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Abstract—A large amount of heterogeneous event data are increasingly generated, e.g., in online systems forWeb services or operational

systems in enterprises. Owing to the difference between event data and traditional relational data, thematching of heterogeneous events is

highly non-trivial.While event names are often opaque (e.g.,merely with obscure IDs), the existing structure-basedmatching techniques for

relational data also fail to perform owing to the poor discriminative power of dependency relationships between events.We note that

interesting patterns exist in the occurrence of events, whichmay serve as discriminative features in eventmatching. In this paper, we

formalize the problem ofmatching eventswith patterns. A generic pattern basedmatching framework is proposed, which is compatible with

the existing structure based techniques. To improve thematching efficiency, we devise several bounds of matching scores for pruning.

Recognizing the NP-hardness of the optimal event matching problemwith patterns, we propose efficient heuristic. Finally, extensive

experiments demonstrate the effectiveness of our pattern basedmatching compared with approaches adapted fromexisting techniques,

and the efficiency improved by the bounding, pruning and heuristicmethods.

Index Terms—Schema matching, event matching

Ç

1 INTRODUCTION

INFORMATION systems (e.g., OA and ERP systems) of differ-
ent divisions or branches in large corporations keep on

generating heterogeneous event logs. It is strongly desired to
integrate the event data, e.g., for finding steps leading to a
same data (provenance analysis [1]) inmultiple sectors, iden-
tifying similar complex procedures (complex event process-
ing [2]) in different branches, or obtaining a global picture of
business processes (workflowviews [3]) in various divisions.
Without exploring the correspondence among heteroge-
neous events, query and analysis on the event data (simply
merged together) may not yield anymeaningful result.

Unfortunately, directly applying existing schema match-
ing techniques [4] may fail to obtain the right mapping of
heterogeneous events. Owing to the independent encoding
systems in different sources, the widely used methods based
on typographic similarity (e.g., string cosine similarity [5]) or
linguistic similarity (using dictionary of ontology like Word-
Net [6]) of event names are often unlikely to perform (see
examples below).

To solve the matching problem with “opaque” names,
graph based matching approaches [7] exploit the structural
information among attributes (events in our case). It relies on
the statistics of dependency relationships, e.g., how often
two events appear consecutively. The more similar the
dependency relationship is, the more likely the correspond-
ing events can be mapped with each other. The matching

problem is to find a “best” mapping that can maximize the
similarity of dependency relationships between two data-
sets. Unfortunately, as illustrated in the following example,
the dependency relationships (w.r.t. two consecutive events)
are not discriminative enough to find the rightmatching.

Example 1. Fig. 1 illustrates two event logs, L1 and L2, from
order processing systems of a bus manufacturer, which
belong to two departments located at distinct industrial
parks, respectively. Each trace, e.g., in Fig. 1a, denotes a
sequence of events (steps) for processing one order. An
event log consists of many traces, among which the
sequences of events may be different, since some of the
events can be executed concurrently (e.g., Payment(B) and
Check Inventory(C) in L1), or alternatively (e.g., FT(8) or
DL(7) in Trace 2 in L2).

As shown between Figs. 1a and 1b, events in L1 and
L2 have opaque names. According to our manual investi-
gation, Ship Goods in L1 is found corresponding to an
event namely FH (which is an abbreviation of Chinese
phonetic representation) in L2. Such a mapping cannot
be automatically identified through a string similarity
comparison (even with the help of dictionaries). For sim-
plicity, we use ABCDEF to denote opaque event names
in L1, while 12345678 are events in L2.

Figs. 1e and 1f capture the statistical and structural
information of L1 and L2, respectively. Each vertex in the
directed graph denotes an event, while an edge between
two events (say AB in Fig. 1e for instance) indicates that
they appear consecutively in at least one trace (e.g., Trace
1 in Fig. 1c). The numbers attached to vertices and edges
represent the normalized frequencies of corresponding
events and consecutive event pairs. For instance, 0.2 of
AB means that A,B appear consecutively in 20 percent
traces of the event log.

Frequencies of individual events are obviously not dis-
criminative for matching, e.g., events A,B,...,1,2,...share
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the same frequency 1.0. According to the dependency
graphs, DE shares the same frequency with 34, as well as
DF with 35, BD with 23, and CD with 13. Following the
intuition of high dependency relationship similarity,
D ! 3 may be mapped referring to the aforesaid similar
dependency edges. However, D and 3 denote two differ-
ent events in real world.

We note that besides the simple dependency relation-
ships, more complex event patterns (a.k.a. composite events
[2]) often exist in event logs and may serve as more discrim-
inative features. Informally, an event pattern is a group
events with several dependency relationships declared
inside. It is not surprising that such a complex event pattern
(with multiple dependency relationships) is more discrimi-
native than single dependency relationships.

Example 2 (Example 1 continued). Consider pattern p1 in
blue dashed line in G1 with four events fA;B;C;Dg and
six edges fAB;AC;BC;CB;BD;CDg. It states that events
B and C must occur after A before D, in either the order
of BC or CB. A trace (say Trace 1 in L1) matches with the
pattern if an instance of the pattern < ABCD > appears
as a substring of the trace.

Note that in G2, there is a subgraph p2 with events
f3; 4; 5; 6g isomorphic to p1. It means that there may exist
traces in L2 following the pattern p1 as well. As event ver-
tices and edges, we can also study the frequency of event
patterns, i.e., the number of traces matching the pattern.
By evaluating in L1 and L2, respectively, p1 and p2 are
found to share the same normalized frequency 1.0. It sug-
gests that these two patterns may represent the same
tasks (composite events). A mapping, say A ! 3; B ! 4;
C ! 5; D ! 6, among pattern p1 and p2 is probably reli-
able, rather than the aforesaid D ! 3 in Example 1 by a
single dependency relationship.

It is notable that vertices and edges (dependency rela-
tionships) can be interpreted as special patterns. More com-
plex event patterns can be declared by users for certain
interests, or discovered from data [8], [9], [10] (see a discus-
sion of choosing discriminative patterns in Section 2). In
this paper, given certain patterns over event logs, we study
the problem of finding an optimal mapping that can maximize the
frequency similarity (matching score) w.r.t. the patterns.

The main challenge of event matching originates from
the large space of all possible mappings. We show in
Theorem 1 that the problem of finding the optimal event
matching with patterns is indeed NP-hard. To support effi-
cient search of optimal mapping, it is essential to devise
bounds of matching scores w.r.t. the patterns and prune
those mappings with low matching scores. Due to the exis-
tence of various mappings, e.g., a pattern (say fD;E; Fg)
can either be mapped to f3; 4; 5g or f6; 7; 8g, computing tight
bound for each possibly mapped pattern is unpractical.

1.1 Contributions

Our major contributions in this paper are summarized as:

� We formalize the event matching problem with pat-
terns, show its hardness (Theorem 1) and identify
efficiently solvable special case (Theorem 2).

� We propose a pattern based generic framework for
event matching, which is compatible with existing
structure based matching methods. Efficient bound-
ing and pruning w.r.t matching scores of possible
mappings are developed.

� We devise an advanced bounding function together
with two indices to accelerate the computation of the
optimal event matching. In particular, a tighter
bound is calculated without the costly subgraph iso-
morphism step.

� We propose efficient heuristic for event matching. In
particular, the proposed algorithm returns the opti-
mal solution in a certain case of vertex patterns
(Proposition 6).

� We report an extensive experimental evaluation. It
demonstrates that our proposed pattern basedmatch-
ing methods achieve higher accuracy compared with
the state-of-the-art approaches. The advanced bound-
ing function significantly reduces time cost (up to two
orders of magnitudes improvement).

A preliminary version of this paper appears in [11].

2 EVENT MATCHING PROBLEM

In this section, we formalize syntax and definitions for the
event matching problem. Graph based uninterpreted
matching techniques are introduced for event matching,
which motivate us to study more complex event patterns.
Table 1 lists the frequently used notations in this paper.

2.1 Uninterpreted Event Matching

Let V be a set of events. A trace is a finite sequence of events
v 2 V ordered by their occurrence timestamps. An event log
L is a collection of traces.

To capture the structural and statistical information
among events, we introduce the dependency graph (origi-
nally for schema matching [7]) to event logs.

