and tuples r =
{t1, t2, t3, t4, t5, t6, t7, t0} in Figure 1. Let κ = |r | = 8.

For each neighbor tl ∈ r , we obtain the distance dlij =
Δ(t0[Aj ], tl[Ai]) on attributes Aj,Ai ∈ R, for instance,

d123 = Δ(t0[temperature], t1[voltage]) = 0.503.

To minimize
∑n

l=1

∑m

i=1

∑m

j=1 xijdlij , the ILP solution

leads to a repair x, which is same as that in Example 3,

i.e., t ′0 = xt0 = (15:40, 33.3, 13.7, 330).

B. Solving as Assignment Problem

While existing ILP solvers [29] can be employed, we show

below that the optimum repair problem with κ = |r | can be

solved efficiently as an assignment problem, i.e., the minimum

weight perfect matching (MWPM) problem [21].

Consider a complete bipartite graph G = (U, V ;E) with m

worker vertices (U) and m job vertices (V ), and each edge

(ui, vj) ∈ E has a nonnegative cost wij . A matching is a

subset M ⊆ E such that at most one edge in M is incident
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upon v, for each v ∈ U ∪ V . A matching M is said perfect if

every vertex in U∪V is adjacent to some edge in M . The cost

of a matching M is defined as
∑

(ui,vj)∈M wij . The MWPM

problem is to find a perfect matching M ∗ with minimum cost.

We now present the algorithm SRAN(t0, r), Swapping Re-

pair with All Neighbors, which considers all the tuples in r as

neighbors. Specifically, we interpret the attributes in R as the

agents and tasks in the MWPM problem, i.e., U = V = R.

Given t0 and r , we define the weight

wij =
∑
tl∈r

Δ(t0[Aj ], tl[Ai]) =
∑
tl∈r

dlij , (7)

for 1 ≤ i ≤ m, 1 ≤ j ≤ m. By using the Hungarian

method [21], it returns an optimal matching M ∗. For each

(ui , vj ) ∈ M ∗, we assign xij = 1, i.e., t ′0[Ai] = t0[Aj ]. It

forms a swapping repair x with cost

Θ|r |
r (x) =

∑
tl∈r

∑
Ai∈R

∑
Aj∈R

xij ·Δ(t0[Aj ], tl [Ai]) (8)

=

m∑
i=1

m∑
j=1

xijwij =
∑

(ui,vj)∈M ∗

wij .

Proposition 1. The SRAN algorithm returns an optimal repair

in O(nm2 +m3 ) time, where n = |r |,m = |R|.

Example 7. Consider tuple t0 in Figure 1 for repairing.

The SRAN algorithm employs all the tuples in r , i.e., r =
{t1, t2, t3, t4, t5, t6, t7, t0}, as neighbors when evaluating the

swapping repaired tuple.

Referring to Formula 7, we initialize the weight wij for

each variable xij , e.g., w23 = 0.503 + 0.983 + 0.999 +
0.593 + 0.999 + 1 + 1 + 1 = 7.077. The swapping repair

problem is then solved as an assignment problem, having

U = V ={time, voltage, temperature, direction} together

with the corresponding weight wij for each edge (ui, vj) ∈ E.

By calling the Hungarian method for solving the MWPM

problem, a perfect matching M ∗ is computed, having M ∗ =
{(u1, v1), (u2, v3), (u3, v2), (u4, v4)} with total weight 22.467.

The corresponding optimal swapping repair for t0 can thus be

generated accordingly. For example, (u2, v3) ∈ E denotes that

t ′0[voltage] = t0[temperature]. Consequently, the repaired

tuple is t ′0 = (15:40, 33.3, 13.7, 330) with cost 22.467.

V. FIXED NUMBER OF NEIGHBORS

As discussed at the beginning of Section IV, the hardness

originates from the number κ of nearest neighbors. We show

(in Proposition 2) that for a fixed number κ of neighbors from

r in evaluating a repaired tuple, the optimum repair problem

can be solved in polynomial time.

Let us first present the quadratic programming formulation

of the repairing problem, which sparks the solution in Section

V-B by calling the aforesaid SRAN algorithm on all neighbors

in Section IV-B. Pruning technique is devised for efficient

repairing.

