
Efficient Recovery of Missing Events
Jianmin Wang, Shaoxu Song, Xiaochen Zhu, Xuemin Lin, Fellow, IEEE, and Jiaguang Sun

Abstract—For various entering and transmission issues raised by human or system, missing events often occur in event data, which

record execution logs of business processes. Without recovering the missing events, applications such as provenance analysis or

complex event processing built upon event data are not reliable. Following the minimum change discipline in improving data quality, it is

also rational to find a recovery that minimally differs from the original data. Existing recovery approaches fall short of efficiency owing to

enumerating and searching over all of the possible sequences of events. In this paper, we study the efficient techniques for recovering

missing events. According to our theoretical results, the recovery problem appears to be NP-hard. Nevertheless, advanced indexing,

pruning techniques are developed to further improve the recovery efficiency. The experimental results demonstrate that our minimum

recovery approach achieves high accuracy, and significantly outperforms the state-of-the-art technique for up to five orders of

magnitudes improvement in time performance.

Index Terms—Data repairing, event data processing, petri net

Ç

1 INTRODUCTION

BUSINESS processes continuously generate huge volume
of event data, ranging from traditional enterprise office

automation systems or scientific workflows [2], [8] to recent
Web services and online transactions [17]. In event data
management, provenance analysis [20] identifies the
sequence of steps leading to a data item, and complex event
processing [5] detects interesting event patterns from data.
While querying and mining on event data are widely inves-
tigated, the quality of event data itself draws less attention.

According to our survey of real event data recorded by
a train manufacturer, at least 47.66 percent events are
missed in a total of 4, 470 event sequences. The missing
events occur for various reasons, such as (1) forgot to sub-
mit when manually recording event logs, (2) suffered from
system failures, or (3) mess after collecting the events from
heterogeneous execution environment. In this survey, the
most typical missing events are routing events (41.43 per-
cent of the 47.66 percent missing events), which pass or
distribute tasks (e.g., by the manager) to one or multiple
staffs for subsequent processing. Since no changes have
been made on products by such routing events, the system
did not collect these events (belonging to the aforesaid
type (3) missing events). Without recovering such missing
routing events, the prerequisites of an event might be
absent, e.g., having no idea about which manager the
task is passed from. The provenance of a product item, i.e.,
the sequence of steps used to produce the item, is unlikely
to obtain.

Moreover, mining patterns over event data is important,
since event patterns (with distinct appearance frequencies)
can be utilized as discriminative features in matching and
identifying heterogeneous events [28]. The basic idea is to
enrich the features of singleton events (less discriminative)
by more complex event patterns (more discriminative) in
event matching (see more details in [27], [28]). As presented
in [15], interesting event patterns (a.k.a. episodes) that occur
frequently could be discovered from event sequences. For
instance, a pattern SEQðB; ANDðC;DÞ;EÞ indicates that
after B, two events C and D are executed in parallel,
followed by E. It could be discovered with high freque-
ncy from a set of sequences <ABCDEH>, <ABDCEH>,
<ABCDEG>, . . . , where the pattern appears. Again, without
recovering the missing events, e.g., C from the same sources
owing to network interrupt, the event patterns could no lon-
ger be discovered.

In general, the task of recovering missing events could
hardly be performed without any prior knowledge. For-
tunately, most business events do not occur randomly.
Instead, event data often follow certain business rules or
constraints, such as process specifications [5]. We focus
on recovering missing events in the light of process
specifications.

Example 1. Consider a real process specification in Fig. 1a
for producing an engineering drawing in a train manufac-
turer. Each square (namely transition) denotes a task in
the process specification, e.g., transition A represents a
task of drafting. All the arrows attached to a transition
denote that the corresponding flows should be executed
in parallel. For example, both the dimension checking
(task C) and the tolerance checking (task D) should be con-
ducted after line type proofing (task B) in the drawing.
Moreover, the process can carry on evaluating the draw-
ing (task E) only if both C and D are executed. Circles in
the figure, namely places always appearing between tran-
sitions, could express choice semantics. That is, when
multiple choices are associated, only one of the flows
going out a place can be executed. For instance, place b6

� J.Wang, S. Song, X. Zhu, and J. Sun are with the Tsinghua National Labora-
tory for Information Science and Technology, KLiss,MoE, School of Software,
Tsinghua University, Beijing 100080, China. E-mail: {jimwang, sxsong,
sunjg}@tsinghua.edu.cn, zhu-xc10@mails.tsinghua.edu.cn.

� X. Lin is with the University of New South Wales, Sydney, NSW 2052,
Australia. E-mail: lxue@cse.unsw.edu.

Manuscript received 4 Feb. 2015; revised 20 June 2016; accepted 19 July 2016.
Date of publication 27 July 2016; date of current version 3 Oct. 2016.
Recommended for acceptance by T. Li.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2016.2594785

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 11, NOVEMBER 2016 2943

1041-4347� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:
mailto:
mailto:

leads to either revising the drawing (task F), archiving it
(task G) or discarding it (task H) after evaluation (E).

An execution of the process generates a sequence of
events, where each event corresponds to a task in the
process specification. We say that a sequence conforms
to the specification if it successfully executes from the
source place bstart to the sink place bend following
the flow constraints in the specification. For example, the
first sequence <ABCDEG> in Fig. 1b denotes a complete
execution of engineering drawing including steps draft-
ing, line type proofing, dimension checking, tolerance checking,
evaluating, archiving from bstart to bend.

Owing to various data quality issues, event logs are
often incomplete. For instance, the second sequence
<ABCEG> has an event D missed during the collection
of event logs from the database for dimension check-
ing. Without recovering the missing event D, it is
unlikely to find the provenance step of E. Moreover, if
such data transmission problems occur frequently in
the dimension checking database, an incorrect event
pattern without dimension checking step in engineer-
ing drawing will be mined.

The minimum change principle is widely considered in
data repairing [3], [18], following the intuition that systems or
human always try to minimize their mistakes in practice, i.e.,
to minimally miss events in our scenarios. For instance, to
recover the third sequence<ABCDG> in Fig. 1 in Example 1, a
minimumrecovery<ABCDEG> could bemore likely referring
to the aforesaid intuition of minimum (missing) mistakes,
rather than<ABCDEFBCDEG>,<ABCDEFBCDEFBCDEG>, . . .
Indeed, as discussed in Example 4, the chance that all events
in a loop (e.g., FBCDE in the aforesaid recovery) aremissing is
low in practice. Consequently, the accuracy of the formermin-
imum recovery could be generally higher than the latter
excessive recoveries. Thereby, the minimum recovery is also
considered in the previous study ofmissing events [13].

Challenges: The hardness of recovering the missing events
originates from the complexity of the recovery problem.
Efficiently obtaining an optimal recovery is not trivial.