Fig. 1. An example of heterogeneous event logs.
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Definition 1 (Event Dependency Graph). An event
dependency graph G is a labeled directed graph denoted by
ðV ;E; fÞ, where each event in V corresponds to a vertex, E is
the edge set, and f is a labeling function of normalized frequen-
cies that

� for each v 2 V , fðv; vÞ is the normalized frequency of
event v, i.e., the number of traces in L that contain v
(divided by jLj), and

� for each edge ðv1; v2Þ 2 E, fðv1; v2Þ is the normalized
frequency of two consecutive events v1v2, i.e., the num-
ber of traces in L where v1v2 occur consecutively at
least once (divided by jLj).

We ignore those edges with frequency 0, i.e., no depen-
dency relationship between two events that do not appear
consecutively in any trace of the event log.

Consider two event logs L1 and L2, with event sets V 1

and V 2 (without loss of generality supposing that
jV 1j � jV 2j). A mapping M of events between V 1 and V 2 is
an injective mapping M : V 1 ! V 2. For an event v1 2 V 1,
v2 ¼ Mðv1Þ is called the corresponded event of v1, and
v1 ! v2 is called a matching/corresponding event pair.

In general, the number of events between the two logs is
not required to be the same. However, to illustrate the per-
formance of the Heuristic algorithm in Proposition 6, the
same number of events between two logs is assumed, i.e.,
jV 1j ¼ jV 2j. For two logs with different jV 1j and jV 2j, follow-
ing the same line of the Kuhn-Munkres method [12], we can
simply introduce some artificial events without actually
appearing in the logs, in order to make two logs having the
same number of events.

Owing to the absence of typographic or linguistic simi-
larity, the uninterpreted schema matching method [7] relies
on the similarity of dependency relationships. A score func-
tion is employed w.r.t. any mapping M, namely normal dis-
tance, to evaluate the similarity of two event logs.

Definition 2 (Normal Distance). Let M be a mapping of ver-
tices (events) over dependency graphs G1ðV 1; E1; f1Þ and
G2ðV 2; E2; f2Þ. The normal distance ofM is defined as

DNðMÞ ¼
X

v1;v22V 1

1� jf1ðv1; v2Þ � f2ðMðv1Þ;Mðv2ÞÞj
f1ðv1; v2Þ þ f2ðMðv1Þ;Mðv2ÞÞ

� �
:

Two forms of normal distances are studied. If v1 ¼ v2 is
required in the formula, the normal distance considers only

the frequencies of individual events, i.e., vertex form. Other-
wise, the normal distance is in vertex+edge form which con-
siders both vertex frequencies and edge frequencies.

Normal distance is the summation of frequency similari-
ties (or differences) of corresponding vertices or edges w.r.t.
mapping M. The higher the normal distance is, the more
similar the vertices and edges captured byM are.

Consequently, the matching problem is to find a map-
pingM that has the highest normal distance.

Problem 1 (Event Matching Problem). Given two event
logs L1 and L2, the event matching problem is to find an event
mappingM that maximizesDNðMÞ.

Example 3 (Example 1 continued). Consider the depen-
dency graphs G1 and G2 shown in Figs. 1e and 1f. We can
use normal distance to evaluate event mappings. For the
true mapping M ¼ fA ! 3; B ! 4; C ! 5; D ! 6; E ! 7;
F ! 8g illustrated in Fig. 1, we have normal distance
DN

v ðMÞ ¼ 5:89 (E ! 7 and F ! 8 have similarities

1� 1�0:9
1þ0:9 ¼ 0:947, where other four event pairs have simi-

larities 1.0) in vertex form and DN
vþeðMÞ ¼ 13:91 in vertex

+edge form based on the Definition 2. However, neither

of them is the highest normal distance. In fact, the event

mapping with the highest normal distance is

M 0 ¼ fA ! 6, B ! 2, C ! 1, D ! 3, E ! 4, F ! 5g,
where DN

v ðM 0Þ ¼ 6:00 and DN
vþeðMÞ ¼ 14:00. Hence, the

vertex and edge frequencies are not discriminative to find
the right mapping.

2.2 Event Matching with Patterns

Asmentioned in Section 1, complex patterns can be discrimi-
native features in event matching. Following the convention
of expressing complex event processing queries [2], we define
event patternswith SEQ andANDoperators as follows.

Definition 3 (Event Pattern). An event pattern specifies par-
ticular orders of event occurrence, which are defined recursively:

� A single event e is an event pattern;
� SEQðp1; p2; . . . ; pkÞ is an event pattern in which the

patterns pi; i 2 1; . . . ; k; occur sequentially;
� ANDðp1; p2; . . . ; pkÞ is an event pattern that requires

the concurrent occurrence of the patterns
pi; i 2 1; . . . ; k, i.e., the order of pi does not matter.

To keep the pattern discriminative, we do not allow any
other events to appear between the two patterns addressed
by two consecutive parameters in the operators. That is,
ANDðp1; p2; . . . ; pkÞ can be equivalently represented asW

ðp0
1
;p0
2
;...;p0

k
Þ2Q SEQðp01; p02; . . . ; p0kÞ, where Q is a set containing

all distinct permutations of p1; p2; . . . ; pk. It denotes that any
order of p1; p2; . . . ; pk is acceptable. By recursively represent-

ing AND sub-patterns, we obtain p ¼
W

ðv0
1
;v0
2
;...;v0

k
Þ2IðpÞ

SEQðv01; v02; . . . ; v0kÞ, where IðpÞ denotes all the allowed
orders of events v1; v2; . . . ; vk specified by p.

An event pattern can naturally be represented as a
directed graph, where each vertex corresponds to an event
[13]. Intuitively, SEQ operator specifies edges between conse-
cutive pi and piþ1; i 2 1; . . . ; k� 1, while AND operator indi-
cates edges between any two pi and pj; i 6¼ j; i; j 2 1; . . . ; k. It

TABLE 1
Frequently Used Notations

Symbol Description

v 2 V an event v in event set V
p 2 P an event pattern p in pattern set P
GðV ;E; fÞ event dependency graph
DNðMÞ normal distance of a mappingM
dðpÞ contribution of a pattern p to normal distance
Dðp; UÞ upper bound of dðpÞ
gðM;U1; U2Þ normal distance of a partial mappingM
hðM;U1; U2Þ upper bound of normal distances on

unmapped events
uðv1; v2Þ the estimated score of a match v1 ! v2
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is worth noting that for all the events e1; e2; . . . ; ek included in
a pattern and i 6¼ j; i; j 2 1; . . . ; k, we assume that there
should be ei 6¼ ej, since some translated graphs of distinct
patterns may be the same if the duplication of events are per-
mitted (e.g., SEQðA;B;A;BÞ andANDðA;BÞ).

Definition 4 (Trace Matching Pattern). Consider a trace.
Let p be an event pattern in graph form. We say that the trace
matches with p, if there is a substring of the trace belonging to
IðpÞ.

We define the normalized frequency fðpÞ of a pattern p as
the number of traces matching pattern p divided by the total
number of traces in event logL. Without loss of generality, in
the following, we denote p as the patterns in L1 by default.
For the patterns inL2, the computation is symmetric.

Definition 5 (Pattern Normal Distance). Let M be a map-
ping of events over dependency graphs G1ðV 1; E1; f1Þ and
G2ðV 2; E2; f2Þ. For a set of patterns P, the pattern normal
distance ofM is defined as

DNðMÞ ¼
X
p2P

1� jf1ðpÞ � f2ðMðpÞÞj
f1ðpÞ þ f2ðMðpÞÞ ; (1)

where MðpÞ is the pattern in G2 corresponding to p in G1 via
the mapping M such that each event v in p maps to an event
MðvÞ inMðpÞ.

We denote dðpÞ ¼ 1� jf1ðpÞ�f2ðMðpÞÞj
f1ðpÞþf2ðMðpÞÞ for convenience in the

following, i.e.,DNðMÞ ¼
P

p2P dðpÞ.
Following the intuition of dependency similarity in ver-

tex/edge based matching, we expect that the normalized fre-
quencies of p in L1 and its corresponding MðpÞ in L2 are as
similar as possible, i.e., maximize the pattern normal distance.

Note that vertices and edges are special patterns. There-
fore, pattern based matching can be interpreted as a gener-
alization of the existing vertex/edge based matching.

Example 4 (Example 3 continued). Consider a pattern
p1 ¼SEQ(A,AND(B;C),D) in Fig. 1e. We describe p1 as a
graph. The vertices of events are fA,B,C,D g. We add two
edges BC, CB due to pattern AND(B;C). According to
SEQ(A,AND(B;C),D), both B and C can be performed
after A and should be done before D. Thus, we add
another 4 edges AB, AC, BD and CD. The graph trans-
lated from p1 is a subgraph of G1 surrounded by blue
dashed line in Fig. 1e.