Fig. 3. The objective of quadratic programming

A. QP Formulation

The κ-NN distance cost in Formula 5 is rewritten as

Θ(x) =
∑
tl∈r

yl
∑
Ai∈R

∑
Aj∈R

xij ·Δ(t0[Aj ], tl [Ai]), (9)

where yl = 1 denotes that tl is the κ-NN of the repaired tuple

t ′0 = xt0, i.e., tl ∈ N (xt0); otherwise yl = 0.

The optimum repair problem can be formulated as Quadratic

Programming (QP) [27].

min

n∑
l=1

yl

m∑
i=1

m∑
j=1

xijdlij

s.t.

n∑
l=1

yl = κ,

m∑
i=1

xij = 1, 1 ≤ j ≤ m

m∑
j=1

xij = 1, 1 ≤ i ≤ m

xij ∈ {0, 1}, 1 ≤ i ≤ m, 1 ≤ j ≤ m

yl ∈ {0, 1}, 1 ≤ l ≤ n

where both xij and yl are variables to solve.

Figure 3 illustrates the relationships among variables yl,

variables xij and constants dlij . Let y denote the vector of

variables yl, x be the matrix of variables xij as in Definition

1, and D be the tensor of constants dlij . The objective∑n

l=1 yl
∑m

i=1

∑m

j=1 xijdlij is rewritten as y · D : x. As the

tensor multiplication has law of commutation, we first consider

the double inner product between tensor D and x, having

D : x =

m∑
i=1

m∑
j=1

m∑
p=1

m∑
q=1

dlijxpqδipδjq,

δip =

{
1, i = p

0, i �= p
, δjq =

{
1, j = q

0, j �= q
.

Then the dot product between y and the aforesaid double inner

product result D : x is exactly the distance cost Θ(x).

Example 8 (Example 6 continued). By transforming the

problem to quadratic programming, each tuple tl ∈
{t1, t2, t3, t4, t5, t6, t7, t0} is associated with a variable yl,

which denotes whether it is considered as one of the κ-NN
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for the repaired t ′0 = xt0. For instance, given κ = 3, there

are only three tuples in r having yl = 1. Variables xij and

constants dlij have the same meaning as in Example 6.

By minimizing the objective
∑n

l=1 yl
∑m

i=1

∑m

j=1 xijdlij , it

leads to a QP solution where the result of variables xij is the

same as that in ILP in Example 6, and y1 = y7 = y0 = 1,

y2 = y3 = y4 = y5 = y6 = 0. The repaired tuple is t ′0 =
xt0 = (15:40, 33.3, 13.7, 330).

B. Solving as All Neighbors

Referring to the aforesaid QP formulation, we show that

the repairing problem with κ neighbors can indeed be solved

by calling SRAN algorithm for all neighbors. The idea is to

consider (all) the sets T ⊆ r as potential κ-NN, compute

the optimal repair over each T by calling SRAN(t0,T ), and

among them return the one with the minimum distance cost.

Algorithm 1, SRKN(t0,r ,T ,S ), Swapping Repair with κ

Neighbors, presents the recursive computing of considering

all the subsets of r with size κ, where T is the current

set of potential κ-NN, and S denotes the remaining tuples

that may form potential κ-NN. To initialize, we have T =
{t1, t2, . . . , tκ}, S = r \ T = {tκ+1, tκ+2, . . . , tn},

Let x∗ be the currently known best solution with distance

cost θ∗ = Θκ
r (x

∗) as defined in Formula 5. Initially, we have

x∗ = SRAN(t0,T ) and θ∗ = Θ
|T |
T (x∗) referring to Formula 6.

Lines 1 to 4 generate the next potential T ′ by removing one

tuple tp from T and adding another tq from S . (Lines 5, 6, 13

and 14 are used for pruning, which will be introduced below.)

For this T ′, Line 7 calls SRAN(t0,T
′) to find the optimal

repair x over T ′. If its cost θ is lower than the currently

known best θ∗, x will become x∗. Line 12 recursively calls

the algorithm for the current T ′ and S ′.

