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Abstract A broad class of data, ranging from similarity
networks, workflow networks to protein networks, can be
modeled as graphs with data values as vertex labels. Both
vertex labels and neighbors could be dirty for various rea-
sons such as typos or erroneous reporting of results in
scientific experiments. Neighborhood constraints, specify-
ing label pairs that are allowed to appear on adjacent vertices
in the graph, are employed to detect and repair erroneous ver-
tex labels and neighbors. In this paper, we study the problem
of repairing vertex labels and neighbors to make graphs sat-
isfy neighborhood constraints. Unfortunately, the problem is
generally hard, which motivates us to devise approximation
methods for repairing and identify interesting special cases
(star and clique constraints) that can be efficiently solved.
First, we propose several label repairing approximation algo-
rithms including greedy heuristics, contraction method and
an approach combining both. The performances of algo-
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rithms are also analyzed for the special case. Moreover, we
devise a cubic-time constant-factor graph repairing algorithm
with both label and neighbor repairs (given degree-bounded
instance graphs). Our extensive experimental evaluation on
real data demonstrates the effectiveness of eliminating frauds
in several types of application networks.

Keywords Data repairing · Data quality ·
Graph data cleaning

1 Introduction

Graph-structured data are prevalent such as similarity net-
works, workflow networks or protein networks. Owing to
the existence of errors, a graph may violate certain neighbor-
hood constraints (also expressed as a graph, see motivation
examples below). This paper studies a problem of repairing
vertex labels and neighbors in a graph to make it satisfy cer-
tain neighborhood constraints on labels.

1.1 Motivation Examples

The general idea of data repairing is to suggest possible
repairs of a tuple t by other tupleswith (equality or similarity)
relationships to t . Instead of the rigid equality in conven-
tional functional dependencies (fds), the similarity/distance
relationships between tuples enable the tolerance of small
variations, e.g., “Street” and its abbreviation “St.”. Such
relationships could be captured by metric functional depen-
dencies [23] with metric introduced in the right-hand side
of the dependency, matching dependency [12] with metric
in the left-hand side, or differential dependencies (dds) [27]
in both sides. Without such tolerance of variations, the num-
ber of tuples with (strict equality) relationships to a being
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ID Address City Tel

1 No.721, West Lake St. HZ 0571-624-8209

2 No.735, West Lake St. HZ 0571-625-7241

3 No.735, West Lake Street HZ ****-***-7241

4 640, West Lake Street HZ 0571-624-6317

(c)

(a) (b)

Fig. 1 Label repairing on similarity network. a Constraint, b instance,
c relation.

repaired tuple t is quite limited, and thus the equality-based
repairingmethods (such as fd-based [3]) often fail to suggest
possible repairs.

Example 1 (Similarity Networks) Consider a relation
instance in Fig. 1c which collects customer information from
various sources.Add (Address,City → Tel, 〈[0, 6], [0, 0],
[0, 5]〉) states that if two tuples have similar Address values
(i.e., with distance1 in the range of [0, 6]) and the same City
values (with distance in [0, 0]), they should have similar Tel
values as well (distance within [0, 5]) by sharing the same
area code and another two digits for the same region. For
instance, tuples 1 and 2 of customers in the same street (of
the same city) have similar Tel numbers by sharing the same
prefix “0571-62”. Such dd rules can either be specified by
domain experts or discovered from data [28].

We model the similarity relationships by graphs as fol-
lows. First, in Fig. 1a, a constraint graph is constructed to
represent the similarity/distance requirements on Tel (right-
hand-side attribute in the dd) values, where each node
denotes a distinct value of Tel domain in the relation. We put
an edge between two nodes if their distance is within [0, 5]
specified by the dd. Next, an instance graph is built accord-
ing to the similarities on Address and City (left-hand-side
attributes in the dd) of tuples as shown Fig. 1b. Each vertex
corresponds to a tuple in the relation, with its Tel value as
the label, while an edge indicates that the Address and City
values of these two tuples have distance within [0, 6] and
[0, 0], respectively.

To validate whether a relation satisfies the dd, it is equiva-
lent to investigate whether the corresponding instance graph
satisfies the constraint graph. That is, for each tuple pair
with similar Address and same City (having an edge in the
instance graph), their Tel values must be similar as well (the
pair of labels belong to an edge in the constraint). Since the

1 e.g., Edit distance (see [25] for a survey of string similarity).

(a) (b)

Fig. 2 Example of protein interaction networks. a Star constraint on
GO terms, b instance of protein networks

data are collected from sources with various representation
formats and dirty information, violations exist. For instance,
suppose that several digits of Tel are lost/hidden in tuple
3. The distance on Address of tuples 3 and 2 (equal to 4
within [0, 6]) and their equalCity values (distance 0 in [0, 0])
indicate an edge between vertices 3 and 2 in Fig. 1b. How-
ever, their Tel numbers are not similar (with distance 7 not
in [0, 5]), i.e., the labels of vertices 3 and 2 denoted by d and
b, respectively, are not an edge in Fig. 1a.

Consequently, the data repairing is to relabel vertex/tuple
3 by b:0571-625-7241, since it is the Tel value (label) most
similar to the observed d that can satisfy the constraint (see
more discussion on repairing cost in Sect. 3.2). Given an fd
(Address,City → Tel), the existing equality-based repair-
ing method [3] obviously cannot suggest such a repair, since
tuple 3 does not have any other tuple with equality relation-
ships on Address in Fig. 1c. That is, no repair candidates
can be suggested w.r.t. the fd. ��

Indeed, inaccurate values might not only appear in labels
(Tel), but also in Address values, which leads to errors in
neighborhood in the instance graph (see motivation example
in Example 10). In addition to label repairing, we perform
neighbor repairing to eliminate violations.

While the similarity network captured from dd is a pos-
sible scenario, the proposed graph repairing is applicable to
other real-world networks, for instance, the protein interac-
tion networks as illustrated in Fig. 2 in Example 2, or the
coauthor networks in Fig. 15 in Sect. 8.1.2. In protein net-
works, each protein corresponds to a vertex. Edges denote
the binary protein–protein interactions. Protein’s gene ontol-
ogy (GO) term is used as the vertex label. Repairing could
be applied to correct the faulty GO annotations (see details
in Example 2). Moreover, workflow networks could also be
naturally represented as constraint graph (denotingworkflow
specification) and instance graph (i.e., workflow execution).
It is to repair the errors occurring in workflow execution
which violate the workflow specification (see details in
Example 2 in [34]).

The constraint graphs can either be constructed by
knowledge (such as the similarity network built by dd in
Sect. 8.1.1), obtained from reliable sources (e.g., the coau-
thor network from DBLP in Sect. 8.1.2) or built by entity
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resolution methods over graphs (see discussion in Sect. 8.1.2
as well).

1.2 Contributions

Our major contributions in this are summarized as:

1. We investigate the complexity of the vertex label repair-
ing (relabeling) problem (in Sect. 3.3). The relabeling
problem is proved to be np-complete (Proposition 1). For
the special case of star constraints, it can be approximated
within a constant factor (Proposition 3), while the clique
constraints case can be solved in ptime.

2. We study greedy heuristics for relabeling (in Sect. 4). The
greedymethodmay fail, since relabeling a vertex to elim-
inate some violations could introduce new violations to
other vertices. Nevertheless, we illustrate that the greedy
method always terminates in the special case of star con-
straints (Proposition 4).

3. We devise a contraction method which guarantees ter-
mination (in Sect. 5). The contraction operation requires
the contracted vertices to have the same label in order to
stop violation spread. We prove that the total number of
contraction operations is bounded (Proposition 5), while
the contraction results may be arbitrarily bad in terms
of relabeling cost due to enforcing the same labels. For
the special case of star constraint, the contraction method
appears to be a factor-2 approximation (Proposition 6).

4. We present an approach (AlterGC) combining the advan-
tages of greedy and contraction techniques (in Sect. 6).
Referring to non-termination of greedy method and pos-
sibly bad results of contraction, the AlterGC approach
conducts the high cost contraction only when no further
greedy relabeling can be applied.

5. We introduce the graph repairing problem, with the con-
sideration of both label and neighbor repairs (in Sect. 7).
It is not surprising that the graph repairing problem is still
np-hard (Theorem 9). We thus devise an approximation
algorithm that runs in cubic time and is a constant-factor
approximation (Proposition 13) given a degree-bounded
instance graph.

6. We report an extensive experimental evaluation for the
proposed methods on real datasets (in Sect. 8). The
experiments verifymajor theoretical results including ter-
mination, approximation bound, time performance and
relabeling accuracy of frauds. In particular, the f-measure
accuracy of repairing with dd in similarity network is
significantly higher than that of existing methods with
fd. The AlterGC approach performs very well in prac-
tice, with high effectiveness and efficiency. Finally, with
both label and neighbor errors, we show that the proposed
Grepair algorithm shows both higher repair accuracy and
better time performance.

Table 1 Notations

Symbol Description

S(L,N) Constraint graph S with label set L, neighborhood N

G(V ,E, λ) Instance graph G with vertex set V , edge set E,
vertex labeling λ

λ Labeling of vertex

� Labels match constraint

� Graph satisfies constraint

δl Cost of relabeling a vertex

Δl Cost of relabeling a graph in Eq.1

δn Cost of neighbor repair in Eq.11

Δ Cost of graph repair in Eq.12

θ Weight of label and neighbor repairing costs in
Eq.12

T(v, �) Set of vertices with violations to vertex v having
λ(v) = � in Eq.2

R A node of contracted vertices

V(R) Set of all vertices in R in Eq.5

Table 1 lists the frequently used notations. A preliminary
version of this paper appears in [30]. Compared to the pre-
liminary conference version, the major differences include:
(1)We present the proofs of major theoretical results, includ-
ing Proposition 1, Theorem 2, Proposition 3, Proposition 4
and Proposition 6, for the vertex label repairing (relabeling)
problem. (2) We add a completely new section, i.e., Sect. 7,
to consider the graph repairing with both vertex label and
neighbor repairs. (3) We add a new Sect. 8.2, to report the
new experiments on evaluating graph repairs, where both
label and neighbor errors are considered.

2 Related Work

The constraint satisfaction problem (CSP) [24] finds an
assignment of values to variables (analogous to labels and
vertices, respectively) such that certain constraint is satisfied.
The problem of assigning values in CSP is different from our
studied problem of graph repairing. CSP with binary con-
straints finds a bijection (assignment) from instance graph to
constraint graph. In our graph repairing problem, however,
vertices in the instance graph have already been assigned
with labels. We target on repairing some vertices (on labels
or neighbors) to eliminate violations to the constraint graph.
Therefore, techniques for CSP assignment are not directly
applicable to graph repairing.

2.1 Constraints on Graphs

Besides the constraint graph studied in this work, pattern
graphs can also be considered as more complex constraints,
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e.g., by associating comparison operator on attributes of ver-
tices [13] or extending edges to reachability constraints of
paths [7]. Such patterns are useful in graph similarity match-
ing [38,39]. Fan et al. [11] propose keys for graphs aiming to
uniquely identify entities represented by vertices in a graph.
Again, graph patterns are employed to recursively define the
keys. The major difference between graph pattern matching
and our graph repairing problem is about the satisfaction.
Informally, a match of the pattern graph is a subgraph of the
instance graph G such that each edge in the pattern exactly
corresponds to an edge in the subgraph [14], i.e., it is not
required that each edge in G could be mapped to the pattern
graph. In contrast, referring to the definition in Sect. 3.1, the
satisfaction in our studymeans that two vertices of each edge
in the instance graph G should have the same label or two
labels appearing as an edge in the constraint graph S.

A document type definition (DTD) is often employed to
define the legal structure of XML document by a list of legal
elements and attributes.When illegal structures are observed,
XML documents need to be modified in order to make them
valid w.r.t. a given DTD [4,31]. It is to compute the minimal
tree or graph editing between the XML document and the
DTD. In contrast, the studied graph repairing is to minimize
the distance between the repaired and original graphs, such
that the repaired graph satisfies the constraint.

2.2 Graph-based data repairing

To eliminate data violations w.r.t. integrity constraints, there
are a variety of repair models proposed in previous work.
Among them, two typical models, i.e., deletion and modifi-
cation, can be adapted to the graph data.

The deletion-based model [8] allows deleting elements
in data, in order to eliminate violations to the constraints.
In terms of graph notations, it is to delete vertices (as well
as the incident edges). However, the data instance will lose
information in this deletion model. In particular, the struc-
tural information, an important aspect of graph data, could
be lost after deletion.