For the true mapping M ¼ fA ! 3; B ! 4; C ! 5;
D ! 6, E ! 7, F ! 8g, pattern p1 (in G1) corresponds to
a subgraph p2 in G2. Since all traces in L1 and L2 match
with p1 and p2, respectively, we have f1ðp1Þ ¼
f2ðp2Þ ¼ 1:0. By considering all vertices and edges as pat-
terns in Formula (1), the pattern normal distance of M is
DNðMÞ ¼ 14:91.

However, the pattern p1 has no mapped pattern w.r.t.
M 0 ¼ fA ! 6; B ! 2; C ! 1; D ! 3; E ! 4; F ! 5g. The
pattern normal distance of M 0 is still 14. By introducing
p1, the true mapping M with the highest pattern normal
distance beatsM 0.

Although it is not the focus of this study,we note that inter-
esting event patterns are often obtained in twoways. 1) Event

patterns may be available in business process analyzing sys-
tems of enterprises [2]. 2) There are many existing methods
for discovering event patterns in event log [8], [9], [10].

We provide some guidelines instead, for choosing possi-
bly “good” event patterns for matching. Intuitively, an
event pattern is probably discriminative if no other patterns
can be found with the same structure, or its frequency is dif-
ferent from other patterns with the same structure. On the
other hand, a pattern with common structure (e.g., a 3-
vertex-path pattern {A,B,D} in Fig. 1) may be less discrimi-
native, since it has a high chance of mapping to many irrele-
vant patterns.

2.3 Hardness Analysis

The optimal event matching problem with patterns is thus:
given a set of events pattern P over two event logs L1

and L2 with event sets V 1 and V 2, to find a mapping
M : V 1 ! V 2 such thatDNðMÞ is maximized.

Unfortunately, as shown below, even for the special case
of very simple SEQ patterns, the problem is already hard.

Theorem 1. For the case of edge patterns, i.e., each pattern is
only in the form of SEQðv; uÞ; v; u 2 V 1, the problem of deter-
mining whether there is a mapping M such that DNðMÞ � k
is NP-complete.

Proof. The problem is clearly in NP. Referring to Formula
(1), for each pattern p, the frequencies f1ðpÞ and f2ðMðpÞÞ
can be calculated simply by one pass through the event
logs L1 and L2, respectively.

To show NP-hardness, we build a reduction from the
subgraph isomorphism problem, which is known to be
NP-complete [14]. Let G1ðV1; E1Þ; G2ðV2; E2Þ be graphs.
The subgraph isomorphism problem is to determine
whether there is a subgraph G0ðV0; E0Þ : V0 � V2; E0 �
E2 \ ðV0 � V0Þ such thatG0 ffi G1, i.e., whether there exists
anm : V1 ! V0 such that ðv; uÞ 2 E1 , ðmðvÞ;mðuÞÞ 2 E0.

Given two graphs G1ðV1; E1Þ; G2ðV2; E2Þ, we create
two event logs L1 and L2, respectively. Each edge ðv; uÞ
in E1 or E2 corresponds to a trace containing two events
hvui. Moreover, we add traces with a single event to
make the same size jL1j ¼ jL2j. For each edge ðv; uÞ 2 E1,
an event pattern SEQðv; uÞ is introduced. The transfor-
mation completes.

We show that there exists an m : V1 ! V0 such that
ðv; uÞ 2 E1 , ðmðvÞ;mðuÞÞ 2 E0, if and only if mapping
M : V 1 ! V 2 such thatDNðMÞ � kwhere k ¼ jE1j.

First, if such a m exists, we consider m exactly as M.
Both edges ðv; uÞ 2 E1 and ðmðvÞ;mðuÞÞ 2 E0 correspond
to a trace in L1 and L2, respectively, i.e., with frequency
1. By Formula (1), we haveDNðMÞ ¼ jPj ¼ jE1j ¼ k.

Conversely, suppose that there is a mapping M with

DNðMÞ � jPj ¼ jE1j ¼ k. Referring to 0 � dðpÞ ¼ 1�
jf1ðpÞ�f2ðMðpÞÞj
f1ðpÞþf2ðMðpÞÞ � 1, it must be a mapping M with DNðMÞ ¼
jPj ¼ jE1j ¼ k, where each edge (pattern) is matched. It
corresponds to m : V1 ! V0 such that ðv; uÞ 2 E1 ,
ðmðvÞ;mðuÞÞ 2 E0. tu

Nevertheless, we identify a special case that can be effi-
ciently solved.
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Theorem 2. For the case of vertex patterns, i.e., each pattern
consists of only one single event, the optimal event matching
problem can be solved in Oðn4 	 jLj 	 jPjÞ time, where n ¼
maxðjV1j; jV2jÞ.

Proof. We present Algorithm 3 for event matching. Refer-
ring to the complexity analysis in Section 5.3.2, and cor-
rectness in Proposition 6, the conclusion is proved. tu

3 A GENERIC EVENT MATCHING FRAMEWORK

The total number of distinct mapping M is nðn� 1Þðn�
2Þ . . . ðn�mþ 1Þ, where n ¼ maxðjV 1j; jV 2jÞ, m ¼ minðjV 1j;
jV 2jÞ. Obviously, it is highly time-consuming to enumerate
all the possible corresponding relations and choose the one
that maximizes the normal distance. Instead, we employ the
A* search strategy to gradually construct the optimal map-
ping, and prune other mappings according to their upper
bounds of normal distances. There are two key issues to
address in the search algorithm: 1) the efficient computation
of a pattern’s contribution dðpÞ, in particular its frequency
fðpÞ in event logs; 2) the effective estimation of upper
bounds of contributions dðpÞ in possible mappings.

3.1 Overview of A* Search

The process of A* search algorithm follows the growth of A*
search tree, e.g., in Fig. 2. Each node in the tree represents an
intermediate result ðM;U1; U2Þ, where M is the current par-
tial matching on a subset of events V 1 n U1 and V 2 n U2, U1 is
the set of unmapped events (vertices) in V 1, and U2 is the set
of unmapped events in V 2. Two important values g and h are
defined on each tree node. The value g is the normal distance
of the current partial matching, i.e., g ¼ DNðMÞ. The value h
is an upper bound of normal distances which can be further
contributed by matching the remaining events among U1

and U2. Consequently, gðM;U1; U2Þþ hðM;U1; U2Þ serves as
an upper bound of all mappings expanded from M. (The
computation of g and hwill be presented soon.)

Algorithm 1 presents the pseudo code of the A* search
algorithm. Initially, we add ð;; V 1; V 2Þ as the root of search
tree, in Line 1. In each iteration, we select an un-visited tree
node ðM;U1; U2Þwith themaximum gþ h value (i.e., with the
maximum upper bound, in Line 3). If either of U1 and U2 is
empty, the optimal mapping M is obtained; otherwise, we
further expand the mapping. In the latter case, we pick up

one event a from U1 (see the selection of a below). For each
b 2 U2, we create a child node for ðM;U1; U2Þ by appending
a ! b to M and removing a, b from U1 and U2, respectively.
We denote ðM 0; U 0

1; U
0
2Þ a child node of ðM;U1; U2Þ where

U 0
1 ¼ U1nfag; U 0

2 ¼ U2nfbg and M 0 : V 1 n U 0
1 ! V 2 n U 0

2. That
is, we expandM toM 0 with the newmapping a ! b, in Line 7.

To select a 2 U1 for expanding in Line 5, we consider an
ordering of events by the number of patterns that the event
is involved in. Intuitively, the early the patterns are
included in M, the higher the change is of pruning other
mappings. Thereby, we select a vertex which is included by
most of the patterns in each step.