Algorithm 1: SRKN(t0,r ,T ,S )

Input: t0 a tuple considered for repairing, r a set of tuples,
T current set of potential κ-NN,
S remaining tuples that may form potential κ-NN

Output: an optimal swapping repair x∗ of t0
1 for each tp ∈ T do
2 for each tq ∈ S do
3 T

′ ← T \ {tp} ∪ {tq};
4 S

′ ← S \ {tq};
5 θmin

T ′ ← lower bound computed by Formula 11;

6 if θ∗ > θmin

T ′ then
7 x← SRAN(t0,T

′);

8 θ ← Θ
|T ′|
T ′ (x) by Formula 8;

9 if θ < θ∗ then
10 θ∗ ← θ;
11 x

∗ ← x;

12 SRKN(t0, r ,T
′,S ′);

13 else
14 break;
15 return x

∗

Example 9. Consider the tuples in r in Figure 1. Given κ = 3,

we initialize T = {t1, t2, t3}, S = r \ T = {t4, t5, t6, t7, t0}.
The currently known best solution x∗ with distance cost

θ∗ = 9.223 for t0 is calculated by calling the algorithm

SRAN(t0,T ). Lines 1 to 3 remove one tuple t1 from T and

add another tuple t4 from S to generate the next potential

subset T ′ = {t2, t3, t4}. (By ignoring Lines 5 and 6 which will

be introduced below for pruning) Line 7 calls the algorithm

SRAN(t0,T
′) to generate the swapping repair x, and the cor-

responding distance cost θ is calculated according to Formula

8 in Line 8, having θ = 9.283 > θ∗. It thus considers the next

tuples in S . For t7 ∈ S , we have T ′ = {t2, t3, t7}, with the

distance cost θ = 8.812 < θ∗. It updates the currently known

best swapping repair x∗ with distance cost θ∗ accordingly,

and recursively calls the algorithm SRKN(t0, r ,T
′, S ′) using

the current T ′ and S ′ in Line 12.

Proposition 2. Algorithm 1 SRKN returns an optimal repair

in O(nκ(κm2 +m3 )) time, where n = |r |,m = |R|.

C. Pruning by Bounds on Neighbor Distances

Given any set T ′ ⊆ r , we propose to compute a lower

bound of distance cost θmin
T ′ for the optimal repair over T ′.

As illustrated in Line 6 in Algorithm 1, if the lower bound

θmin
T ′ is no better than θ∗, this T ′ can be pruned (as presented

below, the recursion on T ′ stops as well).

1) Bounds on Neighbor Distances: We study the distance

cost on each tuple tl ∈ r for potential repairs. It is utilized to

compute the bound of distance costs on any set T ⊆ r .

For each tuple tl ∈ r , by calling xl = SRAN(t0, {tl}),
we compute the optimal repair xl over one (all) neighbor tl .

Referring to Formula 6, the corresponding distance cost θmin
l is

θmin
l = Θ1

{tl}
(xl ) =

m∑
i=1

m∑
j=1

x l
ijdlij . (10)

Given any set T ⊆ r of potential κ-NN, we define θmin
T =∑

tl∈T θmin
l . The proposition below shows that θmin

T is a lower

bound of the distance cost for the optimal repair x∗ over T .

Proposition 3. For any tuple set T ⊆ r , we have

θmin
T =

∑
tl∈T

θmin
l ≤ Θ

|T |
T (x∗), (11)

where x∗ is an optimal swapping repair of t0 over T .

Example 10 (Example 9 continued). Consider a potential

subset T ′ = {t2, t3, t4} in Example 9. We compute the distance

cost θmin
l for each tl ∈ T ′ w.r.t. tuple t0, using Formula 10. For

example, we have θmin
2 = 1∗0.274+1∗0.983+1∗0.999+1∗1 =

3.256. Similarly, we get θmin
3 = 3.236 and θmin

4 = 2.791. The

lower bound θmin
T ′ of T ′ is computed referring to Formula 11,

having θmin
T ′ = θmin

2 + θmin
3 + θmin

4 = 9.283. For any possible

swapping repair of t0, e.g., t ′′0 = x′′t0 =(15:40, 330, 33.3,

13.7) with distance cost Θ
|T ′|
T ′ (x′′) = 9.505 in Example 4, we

always have θmin
T ′ ≤ Θ

|T ′|
T ′ (x∗).