The modification-based model [35] performs value mod-
ification instead of deletion. In this paper, we also adopt this
valuemodificationmodel, i.e., vertex relabeling. An interest-
ing variation [22] is studied by allowing a value modified to
a variable that stands for a special value outside the current
domain. This special value, which will not introduce viola-
tions to the existing data, plays a similar role as the center
label in a special type of star constraint (Definition 2).

The insertion-based model [1] introduces value insertion
and is used for constraints on existence, e.g., adding tuples
to satisfy inclusion dependencies in relational databases. In
our constraint graph of label neighborhood, since there is no
effect to violation elimination by adding vertices, the inser-
tion model does not help.

The idea of equivalence classes [3] is often used in repair
algorithms, where tuples are grouped into classes each of
which has a certain equal value. Unfortunately, such equiva-
lence classes do not exist w.r.t. neighborhood constraints as
pair-wise relationships in a general graph. Thereby, for the
general constraint graph, existing techniques [3,8,22] devel-
oped on the equivalence of tuples cannot be applied to our
relabeling problem.

Effective methods and algorithms are also proposed for
repairingvarious data types,whichmaynot be used in graphs.
For example, Flesca et al. [16] study the repairing of numer-
ical data. Zhang et al. [36] propose to repair time series data.
Song et al. [26] consider the repairing of timestamps.

3 Graph Repair with Label Modification

In this section, we present the problem of graph repairing
via label modification. It is worth noting that there always
exists a relabeled graph G′ of any given instance graph G,
which satisfies any constraint S, by simply relabeling all
vertices of the graph G to any single label mentioned in
S. Intuitively, this important semantics of labeling schemes
motivates two aspects of graph relabeling: (1) instead of arbi-
trarily yet unnecessarily relabeling all the vertices, we should
minimally modify the data, referring to the minimum change
principle for repairing [3] as introduced in Sect. 3.2. (2) By
enforcing the same labels for vertices in a local structure, it
always eliminates violations and leads to the practical con-
traction repairing algorithm with termination guarantees, as
presented in Sect. 5.1.1.

3.1 Preliminaries

Let L = {�1, . . . , �|L|} denote a set of labels.
A constraint graph S(L,N, λ) is an undirected graph,

where N specifies the pair-wise neighborhood constraints of
unique labels in L. Intuitively, it specifies whether two labels
are allowed to appear as neighbors. For instance, Fig. 1a
illustrates a constraint graph that specifies the neighborhood
among four labels {a, b, c, d}, where each node denotes a
unique label. The edge (a, b) indicates that labels a and b
could appear as neighbors. We allow two neighboring nodes
with the same label, referring to the application scenarios
that two tuples may have the same values in similarity net-
works (Example 1), or two nearby locations may have the
same point-of-interest label in check-in data.

Consider another graph G(V ,E, λ), namely instance
graph, which has labels from L for all the vertices in V ,
given as a labeling function λ : V → L. Fig. 1b illustrates
an instance graph with four vertices V = {1,2,3,4}, where
each vertex is associated with a label from L = {a, b, c, d}.
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We say two labels �1, �2match a constraint graphS(L,N),
denoted by (�1, �2) � S, if either �1 = �2 denotes the same
label or (�1, �2) ∈ N is an edge in S. For example, in Fig. 4a,
we have (a, a) � S, (a, b) � S, but (a, d) 
� S. It is worth
noting that (a, a) � S implies the self-loop relationship of
labels in S.

An instance graph G(V ,E, λ) satisfies a constraint graph
S(L,N), denoted by G � S, if (v, u) ∈ E implies
(λ(v), λ(u)) � S,∀(v, u) ∈ E. That is, for any edge
(v, u) ∈ E, their labels λ(v), λ(u) must match the constraint
graph S with either λ(v) = λ(u) or (λ(v), λ(u)) ∈ N . The
verification of a given instance graph satisfying a given label-
ing schema can be easily done in polynomial time.

We call (v, u) a violation to the constraint graph S, if
(v, u) ∈ E and (λ(v), λ(u)) 
� S. For example, in Fig. 4b,
the edge (5,6) indicates a violation to S, as their labels
(c, g) 
� S are neither the same nor adjacent in Fig. 4a of
constraints.

3.2 Cost Function for Label Repair

The cost of vertex relabeling is evaluated by the difference
between the original and repaired vertex labels. More pre-
cisely, the repairing target is to return a modified result that
minimally differs from the original data [3]. This minimum
change principle is widely adopted in improving data quality,
under the rationale that people try to make as few mistakes
as possible.

Following the same line of repairing in databases [3], we
formalize the relabeling cost in graph by evaluating the mod-
ification on vertex labels. Let G′ be a relabeled graph of G.
The relabeling cost is given by,

Δl(G′,G) =
∑

v∈V
δl

(
λ(v), λ′(v)

)
, (1)

where λ′(v) is the new label of v ∈ V in the repaired G′,
and δl(λ(v), λ′(v)) denotes the (distance) cost of relabeling
vertex v from label λ(v) to λ′(v). The metric δl could be any
string distance function or simply the count of modifications
[22]. The count cost is considered by default in the following
study of decision problems,

δl(�, �
′) =

{
0 if � = �′

1 if � 
= �′

on nonidentical arguments, where �, �′ ∈ L.
String distance or counting-based metrics may not always

capture the label semantics very well. A minor change could
mean a completely different entity, for instance, a salary value
of 10,000 is very different from 90,000, while their edit dis-
tance is small. Therefore, more advanced domain specific

metrics could be employed as the relabeling cost, such as the
absolute difference for numerical values.

3.3 Relabeling Problem Analysis

We now formalize the vertex label repairing (relabeling)
problem: For a constraint graph S and an instance graph
G, it is to find a relabeled G′ of G such that G′ � S and the
relabeling cost Δl(G′,G) is minimized.

Before discussing technical details, we analyze hardness
of the relabeling problem and consequently identify special
cases that may be addressed efficiently.

Proposition 1 For a constraint graph S, an instance graph
G and a constant c, the problem of determining whether there
exists a relabeled G′ of G such that G′ � S and the relabeling
cost Δl(G′,G) ≤ c is np-complete.

Proof The problem is clearly in np. Given an instance G′, it
can be verified in polynomial time whether G′ satisfies the
constraints in S and the cost of relabeling G to G′ in Eq. 1 is
no greater than c.

To show the hardness, we can use the same reduction from
the vertex cover problem (which is one of Karp’s 21 np-
complete problems [21]) in the proof of Theorem 2. This
same reduction will also be used to show approximation
bounds in Proposition 3. ��

3.4 Tractable Special Case

Recognizing the hardness, we identify special cases of clique
constraints where the relabeling problem turns out to be
tractable. The clique constraints represent the transitivity
of neighborhood on labels inside each clique, i.e., for any
(�1, �2) ∈ N and (�2, �3) ∈ N , it implies (�1, �3) ∈ N .
Such clique constraints with transitivity feature are practi-
cal. For example, the Tel numbers in the same region are
similar with each other by sharing the same area code and
another two digits denoting the region, i.e., a clique in S in
Fig. 1. Indeed, for a dd with equality constraints [0, 0] on
the right-hand-side attributes, the corresponding constraint
graph consists of cliques with sizes 1. The dd in the applica-
tion in Sect. 8.1.1 on the real Restaurant dataset corresponds
to clique constraint graph exactly.

Definition 1 A clique constraint S(L,N) is a (disjoint)
union of complete graphs (cliques).

It is worth noting that if there exists only one clique in
S(L,N), then any graph is valid as long as it uses only the
labels in L. This generalizes to the union of multiple cliques
in S(L,N), which renders the repairing problem tractable.

Consequently, the relabeling process is to find connected
components in the instance graph G(V ,E, λ). To repair a
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connected component by a clique, it is to substitute all the
vertex labels not belonging to the clique by a label from the
clique that minimally differs from the original label. For each
connected component, we select a clique with the minimum
total cost to relabel. The instance graph G can be relabeled
efficiently in polynomial time.

3.5 Special Case of Star Constraints

Motivated by the center roles existing in some constraint
graphs, such as the cellular component correlated to all the
other gene ontology (GO) terms (as presented in Example 2
andobserved in the real datasetHPRDinSect. 8),we consider
a special type of constraints with a star shape.

Definition 2 WecallS(L,N) a star constraint, if there exists
a center label �0 ∈ L that is adjacent to all the other
labels (�0, �i ) ∈ N , and δl(�0, �i ) < δl(� j , �i ), i 
= j,
i = 1, . . . , |L| − 1; j = 1, . . . , |L| − 1.

The label �0 is adjacent to all the other labels in the con-
straint graph and has the relabeling cost δl(�0, �i ) less than
others. It serves as a center of the constraint graph; thus, we
call such a structure star constraint.

Example 2 (Protein Networks) Consider protein interaction
networks constructed from statistically assessed pair-wise
protein interaction affinities (see Sect. 8 of experiments for
more details). Each vertex in the network denotes a protein,
e.g., 1:ITGA7 in Fig. 2b. An edge is drawn between two ver-
tices (proteins) if their affinity level is above a preselected
threshold [17]. Each protein is associated with a gene ontol-
ogy2 (GO) term description as vertex label, e.g., c:Plasma
membrane for 1:ITGA7. Two proteins in a high affinity
level probably belong to the same or correlated GO terms
[37]. Proteins with high affinity but irrelevant GO terms may
contain faults. For example, 1:ITGA7 and 4:FHL3 have an
edge (high affinity) in Fig. 2b, but their labels c:Plasma
membrane and f:Nucleus are not adjacent (irrelevant) in
Fig. 2a.

Such faulty GO terms are prevalent during the automatic
functional annotation. The commonly reported accuracy of
GO annotation can only reach about 65–70% in practice [9].
Our proposed relabeling techniques can be applied to locate
and suggest repairs of those wrongly annotated GO terms.

Figure 2a is a star constraint, where the GO term
a:Cellular component can be regarded as a center that cor-
relates to all the other gene products (describing the parts of a
cell or its extracellular environment). By changing any label
in violation to the center label (e.g., replace f:Nucleus of
4:FHL3 by a:Cellular component), it guarantees to elimi-
nate violations in the graph. ��
2 www.geneontology.org.

(a) (b)

Fig. 3 Reduction from the vertex cover problem. a Constraint, b
instance

Unfortunately, the problem is still hard in this case.

Theorem 2 For a star constraintS, an instance graphG and
a constant c, the problem of determining whether there exists
a relabeled G′ of G such that G′ � S and the relabeling cost
Δl(G′,G) ≤ c is np-complete.

Proof The problem is clearly in np. Given an instance G′, it
can be verified in polynomial time whether G′ satisfies the
constraints in S and the cost of relabeling G to G′ in Eq.1 is
no greater than c.

To prove the np-hardness, we show reduction from the
vertex cover problem, which is one of Karp’s 21 np-complete
problems [21]. Given a graph G(V, E)with n = |V | vertices
and m = |E | edges, a vertex cover is a subset C ⊆ V of
vertices such that for each edge (vi , v j ) ∈ E , C contains at
least one of vi or v j .

Let L = {�0, �1, . . . , �n} be the set of distinct labels. Con-
sider graph G in the vertex cover problem as the instance
graph, e.g., as the example illustrated in Fig. 3b. We assign
λ(vi ) = �i for all the vertices vi ∈ V , i = 1, . . . , n, hav-
ing λ(vi ) 
= λ(v j ), i 
= j . The constraint graph S(L,N)

consists of neighborhoods N = {(�0, �i ) | i = 1, . . . , n}.
That is, as presented in Fig. 3a, �0 ∈ L serves as the center
node in the constraint graph. It is notable that all the edges
in the instance graph, e.g., in Fig. 3b, are violations to the
constraint. Suppose that δl(�0, �i ) = 1 for all i ∈ [1, n].
For the remaining label pairs between vi , v j ∈ V , we have(
λ(vi ), λ(v j )

)
/∈ N in the label neighborhood constraints.

The corresponding cost is δl(�i , � j ) = d, where d > 1.
The transformation completes and can be done in polyno-
mial time.

As illustrated below, the graph G has a vertex cover C of
size |C | ≤ c if and only if there is a label repair G′ such that
G′ � S and Δl(G′,G) ≤ c.

First, let C be a vertex cover with size c. For each edge
(vi , v j ) ∈ E, recall that (λ(vi ), λ(v j )) /∈ N violates the con-
straint in S. Let vi ∈ C be the vertex in the edge covered
by C . We assign a new label λ′(vi ) = �0 in the relabeled
graphG′, with the relabeling cost δl(�0, λ(vi )) = 1. Since we
have (�0, λ(v j )) ∈ N in the constraint graph S, the violation
with respect to the edge (vi , v j ) is removed. Consequently,
by considering all the vertices in C , we have G′ � S and
Δl(G′,G) = c.