Algorithm 1. EVENT MATCHING ALGORITHM

Require: Event logs L1 and L2 with event sets V 1 and V 2

Ensure: The optimal event mappingM with the maximum pat-
tern normal distance

1: Q :¼ fð;; V 1; V 2Þg
2: repeat
3: ðM;U1; U2Þ :¼ argmaxðMi;Ui

1
;Ui

2
Þ2QgðMi;Ui

1; U
i
2Þ þ hðMi;Ui

1;
Ui
2Þ

4: Q :¼ QnfðM;U1; U2Þg
5: if a :¼ the next event in U1 exists then
6: for each b 2 U2 do
7: compute g and h for child ðM 0; U 0

1; U
0
2Þ of ðM;U1; U2Þ

by expanding a ! b
8: Q :¼ Q [ fðM 0; U 0

1; U
0
2Þg

9: until U1 ¼ ; or U2 ¼ ;
10: returnM

Example 5. Fig. 2 illustrates an example of conducting the
A* search algorithm for matching L1 and L2 in Fig. 1. Sup-
pose that all the vertices, edges and p1 are patterns
defined on L1. According to Algorithm 1, we create a root
node tn0 at the first iteration. To expand the mapping, B
is selected from U1, since B is included by 6 patterns. For
each vertex v 2 U2, we add a child node of tn0 which
appends B ! v to M. Suppose that tn4 is currently the
tree node with the maximum gþ h score. In the second
iteration, we visit tn4 and generate its child nodes tn9 to
tn16. After several times of iteration, it reaches the node
tnx with empty U1. The mapping M of tnx is returned as
the optimal matching result. There is no need to visit any
other un-visited nodes remained in the A* search tree,
since their upper bounds of normal distances are no
greater than the normal distance of tnx.

3.2 Efficiently Computing the Normal Distance G

Let PM 0 be the set of patterns whose events are all defined in
the new partial matchingM 0, and PM be all the patterns cor-
responding to the previous M. It is evident that PM � PM0 .
We denote Pnew ¼ PM0 n PM as the set of new introduced
matching pattern pairs by appending a ! b to M. Accord-
ing to the definition of gðM;U1; U2Þ, i.e.,DNðMÞ, we have

gðM 0; U 0
1; U

0
2Þ ¼ gðM;U1; U2Þ þ

X
p2Pnew

dðpÞ;

according to Formula (1).
Therefore, instead of recalculating g for each node, we

use a more efficient three-step method to conduct the

Fig. 2. An example of A* search tree.
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incremental computation of g of a child node from the g of
its parent node. First, we capture the patterns which are
newly introduced. Then, for each newly introduced pattern
p, we find out whether the corresponding structure w.r.t.
M 0 exists in the other G2. Finally, we calculate the frequency
of all patterns for computing dðpÞ.

3.2.1 Capturing Newly Introduced Patterns

As the first step of calculating g, we need to knowwhich pat-
terns are new introduced, i.e., Pnew. An inverted index Ip is
employed,where each v 2 V maps to a list of patterns involv-
ing v, denoted as IpðvÞ. Consequently, the newly introduced

patterns can be computed as Pnew ¼ ð
S

v2V 1nU 0
1
IpðvÞnS

v2U 0
1
IpðvÞÞ n ð

S
v2V 1nU1

IpðvÞn
S

v2U1
IpðvÞÞ: That is, all the

patterns with vertices from V 1 n U 0
1, but not those ones that

have already been included by the previousM (i.e., notPM ).

3.2.2 Pruning No Contribution Patterns

For a pattern p 2 Pnew from L1, it is possible that no trace in
the other side L2 matches the corresponding MðpÞ, i.e.,
f2ðMðpÞÞ ¼ 0. This pattern pwill have no contribution to the
normal distance having dðpÞ ¼ 0. Recall that each pattern
can be represented as a directed graph. We can identify and
prune such patterns, without evaluating frequencies in the
event log, by the following pattern existence property in
dependency graph.

Proposition 3 (Pattern Existence). For a pattern p over an
event log L and the dependency graph G of L, if p is not a sub-
graph of G, we have fðpÞ ¼ 0 w.r.t. L.

Consequently, for each newly introduced pattern p 2
Pnew, if MðpÞ is not a subgraph of G2, we directly conclude
dðpÞ ¼ 0without computing over L2.

3.2.3 Calculating the Frequency of Pattern

Finally, to calculate dðpÞ, it is indeed to compute f1ðpÞ and
f2ðMðpÞÞ. Instead of scanning the whole event log to count
frequencies, we employ another inverted index It, where
each event, say v 2 V 1, corresponds to a list of traces in L1

containing v, denoted by ItðvÞ. Let V ðpÞ denote all the events
involved in p. Instead of the whole event log L1, we only
need to scan a part of traces

T
v2V ðpÞ ItðvÞ for counting f1ðpÞ.

It is similar for computing f2ðMðpÞÞ.

3.3 A Simple Upper Bound of H

To compute the upper bound hðM 0; U 0
1; U

0
2Þ of normal distan-

ces that can be further contributed,we consider all the remain-
ing patterns,P n PM 0 . In the following, we show that an upper

bound Dðp; U2Þ of dðpÞ can be computed such that the events
in p can only be mapped to events in U2 (see the following
Problem 2 for formal definition). Consequently, we have

hðM 0; U 0
1; U

0
2Þ ¼

X
p2PnPM 0

Dðp;M 0ðV ðpÞ n U 0
1Þ [ U 0

2Þ:

Note that a simple bound of dðpÞ is 1.0, as each pattern
contributes atmost 1.0 to the pattern normal distance accord-
ing to Formula (1). It follows hðM 0; U 0

1; U
0
2Þ ¼ jP n PM 0 j.

Example 6. Fig. 3 illustrates an example of expanding a new
mapping a5 ! b5 to a partial matching M ¼ fa1 ! b1;
a2 ! b2; a3 ! b3; a4 ! b4g. Then we have PM ¼ fSEQ
ða1; a2; a3Þg, PM 0 ¼ fSEQða1; a2; a3Þ;ANDða4; a5Þg, thus
Pnew ¼ fANDða4; a5Þg. By checking the existence of edge
b4b5 (Mða4ÞMða5Þ) and b5b4 (Mða5ÞMða4Þ) in G2, we con-
firm that MðANDða4; a5ÞÞ may exist in G2 and cannot be
pruned. At last, we have the remaining patterns SEQ
ða7; a8Þ and SEQða5; a6Þ.

3.4 Algorithm Analysis

First, to compute the frequency of a pattern in the event log
L, we need to traverse every events of each trace in L. The
maximum length of trace is jV1j, the possible total number
of events in L is jV1j 	 jLj. That is, the complexity of evaluat-
ing a pattern p in the event log is OðjV1j 	 jLjÞ. In the worst
case, the optimal mapping will be obtained after the A*
search tree is fully expanded to all its leaf nodes (either
U1 ¼ ; or U2 ¼ ;). Let n ¼ maxðjV1j; jV2jÞ. As mentioned,
there are at most n! possible mappings, i.e., possible leaf
nodes. Note that during the expansion of a mapping, any
pattern will be evaluated once for computing dðpÞ in g func-
tion, while the estimation of h function does not need to
evaluating the event log. Therefore, the complexity of the
event matching algorithm is OðjV1j 	 jLj 	 jPj 	 n!Þ.

For average-case complexity, let r denote the branching
factor, 0 � r � 1. That is, only a proportion of rx branches
among all the x branches for a node are expanded (in Fig. 2),
while the other ð1� rÞx branches are pruned by various
upper bounds. Such a factor r can be determined empirically
[15] by measuring the number of nodes expanded, N , and
solving N ¼ nrþ nðn� 1Þr2 þ 
 
 
 þ n!rn. The expected time
complexity is thusOðjV1j 	 jLj 	 jPj 	 n!rnÞ, where 0 � r � 1.

4 A TIGHTER BOUND ON NORMAL DISTANCE

Rather than simply assigning the largest D ¼ 1:0, in this
section, we study a tighter (smaller) upper bound of dðpÞ for
estimating h. The tighter the upper bound is, the more tree
nodes can be pruned during the A* algorithm. We first for-
malize the problem of finding bound Dðp; U2Þ.

Problem 2 (Upper Bound Problem). Given a pattern p from
L1 and a set of events U2 � V 2 of L2, it is to find an upper
bound Dðp; U2Þ of dðpÞ w.r.t. any mappingM : V ðpÞ ! U2.

Unfortunately, obtaining a tight bound is highly nontriv-
ial. The most tight bound is Dðp; U2Þ ¼ 0. We identify a triv-
ial case such that a tightest bound Dðp; U2Þ ¼ 0 can be
concluded efficiently. That is, if a remaining pattern p is
larger than the size of U2, the upper bound Dðp; U2Þ is 0. For
instance, in Fig. 3, we have DðSEQða6; a7; a8Þ; fb6; b7gÞ ¼ 0.

Fig. 3. Expanding a new mapping a5 ! b5 toM.

1700 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 29, NO. 8, AUGUST 2017



For general patterns, we compute the bounds by utilizing
vertex and edge frequencies. Table 2 summarizes the upper
bound Dðp; U2Þ for various patterns p by either using the
maximum vertex frequencies fn or edge frequencies fe (see
detailed derivation in [11]). Obviously, the smaller one will
be returned as a tighter upper bound.