2) Pruning by Bounds: We show that the lower bound in

Proposition 3 enables not only the pruning of the current T ′

in Line 6 in Algorithm 1, but also the subsequent recursion

on T ′ in Line 12.
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To ensure correctness of pruning, tuples tl ∈ r are sorted in

ascending order according to θmin
l . It guarantees that the lower

bounds of considered sets are non-decreasing in recursion.

Proposition 4. For the set T ′ considered in Line 3 in

Algorithm 1, it always has θmin
T ≤ θmin

T ′ .

Once we have θmin
T ′ ≥ θ∗ in Line 6 in Algorithm 1, all the

subsequent sets (say T ′′) in the recursion on T ′ always have

θmin
T ′′ ≥ θ∗ and thus can be directly pruned as well.

Example 11 (Example 9 continued). In order to guarantee

the correctness of pruning in Line 6 in Algorithm 1, we first

sort the tuples tl ∈ r in an ascending order w.r.t. θmin
l , having

r = {t0, t7, t1, t4, t6, t5, t3, t2}. Suppose that T ′ = {t7, t1, t4}
and S = {t6, t5, t3, t2}, with the currently known minimum

distance cost θ∗ = 7.049. The next potential subset T ′ =
{t7, t1, t4} has lower bound θmin

T ′ = 2.730+ 2.791+ 2.978 =
8.499. Since we have θ∗ < θmin

T ′ , i.e., the condition in Line 6

is not satisfied, the enumeration of S can be directly stopped

in Line 2. The reason is that the lower bounds of the next

potential T ′ must be in an ascending order (Proposition 4),

with distance cost greater than θ∗.

VI. FIXED SETS OF NEIGHBORS

Instead of considering (all) the potential sets T ⊆ r of κ-

NN to compute an exact solution in Algorithm 1, we propose

to heuristically consider a number of fixed neighbor sets.

Intuitively, the κ-NN of a tuple should be close with each

other as well. Rather than enumerating all the subsets of r

(with size κ), we may consider only the κ-NN of each tuple

tl ∈ r as potential set T .

Algorithm 2, SRFN(t0,r ), Swapping Repair with Fixed

Neighbors, presents the approximation computation. Let T be

the κ-NN of each tuple tl in r

T = {N κ
r (tl) | tl ∈ r}. (12)

Line 2 considers only the set T ∈ T as potential κ-NN for

evaluating a repair. For each T ∈ T, the computation of a

repair is generally similar to Lines 5-11 in Algorithm 1.

Algorithm 2: SRFN(t0,r )

Input: t0 a tuple considered for repairing, r a set of tuples
Output: a near optimal swapping repair x∗ of t0

1 T← all sets T of potential κ-NN defined in Formula 12;
2 for each T ∈ T do

3 θmin

T ← lower bound computed by Formula 11;

4 if θ∗ > θmin

T then
5 x← SRAN(t0,T );

6 θ ← Θ
|T |
T (x) by Formula 8;

7 if θ < θ∗ then
8 θ∗ ← θ;
9 x

∗ ← x;
10 return x

∗

Example 12. Consider tuple t0 in r in Figure 1 with κ = 3.

Rather than enumerating all the possible subsets T ⊆ r

with size κ to compute an exact solution in Algorithm 1, we

TABLE II
DATASET SUMMARY

Dataset |r | # clean tuples # error tuples |R| # DCs

Magic 19k 17k 2k (synthetic) 10 4

Restaurant 864 764 100 (synthetic) 4 7

Chess 28k 26k 2k (synthetic) 6 12

Skin 245k 242k 3k (synthetic) 4 3

Turbine 5.2k 5k 200 (real) 9 9

FEC 50k 46.7k 3.3k (real) 15 15

consider only the κ-NN of each tuple tl ∈ r as potential set

T . For instance, given T = N κ
r (t6) = {t1, t6, t7} in Line 2

in Algorithm 2, we first compute the lower bound of distance

cost by Formula 11, having θmin
T = θmin

1 + θmin
6 + θmin

7 =
2.730 + 2.978 + 2.319 = 8.027. As the currently known

minimum distance cost is greater than θmin
T , we call the SRAN

algorithm to compute the swapping repair x for t0, which

leads to the repaired tuple xt0 = (15:40, 33.3, 13.7, 330).