We illustrate an example where the sequences cannot be
trivially recovered. Consider the process specification pre-
sented in Fig. 2, with explicit termination node bend [23].
Each ei corresponds to an agent of processing some job,
which can either skip a job (denoted by si) or accept it (by ai

and execute ei). Suppose that a sequence <c1c2c3b1> is
given. Simply filling the prerequisites of observed events
from the process specification, e.g., <s1s2s3s4> for b1, may
not be able to form a valid recovery. On the other hand, a
large number of possible recoveries for the sequence could
be enumerated, e.g., <a1e1a2c1c2e2c3s3s4b1>, <a1e1a2c1

c2e2s3s4c3b1>; . . . ;<s1a2e2s3s4c1c2c3b1>; . . . Efficiently
finding the optimal recovery (with the minimum change) is
highly non-trivial.

Efficiently computing the recovery of missing events is
essential and challenging with the following considerations:
(1) The number of transitions could be as large as 118 in real
process/workflow specifications [7], and 1,000 in event
sequences according to our observation in Section 6. The
number of possible paths (even w.r.t. specifications without
loops) is exponential to the number of transitions [6], [16],
and thus may hardly be regarded as a constant. Indeed, infi-
nite sequences of events could be generated when loops
exist in process specifications. (2) Real-time business pro-
cess monitoring [10], e.g., detection of shoplifting, or large/
suspicious financial transactions [5], requires recovering the
missing events in an online manner. It further motivates us
to develop more efficient pruning and heuristics for missing
event recovery.

Our main contributions in this paper are summarized as:

� We propose a linear time backtracking algorithm for
the recovery of a simple case, where all the events
are in parallel execution without any choices.

� We reveal the NP-hardness of finding the minimum
recovery of missing events in general settings (with
choices). To the best of our knowledge, this is the
first study on analyzing the hardness of the missing
event recovery problem.

� We present a branching framework for recovery in
general cases. A branching indexwith advanced prun-
ing techniques are developed to speed-up recovery.

� We devise efficient heuristic that performs directly
on process specifications without generating branch-
ing index. By precomputing possible executions
(paths), recovery efficiency is significantly improved.
Several typical cases are studied, on which the heu-
ristic shows the best performance.

� Finally, we report the extensive experimental evalua-
tion on real data.

2 PROBLEM STATEMENT

2.1 Preliminaries

Definition 1 (Petri Net). A Petri net is a triplet NðP; T ;FÞ,
where P is a finite set of places, T is a finite set of transitions,

Fig. 1. Example of engineering drawing process.

Fig. 2. Example of non-trivial recovery.

2944 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 11, NOVEMBER 2016

P \ T ¼ ;, and F � ðP � T Þ [ðT � PÞ is a finite set of
directed arcs (flow relation).

For x 2 P [T , �x ¼ fy j ðy; xÞ 2 Fg denotes the pre-set of
x and x� ¼ fy j ðx; yÞ 2 Fg denotes the post-set of x. The
pre/post-set representation can be nested, such as �ð�xÞ
denoting [y2�x � y, i.e., (union of) the pre-sets of a pre-set.

Definition 2 (Process Specification). A process specification
hN ; bstart; bendi, or simply denoted by N , is a special Petri net
NðP; T ;FÞ with a unique source place bstart 2 P, �bstart ¼ ;,
and a unique sink place bend 2 P, bend� ¼ ;. Each x 2 P [T
is on a path from bstart to bend.

Each transition e 2 T corresponds to an event in the exe-
cution of the process. An event sequence s, or simply
sequence, w.r.t. a process specification NðP; T ;FÞ is a finite
sequence of events (transitions), i.e., s 2 T �. Each sequence
logs an execution of the process defined by N .

Definition 3 (Firing Sequence). A firing sequence of a pro-
cess specification NðP; T ;FÞ, and its post-set which is a
multi-set of places, are defined recursively as follows:

1) The empty sequence " is a firing sequence, and
"� ¼ fbstartg;

2) If s is a firing sequence, e 2 T is a transition (event),
and �e � s�, then se is also a firing sequence, and
ðseÞ� ¼ ðs�Þ [ðe�Þnð�eÞ.

A sequence s is said conforming to a process specification,
denoted by s�N , if s is a firing sequence w.r.t. N and
fbendg � s� that successfully executes to bend.

Example 2 (Example 1 Continued). Consider the process
specification N in Fig. 1 and a sequence s ¼ <ABCDEG> .
To investigate whether s is a firing sequence with respect
to N , we start from the empty sequence " with "� ¼
fbstartg. Since the first event A has �A ¼ fbstartg � "�, the
augmentation <A> is also a firing sequence with
<A> � ¼ fb1g. It follows <AB> � ¼ fb2; b3g. For the next
C, as �C ¼ fb2g � <AB> �, the firing sequence becomes
<ABC> with post-set fb3; b4g. Similarly, we have
<ABCD> � ¼ fb4; b5g by appending D. As �E ¼ fb4; b5g
and E� ¼ fb6g, it leads to <ABCDE> � ¼ fb6g, and
finally fbendg � <ABCDEG> �. Therefore, the sequence
<ABCDEG> conforms to the specification.

Missing events may occur either in the start/middle of a
sequence which prevent it from being a firing sequence, or
at the end of the sequence having fbendg ~ s�.

Definition 4 (Gap). Let sk be a firing sequence. For the next
event (transition) e, if �e ~ sk�, we call ðsk�; �eÞ a gap with
at least one missing event between sk and e.

Example 3 (Example 2 Continued). Let us consider
another sequence <ABCEG>. As illustrated, <ABC> is a
firing sequence with <ABC> � ¼ fb3; b4g. For the next
event E, however, we have �E ¼ fb4; b5g 6� <ABC> �.
Thereby, there is a gap between <ABC> and E, where an
event D is missing indeed.

Moreover, a sequence <ABCDE> is a firing sequence
but does not conform to the specification as fbendg~
< ABCDE> � ¼ fb6g. At least one event is missing at the
end of the sequence.

2.2 Problem Definition

We call s a subsequence of s0, if s is a sequence that can be
derived from s0 by deleting some events without changing
the order of the remaining events.

Definition 5. A recovery of a sequence s w.r.t. a process specifi-
cationN is also a sequence s0, such that s is a subsequence of s0

and s0�N , i.e., the recovered sequence s0 conforms to process
specificationN .

The distance between s0 and s is given by Dðs0;
sÞ ¼ js0j � jsj. Following the minimum change principle in
improving data quality [3], we find a recovery that mini-
mally differs from the original sequence. Multiple minimal
recoveries possibly exist. However, these multiple minimal
recoveries could be redundant (i.e., equivalent). For
instance, to recover the sequence <ABCEG> in Example 1,
the results <ABCDEG> and <ABDCEG> have no difference
w.r.t. the process specification, as C and D are executed
in parallel after B and before E. An event pattern
SEQðB;ANDðC;DÞ;EÞ could be discovered from either the
recovery result <ABCDEG> or <ABDCEG>. Referring to the
aforesaid redundancy and equivalence in pattern mining
application, we practically find one of the minimal recovery
sequences, rather than reporting all possible minimal recov-
ery sequences.