Conversely, suppose that there exists a G′ with cost
Δl(G′,G) = c < |C∗|, where C∗ is a minimum vertex
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cover. Let C be the set of vertices whose labels are rela-
beled in G′ compared with the original G. Referring to the
cost δl(�i , � j ) = d > 1, i 
= j, i 
= 0, j 
= 0, the labels
can only be re-assigned by �0. Since δl(�0, λ(vi )) = 1 for all
vi ∈ V , we have |C | = c. Obviously, C is not a vertex cover
since |C | = c < |C∗|, and there should be at least |C∗|− |C |
edges connecting between different vertices in C∗ \ C and
V \C∗. For each edge (vi , v j ) ∈ E, vi ∈ C∗\C, v j ∈ V \C∗,
we need to re-assign the label of at least one vertex in order
to eliminate the corresponding violation

(
λ(vi ), λ(v j )

)
/∈ N .

Thereby, we have Δl(G′,G) ≥ c + (|C∗| − |C |) = |C∗|,
which is a contradiction. ��

Although it is still hard in the special case, as illustrated
below, there exists constant-factor approximation for the spe-
cial case of star constraint. The rationale is that repairingwith
the center label will never introduce new violations and thus
stop the violation spread. This center label plays a similar role
as the special value outside the domain in database repairing,
which stops evoking violations to other functional dependen-
cies [22]. It is unlikely, however, to approximate within an
arbitrary small factor.

Proposition 3 For a star constraint S, the minimum label
repair cannot be approximated within a factor of 10

√
5 −

21 ≈ 1.36 unless P=NP.

Proof Weshow that the reduction from thevertex cover prob-
lem in the proof of Theorem 2 is a gap-preserving reduction.
As stated, for a star constraint S, the graph G has a vertex
cover C of size |C | ≤ c if and only if there is a G′ such that
G′ � S and Δl(G′,G) ≤ c. Let C∗ denote a minimum vertex
cover, and G∗ be a relabeled graph to G with the minimum
cost. If any approximation computes an approximate G′ with
Δl(G′,G) ≤ α · Δl(G∗,G) for some constant α > 1, it will
produce a vertex cover C such that |C | ≤ α · |C∗|. More pre-
cisely, referring to the definition of gap-preserving reduction
in [33], the reduction is gap-preserving since we have:

– if |C∗| ≤ k, then Δl(G∗,G) ≤ k,
– if |C∗| > αk, then Δl(G∗,G) > αk.

Since the minimum vertex cover cannot be approximated
within a factor of α = 10

√
5−21 ≈ 1.36 unless p = np [10],

the minimum label repair of a graph for a star constraint is
also np-hard to approximate to within any factor less than
1.36. ��

4 Greedy Heuristics for Relabeling

In this section,we investigate greedymethods for vertex label
repair. Typical examples are employed to explain pros and
cons of the proposed techniques. By default, we use Fig. 4a

(a) (b)

Fig. 4 Counter example of termination in greedymethod.aConstraint,
b instance

as the constraint graph for all the examples in the following
sections.

4.1 How Greedy Methods Fail

Intuitively, in each step of relabeling, it is desirable to elimi-
natemore violations without introducing new ones by paying
less cost. Motivated by the connection to classical combina-
torial problems (in Proposition 1), it is natural to adopt the
greedy method as follows.

We define the violation set of a vertex v with label �,

T(v, �) = {u | (v, u) ∈ E, (�, λ(u)) 
� S}, (2)

which denotes the set of neighbors u of the vertex v whose
labels λ(u) have violations to λ(v) = �. It is to greedily select
a vertex with the maximum violation set to relabel in each
iteration, i.e.,

argmax
v∈V

|T(v, λ(v))|.

This straightforward greedy function is analogous to select-
ing a set with the largest number of uncovered elements in
the set cover approximation. Once a vertex v is selected, we
find a new label λ′(v) for the vertex to eliminate violations.

We aim to eliminate more violations by each relabeling.
Instead of greedily selecting a vertex with the maximum vio-
lations, we can choose a vertex relabeling that can eliminate
the most violations. Thereby, the greedy function is revised
to evaluate the number of violations that are eliminated,
i.e., subtracting the remaining violations after repairing
|T (v, (λ′(v))| from the original violations |T (v, λ(v))|,

argmax
v∈V ,λ′(v)∈L

|T(v, λ(v))| − |T(v, λ′(v))|. (3)

Moreover, when the relabeling cost between labels is con-
sidered, we may further normalize the violation elimination
gain by the relabeling cost δl

(
λ(v), λ′(v)

)
,

argmax
v∈V ,λ′(v)∈L

|T(v, λ(v))|
δl (λ(v), λ′(v))

− |T(v, λ′(v))|. (4)
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That is, a number of violations |T(v, λ(v))| is eliminated by
paying the cost δl(λ(v), λ′(v)) with the least new violations
|T(v, λ′(v))| introduced. It is notable that simply normal-
izing formula (3) by the cost, i.e., |T(v,λ(v))|−|T(v,λ′(v))|

δl (λ(v),λ′(v))
, is

not a valid attempt. A relabeling operation may introduce
more violations than it eliminates, i.e., having |T(v, λ(v))| <

|T(v, λ′(v))|. In such cases, the greedy function irrationally
favors a relabeling with a higher cost δl

(
λ(v), λ′(v)

)
, as the

violation reduction value is negative.
Unfortunately, the greedy approach is not guaranteed to

terminate (which is observed in the following experiments as
well). Indeed, for anyvertex relabeling selectedwith themax-
imum greedy value, if it has |T(v, λ(v))| ≤ |T(v, λ′(v))|, the
number of violations has no reduction after a greedy step.

Example 3 Consider the example in Fig. 4 with relabeling
cost δl(c, d) = δl(g, d) = 1. According to the greedy func-
tion in formula (4), the best choice is to repair vertex 5 with
label d.While the violation between vertices 5 and 6 is elimi-
nated, a new violation between vertices 5 and 4 is introduced
after relabeling vertex 5 to d. Based on the greedy function,
the best choice next is to repair vertex 5 back to c. The rela-
beling steps repeat and cannot terminate. ��

4.2 Special Case of Star Constraints

In Sect. 3.5 (Example 2), we have illustrated the importance
of star constraint with a center role. Surprisingly, when given
a star constraint, the greedy method is not bad, which can
terminate and return a result with certain guarantee.

Proposition 4 For a star constraint S, the greedy method
terminates and outputs a G′ having Δl (G′,G)

Δl (G∗,G)
≤ ln n + 1,

where G∗ is the relabeled graph with the minimum cost and
n = |E|.

Proof First, we illustrate that a vertex can only be rela-
beled to �0 in the optimal G∗. Assume that there exists
a vertex v which is relabeled from λ(v) to λ′(v) 
= �0
in G∗. According to the definition of star constraints, we
have δl(λ(v), �0) < δl(λ(v), λ′(v)). Since �0 will not intro-
duce violations to any �i ∈ L, we can relabel the vertex
v to �0 to generate a new relabeled graph, say G′, having
Δl(G′,G) < Δl(G∗,G). Obviously, it contradicts with the
assumption of G∗ with the minimum cost.

Second, we show in the following that each greedy step
will select a vertex with the max |T(v,λ(v))|

δl (λ(v),�0)
and relabel it

to �0. Given any vertex v, the greedy function always
selects a relabeling λ′(v) with the minimum |T(v, λ′(v))|
and δl(λ(v), λ′(v)). Since �0 will not introduce violations to
any λ(v), we have |T(v, �0)| = 0 which is already the mini-
mum. Moreover, the relabeling cost of �0 is smaller than any
other �i ∈ L, i.e., δl(λ(v), �0) < δl(λ(v), �i ). Consequently,

the greedy function turns out to select a vertex v with the
maximum |T(v,λ(v))|

δl (λ(v),�0)
.

We consider the sequence of graphs G, . . . ,Gi , . . . ,G′,
where Gi is generated in the i th greedy step. Let

A(G,S) = {(u, v) ∈ E | (λ(v), λ(u)) 
� S}

denote all the violations in graph G w.r.t. constraint S.
For the graph Gi in the i th greedy step, we have

|A(Gi ,S)|
Δl(G∗

i ,Gi )
≤ max

v∈V(Gi )

|T(v, λ(v))|
δl(λ(v), �0)

,

whereG∗
i denotes the optimal solution ofGi . It isworth noting

that |A(Gi ,S)|
Δl (G∗

i ,Gi )
denotes the average number of violations that

a unit of relabeling cost can eliminate by a vertex in the
optimal G∗

i of Gi , which must be smaller than the maximum
number of violations that a cost unit can eliminate by a vertex
v ∈ V(Gi ), i.e., maxv∈V(Gi )

|T(v,λ(v))|
δl (λ(v),�0)

.

Let vi = argmax
v∈V(Gi )

|T(v,λ(v))|
δl (λ(v),�0)

be the vertex selected in each

Gi . Since no new violations will be introduced in each step
by relabeling vi to �0, i.e., A(Gi ,S) ⊆ A(G,S), the corre-
spondingminimum relabeling cost should be smaller as well,
having Δl(G∗

i ,Gi ) ≤ Δl(G∗,G). Consequently, we have

|A(Gi ,S)|
Δl(G∗,G)

≤ |T(vi , λ(vi ))|
δl(λ(vi ), �0)

.

Moreover, we observe that the violations reduce in
the greedy steps, |A(G,S)|, . . . , |A(Gi ,S)|, . . . , |A(G′,S)|,
where |A(Gi+1,S)| = |A(Gi ,S)|− |T(vi , λ(vi ))| and finally
|A(G′,S)| = 0. Therefore, the greedymethodmust terminate
in at most |A(G,S)| greedy steps.

To sum up, the relabeling cost can be computed by

Δl(G′,G) =
∑

i

δl(λ(vi ), �0)

≤
∑

i

Δl(G∗,G)
|T(vi , λ(vi ))|

|A(Gi ,S)|

≤ Δl(G∗,G)
∑

i

|T(vi ,λ(vi ))|∑

j=1

1

|A(Gi ,S)| − j + 1

= Δl(G∗,G)

|A(G,S)|∑

k=1

1

k

≤ (ln |A(G,S)| + 1)Δl(G∗,G).

As the number of violations is no greater than that of edges,
|A(G,S)| ≤ |E|, the conclusion is proved. ��

Experimental results on real (HPRD) data with star con-
straints in Sect. 8 verify that the greedy method always
terminates and shows high repairing accuracy.
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5 Contraction Relabeling

In this section, we present a contraction method for vertex
label repair, which is guaranteed to terminate.

5.1 The Idea of Contraction

5.1.1 Intuition

Recall that greedy relabeling fails as new violations may
be generated between vertices which are eliminated in the
previous steps. In order to avoid eliminating and generating
violations on the same vertex pairs multiple times, we con-
sider a group of vertices as a whole, called a super node or
simply a node, which always ensures no new violations gen-
erated inside. To ensure no new violations, we require that
the vertices in a node can only be repaired together to the
same label.

To eliminate violations among vertices from two nodes,
a node contraction operation is employed, i.e., merging all
the contents (vertices and edges) of a node R1 into the other
R2. All the vertices in the contracted node R1 are enforced
to assign the same label, which can avoid introducing viola-
tions in the new node R2. Different from the application of
contraction heuristic in tree decomposition or spanning tree,
the contraction in this study aims to eliminate all violations
(with possibly minimal vertex label modification) instead of
generating a spanning tree with minimal edges.

Example 4 Suppose that three nodes,R1,R2,R3, are formed
in the previous steps, in Fig. 5a. A vertex (say t + 2 for
instance) can only be relabeled again together with all the
other vertices in node R1 that has been contracted, in order
to stop violation spread inside the node. To eliminate the
violation between R1 and R2, node R1 is contracted to R2

by enforcing all the vertices in R1 to the same label f
(more technique details for the contraction operation will
be explained soon). The contraction terminates as there is no
further violation between the remaining nodes R2 and R3.
All the violations are eliminated in Fig. 5b, by ensuring that
no violations exist inside a node. ��

It is easy to see the termination by eventually contracting
all the vertices into one node.We simply enforce a same label
on all the vertices to eliminate violations. Such a straightfor-
ward solution will unnecessarily relabel the vertices without
any violation. We propose to eliminate violations by paying
less relabeling cost.