VII. EXPERIMENT

In this section, we evaluate our proposal over real-world

misplaced attribute values. Moreover, we show how the swap-

ping repair complements existing methods to remedy both

misplaced-attribute and in-attribute errors in a dataset.

A. Experimental Settings

All programs are implemented in Java. Experiments are per-

formed on a machine with 3.1GHz CPU and 16GB memory.

1) Datasets: We employ 6 real datasets in evaluation. Table

II lists the major statistics of the datasets.

Turbine is a dataset with real misplaced attribute values and

manually labeled truth, collected by a world leading wind

turbine manufacturer. Each tuple records 9 data fields of a

wind turbine, including timestamp, site id, turbine id, three

phase voltage values and three temperature values of pitch

inverters. As introduced in Example 1, owing to mis-plugging

by workers, three phase voltage values and the temperature

values of three pitch inverters are misplaced. There are total

200 tuples with misplacement and manually labeled truth.

FEC [2] is another dataset with real-world misplaced errors

and manually labeled truth. Each tuple records a committee

registered with the Federal Election Commission, including

federal political action committees, party committees, etc. As

identified in [20], the FEC dataset has some rows with the

wrong number of columns, leading to data type errors, i.e.,

misplacement. When parsing the raw data, since commas in

values are mistakenly interpreted as separators, a number of

3.3k tuples are observed with misplacement out of 50k.

Magic [4] consists of generated data to simulate the reg-

istration of high energy gamma particles in a ground-based

atmospheric Cherenkov gamma telescope using the imaging

technique. The classification task is to discriminate the images

generated by primary gammas (signal, class label g) from the
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images of hadronic showers initiated by cosmic rays in the

upper atmosphere (background, class label h).

Chess [1] represents the positions on board of the white

king, the white rook, and the black king. The classification

(with 18 classes) is to determine the optimum number of turns

required for white to win the game, which can be a draw if it

takes more than sixteen turns.

Restaurant [5] is a collection of restaurant records contain-

ing 112 duplicates. Each record includes four attributes, name,

address, city and type. It has been used as a benchmark dataset

in record matching [32] and data cleaning [39].

Skin [6] is collected by randomly sampling B,G,R values

from face images of various age groups (young, middle, and

old), race groups (white, black, and asian), and genders. It is

utilized to evaluate the scalability for our proposed approaches.

2) Error Generation: Since the Magic, Restaurant, Chess

and Skin datasets are originally clean, following the same

line of evaluating data cleaning algorithms [8], we introduce

synthetic errors in the data.

To inject misplaced-attribute errors, we consider a set of

attributes W ⊆ R for replacement, e.g., W = {A1,A2,A3}.
For any tuple t

#
0 that is originally clean (ground truth), the

corresponding dirty tuple t0 is generated by randomly re-

assigning the values on attributes W , such as t0[A1] =
t
#
0 [A2], t0[A2] = t

#
0 [A3], t0[A3] = t

#
0 [A1]. Each value t

#
0 [Ai]

is only re-assigned once.

To inject in-attribute errors (for evaluating the joint repair

of swapping and existing methods), we consider various types

of errors, including errors detectable by constraints, outliers

and missing values. Following [8], FDs are discovered by

TANE [17] and detectable errors are generated based on the

mined FDs. Moreover, we randomly remove/modify cells from

various attributes as missing/outlier values.

3) Evaluation Criteria: For numerical values, to measure

the repair accuracy, we employ the repair error measure, root-

mean-square error (RMS) [18]. For each tuple t0, it evaluates

how close the repaired result t ′0 to the corresponding truth t
#
0 ,

RMS(t#0 , t ′0) =

√∑
A∈R

(t′0[A]−t
#
0 [A])2

|R| . The lower the RMS

error is, the more accurate the repair is (closer to the truth).