Algorithm 2 illustrates an overview for computing the
upper bound Dðp; U2Þ. First, Line 1 to Line 2 examines if the
upper bound is 0 as stated in the beginning of Section 4. If
not, the algorithm tries to estimate the upper bound via ver-
tex frequency (bound 1 in Table 2) or via edge frequency
(bounds 2-4 in Table 2), from Line 3 to Line 10. When none
of these estimation methods is applicable, we just return 1.0,
i.e., the simple upper bound in Line 12.

Algorithm 2. UPPERBOUND ðp; U2Þ
Require: p is a pattern in L1 and U2 is the set of events in L2.
Ensure: The upper bound Dðp; U2Þ of dðpÞ w.r.t. possible map-

pingsM : V ðpÞ ! U2.
1: if jV ðpÞj > jU2j then
2: return 0
3: fn :¼ the highest frequency of events (vertices) in U2

4: fe :¼ the highest frequency of edges in the subgraph of G2

with vertices of U2

5: if fn � vðpÞfe then
6: fmin :¼ vðpÞfe
7: else
8: fmin :¼ fn
9: if fmin � fðpÞ then
10: return 1� fðpÞ�fmin

fðpÞþfmin
11: else
12: return 1.0

5 HEURISTIC APPROACH

Although effective pruning bounds are devised, referring to
the complexity analysis in Section 3.4, the cost of exact algo-
rithm is still high. Recognizing the hardness of the matching
problem in Theorem 1, we study efficient heuristics below. A
straightforward approach is rather than trying all the possi-
ble expansions in the A* search tree, we consider only one
expansion, e.g., with the maximum g and h. That is, in
Line 7 in Algorithm 1, it considers only oneM 0 by expanding
a ! b, which has the maximum gðM 0; U 0

1; U
0
2Þþ hðM 0; U 0

1; U
0
2Þ

among all the b 2 U2.
This simple heuristic falls short in two aspects. (1) Each

step evaluates locally the next unmatched event and the cor-
responding patterns, without a global view of all the events
and patterns. (2) Once an erroneous pair a ! b is expanded

in matching, it will not be changed and affect the matching
of other events, in the subsequent steps.

5.1 Overview

To address the aforesaid deficiencies of simple heuristics,
we follow two intuitions. (1) We estimate the contribution
of each possible matching event pair to the pattern normal
distance, and thus are able to have a global estimation dur-
ing the generation of candidate mapping M. (2) Enlighten
by the Hungarian algorithm [12] for bipartite matching, we
propose to modify the previously determined matching M
referring to the patterns.

5.1.1 Preliminaries

For v1 2 V 1; v2 2 V 2, we define the estimated score of a
match v1 ! v2 in the normal distanceDNðMÞ ofM as

uðv1; v2Þ ¼
X

p2P;v12p

1

jpj 1� f1ðpÞ � f2ðv2Þ
f1ðpÞ þ f2ðv2Þ

� �
; (2)

where v2 ¼ Mðv1Þ, p is a pattern containing v1, and jpj is the
total number of events in pattern p. Let QðMÞ ¼

P
v12V1 u

ðv1;Mðv2ÞÞ denote a global estimation of pattern normal dis-

tance. This estimated score has the following properties.

(1) If f2ðv2Þ perfectly estimates f2ðp2Þ for each possibly
matched pattern p2, where v2 is contained in p2, then
we have DNðMÞ ¼ QðMÞ, i.e., computes exactly the
normal distance.

(2) When only vertex patterns are considered, having
jpj ¼ 1 for each pattern, we have DNðMÞ ¼ QðMÞ,
i.e., exactly equals to vertex normal distance.

In order to obtain candidates of M that have large esti-
mated score QðMÞ, we consider an event labeling function
‘ : V 1 [ V 2 ! R. A feasible labeling has ‘ðv1Þ þ ‘ðv2Þ �
uðv1; v2Þ; 8v1 2 V 1; v2 2 V 2. Thereby, the summation of label-
ing over all the events serves as an upper bound of QðMÞ.
We show below how the matching is augmented while the
upper bound of QðMÞ by labeling is still valid.

A path v1; v2 . . . ; vn, denoted by v1 � vn for simplicity, has
vi 2 V 2�ðimod 2Þ; i ¼ 1; . . . ; n, i.e., v1; v3; v5; . . . 2 V 1; v2; v4; v6;
. . . 2 V 2 and ‘ðvjÞ þ ‘ðvjþ1Þ ¼ uðvj; vjþ1Þ; j ¼ 1; . . . ; n� 1. A
path is alternating if Mðv2iþ1Þ ¼ v2i; v2iþ1 2 V 1; v2i 2 V 2; i ¼
1; . . . ; dn2e � 1. We represent multiple alternating paths start-
ing from the same event v1 as an alternating tree rooted at
v1. A path is augmenting if (1) it is an alternating path, and
(2) both v1 and vn are unmatched. We augment M w.r.t. an
augmenting path v1 � vn to generating a new matching M 0

by setting M 0ðv2i�1Þ ¼ M 0ðv2iÞ; i ¼ 1; . . . ; n2. From M to M 0,
the number of matched event pairs increases by one
jMj þ 1 ¼ jM 0j.

By gradually augmenting the matching, being aware of
the upper bound of QðMÞ by labeling, a mapping over all
the events will be generated. For simplicity, we assume
jV 1j ¼ jV 2j. (For jV 1j 6¼ jV 2j, such as jV 1j < jV 2j, to ensure
the correctness, we can simply introduce some dummy
events v1 in V 1 to make their sizes equal, having
uðv1; v2Þ ¼ 0; 8v2 2 V 2.)

Example 7. Fig. 4 illustrates two dependency graphs trans-
formed from two logs. Suppose that in addition to vertex
and edge patterns, there are two other complex patterns

TABLE 2
Summary of Tighter Upper Bounds [11]

Case of patterns p Upper Bound

1 a general pattern 1� f1ðpÞ�fn
f1ðpÞþfn

2 a simple pattern SEQðv1; . . . ; vkÞ 1� f1ðpÞ�fe
f1ðpÞþfe

3 a simple pattern ANDðv1; . . . ; vkÞ 1� f1ðpÞ�k!fe
f1ðpÞþk!fe

4 a general pattern 1� f1ðpÞ�vðpÞfe
f1ðpÞþvðpÞfe
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p1 ¼ SEQ(B;C;D;E) and p2 ¼ SEQ(B;C;E). We have 6
patterns containing the event C, i.e., one vertex pattern
fCg, three edge patterns fBC;CD;CEg, and the aforesaid
two complex patterns with the same frequency 0.5. Refer-
ring to Formula (2), it estimates uðC; 3Þ ¼ 2:58 as the num-
ber presented between events C and 3 in Fig. 4c, given
f2ð3Þ ¼ 0:5. (We present only some estimated scores that
are used in the following examples, and omit others to
make the figure clear.)

Fig. 4d illustrates a possible feasible labeling ‘. For
each pair of events from V1 and V2, respectively, say
C 2 V1 and 3 2 V2, we have ‘ðCÞ þ ‘ð3Þ ¼ 2:58þ 0 � u

ðC; 3Þ. Suppose that the current mapping is M ¼
fA ! 2; C ! 3g. Then, D; 3; C is an alternating path,
denoted by D� C, where the solid line means a match-
ing in M. Moreover, B; 2; A; 1 is an augmenting path,
denoted by B� 1, where both B and 1 are unmatched.

5.1.2 Algorithm

Algorithm 3 presents the major steps of heuristic matching.
Initially, we take a feasible labeling ‘ having ‘ðv1Þ ¼
maxv22V 2

fuðv1; v2Þg; 8v1 2 V 1, and ‘ðv2Þ ¼ 0; 8v2 2 V 2.
In each iteration, we consider an unmatched ui 2 U1.

Line 4 in Algorithm 3 finds all the augmenting paths start-
ing from ui (by using Algorithm 4 introduced below), repre-
sented in an alternating tree T .

For each augmenting path, we augment M to generate a
possible M 0, such that the number of matched event pairs
increases by one jMj þ 1 ¼ jM 0j.

Among all the possible augmentations, referring to Line
3 in the exact Algorithm 1, we heuristically accept the aug-
mentation M 0 with the maximum bound gðM 0; U 0

1; U
0
2Þþ

hðM 0; U 0
1; U

0
2Þ.