5.1.2 Framework

To perform the contraction, we first introduce several nota-
tions as follows. Let R denote a node in contraction,
consisting of a group of vertices contracted to R. Each node

(a)

(b)

Fig. 5 Idea of contraction. a Before, b after

R has a unique host h(R) which is a vertex in the original
graph. The remaining vertices in R are grouped into a set of
nested nodes Ri , namely guests denoted by set U(R). Each
guest Ri ∈ U(R) is previously contracted to R via a con-
traction operation. Let V(R) be the set of all vertices in the
original graph belonging to R, including both the host and
vertices in all guests

V(R) =
⋃

Ri∈U(R)

V(Ri ) ∪ {h(R)}. (5)

The host and guests do not need to share the same label but
should have no violations. As we will see soon, the host is
essential to ensure that there always exists a valid candidate
label to assign in the contraction. All the vertices in a guest
Ri ∈ U(R) must have the same label, which is assigned by
the contraction operation.

Example 5 In Fig. 6b, we illustrate an example with three
nodes, in dash-dot circles. Each node has a unique host (e.g.,
vertex 5 in R5) and none or multiple guests (in shaded area).
All the vertices in a guest should share the same label, e.g.,
vertices (6,7,8) with label b, while the vertices among dif-
ferent guest nodes/host ensure no violations but do not have
to share the same label. ��

Algorithm 1 presents an overview of the contraction pro-
cedure. Initially, each vertex v in the graph forms a single
node R with host h(R) = v and an empty set of guest nodes
U(R) = ∅. The contraction is then conducted between two
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(a) (b) (c)

Fig. 6 Example of contraction operation

nodes, say R1 and R2 for example, whose vertices have vio-
lations. Suppose that R2 is contracted to R1 with the new
label �2 (the decision of R1, R2, candidate label �2 and
cost(R2) will be discussed soon). Then, all the vertices in
the original graph belonging to R2 will be relabeled to �2,
i.e., λ(v) = �2, v ∈ V(R2). The node R2 is added to R1 as
a guest node by U(R1) = U(R1) ∪ {R2}. The host of R1

after contraction leaves unchanged, i.e., still h(R1). We have
V(R1) = V(R1) ∪ V(R2) after the contraction. The con-
traction relabeling terminates, when there is no violation to
contract.

Algorithm 1 Contract(G,S)
Input: An instance graph G and a constraint graph S
Output: A relabeled G satisfying S
1: for each vertex v in the graph G do
2: create a new node R
3: h(R) := v

4: U(R) := ∅
5: while G not satisfying S do
6: R1,R2 := the nodes with most violations
7: �1, �2 := the candidate labels for R1,R2, respectively
8: if cost(R2) > cost(R1) then
9: swap R1,R2 {To contract R2 to R1}
10: for each v ∈ V(R2) do
11: λ(v) := �2
12: V(R1) := V(R1) ∪ V(R2)

13: U(R1) := U(R1) ∪ {R2}
14: return G

The contraction on R1 and R2 will eliminate all the vio-
lations on the edges across these two nodes. Following the
same intuition of violation elimination in greedy heuristics,
as shown in Line 6 of Algorithm 1, each step would like to
select a pair of nodes with the most violations between them,
i.e.,

argmax
(R1,R2)

|{(u, v) ∈ E | u ∈ V(R1), v ∈ V(R2),

(λ(u), λ(v)) 
� S}|.

Finally, each guest node Ri records all the vertices in the
original graph that are relabeled to the same �i , i.e., relabeling
results.

5.1.3 Correctness

Once two nodeswith vertices in violation are contracted, they
will always satisfy constraints by enforcing the contracted
node to a same label and stop violation spread inside the node.
Although new violations may be introduced outside the node
after a contraction operation, the contraction relabeling is
guaranteed to terminate referring to the reducing of violation
upper bound.

Proposition 5 The contraction relabeling always termi-
nates.

Proof in the preliminary version of this paper [30]. ��

Each contraction operation eliminates all the violations on
edges between nodesR1 andR2, i.e., related to |E|. BothLine
6 for choosing nodes with maximum violations and Line 7
for deciding candidate labels (see details below) inAlgorithm
1 have to consider all possible violations in edges between
two nodes, with O(|E|) cost. According to Proposition 5, the
iteration terminates in at most |V | contraction operations.
Thereby, the computational complexity of Algorithm 1 is
O(|V | · |E|).

5.2 Technique Details

Consider the contraction of an edge with violations in the
current graph. It is expected to eliminate violations while
keeping the relabeling change as small as possible. Follow-
ing this discipline, the contraction operation mainly needs
to address two issues: (i) what are the candidate labels for
relabeling the nodes involved in the edge (analogous to Line
7 in Algorithm 1) and (ii) which side of the edge should be
contracted (Line 8).
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5.2.1 Deciding the Labels

We first study the selection of candidate labels �1, �2 for
nodes R1,R2, respectively. Let’s take R2 for example. The
new label �2 for R2 should not introduce any violations to
the current vertices in R1.

It is notable that a new label for R2 in the contraction
always exists. Recall that host h(R1) should have label with
no violations to any guest node in R1. Thereby, the straight-
forward method is to assign the host’s label as the new label
of R2.

Consider all the possible candidate labels for R2, denoted
by

L(R2) = {�′ | (�′, λ(h(R1))) � S, u ∈ V(R1), v ∈ V(R2)

[(u, v) ∈ E ⇒ (λ(u), �′) � S]}.

That is, the new label �′, assigned to the vertices v inR2, must
match the label of the host h(R1) and should not introduce
violations to the existing vertices u in R1. It is worth not-
ing that matching with host (�′, λ(h(R1))) � S is necessary,
which ensures the aforesaid existence of a valid candidate
label for the following contraction operations. For any can-
didate �′, let

T(R2, �
′) = {u | ∃v ∈ V(R2)[(u, v) ∈ E ∧ (λ(u), �′) 
� S]}

be all the vertices u in the graph that are adjacent to some
vertex v inR2 and have violations to the new label �′ assigned
to v.

Following the same principle of eliminating violations as
greedy methods, we select label �2 for R2 as

argmax
�′∈L(R2)

|T(R2)| − |T(R2, �
′)|, (6)

where T(R2) = ∪v∈V(R2)T(v, λ(v)) denotes the previous
violations to the vertices in R2 before contraction.

Example 6 (Example 5 continued) In Fig. 6b, suppose that
we want to decide the candidate label of R4 for the contrac-
tion to R5. To avoid introducing violations to R5, we have
L(R4) = {a, b}. However, the label a for R4 will introduce
a new violation to vertex 1 with |T(R4, a)| = 1, while rela-
beling with b eliminates all violations, i.e., |T(R4, b)| = 0.
According to formula (6), the candidate label for R4 is b. ��

5.2.2 Deciding the Contraction

Wenowhave twocandidates for contraction, either relabeling
R1 to �1 or relabeling R2 to �2. The corresponding costs
raised by different relabeling are various.

We define the contraction cost as follows, say relabeling
R to �′,

cost(R) =
∑

v∈V(R)

δl(λ(v), �′) −
∑

Ri∈U(R)

cost(Ri ). (7)

The first part
∑

v∈V(R) δl(λ(v), �′) denotes the cost of enforc-
ing all vertices v inR to the new label �′. Intuitively, by paying
the cost of relabeling all these vertices, we eliminate the vio-
lations not only for the current contraction of R but also the
former contractions of Ri that happened inside R. However,
the violations w.r.t. guest nodes Ri have already been elim-
inated in the previous contraction, i.e., all the vertices in Ri

already have the same label when Ri was contracted as a
guest node to R. Thereby, the previously paid contraction
costs,

∑
Ri∈U(R) cost(Ri ), would not be counted again in

the current contraction of R and deserve to be “paid back”.

Example 7 (Example 5 continued) In Fig. 6b, we consider
the candidate label d for contracting R5–R4. By relabeling
all five vertices {5,6,7,8,9} to the same d, it eliminates
violations not onlyw.r.t.R5 but also the previously contracted
R7. However, the cost of eliminating violations w.r.t. R7 has
already been counted in the former contraction of R7–R5,
in Fig. 6a, and should be deducted from the current cost for
eliminating violations of R5.

Consequently, we can select the one with smaller cost
to contract. For instance, in Fig. 6b, suppose that we have
cost(R2) = cost(R3) = cost(R7) = cost(R9) = 1
in the previous steps. The candidate labels for R4,R5 are
b, d, respectively, with δl(b, d) = δl(a, d) = δl(b, g) = 1.
According to formula (7), it follows

cost(R4) = 2δl(b, d) + δl(b, g) − cost(R2) − cost(R3)

= 3 − 1 − 1 = 1,

cost(R5) = 2δl(a, d) + 3δl(b, d) − cost(R7) − cost(R9)

= 5 − 1 − 1 = 3.

Thereby, R4 is contracted to R5 as illustrated in Fig. 6c,
according to cost(R4) < cost(R5). ��

5.3 Performance Analysis

Unfortunately, the contraction result could be arbitrarily bad
in terms of relabeling cost in general cases.

Example 8 In Fig. 7, a contraction will be conducted for the
violation in (1, 2). To eliminate the violation, the candi-
date label of contracting R1 with host 1 could be g, and
the candidate label of R2 could be b. Suppose that the
relabeling costs are δl(a, g) = 2, δl(b, f ) = 1. That is,
we have cost(R1) = δl(a, g) = 2 which is greater than
cost(R2) = δl(b, f ) = 1. The nodeR2 will be contracted to
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(a)

(b)

Fig. 7 Counter example of contraction effectiveness. a Before, b after

R1 as presented in Fig. 7b. Following the same principle, the
nodeR3 with host3will be contracted toR1 aswell. By keep-
ing on contracting nodes Ri with host i to R1, i = 2, . . . ,n,
and assigning a new label b, the total relabeling cost is n−1.
However, it is easy to see that the relabeling with the mini-
mum cost is to relabel vertex 1 to g with cost 2. ��

Special Case of Star Constraints

Although the contraction results could be bad in general case,
the performance of contraction method is surprisingly good
under star constraints.

Proposition 6 For a star constraint S, the contraction
method always terminates and outputs a G′ havingΔl(G′,G)

≤ 2 · Δl(G∗,G), where G∗ is the relabeled graph with the
minimum cost.

Proof First, we show that in deciding the candidate labels for
contraction, only the center �0 in the star constraint will be
returned. Formula (6) always chooses the label which intro-
duces theminimum violation, i.e., min |T(R2, �

′)|. Referring
to Definition 2 of star constraints, the center �0 is a label hav-
ing no violations to any others. Thereby, �0 is always selected
as the candidate label, which can eliminate violations most,
as T(R2, �0) = ∅.

Then, we study the cost function for deciding the contrac-
tion. Since all the contractions will only use �0 to relabel,
all the guest nodes Ri in any node R will share the same
label, i.e., �0. When the node R is chosen to be contracted,
the vertices in Ri have already been assigned the label �0,
having δl(λ(v), �0) = 0, v ∈ V(Ri ). In other words, only
the host h(R) needs to be relabeled to �0. The contraction
cost in formula (7) can be rewritten by

cost(R) = δl(λ(h(R)), �0) −
∑

Ri∈U(R)

cost(Ri ). (8)

We can observe that contraction will only occur for the
violations between the hosts of nodes, since guest nodes
are relabeled to �0. For any contraction of R–R′, with hosts
h(R) = v and h(R′) = u, respectively, we can uniquely rep-
resent the contraction cost paid to eliminate the violations

in edge (u, v) by cost(u, v) = cost(R). Those edges with
violations eliminated without any contraction are denoted by
cost(u, v) = 0. Consequently, all the edges with violations
in the original graph G are assigned a cost. Each contraction
eliminates one or several edges having violations without
introducing new violations.