For categorical values, e.g., in FEC, Restaurant and Chess,

we measure the accuracy on whether a repair equals exactly

the ground truth. Let truth be the set of truths for dirty values

and found be the set of repair results returned by cleaning

algorithms. The accuracy is given by accuracy = |truth∩found|
|truth| ,

i.e., the proportion of dirty values that are accurately repaired.

We also utilize the accuracy measurement to evaluate the error

detection accuracy for both numerical and categorical data.

4) Baselines and Implementation Details: For reference,

we compare our proposed approach against several competing

in-attribute repair methods, including the constraint based data

repair algorithms HoloClean [33], ER [15], DD [38], and the

non-constraint based data cleaning approaches SCARE [41],

ERACER [25] and DORC [39].

SCARE [41] performs data repairing based on the proba-

bilistic correlations between reliable attributes with correct val-
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Fig. 4. Swapping repair (SRFN) over Turbine data with 200 tuples containing
6 real-world misplaced attributes

ues and flexible attributes with possible dirty values. Trusted

data are used in SCARE, i.e., the tuples without injected errors

in the Magic, Restaurant and Chess datasets of synthetic errors,

or the tuples without errors identified in the Turbine and FEC

datasets with real-world errors. The sizes of trusted data are

reported in Table II. We utilize all the trusted data to train

the prediction model. The left-hand-side (LHS) attributes of

the aforesaid discovered FDs are considered as the reliable

attributes for SCARE.

ER [15] determines certain fixes with editing rules defined

on value equality. Similar to SCARE, the reference data of ER

are the tuples without synthetic errors injected or real-world

errors identified. The sizes of reference data used in ER are

the same as the trusted data for SCARE, reported in Table II.

We discover CFDs from the clean data by [14] as editing rules

to find certain fixes.

HoloClean [33] employs not only the constraints but also the

statistical learning to repair dirty values. Again, general DCs

are discovered from the clean data by [11] for HoloClean. The

number of discovered DCs is presented in Table II. These rules

cover all the attributes with synthetic or real-world errors. We

adapt its open source implementation [3] for misplacement

repair by using other values in the same tuple as candidates

for the erroneous cell.

DD [38] introduces extensions with distance functions.

Since DCs with distance functions are not directly supported

in the current HoloClean implementation [3], we consider the

repair under the DD (neighborhood) constraints on distances

[38]. Again, DDs are discovered from the clean data by [37].

ERACER [25] iteratively learns a global relational depen-

dency model, i.e., linear regression model for numerical data

and relational dependency network for categorical data in our

experiments, to infer the probabilistic relationships among

attributes. Again, the same LHS attributes of FDs are utilized

as the determinant attributes for ERACER.

DORC [39] minimally repairs the outliers (e.g., the tuples

with misplaced attribute values) to existing points (tuples).

Since the exact algorithm needs to call the costly ILP solver,

we use the quadratic time approximation version QDORC.

B. Swapping Repair of Misplaced-Attribute Errors

Figures 4 and 5 report the repair and error detection results

over the real misplaced errors in Turbine and FEC datasets
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Fig. 5. Swapping repair (SRFN) over FEC data with 3.3k tuples containing
8 real-world misplaced attributes
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Fig. 6. Comparing the approximate swapping repair SRFN to the exact SRKN

over Skin with 3k tuples containing 2 misplaced attributes

under various numbers of tuples in r . It is worth noting that

there are no existing approaches dedicated to repair misplaced-

attribute errors. For reference, we report the results of directly

applying in-attribute repair methods, including the constraint

based data repair algorithms HoloClean [33], ER [15], DD

[38], and the non-constraint based data cleaning approaches

SCARE [41], ERACER [25] and DORC [39]. In particular,

the SCARE approach considers the distribution of values in

the attribute domain and across attributes. As shown in Figures

4 and 5, approaches with higher error detection accuracy lead

to more accurate repair accuracy as well.2 Indeed, it is not a

fair comparison, and a more reasonable yet practical evaluation

is to perform joint repair, as presented in Section VII-C below.

Nevertheless, as shown in Figures 4(b) and 5(b), comparing to

the multivariate outlier detection approaches handling outliers,

e.g., DORC, ERACER and SCARE, the swapping repair SRFN

is very effective in repairing misplacement, with a higher mis-

placed error detection accuracy. The reason is that multivariate

outlier detection may return false-positives of misplaced errors,

i.e., true outliers without misplaced values.