Besides the equivalent cost function on counting the
number of insertions, it is possible to employ fine-grained
cost functions by considering the weight of each recovered
event, e.g., denoting the confidence of the event being lost.
We leave this interesting direction, including how to deter-
mine the weights of recovered events, as future studies.

Problem 1. Given a sequence s over a process specification N , s
is not conforming with N , the minimum recovery problem is to
find a recovery s0 of s such that s0�N and the distance
Dðs0; sÞ between s0 and s is minimized.

Example 4 (Example 3 Continued). To fill gap
ð<ABC> �; �EÞ in a sequence <ABCEG>, we look for the
next event w.r.t. firing sequence. There is only one candi-
date D whose preset is involved in the post-set <ABC> �.
The firing sequence carries on with the new post-set
<ABCD> � ¼ fb4; b5g. It matches with �E and finally
returns a recovery <ABCDEG> conforming to the specifi-
cation. A recovery <ABCDEFBCDEG> with a complete
loop between <ABC> and E is not minimal. According to
our survey of the real event data recorded by a train man-
ufacturer, 47.66 percent events are missing. It could be
interpreted as a probability 0.4766 of an event missing.
The probability that all the m events in a loop are missing
is thus 0:4766m. For instance, for the loop <BCDEF> in
Fig. 1, the probability of all five events missing is 0.0245.
In other words, the chance that all events in a loop are
missing is low in practice.

For the sequence <ABCDE>, which is already a firing
sequence, the recovery can directly move on (by consid-
ering all possible alternatives w.r.t. firing sequence) till
bend is reached. Since there are two candidate events G/H
to carry on, both <ABCDEG> and <ABCDEH> could be
returned as the minimum recovery.

For the special case of process specifications without
loops, we can represent the minimum recovery problem by

WANG ETAL.: EFFICIENT RECOVERYOF MISSING EVENTS 2945

integer linear programming (ILP). Since no loop exists, an
event appears in a sequence at most once. Let xi ¼ 1 denote
that an event ei 2 T ; i ¼ 1; . . . ; jT j appears in sequence s.
The minimum recovery problem is thus

min
XjT j

i¼1
xi

s:t:
X

ej2�b
xj ¼ xi b 2 �ei; 1 � i � jT j

X
ej2b�

xj ¼ xi b 2 ei�; 1 � i � jT j
XjT j

i¼1
xi > 0

xi 2 f0; 1g
xi ¼ 1

By inserting ei into s following the topological ordering of
events in the process specification, where ei 62 s and xi ¼ 1
in the solution of the aforesaid ILP, we obtain the minimum
recovery of s. For the general case of specifications with
loops, where events may appear multiple times in a
sequence with distinct orders, it is unclear whether the
requirements on such orders specified by Petri nets can be
captured by linear constraints. The ILP formalization of the
minimum recovery problem is still open.

2.3 Hardness Analysis

Owing to choices and parallelization of flows, there are vast
alternatives to enumerate in the recovery. de Leoni et. al. [4]
propose an alignment based solution with exponential time
complexity but fail to uncover the hardness of the problem.

As one of our major contributions, we find that generat-
ing the optimal recovery of missing events is NP-hard. In
other words, it is NP-complete to determine whether a
recovery exists with distance less than a certain constant.

Theorem 1. Given a sequence s over a process specification N
and a constant k, the problem to determine whether there exists
a recovery s0 of s s.t. s0�N and Dðs0; sÞ � k is NP-complete.

At the end of Section 2.2, we have shown that the mini-
mum recovery problem can be represented by integer linear
programming, which is one of Karp’s 21 NP-complete prob-
lems [11]. Therefore, it is not surprising to obtain the hard-
ness result in Theorem 1.

3 GETTING STARTED ON CAUSAL NET

Let us start from a simple special case of process specifica-
tions where no choices of flows exist. Such a special case is
interesting for two reasons. First, as we will see soon, it can
be easily extended to more general cases with choices. Sec-
ond, the existing aligning approach [4] even fails to perform
efficiently in this simple case.

A causal net is a Petri net NðP; T ;FÞ, such that for every
b 2 P; j � bj � 1 and jb � j � 1. According to the definition of
process specifications, only the bstart=bend places can have
empty pre/post-sets. The remaining places have exactly
one in degree and one out degree, respectively. We can
equivalently represent the causal net as a directed acyclic
graph (DAG), where transitions (events) in T denote ver-
texes, and places with j � bj ¼ jb � j ¼ 1 are edges.

Example 5. Consider the process specification in Fig. 3a,
which is a causal net. All the places b1; . . . ; b7 other than
bstart=bend have j � bij ¼ jbi � j ¼ 1, for instance, �b1 ¼
fAg; b1� ¼ fBg. b1 can be interpreted as an edge between
A and B as illustrated in Fig. 3b. Following the same line,
the causal net can be represented as a DAG.

Since there is no multiple choice in a causal net process
specification, as illustrated in Example 5, the conformance of
a sequence to the process specification can be checked by
inspectingwhether all the order relationships between events
are satisfied. It leads to Lemma 2 stating that a sequence con-
forms to the process specification iff the sequence is a topo-
logical ordering of the correspondingDAG.

Lemma 2. Given a sequence s over a causal net specification N ,
the checking of conformance is equivalent to validate whether
the sequence s is one of the topological sorts on the DAG ofN .

Proof. The lemma can be easily verified. First, according to
the definition of firing sequence, an event e can be exe-
cuted only when all the places in �e appear in the post-
set of the current firing sequence, say s�. Since any place
except bstart has j � bj ¼ 1 in the causal net, each place in
�e corresponds to an event in s. It follows that
�ð�eÞ � s. In other words, all the prerequisites of e in
the DAG have been conducted in s. Moreover, since
there is no choice in a causal net, all the transitions
(events) in T should be performed. Therefore, each firing
sequence with post-set fbendg corresponds to a topologi-
cal sort in the DAG of N . tu

Lemma 2 states that any sequence conforming to the
process specification must be a topological sort of the cor-
responding DAG. According to Lemma 2, any topological
sort s0, subsuming s as a subsequence, must be a valid
recovery of s. Lemma 3 further state that such a topologi-
cal sort s0 is always the optimal solution (minimum recov-
ery) as well.

Lemma 3. For an incomplete sequence s over a casual net N ,
any topological sort s0 on the DAG of N such that s is a subse-
quence of s0 is always the minimum recovery of s.

Proof. As each topological sort outputs a vertex exactly
once, all the recoveries must have the same size, in other
words, having the same minimum distance to s. tu

The existing alignment approach [4] considers the space
of all possible firing sequences. That is, it enumerates all the
possible topological sorts with respect to the causal. As
another contribution of our study, we have indicated that
any topological sort is an optimal solution and there is no
need to enumerate all of them.

Example 6 (Example 5 Continued). To recover a
sequence <AEF> over the process specification in
Fig. 3a, the existing aligning approach enumerates all

Fig. 3. Example of causal net.