The output G′ consists of vertices v either being the hosts
of nodes with the original label λ(v) in G or belonging to
contracted guest nodes with the new relabel �0. First, for the
vertices v in contracted guest nodes, all the violations to v are
eliminated by relabeling it to �0. According to the aforesaid
cost formula (8), we have

δl(λ(v), �0) =
∑

u∈T(v,λ(v))

cost(u, v). (9)

Second, recall that we always choose the node with less cost
to contract. For any nodeRwith host v contracted to the node
R′ with host u, it follows cost(R′) > cost(R) = cost(u, v).
Thereby, for the vertices u as the hosts of nodes in G′, we
have

δl(λ(u), �0) >
∑

v∈T(u,λ(u))

cost(u, v). (10)

LetD be the set of all vertices in all contracted guest nodes,
i.e., the vertices that are relabeled in G′ from G. We have

Δl(G′,G) =
∑

v∈D
δl(λ(v), �0)

=
∑

v∈D

∑

u∈T(v,λ(v))

cost(u, v) by Eq. 9

≤
∑

v∈V(G)

∑

u∈T(v,λ(v))

cost(u, v)

=
∑

(v,u)∈E(G),(λ(v),λ(u)) 
�S
2 cost(u, v)

Similarly, it is easy to verify that the vertices in the optimal
solution G∗ can only be relabeled to �0 as well. Let D∗ be
the set of all vertices conducted relabeling from G to G∗. We
have

Δl(G∗,G) =
∑

v∈D∗
δl(λ(v), �0)

≥
∑

v∈D∗

∑

u∈T(v,λ(v))

cost(u, v) by Eq. 9 and 10

≥
∑

(v,u)∈E(G),(λ(v),λ(u)) 
�S
cost(u, v)

Since the optimal solution has to address all the edges with
violations, some of which may have both vertices relabeled
in G∗, the last derivation step is explained.
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Combining two derivations, the conclusion is proved. ��
Experimental results on real datasets in Sect. 8 show that

the contraction method always terminates.

6 Combining Greedy and Contraction

While the greedy method might not terminate, the contrac-
tion results could be bad in terms of relabeling costs. On
the other side, as we will also see in the experiment, the
contraction method always terminates, whereas the greedy
heuristics could achieve good results in practice once the
program terminates. It motivates us to find a method to com-
bine the advantages of these two approaches for repairing
vertex labels.

6.1 The Idea of Combination

The advantage of greedy relabeling is that it is effective in
repairing the right results in most cases (as also observed
in the experiments). Unfortunately, the greedy method may
fail to eliminate violations in certain cases and thus lead to
non-termination (no results). The advantage of contraction
method is that it always reduce violations in each step and
thus guarantees termination. However, the contraction rela-
beling may seriously modify the labels with extremely high
relabeling cost.

To incorporate the advantages of both greedy and con-
traction methods, we can eliminate violations first by the
greedy method and apply contraction only when necessary.
That is, when no violations could be further reduced by
greedy relabeling, the contraction operation is applied. These
two operations are conducted alternatively, where the greedy
operation has a higher priority.

6.2 AlterGC Algorithm

Algorithm 2 illustrates the pseudo-code of AlterGC, which
alternatively performs greedy and contract operations. First,
Lines 2–4 are the violation elimination operation from the
previous greedy method. In particular, Line 3 specifies an
additional condition that the relabeling should at least elim-
inate some violations, i.e., |T(v, λ(v))| > |T(v, λ′(v))|.
When no such greedy elimination could be applied, i.e., no
further violations can be reduced as aforesaid by the currently
best relabeling λ′(v), the contraction is conducted in Line 6.

Proposition 7 AlterGC relabeling always terminates.

Proof in the preliminary version of this paper [30]. ��
According to the proof, the number of contractions is

bounded by O(|V |), while each contraction takes O(|E|) in

Algorithm 2 AlterGC(G,S)
Input: An instance graph G and a constraint graph S
Output: A relabeled G satisfying S
1: while G not satisfying S do
2: (v, λ′(v)) := the vertex with maximum greedy value
3: if |T(v, λ(v))| > |T(v, λ′(v))| then
4: update v with λ′(v) in G {one greedy operation}
5: else
6: conduct a contraction in G
7: return G

Algorithm 1. Between two contractions is a series of greedy
relabeling operations,where the number of greedy operations
is bounded by themaximumnumber of violations |E|. Calcu-
lating the violations takes O(|E |). Thereby, the complexity
is O(|V | · |E|2).

Example 9 (Example 8 continued)We consider the example
in Fig. 7 again. The greedy relabeling will always be applied
first when appropriate. By relabeling vertex 1 from a to g,
we have |T(1, g)| = 0 less than the original |T(1, a)| = 1.
Thereby, this greedy relabeling is conducted with a total cost
2, instead of n − 1 by the pure contraction method.

However, if the input instance graph for repairing is
Fig. 7b, the AlterGC approach may goes bad. Specifically,
by either repairing vertex 2 with |T(2, g)| = 1 or repairing
vertex 3 with |T(3, a)| = 1, the number of violations does
not reduce. Referring to Line 6 in Algorithm 2, the contrac-
tion will be conducted. Suppose that node R3 is contracted
to R2. Similar to Example 8, it leads to a sequence of con-
tractions on nodesRi, i = 3, . . . ,n,with total relabeling cost
n − 2. ��

For the case of star constraints, since the center label will
not introduce violation to any other labels, we can eliminate
at least one violation in each greedy step (by using the cen-
ter label). That is, each iteration in Algorithm 2 will always
choose the greedy operation in Line 4. Since no contraction
operation is conducted, the approximation performance of
the AlterGC algorithm is also guaranteed, the same as for
the greedy algorithm.

Proposition 8 For a star constraint S, the AlterGC algo-
rithm terminates and outputs aG′ having Δl (G′,G)

Δl (G∗,G)
≤ ln n+1,

where G∗ is the relabeled graph with the minimum cost and
n = |E|.

Proof in the preliminary version of this paper [30]. ��

Experimental evaluation shows that theAlterGC approach
always terminates as the contract one,while it keeps the accu-
racy as high as the greedy method.
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ID Address City Tel

1 722, West Lake St. HZ 0571-624-8266
2 723, West Lake Str. HZ 0571-624-8209

3 No.721, West Lake Street HZ 0571-624-8228

4 ***, West Lake Street HZ 0571-624-8228

5 640, West Park Street HZ 0571-759-6317

6 No.640, West Park Str. HZ 0571-759-6317

(a) (b)

(c)

Fig. 8 Neighbor repairing on similarity network. a Constraint, b
instance, c relation

7 Graph Repair with Neighbor Modification

Besides inaccurate labels, errors on vertex neighbors (edges)
may also incur violations to the constraint graph. In this sec-
tion, we first show the motivation examples on how such
errors occur and are possibly addressed by neighbor modifi-
cation (Sect. 7.1). Section7.2 presents the problem analysis
on simultaneously repairing label and neighbor errors. A
cubic-time constant-factor approximation algorithm (given
degree-bounded instance graphs) is then devised in Sect. 7.3
to combine the label and neighbor repairs.

7.1 Motivation Example

To illustrate the motivation example on neighbor repair, we
consider the similarity networks in Sect. 1.1.

Example 10 Consider again the dd (Address,City →
Tel, 〈[0, 6], [0, 0], [0, 5]〉) in Example 1. For the relation
instance in Fig. 8c, the corresponding instance graphw.r.t. the
dd (onAddress andCity similarities) is presented in Fig. 8b.
For instance, the edge between vertices 1 and 2 denotes that
the similarities on Address and City of tuples 1 and 2, i.e.,
3 and 0, are within the ranges [0, 6] and [0, 0], respectively.
Figure 8a presents the constraint graph, referring to the sim-
ilarity constraint [0, 5] over the Tel attribute.

Owing to the existence of inaccurate data, e.g., several
digits are hidden (denoted by *) on Address in tuple 4, vio-
lations to the constraint appear. That is, tuples 4 and 5 have
Address distance within [0,6] (having an edge between ver-
tices 4 and 5), but their Tel values are dissimilar with distance
>5 (their labels are not in neighborhood in the constraint
graph).

(a) (b) (c)

Fig. 9 Example of possible neighbor repairs. a Constraint, b repaired
instance, c repaired instance

To eliminate the inconsistencies by simply using the pre-
viously proposed label repair, we need to relabel vertices 1,
2, 3 and 4 by label d: 0571-759-6317 or relabel vertices 5
and 6 by label c: 0571-624-8228. Obviously, such a repair
fails to fix the inaccurate Address value (with hidden digits
*) in tuple 4, but unnecessarily modifies a large number of
Tel values.

Intuitively, to repair the inaccurate data in Fig. 8c, one
may modify the Address value, instead of the Tel value. For
instance, modify the Address value of tuple 4 by “No.721,
West Lake Street”. The neighborhoods (edges) in the corre-
sponding instance graph change, i.e., replacing the neighbor
set {2, 3, 5} of vertex 4 in Fig. 8c by {2, 3} in Fig. 9b. As
shown in Fig. 9b, with the aforesaid repair on Address
(neighbor repair), the violations are eliminated. ��

7.2 Preliminaries

Motivated by the aforesaid neighbor repair example, we for-
mally introduce the neighbor repair model, its repair cost
function and the hardness with neighbor repairing.

7.2.1 Repair Model

Let V (v) = {u | (v, u) ∈ E} denotes the set of vertices con-
nected to vertex v, i.e., v’s neighbors.While the graph relabel
model considers label repair candidates from a domain of
possible vertex labels, the graph neighbor repair model con-
siders analogously the neighbor repair candidates that have
been observed in other vertices, i.e., V ′(v) = V (u)∪{u}\{v}
for some vertex u in the graph G, or simply V ′(v) = ∅ simi-
lar to the idea of allowing a modification outside the current
domain [22].

Example 11 (Example 10 continued) Modifying the
Address value of tuple 4 in the relation instance in Fig. 8c,
from “***, West Lake Street” to “No.721, West Lake Street”
(of tuple 3), it is equivalent to replace the neighbors of ver-
tex 4 in the instance graph in Fig. 8b, from V (4) = {2, 3, 5}
to the neighbors of vertex 3, i.e., {2, 4}. Moreover, since the
same Address value with distance 0 is also in the range
of [0, 6], vertex 3 (sharing the same Address value after
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repairing) is also a neighbor of vertex 4. Consequently, as
illustrated in Fig. 9b, the neighbors of vertex 4 after repair-
ing is V ′(4) = V (3) ∪ {3} \ {4} = {2, 3}.

Moreover, referring to the idea of repairing to a fresh
variable f v outside the currently known domain [22], i.e.,
dissimilar to the values of any existing tuples, no neighbor
of the repaired vertex retains. For instance, another repair
of tuple 4 is to assign the Address value by f v and conse-
quently has V ′(4) = ∅, as illustrated in Fig. 9c. ��

7.2.2 Cost Function

The neighbor repair cost of changing vertex v’s neighbors
from V (v) to V ′(v) is

δn(V
′(v), V (v)) = |V (v) ∪ V ′(v)| − |V (v) ∩ V ′(v)|

= |(V (v)\V ′(v)) ∪ (V (v)\V ′(v))|, (11)

i.e., the difference of neighbor sets before and after repairing.
Considering the label repair cost δl

(
λ′(v), λ(v)

)
, we

define the total cost of graph repair by

Δ(G′,G) = (1 − θ)
∑

v∈V
δl

(
λ′(v), λ(v)

)

+ θ
∑

v∈V
δn

(
V ′(v), V (v)

)
, (12)

where θ is a parameter on weighting the label and neighbor
repair costs, 0 ≤ θ ≤ 1. (See Sect. 8.2.1 for a discussion
on determining the θ weight by observing the repair costs in
practice.)

Example 12 (Example 11 continued) As illustrate in Fig. 9,
multiple neighbor repairs exist.

For the repair in Fig. 9b, the neighbor set of vertex 4 is
changed from V (4) = {2, 3, 5} to V ′(4) = {2, 3}. Its neigh-
bor repair cost is δn(V ′(4), V (4)) = 1 according to Eq.11.
It is notable that the neighbor set of vertex 5 is also changed
in this repair, with cost δn(V ′(5), V (5)) = 1. Suppose that
θ = 0.5. Since no label repair is applied, the total repair cost
is Δ(G′,G) = 0.5 × 2 = 1 referring to Eq.12.

For the repair in Fig. 9c, assigning fresh variable f v, the
neighbor set of vertex 4 is changed from V (4) = {2, 3, 5} to
V ′(4) = ∅. Its neighbor repair cost is δn(V ′(4), V (4)) = 3,
which is higher than the aforesaid repair on vertex 4. Sim-
ilarly, the costs δn(V ′(2), V (2)) = 1, δn(V ′(3), V (3)) = 1
and δn(V ′(5), V (5)) = 1 apply to vertices 2, 3 and 5, respec-
tively. The total repair cost is Δ(G′,G) = 0.5 × 6 = 3. ��

7.2.3 Problem Analysis

The graph repairing problem is thus: For a constraint graph
S and an instance graph G(V ,E, λ), it is to find a repaired

G′(V ,E′, λ′) of G (with vertex label and neighbor repairs)
such that G′ � S and the total graph repair cost Δ(G′,G)

is minimized. Graph repairing is different from the afore-
said vertex relabeling, which allows neighbor modification
in addition to label changes. Therefore, the proof of Theorem
2 for relabeling does not directly apply to Theorem 9.