Example 8. Fig. 5 illustrates an example of conducting the
heuristic matching algorithm given the matching graphs
G1 and G2 in Fig. 4. According to Algorithm 3, we initial-
ize a feasible labeling ‘ as presented in Fig. 4d. To expand
the mapping, each unmatched event ui is selected from
U1. It generates a corresponding alternating tree rooted at
ui. For each alternating tree, it may has many augmenting
paths. We will choose the newmapping with the maximal
gþ h. Suppose that the augmenting path C; 3 in the alter-
nating tree rooted at C has the maximum gþ h score. The
mapping is augmented, having M ¼ fC ! 3g. In the
second iteration, we consider alternating trees rooted at

unmatched events A;B;D;E; F , respectively, among
which there is an augmenting path starting from D with
the maximum gþ h. The expansion carries on till U1 is
empty. Finally, a mapping M ¼ fC ! 3; . . . ; F ! 6g is
returned.

Algorithm 3.HEURISTIC MATCHING

Require: Two event logs L1 and L2 with event sets V 1 and V 2

Ensure: Event mappingM
1: initialize labeling ‘
2: repeat
3: for each unmatched event ui 2 U1 do
4: ðT i; ‘iÞ :¼ AlternatingTreeðui; ‘Þ
5: for each augmenting path ui � uj in the alternating tree T i

do
6: let Mij be the new mapping by augmenting M w.r.t.

ui � uj

7: ðM; ‘Þ :¼ argmaxðMij;‘iÞgðM
ij; Uij

1 ; U
ij
2 Þ þ hðMij; Uij

1 ; U
ij
2 Þ

8: until U1 ¼ ;
9: returnM

5.2 Generating Maximal Alternating Tree

It is worth noting that any augmenting path u� v always
has u 2 V 1 and v 2 V 2. To consider more augmenting candi-
dates, we consider all the possible augmenting paths with
the same start event u and various end events from V 2, i.e.,
the maximal alternating tree rooted at u with at most jV 2j
possible augmenting paths. Algorithm 4 illustrates the
major steps for generating the maximal alternating tree.

Given any labeling ‘, we denote E‘ ¼ fðv1; v2Þ j ‘ðv1Þþ
‘ðv2Þ ¼ uðv1; v2Þ; v1 2 V 1; v2 2 V 2g the edges between events.
For any unmatched u, by either breadth-first or depth-first
search, we obtain an alternating tree rooted at u.

Let T 1 � V 1 and T 2 � V 2 be the sets of events appearing
in the alternating tree. Consider

a‘ ¼ min
v12T1;v22V 2nT2

f‘ðv1Þ þ ‘ðv2Þ � uðv1; v2Þg: (3)

We update ‘ to introduce new edge

‘0ðvÞ ¼
‘ðvÞ � a‘ if v 2 T 1

‘ðvÞ þ a‘ if v 2 T 2

‘ðvÞ otherwise :

8<
: (4)

Fig. 4. An example of heterogeneous event logs.

Fig. 5. An example of heuristic matching.
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There is some v1 2 T 1; v2 62 T 2, having ‘0ðv1Þ þ ‘0ðv2Þ ¼
uðv1; v2Þ. That is, the alternating tree is expanded (in Line 4
in Algorithm 4).

By gradually expanding all the events in V 2 into T 2 of the
alternating tree T , the maximal alternating tree T is gener-
ated and returned.

Algorithm 4. ALTERNATINGTREE

Require: unmatched u, labeling ‘
Ensure:Maximal alternating tree T
1: initialize T rooted at uw.r.t. ‘
2: while jT 2j < jV 2j do
3: update ‘ referring to Formula (4)
4: expand T rooted at uw.r.t. ‘
5: return T ; ‘

Example 9. Let M ¼ fA ! 2; B ! 1; C ! 3g be the current
mapping. Fig. 6illustrates an example of generating the
maximal alternating tree rooted at event D. During the
initialization, an alternating tree T with one path is gener-
ated, referring to the estimated scores and the current
labeling ‘ in Fig. 4. Suppose that by using Formula (3),
we obtain a‘ ¼ 0:03. According to Formula (4), we have
‘0ðDÞ ¼ ‘ðDÞ � 0:03 ¼ 2:22; ‘0 ðCÞ ¼ ‘ðCÞ � 0:03 ¼ 2:55,
while ‘0ð3Þ ¼ ‘ð3Þ þ 0:03 ¼ 0:03. The alternating tree T is
thus expanded with augmenting path D; 3; C; 5. By recur-
sively applying the updates on ‘ till jT 2j ¼ jV 2j, the maxi-
mal alternating tree T containing all the events in V2 is
obtained.

5.3 Correctness and Performance Analysis

5.3.1 Correctness

First, we illustrate that the alternating tree can always be
expanded in each iteration in Algorithm 4, and the updating
of ‘ in Formula (4) is safe.

Proposition 4. The updated ‘0 in Formula (4) is a feasible label-
ing and

(1) for v1 2 T 1; v2 2 T 2, if ‘ðv1Þ þ ‘ðv2Þ ¼ uðv1; v2Þ, then
‘0ðv1Þ þ ‘0ðv2Þ ¼ uðv1; v2Þ;

(2) for v1 62 T 1; v2 62 T 2, if ‘ðv1Þ þ ‘ðv2Þ ¼ uðv1; v2Þ, then
‘0ðv1Þ þ ‘0ðv2Þ ¼ uðv1; v2Þ.

Proof.We consider four possible cases as follows.

(1) for v1 2 T 1; v2 2 T 2, referring to Formula (4), we
have ‘0ðv1Þ þ ‘0ðv2Þ ¼ ‘ðv1Þ þ ‘ðv2Þ � uðv1; v2Þ, i.e.,
still feasible.

(2) for v1 62 T 1; v2 62 T 2, the labeling on v1; v2 is not
changed, having ‘0ðv1Þ þ ‘0ðv2Þ ¼ ‘ðv1Þ þ ‘ðv2Þ �
uðv1; v2Þ as well.

(3) for v1 2 T 1; v2 62 T 2 we have ‘0ðv1Þ þ ‘0ðv2Þ ¼
‘ðv1Þ þ ‘ðv2Þ � a‘. Referring to the definition of a‘,
i.e., a‘ � ‘ðv1Þ þ ‘ðv2Þ � uðv1; v2Þ for v1 2 T 1; v2
2 V 2 n T 2, it follows ‘0ðv1Þ þ ‘0ðv2Þ � uðv1; v2Þ.

(4) for v1 62 T 1; v2 2 T 2, it has ‘0ðv1Þ þ ‘0ðv2Þ ¼ ‘ðv1Þþ
‘ðv2Þ þ a‘ � ‘ðv1Þ þ ‘ðv2Þ, since a‘ ¼ ‘ðv01Þþ ‘ðv02Þ �
uðv01; v02Þ � 0 for some v01 2 T 1; v

0
2 2 V 2 n T 2. tu

Moreover, we illustrated that the matchingM can always
be augmented in each iteration in Algorithm 3.

Proposition 5. There always exists an augmenting path ui � uj

in the alternating tree T generated by Algorithm 4, having uj

unmatched.

Proof. Referring to Line 2, Algorithm 4 generates an alter-
nating tree T with all the events in V 2 involved. If all the
events in V 2 are matched, according to jV 1j ¼ jV 2j, all the
events in jV 1j should be matched as well, which is contra-
dictory to existing some unmatched ui 2 U1. In other
words, there exist some unmatched uj 2 V 2 in the alter-
nating tree T which forms augmenting path ui � uj. tu

Consequently, by augmenting the matching in each itera-
tion, Algorithm 3 always terminates and return a perfect
matchingM where each event is matched.

5.3.2 Complexity

Referring to Proposition 5, the size of matching M increases
by one in each iteration in Line 2 in Algorithm 3. Let
n ¼ jV 1j ¼ jV 2j be the number of events. To generate the
alternating tree with all the events in V 2 involved, the label-
ing ‘ over events may need to be updated n times in
Algorithm 4, with cost Oðn2Þ. There are at most n augment-
ing paths in an alternating tree T . For each augmentingMij,
we evaluate its pattern score, with Oðn 	 jLj 	 jPjÞ time.
Given at most n alternating trees, the cost of each augment-
ing iteration is Oðn3 	 jLj 	 jPjÞ. Given at most n augmenting
iterations, Algorithm 3 runs in Oðn4 	 jLj 	 jPjÞ time.