2946 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 11, NOVEMBER 2016

possible combinations of events in parallel, i.e.,
<ABCDEF>, <ABDCEF>, <ACBDEF>, <ACDBEF>,
<ADBCEF> and <ADCBEF>. According to Lemma 3,
however, any topological sort is a minimum recovery,
e.g., <ABCDEF> with the minimum distance three to the
input sequence <AEF>. There is no need to enumerate
other redundant recoveries.

A Backtracking Idea: Motivated by the defeat of enumerat-
ing unnecessary firing sequences, a backtracking strategy is
used to find a topological sort as the optimal recovery. We
introduce how to fill a gap in a sequence, and find a recov-
ery by checking all gaps in one pass through the sequence.

Definition 6 (Fill). For a gap ðs�; �eÞ, we call a transition
(event) sequence t 2 T � a fill of the gap, if it ensures 1) st is a
firing sequence, and 2) �e � ðstÞ�.

Algorithm 1 gapðs�; �eÞ fills the gap between post-set pla-
ces s� and the following event e. As shown in Lines 2-5, let
X denote the places in �e but not in s�. According to the
definition of firing sequence, events in �X are necessary to
execute e, which are not observed in the current sequence s,
i.e., missing events. The program checks and adds each
event ei 2 �X into t in Line 9. It fills the gap between st and
ei by recursively calling the function in Line 8.

Algorithm 1. Gap(s�; �e)
Input: A firing sequence post-set s� and a transition pre-set �e
Output: A fill of the gap between s and e
1: t :¼ "
2: X :¼ �e
3: for each place bi 2 X do
4: if bi 2 s� then
5: X :¼ X � bi
6: ifX 6¼ ; then
7: for each transition ei 2 �X; ei 62 t do
8: t0 :¼ GAPððstÞ�; �ei)
9: t :¼ tt0ei
10: return t

The correctness of Algorithm 1 is ensured by showing
that the produced result ste is always a firing sequence.
First, if there is no gap between (s�; �e), i.e., X ¼ ; in
Line 6, it returns t ¼ " and se is a firing sequence. Oth-
erwise, for each ei 2 �X, it either has been included in
the current t, or generates a fill between ei and the firing
sequence st w.r.t. the current t. According to topological
sorting, as long as the prerequisite relationship is
guaranteed, the order of inserting ei will not affect t

being a firing sequence.

Example 7 (Example 6 continued). To recover the gap
between a firing sequence <A> and event E, the program
generates a set of places X ¼ fb4; b5; b6g in �E but not in
<A> � ¼ fb1; b2; b3g. For each event in �X ¼ fB; C; Dg,
e.g., B, we fill the gap between the current firing sequence
< A > � and �B. It outputs a firing sequence <AB> with
post-set <AB> � ¼ fb4; b2; b3g. Next, by inserting C 2 �X,
we have <ABC> � ¼ fb4; b5; b3g. It follows <ABCD> � ¼
fb4; b5; b6g. Finally, the gap between <A> and E is filled
by <BCD> such that �E � <ABCD> �.

Finally, we recover a sequence over a causal net specifi-
cation by iteratively calling the GAP(s0�; �s½k) function for
each event s½k	 in s, where s0 is the current firing sequence.
Initially, s0 is empty, i.e., t ¼ gapðfbstartg; �s½1), and at the
end t ¼ GAPðs0�; fbendgÞ leads the firing sequence s0 to the
sink place. The minimum recovery s0t is computed.

The complexity is linear in the number of transitions and
places in the specification. The backtracking visits each ver-
tex (event) at most once by trying possible edges (places). It
is obvious to see the complexity is OðjT j þ jPjÞ.

4 THE BRANCHING FRAMEWORK

Now, we consider a general process specification with both
choices and parallelization of flows. Differently from causal
net, there will be multiple choices of execution flows. A
straightforward idea is to index all valid flows by branching
over choice nodes [6], [16], where each branch denotes a
causal net without any choice. By applying the GAP algo-
rithm on the causal net, we find a minimal recovery for each
branch, if it exists. The minimum recovery can be found by
traversing all the possible branches returned by index.

Let us first introduce the idea of branching over a process
specification. While a causal net requires both the in-degree
j � pj � 1 and the out-degree jp � j � 1, an occurrence net
only needs the in-degree to be j � pj � 1 for each place.
There are choice-splits in process branching but no choice-
join. To establish the relationship between process branch-
ing and specification, we consider the mapping below.

Definition 7 (Homomorphism). A homomorphism from a
net N uðPu; T u;F uÞ to another net NðP; T ;FÞ is a mapping
p : Pu [T u ! P [T such that

1) pðPuÞ � P and pðT uÞ � T ,
2) for every t 2 T u, pð�tÞ is a bijection between �t and

�pðtÞ, and pðt�Þ is a bijection between t� and pðtÞ�.

A net NðP; T ;FÞ can be unfolded, where each branch
corresponds to a non-choice execution, i.e., a causal net.

Definition 8 (Process Branching). A process branching of
a specification NðP; T ;FÞ is a pair ðN u;pÞ, where

1) N uðPu; T u;F uÞ is an occurrence net, such that for
every p 2 Pu; j � pj � 1,

2) p is a homomorphism fromN u toN , and
3) for every t1; t2 2 T u, if �t1 ¼ �t2 and pðt1Þ ¼ pðt2Þ,

then t1 ¼ t2.

We explain the relationships of four different definitions
over Petri net. Process specification in Definition 2 is a spe-
cial type of Petri net (Definition 1), where a unique source
place and a unique sink place are associated to denote the
start and end of a process, respectively. Causal net in Sec-
tion 3 is a simple special case of process specifications where
no choices of flows exist. Since there is no choice of multiple
alternatives, the causality relationships between events are
certain. It is the reason why such a net is called a causal net.
Occurrence net employed in Definition 8 is a special form of
Petri net, which involves only choice-splits but no choice-
join. It enumerates all the possible “occurrences” of various
flows specified in a process specification. These definitions
and terminology are adopted from [6].

WANG ETAL.: EFFICIENT RECOVERYOF MISSING EVENTS 2947

Let ANðpiÞ denote all the places and transitions that are
ancestors of pi in the branching net.

Proposition 4. Each branch in the branching net N u is a causal
net N bðPb; T b;F bÞ leading to a unique sink place pi : bend
having Pb � Pu; T b � T u; F b � F u; Pb [T b ¼ ANðpiÞ.

Proof. According to the requirement of occurrence net,
only one place in the branching can be mapped to bstart,
while there may be multiple places mapping to bend.
Each sink place pi having pðpiÞ ¼ bend denoted as
pi : bend exactly corresponds to a branch, i.e., a causal net
projected by recursively backtracking all the pre-set
nodes from pi : bend to p0 : bstart. It involves all the places
and transitions that are ancestors of pi in the branching
net, i.e., ANðpiÞ. tu

A straightforward idea is to apply the aforesaid topologi-
cal sort based recovery on each branch, and return the one
with the minimum size among all the branches.