Theorem 9 For a constraint graph S, an instance graph G
and a constant c, the problem of determining whether there
exists a repaired G′ of G (with vertex label and neighbor
repairs) such thatG′ � S and the repairing costΔ(G′,G) ≤ c
is np-complete.

Proof The problem is clearly in np. Given an instance
G′(V ,E′, λ′), it can be verified in polynomial timewhetherG′
satisfies the constraint S and the cost of changing G(V ,E, λ)

to G′ in Eq.12 is no greater than c.
To prove the np-hardness of the graph repairing problem,

we show a reduction from the vertex cover problem, which is
one of Karp’s 21 np-complete problems [21]. Given a graph
G(V, E) with n = |V | vertices and m = |E | edges, a vertex
cover is a subset C ⊆ V of vertices such that for each edge
(vi , v j ) ∈ E , C contains at least one of vi or v j .

Similar to the proof of Theorem2,we consider a constraint
graph with n + 1 labels, L = {�0, �1, . . . , �n}, as illustrated
in Fig. 3. The constraint graph S(L,N) consists of n edges,
N = {(�0, �1), . . . , (�0, �n)}, where �0 serves a center node
in this star constraint graph. We define δl(�0, �i ) = 1 for all
i ∈ [1, n]. For the remaining label pairs between �i , � j ∈
L, i 
= j , we have (�i , � j ) /∈ N in the label neighborhood
constraints. The corresponding cost is δl(�i , � j ) = d, where
d > 1.

G(V, E) in the vertex cover problem directly corresponds
to the instance graph in the transformation, whose labeling
is λ(vi ) = �i , i ∈ [1, n]. It is notable that each edge is in
violation, referring to the aforesaid (�i , � j ) /∈ N, i 
= j .
Finally, we assign θ = 0.6 in the repair cost function in
Eq.12. The transformation completes and can be done in
polynomial time.

As illustrated below, the graph G has a vertex cover C of
size |C | ≤ c if and only if there is a graph repair G′ such that
G′ � S and Δ(G′,G) ≤ 0.4c.

First, let C be a vertex cover with size c. For each edge
(vi , v j ) ∈ E, recall that (λ(vi ), λ(v j )) /∈ N violates the con-
straint in S. Let vi ∈ C be the vertex in the edge covered
by C . We assign a new label λ′(vi ) = �0 in the relabeled
graph G′, with the relabeling cost δl(�0, λ(vi )) = 1. Since
we have (�0, � j ) ∈ N, j ∈ [1, n] in the constraint graph S,
the violation with respect to the edge (vi , v j ) is removed.
Consequently, by considering all the vertices in C , we have
G′ � S and Δ(G′,G) = 0.4c, where no neighbor repair is
performed.

Conversely, suppose that there exists a G′ with cost
Δ(G′,G) = 0.4c, having c < |C∗|, where C∗ is a minimum
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vertex cover. Let V ′
n ⊆ V be the set of vertices whose neigh-

bors are changed in G′, and V ′
l ⊆ V be the set of vertices

whose labels are changed in G′. We have

Δ(G′,G) = 0.4
∑

v∈V ′
l

δl
(
λ′(v), λ(v)

)

+ 0.6
∑

v∈V ′
n

δ
(
V ′(v), V (v)

)
.

We build another repair G′′, where all the vertices in V ′
l ∪ V ′

l
are relabeled to �0, and no neighbor repair is performed.
Referring to (�0, � j ) ∈ N, j ∈ [1, n], repair G′′ also elimi-
nates all the violations, having G′′ � S and

Δ(G′′,G) = 0.4
∑

v∈V ′
l ∪V ′

n

δl
(
λ′(v), λ(v)

)

= 0.4|V ′
l ∪ V ′

n|.

Since any neighbor repair has cost δ
(
V ′(v), V (v)

) ≥ 1, it
follows

0.4|V ′
l ∪ V ′

n| = Δ(G′′,G) ≤ Δ(G′,G) = 0.4c.

By relabeling all vertices in V ′
l ∪ V ′

n to �0, it eliminates all
the violations in G, i.e., V ′

l ∪ V ′
n is a vertex cover with size

|V ′
l ∪ V ′

n| ≤ c < |C∗|, which is a contradiction. ��

7.3 Approximation Algorithm

Intuitively, the approximation algorithm repairs one vertex
each timewith either label repair or neighbor repair. To ensure
termination, it requires that all the violations to the vertex are
eliminated after the repair operation.

Algorithm 3 presents the procedure of graph repair. Refer-
ring to weighting scheme in the total repair cost in Eq.12, if
θδn(V ′(v), V (v)) > (1 − θ)δl(λ

′(v), λ(v)), it chooses label
repair; otherwise, neighbor repair. By always choosing the
smaller one to perform the repair actions in Lines 6-9 in
Algorithm 3, we can theoretically obtain an upper bound of
repair cost Δ(G′,G) as proved in Lemma 11. In particular,
we show in the proof of Lemma 11 that the repair cost in each
step should be no greater than 2θr , where θ is the weight of
label and neighbor repairs in the graph repair cost defined
in Eq.12, and r is the maximum degree of G. It leads to
the constant-factor approximation bound, compared to the
optimal repair, in Proposition 13 (given a degree-bounded
graph).

Example 13 Consider the constraint and instance graphs in
Fig. 10. Suppose that θ = 0.4 and the cost of any label repair
is 1.

According to Line 3 in Algorithm 3, vertex 2 involved
with the most violations will be selected to repair first. To

Algorithm 3 Grepair(G,S)
Input: An instance graph G and a constraint graph S
Output: A repaired G satisfying S
1: G0 := G
2: while G not satisfying S do
3: v := vertex with maximum violations |T(v, λ(v))|
4: V ′(v) := the neighbor repair eliminating all violations to v with

the minimum δn(V ′(v), V0(v))

5: λ′(v) := the label repair eliminating all violations to v (if exists)
with the minimum δl (λ

′(v), λ0(v))

6: if θδn(V ′(v), V0(v)) > (1 − θ)δl (λ
′(v), λ0(v)) then

7: update v with label repair λ′(v) in G
8: else
9: update v with neighbor repair V ′(v) in G
10: return G

(a) (b)

Fig. 10 Example for graph repairing. a Constraint, b instance

(a) (b) (c)

Fig. 11 Possible neighbor repairs on vertex 2

eliminate all the violations to vertex 2, there are three ways
to repair vertex 2 using neighbor repairing: (1) replace its
neighbors V (2) = {1, 3, 5, 6} by vertex 4’s neighbors (and
vertex 4), having V ′(2) = {1, 4, 5} with cost 3 referring to
Eq.11, as illustrated Fig. 11a; (2) replace its neighbors by
vertex 1’s neighbors with cost 4, as shown in Fig. 11b; or (3)
change its neighbor set to ∅ with cost 4, in Fig. 11c. Since
there is no candidate label available for label repairing that
eliminates all the violations to vertex 2, the neighbor repair
with the minimum cost in Fig. 11a will be applied in Line 9.

After repairing vertex 2, as illustrated in Fig. 11a, vertex 4
is selected to repair. There are four possible neighbor repairs
for vertex 4: (1) change its neighbors to vertex 5’s (including
vertex 5) in Fig. 11a, having V ′(4) = {2, 5} as shown in
Fig. 12b,with cost 2 according toEquation11 and the original
V (4) = {1, 5} in Fig. 10b; (2) change its neighbors to vertex
6’s, having V ′(4) = {3, 5, 6} in Fig. 12c and cost 3; (3)
change its neighbors to vertex 3’s, having V ′(4) = {3, 6} in
Fig. 12d and cost 4; or (4) change its neighbor set to ∅ with
cost 2, in Fig. 12e. Moreover, in order to eliminate all the
violations, the only way to repair vertex 4 by label repairing
is to change its label from d to c with cost 1, as illustrated in
Fig. 12a. Therefore, for vertex 4, the minimum label repair
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(a)

(d) (e)

(b) (c)

Fig. 12 Possible label (a) and neighbor (b–e) repair to vertex 4

cost is 1 and theminimumneighbor repair cost is 2. Referring
to 0.4 × 2 > 0.6 × 1 in Line 6, the algorithm will choose to
relabel vertex 4 by c.

Finally, since all the violations are eliminated, the graph
repairing algorithmwill output Fig. 12a as the repaired graph
of Fig. 10b. ��
Proposition 10 The Grepair algorithm always terminates,
and runs in O(|V |3) time.
Proof To illustrate the termination, we show that for each
vertex v, there always exists a repair V ′(v) = ∅ that elim-
inates all the violations to v. Therefore, by considering one
vertex a time, the algorithm gradually eliminates all the vio-
lations and terminates.

To find the neighbor repair with the minimum cost for a
vertex v, we need to compare its neighborswith the neighbors
of other vertices u, with cost O(|V |) for each comparison.
Considering all the possible vertices, the neighbor repairing
in each iteration needs O(|V |2). The minimum label repair
can be found by simply comparing the labels of neighbors.
Therefore, Algorithm 3 runs in O(|V |3) time. ��

7.4 Performance Analysis

To evaluate the approximation performance, we study the
upper (Lemma 11) and lower (Lemma 12) bounds of repair
costs for possible repairs, fromwhich the approximation ratio
of Algorithm 3 is obtained (Proposition 13) w.r.t. a node
degree-bounded graph.

Let G′ be the approximate repair result returned by the
Grepair algorithm.

Lemma 11 An upper bound of repair cost of G′ is

Δ(G′,G) ≤ 2θkr,

where k is the number of vertices with violations in G, and r
is the maximum degree of G.

Proof Let Gi be the graph after the i th repairing step, i =
0, 1, 2, . . . , where G0 = G denotes the original input. Let u
be the vertex changed from Gi−1 to Gi .

Case 1 According to Algorithm 3, when a label repair is
conducted, we have θδn(V ′

i (u), V0(u)) > (1 − θ)δl(λi (u),

λ0(u)), where V ′
i (u) is the neighbor repair with theminimum

cost. Since u is not previously repaired, it follows

Δ(Gi ,G0) − Δ(Gi−1,G0) = (1 − θ)δl(λi (u), λ0(u))

< θδn(V
′
i (u), V0(u)).

For each neighbor repair, since there always exists a repair
V ′(u) = ∅ with repair cost no greater than r , we have
δn(V ′

i (u), V0(u)) ≤ r i.e.,

Δ(Gi ,G0) − Δ(Gi−1,G0) ≤ θr.

Case 2 Otherwise, neighbor repair is performed, where
only the neighbors of u and u’s neighbors could be changed.
We have

Δ(Gi ,G0) − Δ(Gi−1,G0) = θ
∑

v∈V
δn (Vi (v), V0(v))

− θ
∑

v∈V
δn (Vi−1(v), V0(v))

= θ
( ∑

v∈V \{u}
(δn(Vi (v), V0(v))

− δn (Vi−1(v), V0(v)))

+ δn (Vi (u), V0(u))

− δn (Vi−1(u), V0(u))
)
.

According to the property of symmetric set difference and
triangle inequality over the neighbor repair cost in Eq.11, we
have

δn(Vi (v), V0(v))≤δn(Vi−1(v), V0(v)) + δn(Vi (v), Vi−1(v)).

It follows

Δ(Gi ,G0) − Δ(Gi−1,G0) ≤ θ
( ∑

v∈V \{u}
δn(Vi (v), Vi−1(v))

+ δn(Vi (u), V0(u)) − δn(Vi−1(u), V0(u))
)
.

For v ∈ V \ {u}, according to the definition of neigh-
bor repair on u from Gi−1 to Gi , only the vertices in
Vi (u) ∪ Vi−1(u) \ Vi (u) ∩ Vi−1(u) will be affected, hav-
ing δn(Vi (v), Vi−1(v)) = 1. The total neighbor repair cost is
bounded by |Vi (u) ∪ Vi−1(u) \ Vi (u) ∩ Vi−1(u)|, i.e.,
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Δ(Gi ,G0) − Δ(Gi−1,G0)
≤ θ

(
|Vi (u) ∪ Vi−1(u)\Vi (u) ∩ Vi−1(u)|

+ δn(Vi (u), V0(u)) − δn(Vi−1(u), V0(u))
)

= θ
(
δn(Vi (u), Vi−1(u))

+ δn(Vi (u), V0(u)) − δn(Vi−1(u), V0(u))
)
.