5.3.3 Special Case of Vertex Patterns

While Theorem 1 states that even for the special case of edge
patterns, finding the optimal matching is NP-hard, the pro-
posed heuristic algorithm performs well for the case of ver-
tex patterns.

Proposition 6. For the special case of vertex patterns, i.e., each
pattern consists of only one single event, Algorithm 3 returns
the optimal matching.

Proof. The augmentation on M w.r.t. the augmenting path
ensures ‘ðv1Þ þ ‘ðv2Þ ¼ uðv1; v2Þ on the augmented v1 2
V 1; v2 2 V 2; v2 ¼ Mðv1Þ in the augmenting path. More-
over, Proposition 4 guarantees that ‘ðv1Þ þ ‘ðv2Þ ¼
uðv1; v2Þ retains after updating ‘ in Formula (4). Algorithm
3 returns a perfect matching M where each event is
matched, i.e., havingDNðMÞ ¼ QðMÞ ¼

P
v2V 1[V 2

‘ðvÞ.
Referring to Kuhn-Munkres theorem [12], the summa-

tion of labeling over all the events
P

v2V 1[V 2
‘ðvÞ serves

as an upper bound of QðM 0Þ ¼ DNðM 0Þ w.r.t. vertex

Fig. 6. Generating maximal alternating tree.
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patterns for any matching M 0. Since there is no other pat-
tern, the solution M is optimal, i.e., DNðMÞ ¼ QðMÞ
w.r.t. uðv1; v2Þ over all v1 2 V 1; v2 2 V 2 is the maximum. tu

6 EXPERIMENT

In this section, we report the experimental evaluations by
comparing our proposed method with the state-of-the-art
schema matching approaches [7], [16].

Data Set

We employ a real data set from a bus manufacturer. The
event logs extracted from the ERP systems of two depart-
ments located at distinct industrial parks, respectively.
There are up to 11 distinct events (analogous to schema size
in schema matching) in these logs ranges, and the corre-
sponding number of traces (instance size of the number of
tuples) is 3,000. Table 3 shows the characteristics of the logs.
In addition to traces, the numbers of vertices (events) and
edges in the dependency graph are reported. The patterns
are manually assigned by the guidelines discussed in
Section 2. For edge patterns, referring to [7] with the consid-
eration of both Vertex and Edge, all the edges appearing in
the dependency graph are employed.

Criteria

Besides time performance, we also evaluate the effective-
ness of our event matching approach, by using F-measure
of precision and recall, which is widely used in text retrieval
community. Let truth be the ground truth of event mapping
discovered manually, and found be the event corresponding

relation found by our method, we have precision ¼
jfound\truthj

jfoundj , recall ¼ jfound\truthj
jtruthj and F-Measure¼ 2 
 precision
recall

precisionþrecall.

6.1 Evaluating Exact Approach

We compare the accuracy of the proposed approach (Pat-
tern) with existing approaches [7] (Vertex, Vertex+Edge)
and [16] (Iterative). In particular, [7] employs the normal
distance by considering Vertex or Vertex+Edge similarities.
Instead of enumerating possible mappings and ranking the
corresponding normal distances, [16] computes the vertex
similarity in page-rank like iterative way.

Figs. 7a and 8a report the F-measure of all approaches by
varying event set sizes and trace numbers. An event set
with size x is determined by projecting the first x events
appearing in the dataset, and similarly a number of y traces
are determined by selecting the first y traces appearing in
the event log. As shown, our pattern based approach out-
performs others with the highest accuracies. Pattern-Simple
shows exactly the same accuracy as Pattern-Tight, since
both approaches return the exact results (with different
pruning power). The accuracy drops from sizes 2 to 4 of
event sets in Fig. 7a. The rationale is that not many patterns
can be employed in such a small number of events. More-
over, one error will significantly debase the F-measure
when the event set size is small. The accuracy increases
along with the increase of trace number, since more distinct
events or patterns become more discriminative in a larger
trace number.

We compare the time performance of all approaches in
Figs. 7b and 8b, by varying event set sizes and trace numbers.
To evaluate the pruning power of upper bounds of h, we test
the proposed approaches with simple bound (Pattern-
Simple) in Section 3.3 or tight bound (Pattern-Tight) in Sec-
tion 4. The time costs of approaches increases fast when the
event set size is large. It is not surprising owing to the large
number of possible mappings, i.e., factorial of the event set
size, as mentioned at the beginning of Section 3. The time
cost also rises along with the growth of trace number since it
needsmore time to compute the frequencies in traces.

TABLE 3
Characteristics of the Logs

Dataset # traces # events (vertices) # edges # patterns

real 3,000 11 57 3
synthetic 10,000 100 142 16
random 1,000 4 12 0

Fig. 7. Evaluation of exact approaches over various # of events.

Fig. 8. Evaluation of exact approaches over various # of traces.

1704 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 29, NO. 8, AUGUST 2017



To evaluate the pruning power of tight upper bounds, in
Figs. 7c and 8c, we observe the number of processed map-
pings M 0 in Line 7 in Algorithm 1, i.e., the number of proc-
essed tree nodes in the A	 search tree. As shown in Fig. 7c,
the approach using tight bounding function expands less
tree nodes during the A	 search, especially in large event set
sizes. Consequently, as discussed in Fig. 7b, the approach
with tight bound shows at most 2 orders of magnitudes
improvement in time costs. Fig. 8c shows the growth of
trace number does not affect the pruning power much.

6.2 Evaluating Heuristic Approach

To evaluate heuristic matching studied in Section 5, we con-
sider two approaches: (1) Heuristic-Simple considers one
expansion instead of all in the A	 search tree, as introduced
at the beginning in Section 5; and (2) Heuristic-Advanced,
i.e., Algorithm 3. For the Exact approach in comparison, we
employ the aforesaid Pattern-Tight with lower time costs.

Figs. 9a and 10a report the accuracy of heuristic and exact
approaches, again over various event set sizes and trace
numbers. As shown, the Heuristic-Advanced method
shows a clear improvement on accuracy compared to
Heuristic-Simple, in all the tests. The results verify the anal-
ysis of simple heuristic deficiency at the beginning in
Section 5, and the motivation of the advanced heuristic pro-
posal presented in the first paragraph of Section 5.1.

Compared to the Exact approach, the heuristic methods
show orders of magnitudes improvement in time perfor-
mance, as illustrated in Figs. 9b and 10b. The rationale is
that the heuristic approaches process significantly less map-
pings. Similarly, in Figs. 9c and 10c, we report the number
of processed mappings Mij in Line 6 in Algorithm 3. As
shown, while Heuristic-Advanced processes a bit more
mappings compared to Heuristic-Simple, it is still signifi-
cantly lower than that of Exact. In summary, the Heuristic-
Advanced method provides a good trade-off between
matching accuracy and time costs, with F-measure closer to
Exact and time costs comparable to Heuristic-Simple.

We also plot the results of baseline approaches, including
Vertex, Vertex+Edge and Iterative. As shown in Figs. 9a and
10a, Heuristic-Advanced shows clear improvement in accu-
racy compared to Vertex and Iterative approaches, while
their time costs are comparable in Figs. 9b and 10b. On the
other hand, Heuristic-Advanced has accuracy comparable to
Vertex+Edge (with improvement in some tests), the corre-
sponding time costs of Heuristic-Advanced are significantly
lower (more than one order of magnitude improvement).
The results demonstrate again the trade-off by the Heuristic
approach.

6.3 Evaluation Over Synthetic Data

6.3.1 Larger Synthetic Data

To generate larger data sets, we repeat the structures in Fig. 1
in Example 1 (with different event names) as illustrated in
Figs. 11a and 11b for two event logs, respectively. The traces
are randomly drawn from the sets in Figs. 11c and 11d,
which are instances of event traces leading to the aforesaid
dependency graphs. The total number of traces is 10,000. It is
worth noting that events ABCD are executed in parallel
(with an AND pattern), while events F,G,H,I are executed
separately. Similar execution applies to 1234 and 6,7,8,9.
Therefore, the ground truth should be A ! 1; B !
2; . . . ; F ! 6; G ! 7; . . . . However, their structures in depen-
dency graphs in Figs. 11a and 11b are very similar, which
leads to difficulty inmatching as discussed in Example 1.