To show the scalability of our proposal, Figure 6 reports the

results over a large Skin dataset with up to 245k tuples. While

the complexity of the exact Algorithm 1 SRKN is high, the

approximate Algorithm 2 SRFN reduces the complexity and

shows significantly lower time costs in Figure 6. Nevertheless,

the RMS error of SRFN is still very close to that of SRKN.

Figure 7 presents the results with different distance func-

tions, i.e., using pre-trained embedding Glove [30] and edit

distance [26]. As shown, the repair accuracy is improved with

the help of pre-trained embedding techniques, comparing to

2ER and HoloClean with clearly worse results are omitted in Figure 4.
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Fig. 7. Varying the number of nearest neighbors κ in swapping repair over
Restaurant data with 50 tuples containing 2 misplaced attributes
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Fig. 8. Joint repair over Magic data with 1k tuples containing 2 misplaced
attributes and 1k tuples having in-attribute errors, including 1/3 constraint
detectable errors, 1/3 outliers and 1/3 missing values

traditional measurement function edit distance. In addition to

the exact SRKN and the approximate SRFN, we also report

SRAN as baseline, where all the tuples are considered as

neighbors (and thus the result of SRAN does not change with

κ). As shown in Figure 7(a), the approximate SRFN shows

almost the same results as the exact SRKN, when κ is small.

The repair accuracy is lower if κ is too large, since irrelevant

tuples may be considered as neighbors and obstruct repairing.

When κ = n , it is not surprising that SRKN shows the same

results as SRAN. To determine a proper κ, one can sample

some data from r , manually injecting misplaced errors, and

see which κ can best repair these errors (like Figure 7). The

remaining data are then evaluated using the selected κ.

C. Joint Repair of Misplaced-Attribute and In-Attribute Errors

Figures 8, 9 and 10 report the results with various error

types, including misplacement, constraint detectable errors,

outliers and missing values as injected in Section VII-A2.

As shown, ERACER and SCARE, which can handle various

types of errors, achieve a better performance than the other

baselines alone.3 Figures 8(b), 9(b), and 10(b) present the joint

repair where our proposal SRFN is paired with the existing

in-attribute repair approaches. As shown, SRFN+ERACER

and SRFN+SCARE show higher accuracy. The result is not

surprising referring to the better performance of ERACER and

SCARE, compared with DORC and so on in Figures 8(a), 9(a),

10(a). The joint repair such as SRFN+SCARE shows better

performance than any individual ones. These promising results

3ER and HoloClean with clearly higher RMS error are omitted in Figure 8.
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Fig. 9. Joint repair over Restaurant data with 50 tuples containing 2 misplaced
attributes and 50 tuples having in-attribute errors, including 1/3 constraint
detectable errors, 1/3 outliers and 1/3 missing values
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Fig. 10. Joint repair over Chess data with 1k tuples containing 2 misplaced
attributes and 1k tuples having in-attribute errors, including 1/3 constraint
detectable errors, 1/3 outliers and 1/3 missing values

demonstrate not only the necessity of studying swapping

repairs for misplacement, but also the practical solution for

jointly remedying both error types.

To illustrate that the order of repair steps affects the

final results of the joint repair in Section III-C, Figure 11

considers various combinations of swap, repair and impute

steps. SCARE [41] is considered in repair and imputation,

and SRFN is used for swapping. The results verify that dirty

values in attributes have little effect on the swapping repair

for the misplaced errors. The pipeline Swap-Repair-Impute

achieves the best performance. In contrast, other pipelines such

as Repair-Impute-Swap applying in-attribute error repair first

have low accuracy.