According to the triangle inequality, i.e.,

δn(Vi (u), Vi−1(u)) ≤ δn(Vi (u), V0(u))

+ δn(Vi−1(u), V0(u)),

we have

Δ(Gi ,G0) − Δ(Gi−1,G0) ≤ 2θδn(Vi (u), V0(u))

≤ 2θr,

referring again to δn(Vi (u), V0(u)) ≤ r .
Suppose that the graph repair algorithm performs q repair

operations. Combining the aforesaid Cases 1 and 2, we have

Δ(G′,G) =
q∑

i=1

(Δ(Gi ,G0) − Δ(Gi−1,G0)) ≤ q2θr.

Moreover, since each repair operation ensures eliminating
the violations to the repaired vertex, the graph repair algo-
rithm needs at most k operations, having q ≤ k. Finally, we
have

Δ(G′,G) ≤ 2θkr.

The conclusion is proved. ��
Let G∗ be the optimal solution with the minimum repair

cost.

Lemma 12 A lower bound of repair cost of G∗ is

Δ(G∗,G) ≥ k

r + 1
min

{
(1 − θ)δmin

l , θ
}
,

where δmin
l is theminimumcost of label repair, k is the number

of vertices with violations in G, and r is the maximum degree
of G.

Proof Consider k vertices in G that are involved in violation.
The degree of G is bounded by r . That is, by repairing any
vertex, it eliminates the violations of at most r + 1 vertices
in k. To eliminate all the violations in k vertices, we need at
least k

r+1 repair operations.

Let δmin
l and δmin

n denote theminimumcost of a label repair
and a neighbor repair, respectively. Thereby, the minimum
cost of a repair operation is thus

min
{
(1 − θ)δmin

l , θδmin
n

}

To sum up, for any repair of G, including the optimal
solution G∗, we have

Δ(G∗,G) ≥ k

r + 1
min

{
(1 − θ)δmin

l , θδmin
n

}
.

Moreover, each neighbor repair modifies at least one
neighbor, i.e., δmin

n ≥ 1. The conclusion is proved. ��
Combining the conclusions in Lemmas 11 and 12, it nat-

urally leads to the following approximation bound.

Proposition 13 TheGrepair approximation algorithm out-
puts a G′ having

Δ(G′,G)

Δ(G∗,G)
≤ 2r(r + 1)max

{
θ

(1 − θ)δmin
l

, 1

}
,

where r is maximum degree of instance graph and δmin
l is the

minimum cost of label repair.

When the count function is used for label repair [22], as
introduced in Sect. 3.2 having δmin

l ≥ 1, we have the approx-

imation bound 2r(r + 1)max
{

θ
1−θ

, 1
}
.

Referring to Proposition 10, given a degree-bounded
instance graph, Algorithm 3 is a constant-factor cubic-time
approximation.

8 Experiments

This section reports the experiments of proposed methods
on real datasets. All the algorithms are implemented in Java.
The program runs on a server with four 2.67GHz CPUs and
128GB main memory.

8.1 Experiments on Label Repair

Since we do not have real errors with labeled truth in most
datasets (except coauthor networks and GPS data below),
following the same line of experimentally evaluating data
repairing methods [15], artificial errors are introduced to
the clean data. That is, we first randomly draw k vertices
from the n vertices in the graph, where k is the number
of label frauds to introduce. The labels of these k vertices
are then replaced by randomly using the labels of other
nodes in the graph. The relabeling methods are then applied
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to repair graph labels. Instead of observing approximation
ratio by computing the optimal solution, which is indeed
not affordable for the large real data, we study the accuracy
of relabeling results by comparing with the truth of fraud
data previously replaced. In particular, let truth be the set of
(vertex, label) pairs that are randomly replaced in G, i.e., the
original true data. Let found be the set of (vertex, label) pairs
that are relabeled in G′, i.e., relabeling results. To evaluate
the accuracy, we use f -measure of precision and recall [32],
given by precision = |truth∩ found|

|found| , recall = |truth∩ found|
|truth| ,

and f-measure= 2 · precision · recall
precision + recall . It is natural that higher

f -measure is preferred. Besides accuracy, we also observe
the time costs of approaches.

8.1.1 Experiments on Similarity Networks

To evaluate our proposed relabeling techniques over simi-
larity networks, we implement an existing repairing method
based on fd [3] (does not rely on the proposed notations of
graphs). The fd-based repairing [3] performs directly on the
relational data (e.g., in Fig. 1c) rather than the derived simi-
larity network (i.e., the corresponding Fig. 1b). Therefore, it
cannot be applied to other graphs such as coauthor networks
without relational settings.

Restaurant similarity network is a collection of 864
restaurant records3 that contains 112 duplicates and is
widely used for record matching [19]. We consider a dd,
(Name,Address → Areacode, 〈[0, 0], [0, 6], [0, 0]〉), and
a corresponding fd (Name,Address → Areacode). Exist-
ing approach [29] is employed for discovering the dd and
determining the distance/similarity thresholds . Specifically,
a support measure is used in dd discovery to evaluate the pro-
portion of tuple pairs in the data whose distances satisfy the
thresholds such as [0,6]. Among various candidate dds with
different thresholds, the dd, which has the largest support
and is valid w.r.t. satisfaction over the data, will be returned
in discovery and employed in our study.

Following the steps in the introduction, we construct
similarity networks w.r.t. the dd. Note that the distance
constraint on Areacode in the dd is [0, 0], i.e., equality.
Therefore, the constructed constraint graph belongs to clique
constraints where transitivity is applicable. Given a dd, we
need one pass through the tuple pairs in the data to construct
both the instance and constraint graphs. The time cost of
instance graph construction by comparing tuples on Name
and Address attributes specified in the dd is 1473ms. And
similarly, the time cost for constraint graph on comparing
Areacode attribute is 105ms. The total cost (1578ms) of con-
structing the instance and constraint graphs in preprocessing
is much higher than the time cost of repairing as illustrated

3 http://www.cs.utexas.edu/users/ml/riddle/data.html.
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Fig. 14 Restaurant with various inserted frauds. a Time performance,
b accuracy performance

in Fig. 14. The result is not surprising, since repairing only
needs to process the vertices involved in violations.

First, in Fig. 13, we compare the approximation methods
with the exact algorithm (implemented following the stan-
dard branching and bound strategy). Unfortunately, even for
such a small Restaurant dataset, conducting the exact algo-
rithm over the entire dataset is unlikely. As illustrated, it
already takes more than 250,000s (about 70h) for a subset
of 70 vertices. Considering the NP-hardness of computing
the optimal solution (Proposition 1), we did not carry on
the experiments on larger data sizes for evaluating the exact
relabeling program. For such a small data size, we consider
a number of five inserted frauds, and thus the results may
not be stable in such a small sample. As shown, the exact
algorithm could achieve better accuracy but with extremely
higher time costs.

While the greedy method fails to terminate (see more dis-
cussion below), we report the results by AlterGC, contract
and the existing fd-based repairing [3], in Fig. 14. Since
dataset is small, we mainly observe performance variances
by increasing the number of inserted frauds from 10 to 100.
Generally, with the growth of frauds, the f -measure accu-
racy drops, while the relabeling time cost increases. Since
frauds are randomly inserted, time costs and f -measure may
not strictly grow or decrease with the increase of frauds. As
illustrated, AlterGC and contract approaches show almost
the same results, since the greedy technique fails to work.

Recall that the major superiority of our proposed graph
relabeling approach is the ability of considering more sim-
ilar neighbors in similarity networks than the fd repairing
which only considers a limited number of tuples with equal-
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ity relationships. For the same reason analyzed in Example 1,
owing to the rigid equality, the existing fd repairing fails to
detect the relationships of tuples with small variations, which
are successfully captured by similarity networks. Since more
repair candidates can be suggested, as shown in Fig. 14b, the
accuracy of the proposed similarity network-based AlterGC
approach is significantly higher than that of fd.

It is true that the currentmethod can repair only the fraction
of the data that is within the scope of matching attributes of a
dd, since each distinct dd corresponds to a different instance
graph (as well as the constraint graph). For the application
over large graphs (of similarity networks), multiple dds need
to be specified. Each dd may lead to distinct constraint and
instance graphs. The graph repairing over multiple instance
graphs under various constraint graphs is challenging. The
repairing could not be performed independently over these
instance graphs, since the same vertex in different instance
graphs should have the same label. We leave this interest-
ing yet challenging problem on repairing multiple correlated
graphs as the future study. Nevertheless, for other types of
networks, the evaluation over large graphs is performed in
Sect. 8.1.4. As shown, the results over large HPRD network
in Fig. 18 are generally similar to those in Fig. 14 on similar-
ity network.

8.1.2 Experiments on Coauthor Networks

Coauthor Network is motivated by the entity resolution task
[18].We note that there are different authors sharing the same
name, e.g., Lei Chen (HKUST), Lei Chen (Wisconsin), Lei
Chen (Purdue), Lei Chen (RPI). In data sources such as Cite-
Seer, different authors sharing the same name (Lei Chen) are
not fully distinguished.Weemploy the coauthor relationships
from DBLP4, where different Lei Chen(s) are distinguished,
and model them as the constraint graph. As shown in Fig. 15,
in the instance graph, each author in a citation record (from
CiteSeer) denotes a vertex. An edge denotes that this author
(in the record) coauthors with another in the same citation
record. The relabeling problem is to find the “right” label,
e.g., Lei Chen (HKUST) or Lei Chen (Wisconsin), for the
original imprecise one (simply Lei Chen without identifica-
tion).

While the CiteSeer data are used as the instance graph,
we consider the DBLP data as the constraint graph (which
are manually identified and maintained to a great extent). If
suchpre-maintained constraint graph is not available,wemay
employ the entity resolution in graph data [2] to construct
the constraint graph. It is worth noting that Bhattacharya
and Getoor [2] consider two types graphs, reference graph
and entity graph, which are analogous to instance graph and
constraint graph in our study, respectively. In particular, the

4 http://dblp.uni-trier.de/db.
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Fig. 15 Example of coauthor networks. a Constraint (from DBLP), b
instance (from CiteSeer)
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Fig. 16 Coauthor networks with various sizes. a Time performance, b
accuracy performance

entity graph describes the relationships among the identified
entities. The entity resolution in graph data is thus to build
the entity graph (constraint graph) from the reference graph
(instance graph). Once the constraint graph (entity graph) is
obtained, we may similarly apply it to repair other instance
graphs (from different sources), eliminating errors on either
labels or coauthor relationships in Sect. 8.2.

To evaluate the label reparing, we adapt the existing
duplicate detection methods. Since [2] considers complex
hyper-graphs with multiple types of authors and papers hav-
ing citation relationships, which are not available in our
scenario,we employ a simplerCENTERapproach [18] based
on clustering with coauthor similarity. Each author corre-
sponds to the center node of a cluster in CiteSeer, and the
coauthor list of the author from DBLP is used as the features
in classification. To evaluate the accuracy, the publication
records in DBLP (with different authors sharing the same
name fully distinguished) are used as the ground truth of the
corresponding citation records in CiteSeer. Again, the exist-
ing CENTER method cannot be employed to repair other
graphs such as HPRD without duplicates.

As shown in Fig. 16, f -measure is improved from 0.3 (of
CENTER) to 0.98 by our proposed AlterGC method. With
both the constraint (DBLP) and the instance (CiteSeer with
imprecise labels embedded) from truly real datasets without
any manual manipulation, this experiment demonstrates the
superiority of our proposal in dealing with real imprecise
values.

8.1.3 Experiments on Location Networks

The GPS dataset with real errors is collected by a person
carrying a smartphone and walking around at campus. All
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Fig. 18 HPRD with various inserted frauds. a Time performance, b
accuracy performance

the GPS readings are discretized into 100 locations. Since
we know exactly the path of walking, a number of 150 dirty
points are manually identified (among total 2358 clear points
in the trajectory). True locations of dirty points are also man-
ually labeled, as ground truth. Referring to thewalking speed,
for any two points collected in 1min, they should be in the
same or adjacent locations. The instance graph thus con-
sists of reading points as vertices and edges on two points
with timestamp difference<1min. The constraint graph uses
locations as nodes (of labels) and neighborhoods denote adja-
cent locations. The repairing is thus to modify the location
labels of reading points to make them satisfy the adjacent
constraints.

Figure 17 presents the results on various numbers of
frauds. The accuracy result is generally similar to Fig. 14b
overRestaurantwith artificial errors. That is, the greedy algo-
rithm cannot return results in most tests, while the contract
method always return repairs with low accuracy. Neverthe-
less, the AlterGC approach is effective with high f -measure.
Moreover, the time cost in Fig. 17a is similar to Fig. 18a over
HPRD data, where the AlterGC method can achieve signifi-
cantly lower time costs by avoiding unnecessary contraction
operations.