Fig. 12 presents the results over up to 100 events. We do
not consider an even larger number of events in one experi-
ment, since the number of events in real business processes
is often bounded by about 60, according to the recent survey
[17]. Indeed, referring to the business process modeling
guidelines [18], processes should be decomposed if they
havemore than 50 events, so that they are easier to operate in
practice. That is, hundreds or thousands of distinct events/
items in an information system are decomposed into small
components. Thematching thus happens between these rela-
tively small components.

Fig. 9. Evaluation of heuristic approach over various # of events.

Fig. 10. Evaluation of heuristic approach over various # of traces.
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As shown in Fig. 12, our proposed Exact method still
have the highest accuracy. Unfortunately, this high cost
Exact method does not scale well over a larger number of
events (cannot return results over 20 events). Indeed, the
Vertex+Edge approach cannot return results under 20 or
more events either. Nevertheless, the proposed Heuristic
algorithms still find a matching with higher accuracy (com-
pared to Vertex and Iterative methods).

To compare with other non-graph-based methods, we
consider the Entropy-only approach in [7]. Since we focus on
un-interpreted matching, where the typographic or linguis-
tic similarities are not available, only the frequency informa-
tion of event appearance could be utilized. The Entropy-only
approach considers the similarity of events on the uncer-
tainty of whether the events appear in a trace, without
exploiting the structural information among events. As
shown in Fig. 12, compared to the Entropy-only approach,
the matching accuracy of our proposal is higher, while the
time cost of Entropy-only is lower. The comparison to the
non-graph-based method shows the trade-off between accu-
racy and efficiency. In this sense, the proposed method is
applicable to the scenarios having high matching accuracy
requirements while the additional time costs are acceptable.

6.3.2 Random Data

To further evaluate the behavior of the algorithm, we con-
sider two random logs over four events A;B;C;D and
1,2,3,4, respectively. The total number of randomly gener-
ated traces is 1,000. Obviously, no true mapping exists
between these two random logs.

Table 4 presents the mapping results by applying the
proposed methods, Exact, Heuristic-Simple and Heuristic-
Advanced. As shown, all the 24 possible mappings may be
returned in 1,000 tests, rather than finding the same map-
ping over multiple runs. We count the number of returned
mappings in these tests. No method is clearly in favor of
some particular results.

6.4 Discussion

When there is no complex patterns available, e.g., with only
two events in Fig. 7a, the pattern-based approach shows no
improvement compared to the edge-based method. Since
edges are the only (special) patterns, these two approaches
are equivalent in this case. Moreover, if the total number of
events is large, such as 100 in Fig. 12, the high cost Exact
matching cannot return a result. Indeed, all the methods

shows low matching accuracy in such cases. The reason is
that events are more similar with each other when there are
more events under consideration. That is, distinguishing
events becomes harder, and thus the accuracy of all the
methods is low.

7 RELATED WORK

The quality of event data has recently been highlighted.
Rather than addressing inconsistencies existing in event
logs [19], [20], in this study, we focus on matching the het-
erogeneous events collected from different sources.

7.1 Structure Based Matching

Madhavan et al. [21] proposed an approach for matching
XML schema tree based on label similarities among XML
nodes and attributes, which cannot be applied in uninter-
preted matching with opaque event names. Jeh et al. [22]
proposed an approach named Simrank which calculates the
similarity of graph vertices. However, it can only be applied
on vertices within one graph.

Nejati et al. [16] proposed a method by calculating the
vertex similarity between two graphs through iterative

Fig. 12. Varying # of events over larger synthetic data.

TABLE 4
Counts of Returned Results Over Random Logs in 1,000 Tests

Mapping Result Exact Heuristic-
Simple

Heuristic-
Advanced

1 A ! 4; B ! 3; C ! 2; D ! 1 51 42 43
2 A ! 4; B ! 1; C ! 2; D ! 3 48 36 35
3 A ! 3; B ! 4; C ! 2; D ! 1 35 39 39
4 A ! 3; B ! 1; C ! 2; D ! 4 32 41 43
5 A ! 4; B ! 2; C ! 1; D ! 3 41 34 45
6 A ! 4; B ! 3; C ! 1; D ! 2 40 46 49
7 A ! 1; B ! 3; C ! 4; D ! 2 39 35 37
8 A ! 2; B ! 1; C ! 3; D ! 4 46 47 48
9 A ! 2; B ! 4; C ! 3; D ! 1 53 50 41
10 A ! 1; B ! 2; C ! 4; D ! 3 32 45 39
11 A ! 2; B ! 1; C ! 4; D ! 3 41 43 39
12 A ! 2; B ! 3; C ! 4; D ! 1 42 39 33
13 A ! 3; B ! 1; C ! 4; D ! 2 36 52 45
14 A ! 3; B ! 2; C ! 4; D ! 1 44 37 47
15 A ! 4; B ! 2; C ! 3; D ! 1 42 41 39
16 A ! 4; B ! 1; C ! 3; D ! 2 43 31 41
17 A ! 2; B ! 3; C ! 1; D ! 4 39 45 49
18 A ! 1; B ! 4; C ! 2; D ! 3 48 39 48
19 A ! 1; B ! 3; C ! 2; D ! 4 36 54 36
20 A ! 2; B ! 4; C ! 1; D ! 3 48 39 46
21 A ! 1; B ! 4; C ! 3; D ! 2 45 44 39
22 A ! 1; B ! 2; C ! 3; D ! 4 30 42 36
23 A ! 3; B ! 2; C ! 1; D ! 4 35 43 41
24 A ! 3; B ! 4; C ! 1; D ! 2 54 36 42

Fig. 11. Synthetic data generation.
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computations. According to the experimental results in Sec-
tion 6, the iterative method [16] shows lower matching accu-
racy than our proposed pattern based matching. Kang et al.
[7] proposed an uninterpreted approach for matching data-
base schema (attributes) by using dependency graphs with
frequency information on vertices and edges. As analyzed
as well as experimental evaluated, these information are not
discriminative enough in matching event data. Xin Dong
et al. [23] proposed a graph-based approach which exploits
the similarities among attributes of tuples to identify those
data instances that represent the same real-world entity.
However, such graph is hard to apply on event data since
the attributes among events(names, operators) have very
low similarities due to the heterogeneity.

7.2 Capturing Structure Information Among Events

Graph is often employed to represent the structural infor-
mation among events [24]. While vertices usually denote
events, the edges in the graph are associated with various
semantics exploited from event logs in different perspec-
tives. Agrawal et al. [25], Cook et al. [26], and Ferreira et al.
[27] use a graphical form of Markov transition matrix whose
edges are weighted by the conditional probability of one
event directly followed by another. However, the condi-
tional probability cannot tell the significance of the edge. In
this paper, we employ the dependency graph proposed in
[7] by weighting vertices and edges with normalized fre-
quencies, since it distinguishes the significance of distinct
edges, and is easy to interpret.

7.3 Discovering Event Pattern

The discovery of complex event pattern has been studied in
complex event processing (CEP) [28]. Agrawal et al. [8] and
Mannila et al. [9] study the problem of discovering frequent
event patterns, i.e., the frequency of a subsequence is higher
than a support degree. The discovery algorithm is starting
with simple subpatterns and incrementally build larger pat-
tern candidates. Bettini et al. [10] improve the efficiency of
the discovery algorithm, and has ability to discover more
complex patterns. As mentioned, the discovery or design of
patterns is not the focus of this study. Instead, we directly
utilized the given/discovered patterns. Nevertheless, heu-
ristics are discussed in Section 2 on choosing discriminative
patterns for matching.

8 CONCLUSIONS

In this paper, we study the problem of matching heteroge-
neous events. Owing to opaque event names, we consider
the structure based uninterpreted matching of events.
Besides individual events and dependency relationship
between events, complex event patterns are introduced as
discriminative feature in matching. To support efficient
pruning, we propose an A* search like framework for com-
puting the optimal matching. Two indices are developed for
accelerating the computation of normal distance. Further-
more, we devise a tight bounding function which can prune
more non-optimal mappings as early as possible. Recogniz-
ing the NP-hardness of the optimal event matching problem
with patterns, we propose efficient heuristic. Experimental
results demonstrate that our proposed approach shows sig-
nificantly higher accuracy than the state-of-the-art structure

based matching approaches. Moreover, the advanced
bounding function and the heuristic method significantly
reduce the time costs.

It is not supported in this study that an event is mapped
to multiple events, known as 1-to-n matching, or more gen-
erally m-to-n matching. Since one event might be mapped
to multiple events, patterns in two logs may have different
structures. Pruning w.r.t. distinct patterns becomes more
complicated. We leave this interesting yet challenging prob-
lem in the future study.
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