VIII. RELATED WORK

While distance has been recognized as an important signal

of data cleaning in [39], this paper is different from other stud-

ies such as [34] and [35] in both the conceptual and technical

aspects. (1) The concepts on distances are different. While

this paper studies the likelihood of distances between tuples,

[34] considers the constraints on distances and [35] learns

regression models to predict the distances among attributes. (2)

The problems are different. This paper proposes to maximize

the distance likelihood of a tuple by swapping its values

to address misplacement errors. Instead, [34] is to minimize

the changes towards the satisfaction of distance constraints
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Fig. 11. Joint repair (SRFN+SCARE) using various pipelines over (a) Magic
and (b) Chess data with 1k tuples containing 2 misplaced attributes and 1k
tuples having in-attribute errors, including 1/3 constraint detectable errors, 1/3
outliers and 1/3 missing values

to eliminate in-attribute errors, and [35] imputes the missing

values w.r.t. the predicted distances on an attribute. (3) The

devised techniques are also very different given the aforesaid

distinct problems. In order to avoid enumerating the κ-NN

combinations for all the possible swapping repaired tuples,

this paper considers approximately the fixed sets of neighbors.

On the contrary, [34] proposes to utilize the bounds of repair

costs for pruning and approximation. Moreover, [35] imputes

each incomplete attribute individually in approximation, which

is unlikely in the scenario of this study (swapping occurs

between at least two attributes).

A. Data Repairing

While no studies have been found to address misplacement,

as illustrated in Section III-C, our proposal could complement

the existing approaches to repair both misplaced-attribute and

in-attribute errors. We briefly summarize below the typical

data repairing methods, for in-attribute errors. Editing rules

(ER) rely on certain regions [15] to determine certain fixes,

where constraints are built upon equality value relationships

between the dirty tuples and master data. Owing to the strict

value equality relationships, the numerical or heterogeneous

values with various information formats often prevent finding

sufficient neighbors from master data. It makes the dirty val-

ues barely fixed. Statistical-based approaches employ statistic

models for data repairing. In SCARE [41], the attributes in a

relation for repairing are divided into two parts, i.e., reliable

attributes with correct values and flexible attributes with dirty

values. Probabilistic correlations between reliable attributes

and flexible attributes are then modeled, referring to the value

distribution. The repairing objective is thus to modify the

data to maximize the likelihood. ERACER [25] constructs

a relational dependency network to model the probabilistic

relationships among attributes, where the cleaning process

performs iteratively and terminates when the divergence of

distributions is sufficiently small.

B. Outlier Detection and Cleaning

Distance-based outlier detection [19] determines a fraction

p and distance threshold ε according to data distributions, and

considers an object as an outlier if at least p of objects have

distances greater than ε to it. Our proposed methods share the
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similar idea that a tuple with occasionally misplaced attribute

values is outlying. In this sense, it extends the existing outlier

detection technique, i.e., (1) detecting outliers as suspected

tuples with potentially misplaced values, and (2) swapping

attribute values in an outlier to see whether it possibly becomes

an inlier. Of course, an outlier may not be changed after

repair checking (i.e., no swapped tuple shows higher likelihood

than the original outlier tuple). It denotes that no misplaced

values are detected in this outlier tuple. In contrast, the existing

DORC [39] repairs all the outlier tuples by the values of other

tuples, to make each outlier an inlier. It may excessively over-

repair the outliers where no errors indeed occur.

IX. CONCLUSION

In this paper, we first summarize the sources of misplaced

attribute values, ranging from Web forms to IoT scenarios,

covering all the ETL phases. Unlike the widely considered

in-attribute errors, the true value of misplaced-attribute error

is indeed in some other attribute of the same tuple. While

swapping repair is intuitional, it is non-trivial to evaluate the

likelihood of a tuple on whether its values belong to the cor-

responding attributes. As illustrated in Section II-A, owing to

the sparsity and heterogeneity issues, studying the distribution

directly on values may not work. Instead, we argue to evaluate

the likelihood by how the values are similar/distant to others.

The rationale of distance likelihood lies in the Poisson process

of nearest neighbor appearance. To find the optimum swapping

repair with the maximum distance likelihood, we show that

the optimum repair problem is polynomial time solvable, in

Proposition 1, when considering all the tuples as neighbors;

devise an exact algorithm for a fixed number of neighbors,

together with bounds of distances in Proposition 3 for pruning;

and propose an approximation algorithm by considering fixed

sets of neighbors. Extensive experiments on datasets with real-

world misplaced attribute values demonstrate the effectiveness

of our proposal in repairing misplacement.
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