8.1.4 Experiments on Larger Datasets

HPRD5, Human Protein Reference Database, consists of a
human protein interaction network. It is often used as a
massive network, e.g., for finding maximal clique [5]. As
introduced in Sect. 1, edges denote binary protein–protein
interactions. Protein’s GO term is used as vertex label. The

5 http://www.hprd.org/download
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Fig. 19 HPRD varying graph sizes. a Time performance, b accuracy
performance

constraint graph represents GO term correlations. Since the
GO term cellular component is correlated with all the others,
it is a star constraint.

Since there are no existing methods for repairing over
these datasets, we focus on comparing the techniques pro-
posed in this paper. Greedy heuristics performs well, i.e.,
with high accuracy and low time cost in Fig. 18, if it can
terminate. Although the contraction method can always ter-
minate in all the tests, as presented in Fig. 18b, the f-measure
accuracy could be bad, which verifies our analysis of the
contraction approach in Sect. 5. Nevertheless, as illustrated
in Fig. 18b, the f -measure of AlterGC approach is as good
as that of the greedy method in almost all the tests (where
the greedy algorithm can terminate). The AlterGC approach
also guarantees termination as the contraction method does,
while the corresponding accuracy is as good as the greedy
heuristics one.

Figure 19 reports the performance of scalability by
increasing the number of vertices (test beds with smaller
sizes of n vertices are prepared by using the first n vertices
listed in the data). As shown, the time performance scales
well, which grows almost proportionally with data sizes.
The results verify the complexity analysis of contract and
AlterGC algorithms in Sects. 5 and 6, respectively.

Specific tests may zigzag such as Fig. 19 for two reasons:
(1) As mentioned, the randomly inserted frauds in different
tests may affect performance results. (2) The heuristic rela-
beling steps could be easily influenced by a small difference
among tests. Consequently, the f-measure accuracymay vary
greatly among different data sizes due to the random insertion
of frauds, for instance, as presented in Fig. 19b.

Summary: (1) Experiments in Figs. 13 and 14 illustrate that
AlterGC and contractionmethods show similar/better perfor-
mance compared with existing techniques, while the greedy
technique fails and has no much effect in the AlterGC
approach. (2) Figures 16, 18 and19demonstrate thatAlterGC
and greedy approaches show similar and better results than
that of the contractionmethod. In short, by taking advantages
in both techniques, the AlterGC approach always has the best
performance in all the experiments.
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Fig. 21 Coauthor with various θ . a Repair cost b accuracy perfor-
mance

8.2 Experiments on Graph Repair

In this experiment, we evaluate graph repair with neigh-
bor modification, proposed in Sect. 7. Besides label errors as
introduced in the previous experiment in Sect. 8.1, we also
consider neighbor errors. Again, we randomly draw k ver-
tices from the n vertices in the graph,where k is the number of
neighbor frauds to introduce. Neighbor errors on these k ver-
tices are introduced by randomly replacing their neighbors
with some other vertices’ neighbors in the graph (referring
to the motivation Example 10).

Let Eoriginal denote the neighborhoods (edges) in the orig-
inal instance graph, Einjected be the neighborhoods with
injected neighbor errors, and Erepaired be the neighborhoods
in the repaired graph.We define truth = (Eoriginal\Einjected)

∪ (Einjected\Eoriginal) the set of neighborhoods that are
modified in neighbor error introducing, and found =
(Erepaired\Einjected)∪ (Einjected\Erepaired) the set of neigh-
borhoods that are modified in neighbor repair. Consequently,
truth ∩ found is the set of neighborhoods that are modified
in neighbor error introducing and successfully repaired later.
Again, the f-measure of precision and recall over truth and
found is employed.

8.2.1 Evaluating Cost Weight Parameter θ

This experiment evaluates various θ values inweighting label
and neighbor repair costs, in Eq.12.

Figures 20 and 21 report both the label and neighbor repair
accuracies, as well as the corresponding repair costs, over
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Fig. 22 Restaurant with various inserted frauds and θ = 0.45. a Time
performance, b accuracy performance
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Fig. 23 Restaurant with various data sizes and θ = 0.45. a Time per-
formance, b accuracy performance

different datasets. Both the numbers of label and neighbor
errors are 30 (see results on various errors sizes below).

First, when θ is small, according to the graph repair cost
function in Eq.12, neighbor repair is preferred. Therefore, a
larger number of neighbor repair operations are performed
with higher cost (compared to label repair), e.g., as shown in
Fig. 20a.

With the increase of θ , more label repair will be performed
and neighbor repair operation (cost) reduces, in Fig. 20a.
However, with an excessively large θ , the label repair may
be over-emphasized relative to neighbor repair. The neighbor
repair operation (cost) significantly drops, e.g., after θ = 0.5
in Fig. 20a.

Nevertheless, with a proper θ , we may obtain a repair
with both high accuracies of neighbor and label repairing,
as shown in Fig. 20b. To practically determine a proper
θ , we can observe the corresponding neighbor and repair
costs in Fig. 20a. After the significant decrease/increase of
neighbor/label repair costs, the repair costs become sta-
ble in the range of θ ∈ [0.3, 0.5], before the significant
decrease/increase appearing again. In such stable range, the
neighbor and label repairs are balanced, and thus the corre-
sponding repair accuracies are the highest. Similar results are
also observed in other datasets in Fig. 21.

8.2.2 Evaluation on Scalability

Next, we observe the scalability over various fraud sizes and
data sizes. Figures 22 and 25 report the repair accuracy and
the corresponding time cost onvarious sizes of errors. Figures
23 and 26 present the results on various sizes of graphs.
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Fig. 24 Repairing on LHS and RHS over Restaurant. a Time perfor-
mance, b accuracy performance
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Fig. 25 Coauthor with various inserted frauds and θ = 0.7. a Time
performance, b accuracy performance

First, as shown in all the aforesaid figures, the label repair
accuracy of Grepair (Algorithm 3) is significantly higher
than that of AlterGC (Algorithm 2). The reason is that both
neighbor and label frauds exist in the graphs. While Grepair
could handle both errors separately, the AlterGC algorithm
performs label repair only to eliminate the violations intro-
duced by neighbor errors. Indeed, it is also the reasonwhy the
AlterGCmethod needs significantly higher time costs. Since
neighbor errors exist, which might not be eliminated by the
greedy label repair, the high cost contraction operations are
performed.

For theRestaurant dataset captured from relational data, as
illustrated in the motivation Example 11, the neighbor repair
is indeed equivalent to repairing the left-hand-side (LHS)
attribute values in a dependency (dd), while the label repair
corresponds to repairing the right-hand-side (RHS) attribute
values. Therefore, in addition to neighbor repair accuracy, in
Fig. 24, we also report the accuracy of repairing both LHS
and RHS attribute values over the relational data Restaurant.
Again, the fd-based repairing [3] (on both LHS and RHS
attributes) is compared. Similar to Fig. 14 with RHS errors
only, the fd-based repairing with strict equality constraints
may not be effective in addressing errors over the data with
various information formats. By considering similarity rela-
tionships, the proposed Grepair achieves higher accuracy.

Since frauds are randomly introduced in the graphs, we
repeat each test ten times in all the experiments. In addition
to the average of f-measures, Figure 27 reports the variance
of f -measures in the repeated tests, i.e., σ 2

y = 1
10

∑10
i=1(yi −

ȳ)2, where yi is the f -measure in each test i and ȳ is the
mean of f-measures in ten tests. It is not surprising that f -
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Fig. 26 Coauthor with various data sizes and θ = 0.7. a Time perfor-
mance, b accuracy performance
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Fig. 28 Scalability over synthetic data. a Time performance, b accu-
racy performance

measure on neighbor repair has larger variance than that of
label repair, since a fraud vertex may have a set of neighbors
but only one label. Nevertheless, in Fig. 27, the variance is
generally low in all the experiments. Similar results are also
observed in all the other experiments (and thus omitted).

Finally, to evaluate themethods over even larger data sizes,
we employ the widely used graph generation tool [6,20],
GraphGen6, to generate graphs with up to 1000k vertices.
Figure 28 illustrates the results, which are generally similar
to those in Figs. 23 and 26 over real data sets. That is, without
addressing neighbor errors, the accuracy of AlterGC method
is low, while the corresponding time cost is high. (Owing
the extremely high time cost and obviously lower accuracy,
we omit the results of AlterGC over larger data sizes.) Nev-
ertheless, the Grepair algorithm, considering both label and
neighbor errors, has high accuracy on both label and neighbor
repairs, in Fig. 28b.

Summary: (1) With a proper θ , determined by observing the
corresponding repair costs, the neighbor and label repairs

6 www.cse.ust.hk/graphgen
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Fig. 29 Approximation ratio over synthetic data. aLabel repair,b label
and neighbor repair

could be balanced with the highest repair accuracy. (2)
When neighbor errors exist, the Grepair algorithm with both
neighbor and label repairing shows better accuracy and time
performance as well, compared to themethodwith only label
repairing.

8.3 Experiments on Approximation Performance

In order to evaluate the performance of the proposed approx-
imation methods, we employ a synthetic dataset to observe
the difference between the optimal repairs and the returned
approximate answers. In particular, we verify the bounds
of constant-factor approximation in Proposition 6 for label
repairing, and Proposition 13 for graph repairing.

We employ again the graph generation tool GraphGen
to generate ten test beds with 9–13 vertices in instance
graphs and 6–11 vertices in constraint graphs. The evaluation
focuses on the approximation ratio of approximate answers
compared to the optimal one. We compute the optimal label
repair G∗

l with the minimum relabeling cost Δl(G∗
l ,G), and

the optimal graph repair G∗ with the minimum graph repair
cost Δ(G∗,G). For any approximate label repair G′

l and
approximate graph repair G′, the approximation ratios are

reported by
Δl (G′

l ,G)

Δl (G∗
l ,G)

and Δ(G′,G)
Δ(G∗,G)

.

Figure 29 illustrates the approximation performance of
the proposed methods, as well as the corresponding theoret-
ical bounds of approximation ratio presented in Propositions
6 and 13, respectively. Star constraints are considered in
Fig. 29a in order to verify the results in Proposition 6. As
shown, contraction approach terminate in all the ten tests,
and the approximation ratio is no >2. These results verify
our conclusion for the contraction method in Proposition 6.
Remarkably, the AlterGC method can achieve much better
approximation ratio performance (equal to 1 in many tests)
than contraction while still guaranteeing termination. For
graph repairing on both labels and neighbors in Fig. 29b, the
approximation ratio of Grepair (Algorithm 3) is also lower
than the theoretical bound. The result in Proposition 13 is
verified as well.

9 Conclusions

This paper studies a novel problem of repairing vertex labels
and neighbors under the constraints of label neighborhood.
Graph constraint satisfaction and repairing have many appli-
cation scenarios, ranging from similarity networks w.r.t.
integrity constraints involving distance metrics, workflow
networks of business processes, to protein interaction net-
works. First, the vertex label repairing (relabeling) problem
is generally hard. Spreads of violations during relabeling pre-
vent the approximation methods performing. We show that
greedy heuristics cannot guarantee termination. Therefore, a
contraction-based relabeling method is devised, which can
always terminate, but may have bad results in terms of rela-
beling cost. For the special case of star constraints, however,
both methods perform surprisingly good, where the greedy
method theoretically guarantees termination and the con-
traction approach turns out to be factor-2 approximation.
Nevertheless, to put together the beauty of violation elim-
ination heuristics and termination, we present an approach
AlterGC by cooperating contraction and greedy relabeling.
Moreover, the graph repairing problem considers both vertex
label and neighbormodifications.We analyze itsnp-hardness
and present a constant-factor cubic-time approximation algo-
rithm (given degree-bounded instance graphs).

Experimental evaluation on real data demonstrates that the
AlterGC approach always takes the advantages of either the
proposed greedy or contraction techniques. Moreover, when
both label and neighbor errors exist, the proposed Grepair
algorithm shows both higher repair accuracy and better time
performance.

In addition to the “allowed” semantics studied in this
paper, further considering the “required” semantics in the
neighborhood constraints is interesting. For instance, in RDF
data, a vertex with Name value Albert Einstein is required to
have a neighbor with Born value 1879. Repairing under such
complicated constraints will obviously be more challenging.
We leave this interesting yet more challenging work as future
study.
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