Example 8. Consider the process specification N in Fig. 4a.
The corresponding process branching as illustrated in
Fig. 4b is an occurrence net with only choice-splits but no
choice-joins. According to the homomorphism p, each
node in the branching maps to a node in the specification,
such as pðt1Þ ¼ A denoted as t1 : A or pðp1Þ ¼ b1 denoted
by p1 : b1; p1 2 Pu; b1 2 P.

There are two places p5 and p6 mapping to bend, which
correspond to two branches ended with p5 : bend and
p6 : bend, respectively. Each branch is a causal net
obtained by a projection on all the ancestors of an end
place, such as ðp0 ! t1 ! p1 ! t2 ! p3 ! t5 ! p5Þ as
presented in dotted line in Fig. 4b.

For a sequence s ¼ <AG> , we call the GAP function on
each branch. The first branch returns a recovery <ABG>,
while the second one outputs <ADFG>. Referring to the
minimum distance principle, <ABG> is returned as the
minimum recovery of <AG>.

4.1 Branching Approach

Intuitively, there is no need to trying all the branches, espe-
cially on those not containing the events of the input
sequence. For instance, to recover a sequence <AF>, the
first branch with events ABG is not necessary to be consid-
ered, as it would never generate a sequence containing
event F. Motivated by this, we construct an index on
branching to efficiently identify potentially valid branches.

4.1.1 Index on Branches

For any event e 2 T , we can identify all the transitions t in
the branching net N u, whose pðtÞ ¼ e, denoted by T uðeÞ. It
is worth noting that two different events sharing the same
name is not allowed in a process specification. Referring to

the third term in Definition 8 of branching, duplicate events
should not appear in a branch as well.1

Proposition 5. No events appear twice in one branch.

Each t 2 T uðeÞ identifies all the branches that may output
a recovery containing e. Other branches can be pruned.

The size of index is linear on the number of transitions in
T u. Let d be the maximum out-degree of a place in the speci-

fication N . There are OðdjPj�1Þ branches. The number of pla-

ces jPuj in the branching net is bounded by OðdjPjÞ. In an
occurrence net, each place can have at most one transition.
The number of transitions jT uj in a branching net should

not be greater than jPuj, i.e., bounded by OðdjPjÞ.

4.1.2 Branch Algorithm

To fill gaps on possible branches, we consider the firing
sequence su of transitions T u in the branching net instead of
the specification net. According to the homomorphismmap-
ping, su can be transformed to a firing sequence s ¼ pðsuÞ
with respect to the specification.

Algorithm 2 presents the recovery with branching. Given
a current firing sequence su in the branching net as illus-
trated in Fig. 5, let s½k	 : e be the kth (current) event in the
input sequence. For each transition t 2 T uðeÞ, we call the
GAPðsu�; �tÞ function for a causal net. It returns a fill t

between su and t, if it exists, i.e., the new firing sequence
sutt. The program carries on by recursively branching on
the next event s½kþ 1	, in Line 11 BRANCHðsutt; s½kþ 1	Þ.
Finally, the minimum recovery is obtained by transforming
the results smin ¼ BRANCHð"; s½1	Þ to pðsminÞ.

Algorithm 2. Branch(su; s½k)
Input: A firing sequence su and the kth event s½k	 in s

Output: Aminimum recovered sequence after su

1: smin :¼ an infinite sequence
2: if s½k	 is null then
3: for each sink place p 2 Pu;pðpÞ ¼ bend do
4: t :¼ GAPðsu�; fpg)
5: if jsminj > jtj then
6: smin :¼ t

7: else
8: for each t 2 T uðs½k	Þ do
9: t :¼ GAPðsu�; �t)
10: if t exists then
11: s� :¼ BRANCHðsutt; s½kþ 1	Þ
12: if jsminj > jtts�j then
13: smin :¼ tts�

14: return smin

In the worst case, the program needs to traverse all the
transitions in branching. In each iteration, the GAP function

Fig. 4. Example of branching.
Fig. 5. Index on branches.

1. The case of process specifications with loops needs further instru-
ments to ensure non-duplicate events.

2948 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 11, NOVEMBER 2016

visits at most OðjT j þ jPjÞ places and transitions, according
to Proposition 5. Referring to the size analysis of branching

net, the complexity of Algorithm 2 is OððjT j þ jPjÞ
 djPjÞ,
where d is the maximum out-degree of a place inN .

Example 9 (Example 8 Continued). For a sequence
s ¼ <F> , we call the BRANCHðsu; s½1	Þ, where
su ¼ "; s½1	 ¼ F. It first locates possible branches via
T uðs½1	Þ ¼ ft4g. There is only one branch containing F in
Fig. 4b. The GAP("�; �t4) function returns a fill t ¼< t1t3> of
the gap between " and t4. It follows the branching on the
next event s½2	, i.e., null. A recovered sequence s� ¼
BRANCHð< t1t3t4> ; s½2	Þ ¼< t6> is returned. Finally, the
minimum recovered sequence is s ¼< t1t3t4t6> and trans-
formed to<ADFG> as theminimum recovery.

4.2 Local Optimality

In general, for any intermediate event e, we cannot obtain
the minimal recovery on the branches w.r.t. e until all these
branches are fully computed. According to the intuition of
firing sequence semantics, however, the branching pro-
duced by any two firing sequences with the same post-sets
should be exactly the same. In the following, we identify
those t 2 T uðs½k	Þ that may lead to firing sequences with the
same post-set, and prove that a local optimal result could be
generated by branching on only one of the transitions.

4.2.1 Branching Equivalence Classes

To define groups of transitions in T uðs½k	Þ, we introduce a
binary relation on transitions, namely branching equivalence
relation, denoted as $. Let s1 be a minimum prefix firing
sequence of a transition t1, which only consists of transitions
that are ancestor transitions of t1 and can form a new firing
sequence s1t1. This s1 equals to the minimum fill of the gap
from an empty firing sequence " to t1, i.e., GAPð"�; �t1Þ.

Definition 9 (Branching Equivalence Relation). For any
two transitions t1; t2 2 T u, let s1 and s2 be the minimum prefix
firing sequences of t1 and t2, respectively. Then, t1 and t2 are
said branching equivalent, denoted by t1 $ t2 iff: 1)
pðt1Þ ¼ pðt2Þ; and 2) pððs1t1Þ�Þ ¼ pððs2t2Þ�Þ.

Obviously, relation $ is reflexive, symmetric and transi-
tive. We define the branching equivalence classes as
follows.

Definition 10 (Branching Equivalence Classes). For an
event e, the transitions T uðeÞ can be divided into a collection

of n subsets, fT EC
1 ; T EC

2 ; . . . ; T EC
n g, namely branching

equivalence classes, such that,

1) T EC
i \ T EC

j ¼ ;; i 6¼ j;

2)
[n

i¼1
T EC

i ¼ T uðeÞ;
3) t1 $ t2,8t1; t2 2 T EC

i ;

4) t1 6$ t2,8t1 2 T EC
i ; 8t2 2 T EC

j and i 6¼ j.

Example 10 (Example 8 Continued). Consider the transi-
tions t5; t6 in Fig. 4b. Let s1 ¼< t1t2> and s2 ¼< t1t3t4>
be the minimum prefix firing sequences of t5 and t6,
respectively, i.e., the minimum fills from empty firing
sequence " to t5 and t6. As pðt5Þ ¼ pðt6Þ ¼ G and

pððs1t5Þ�Þ ¼ pðfp3gÞ ¼ fb3g ¼ pðfp4gÞ ¼ pððs2t6Þ�Þ, we
say t5; t6 in the same branching equivalence class hav-
ing t5$ t6.

For each branching equivalence class T EC
i , we find a

t 2 T EC
i which has a minimum fill tmin for the gap between

su and t compared with those of other t0 in T EC
i . Below, we

will show that this local minimal recovery sutmint can
always lead to a minimum recovery with respect to all the

branches on transitions in T EC
i , i.e., the local optimality.

4.2.2 Proof of Local Optimality

First, we can show that, for any su, the post-sets of firing
sequences generated by filling the gaps between su and the
transitions in a branching equivalent class must map to the
same set of places in specification.

Lemma 6. Given a firing sequence su, for any t1; t2 2 T EC
i , let

t1 ¼ GAPðsu�; �t1Þ and t2 ¼ GAPðsu�; �t2Þ be the fills from su

to t1 and t2, respectively. Then, pððsut1t1Þ�Þ ¼ pððsut2t2Þ�Þ
always holds.

For example, in Fig. 6, let t1 be a fill of GAPðsu�; �t1Þ, i.e., a
firing sequence with post-set ðsut1t1Þ� ¼ fp4; p5g, and simi-
larly ðsut2t2Þ� ¼ fp6; p7g for another t2. Suppose that t1$ t2
with pðt1Þ ¼ pðt2Þ ¼ e. pððsut1t1Þ�Þ ¼ pððsut2t2Þ�Þ ¼ fb1; b2g
always holds.

Next, we can prove that the branches on all t 2 T EC
i must

be the same, e.g., s1 yielded by t1 is equivalent to s2 yielded
by t2, in Fig. 6. Consequently, only the branching corre-

sponding to the local optimal t� in T EC
i needs to be consid-

ered. That is, if jt1j < jt2j, s1 can always produce the
minimal recovery on the branches yielded by su, and the
other s2 can be safely pruned.

Theorem 7. For a firing sequence su, the branching on

t� ¼ arg min
t2T EC

i

jGAPðsu�; �tÞj;

can always generate the minimum recovery with respect to all
the branches on transitions in T EC

i .

The beauty of branching equivalence classes is that they
are defined independent of any firing sequence su. We can
identify them offline, and apply directly the local optimality.

4.2.3 Local Algorithm

Finally, we introduce the LOCAL algorithm by adapting the
aforesaid BRANCH in Algorithm 2. In Line 8, the program con-
siders each branching equivalence class T EC

i over T uðeÞ. A
transition t 2 T EC

i with the minimum fill between su and t is

Fig. 6. Local optimality.

WANG ETAL.: EFFICIENT RECOVERYOF MISSING EVENTS 2949

found and recorded as tmin. As illustrated in Line 15, for

each T EC
i , only this sutmin keeps on branching.

Algorithm 3. Local(su; s½k)
Input: A firing sequence su and the kth event s½k	 in s

Output: Aminimum recovered sequence after su

1: smin :¼ an infinite sequence
2: if s½k	 is null then
3: for each sink place p 2 Pu;pðpÞ ¼ bend do
4: t :¼ GAPðsu�; fpg)
5: if jsminj > jtj then
6: smin :¼ t

7: else
8: for each T EC

i over T uðeÞ do
9: tmin :¼ an infinite sequence
10: for each t 2 T EC

i do
11: t :¼ GAPðsu�; �t)
12: if t exists and jtminj > jttj then
13: tmin :¼ tt
14: if jtminj is not infinite then
15: s� :¼ LOCALðsutmin; s½kþ 1	Þ
16: if jsminj > jtmins

�j then
17: smin :¼ tmins

�

18: return smin

Example 11 (Example 10 Continued). Given a sequence
<AG>, let su ¼< t1> be the current firing sequence and G

be the next event. As introduced, t5; t6 in Fig. 4 are in the
same branching equivalence class. Since the fill < t3t4>
of su and t6 is larger than that of t4, we have tmin ¼< t2>
in Line 14 in Algorithm 3. Consequently, only the branch-
ing on sut2t5 is considered for the next event. The branch-
ing on the other t6 in the same branching equivalence
class is ignored.

4.3 Extensions on Loops

To extend for general specifications with loops, we can
simply introduce a type of shadow place in process
branching for loops. For example, for the specification
with a loop BDEF in Fig. 1a, instead of pointing back to
place b1, the branching net will introduce a new shadow
place p8 : b1, which maps to b1 in the specification as
well. Consequently, the backtracking (Algorithm 1 GAP)
with loops should not only consider the place p1 : b1
before B, but also the shadow place p8 : b1 to handle the
loop situation. By considering each shadow place at
most once in a gap, the algorithm returns the minimum
recovery. The details of extension for general specifica-
tions with loops are presented in Section 5 in the prelim-
inary/conference version of this paper [25].

5 EFFICIENT ALGORITHM

The exact algorithms with advanced indexing and pruning
techniques (in Sections 3 and 4) are still costly since the size
of process branching could be exponentially large. For
example, a specification with 20 adjacent two-way choice
structures has only 40 transitions, but its process branching
has 221 � 2 ¼ 20; 097; 150 transitions. An index query over
some ending transition may return huge (almost all)
branches for recovery consideration. This leads to a high

time and space cost which cannot be avoided by exploiting
branching index or local optimality.

It is possible to employ the substructure indexing techni-
ques [26], instead of considering all the possible branches.
While the existing techniques utilize the frequency informa-
tion of subgraphs, such information is not available given
barely the process specifications. We leave this interesting
topic of determining branches to index as the future work.
In this study, rather than materializing the huge size
branching process (generated w.r.t. the process specifica-
tion), we present a heuristic algorithm that directly per-
forms on the process specification.

Intuitively, rather than attempting all the possible exe-
cutions, the idea is to heuristically decide a branch for
filling each gap. Owing to possible combinations of par-
allel execution tasks, it is still costly to find the minimum
fill of a gap ðs�; �eÞ. Therefore, in Section 5.1, we pro-
pose a heuristic to fill the gap by iteratively assembling
the shortest paths that connect the gap. Advantages of
assembling shortest paths lie in two aspects: 1) It gener-
ates a fill relatively close to the minimum fill of a gap;
2) Most importantly, shortest paths between any two
nodes can be pre-computed on the given process specifi-
cation, and cached/reused for filling the gaps in sequen-
ces (instances of the specification). Indeed, since it may
need to assemble multiple shortest paths for an (heuris-
tic) minimum execution, we can directly pre-compute/
cache/reuse the minimum execution between two nodes
(Section 5.2). In particular, we show that the minimum
execution based approach guarantees to terminate and
obtain the optimal solution in certain cases (Section 5.3).

5.1 Algorithm with Shortest Paths

Let us first introduce the heuristic of recovering executions
by assembling shortest paths between two nodes.

Similar to the exact algorithm, let s be the currently
processed sequence with two parts su and sk, where su

is a firing sequence (previously recovered) without any
gap, and sk is the remaining part of s starting from the
kth event. Suppose that there is a gap ðsu�; �eÞ between
su and the first event e of sk. To fill this gap, algorithm
HEURISTIC(su; sk) finds the shortest path t by conducting
an inverted BFS search starting from e, till one of the
places in su� is reached. By appending t to the front of
sk, it forms a new sequence s0

k ¼ tsk. If a gap still exists
between su and s0

k, the function HEURISTIC(su; s
0
k) is per-

formed recursively. Otherwise, the first event e in sk is
moved to the end of su, and we keep on checking the
gap between sue and skþ1. The algorithm ends by con-
ducting HEURISTIC(s; eend), where eend is an artificial event
such that �eend ¼ fbendg. Initially, we call HEURISTIC("; s)
to start recovering.

Algorithm 4 shows the pseudo-code of heuristic recov-
ery. Lines 4 to 9 check whether there is a gap ðsu�; �eÞ. If
yes, Lines 11 to 14 find the shortest path between a place b
in su� and e, insert those events to the front of sk, and
recheck the existence of a gap by recursively conducting
HEURISTICðsu; tskÞ. Otherwise, Lines 16 and 17 move the
processing to the next event in skþ1. Once sk is empty, it
means that the end of the input sequence has been reached,
and the algorithm terminates.

2950 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 11, NOVEMBER 2016

Algorithm 4.Heuristic(su; sk)

Input: A firing sequence su and the remaining part sk of the
sequence s starting from the kth event.

Output: A recovered sequence after su

1: if sk ¼ " then
2: return "
3: else
4: e :¼ the first event of sk

5: t :¼ "
6: X :¼ s�
7: for each place bi 2 X do
8: if bi 2 �e then
9: X :¼ X � bi
10: ifX 6¼ ; then
11: b :¼ a place fromX
12: t :¼ the pre-computed shortest path fill from b to e
13: s� :¼ HEURISTICðsu; tskÞ
14: return s�

15: else
16: s� :¼ HEURISTICðsue; skþ1Þ
17: return s½k	s�

Given a specification NðP; T ;FÞ, for each gap, we need
to conduct a BFS search to find the shortest path, with com-
plexity OðjT j þ jPjÞ in the worst case. Moreover, for a
sequence s, HEURISTIC will be recursively performed at most
jsj
 jT j times. Therefore, the worst-case time complexity of
HEURISTIC is Oðjsj
 jT jðjT j þ jPjÞÞ.

Example 12. Consider the process specification in Fig. 7and
a sequence <DEH> . There is a gap ðDE�; �HÞ in the
sequence since �H ¼ fb7g~fb4; b5g ¼ DE�. We find the
shortest path within the gap by conducting an invert BFS
search from event H, which results in <G> . However,
a gap ðDE�; �GÞ still exists after inserting <G> to the
front of H. Therefore, HEURISTIC is conducted again and a
shortest path <F> is inserted between DE and GH. The
recovered sequence <DEFGH> is exactly the minimum
recovery of the sequence.

The shortest path heuristic does not always lead to the
minimum recovery (due to the parallelization of flows).

Example 13. Consider a gap ð"�; �HÞw.r.t. the process speci-
fication shown in Fig. 7. One of the shortest paths from "�
to �H is <DEGH> . However, <DEGH> is not a recovery
since it is not a firing sequence. A new gap ðDE�; �GÞ is
detected in event sequence <DEGH> and event F needs
to be filled into this gap. Obviously, <DEFGH> is not the
minimum recovery of the gap, since another recovery
<ABCH> is shorter.

5.2 Amendment with Minimum Execution

As illustrated in Example 13, if the shortest path is not an
execution, the result of HEURISTIC may deviate from the mini-
mum recovery. We note that not only the short paths but
also the minimum executions between some node pairs can
be uniquely determined over the process specification.
Hence, in the following, we present another heuristic
method, which fills a gap with the pre-computed minimum
execution (if available). Compared to shortest paths, this
method manipulates the exact minimum execution and

thus has higher accuracy. In particular, the time cost of
directly obtaining an execution is less than that of assem-
bling shortest paths for an execution.

5.2.1 Process Reduction

Intuitively, there are some particular structures in a spec-
ification whose minimum executions are determined
independent of the preceding and succeeding contexts.
For example, consider a sequential structure, i.e., all the
places and transitions within the structure have at most
one incoming/outgoing edge. Obviously, it has a deter-
mined execution which contains all the transitions within
the structure in sequential order. Moreover, a choice
structure whose branches are all sequential structures
also has a determined minimum execution, which is the
execution of the shortest sequential structure among all
the branches. A parallel structure whose branches are all
sequential structures also has a determined minimum
execution as well. It could be any combination of the
sequential executions in any order, since all the distinct
combinations have the same length.

Following this intuition, we can reduce some structures
with determined minimum execution by replacing them
with a single place or transition, on which the minimum
execution is recorded. It is worth noting that more struc-
tures may be able to reduce after reducing some existing
structures, thus we keep doing process reduction as much
as possible. Now, each path on the reduced specification
may correspond to an execution, if we connect the execu-
tions on the nodes within the path. For any two nodes, if
there is only one path between them, it is indeed the (mini-
mum) execution uniquely determined.

The detailed reduction algorithm is introduced in the fol-
lowing. Initially, each place b 2 P is assigned with an empty
execution < > and each transition e 2 T is assigned with
an execution < e> . Then, we iteratively capture some par-
ticular structures which can be reduced, and replace them
with single place/transitions recording the minimum exe-
cutions of the reduced structure.

The process reduction rules that can be applied are:

1) Sequential Reduction:As illustrated in Fig. 8a, two pla-
ces b1; b2 and one transition e can be replaced by one
place bx with �bx ¼ �b1 and bx� ¼ b2�, if:
1) j � b1j ¼ j � b2j ¼ j � ej ¼ jb1 � j ¼ jb2 � j ¼ je � j ¼ 1;
2) �e ¼ fb1g and e� ¼ fb2g.

Assume that b1, e and b2 record the executions
< t1 > , < t2 > and <t3> , respectively. The execution
recorded by bx is the catenation of < t1 > , < t2 > and
< t3 > in sequential order. Likewise, two transitions and
a place in sequential order can also be replaced by one
transition.

Fig. 7. Example of HEURISTIC.

WANG ETAL.: EFFICIENT RECOVERYOF MISSING EVENTS 2951

2) Choice Reduction: As illustrated in Fig. 8b, two transi-
tions e1 and e2 can be replaced by one transition ex
with �ex ¼ �e1 and ex� ¼ e1�, if:
1) j � e1j ¼ j � e2j ¼ je1 � j ¼ je2 � j ¼ 1;
2) �e1 ¼ �e2 and e1� ¼ e2�.

Assume that e1 and e2 record the executions < t1 > and
< t2 > , respectively. The execution recorded by ex is the
shorter execution between < t1 > and < t2 > .

3) Parallel Reduction: As shown in Fig. 8c, two places b1
and b2 can be replaced by one place bx with
�bx ¼ �b1 and bx� ¼ b1�, if:
1) j � b1j ¼ j � b2j ¼ jb1 � j ¼ jb2 � j ¼ 1;
2) �b1 ¼ �b2 and b1� ¼ b2�.

Assume that b1 and b2 record the executions < t1 > and
< t2 > , respectively. The execution recorded by bx is the
catenation of < t1 > and < t2 > .

5.2.2 Incorporating with the Algorithm

Given a process specification, we reduce it in preprocessing
till no reduction is further applicable. For any two nodes b
and e, if there is a unique path from b to e during the pro-
cess reduction, we store the minimum execution t recorded
in the path for b and e.

In the HEURISTIC(su; sk) recovery, before applying the
shortest path between b and e in Line 12 in Algorithm 4, we
first check whether there is a minimum execution precom-
puted from b to e. If yes, we can directly use the minimum
execution t recorded during reduction.

Example 14 (Example 13 Continued). Consider the pro-
cess specification in Fig. 7. As shown in Fig. 9a, three
sequential structures surrounded by blue dotted lines can
be reduced and we get the specification in Fig. 9b. Then,
two places b8 and b9 are replaced by one place b10 that
records both the executions of b8 and b9, so that we have
Fig. 9c. Next, we perform sequential reduction again on
transitions D and G, which reduces the specification to
Fig. 9d. The reduction carries on by replacing two

transitions I and Jwith one transition K, where the transi-
tion D recording a longer execution is removed from the
specification as shown in Fig. 9e.

For the gap ð"�; �HÞ in Example 13, there is a unique
path from place bstart to transition H in Fig. 9e during the
reduction. The sequence <ABC> recorded on transition
K is directly used as the minimum execution recovery
between bstart and H.

For any stored minimum execution, there are at most jT j
transitions. Considering the minimum executions between

all places and transitions, the space cost is OðjT j2
 jPjÞ.

5.3 Performance Analysis

We analyze the performance of the heuristic in several typi-
cal classes of process specifications. We show that the algo-
rithm always terminates and guarantees to return the
optimal solution in some of the specifications. (See Section
6.2 for a survey on such classes in practice.)

5.3.1 State Machine

In Example 13, the shortest path recovery may lead to non-
optimal result, due to the existence of parallel flows. Con-
sider a special specification without any parallel structure,
called state machine [21]. We show that the state machine is
the best case for the heuristic using shortest paths.

Definition 11 (State Machine). A state machine is a specifica-
tionNðP; T ;FÞ such that for every e 2 T , j � ej ¼ je � j ¼ 1.

Example 15. Fig. 10a presents an example specification that
is a state machine. As illustrated, each transition e has
only one input place and one output place, i.e., no paralle-
lization of flows. Consequently, the process specification
can be equivalently represented by a DAG with places as
nodes and transitions as edges, as shown in Fig. 10b.

Proposition 8. For a state machine NðP; T ;FÞ, a sequence s
over N and a gap ðsu�; �eÞ in s, HEURISTIC with shortest paths
always returns the minimum recovery of ðsu�; �eÞ.

Fig. 8. Rules of process reduction.

Fig. 9. Example of process reduction between bstart and H:

Fig. 10. Example of state machine.

2952 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 11, NOVEMBER 2016

5.3.2 Well-Formed Specification

We consider another class of specifications that can be
reduced into only one place by applying the reduction rules
in Section 5.2, known as well-formed specifications [24]. We
prove that in such a case, the heuristic with minimum exe-
cutions always return the optimal solution.

Definition 12 (Well-Formed Specification). A well-formed
specification grammar is a context-free grammar G ¼ ðV;S;
R;BÞ, where the non-terminal variable set is V ¼ fB;Eg, the
terminal variable set is S ¼ fb; eg, the production set is
R ¼ fr1; r2; r3; r4; r5; r6g shown in Fig. 11and B is the start
variable. The well-formed specification is the language LðGÞ of
G, where LðGÞ ¼ fW 2 S

�jB)� Wg.

Example 16. Starting from one single place, the process
specification in Fig. 10 can be produced, by applying
the production rules in Fig. 11. First, with rules r1 and
r2, a path on D,F is produced. By applying r4, a choice
structure on A and D is generated. Similarly produc-
tions are applied to generate B,E and C. Finally, the
specification in Fig. 10a is produced and is thus a
well-formed specification.

Production rules r1 and r2 in R can be viewed as inverse
operations of the sequential reduction shown in Fig. 9a.
Similarly, r3 and r4 can be seen as inverse operations of the
choice reduction and parallel reduction, respectively.

Proposition 9. For a well-formed specification NðP; T ;FÞ,
a sequence s over N and a gap ðsu�; �eÞ in s, HEURISTIC

with process reduction returns the minimum recovery
of ðsu�; �eÞ.

5.3.3 Post-Set Equivalence Specification

Next, we discuss a class of process specification named
post-set equivalence specification, where the HEURISTIC algo-
rithm can always return a solution but may not be the opti-
mal one. This kind of specifications, a.k.a. the free-choice
Petri net, is very common in practical specifications since it
does not cause any dead-lock of execution [21].

Definition 13 (Post-Set Equivalence Specification). Let
NðP; T ;FÞ be a specification whose process branching is
N uðPu; T u;F uÞ. We denote pðt�Þ ¼ fpðpÞjp 2 t�g. For every
event e 2 T , if all the transitions t 2 T uðeÞ have the same
pðt�Þ, we call N a post-set equivalence specification, denoted
byN pes.

Example 17. The process specification presented in Fig. 4a
is a post-set equivalence specification. As illustrated in
Fig. 4b, for any event (e.g., G) in the corresponding
branching, we have the same pðG�Þ ¼ pðfp5gÞ ¼
pðfp6gÞ ¼ fbendg:

Proposition 10. For a post-set equivalence specification N pes, a
sequence s over N and a gap ðsu�; �eÞ in s, HEURISTIC always
returns a recovery of ðsu�; �eÞ, if exists.

6 EXPERIMENT

The experimental evaluation compares our proposed
approacheswith the state-of-the-art techniqueAlignment [4].

We employ a real data set collected from a train manufac-
turer. There are 149 process specifications with sizes up to
63 transitions and 79 places. The average in/out degree of
transitions (parallel) is 2.61 (maximum 17). The average in/
out degree of places (choice) is 2.41 (maximum 11). The
event logs are extracted from the company’s ERP systems.
A total of 4,470 event sequences were collected from execu-
tion logs of the specifications. Among them, 3,513 sequences
have at least one event missed. The minimum recovery
gives the indication that at least 47.66 percent events are
missing in these sequences. The maximum event sequence
size is up to 1,000 events due to the loop structures in speci-
fications (for example, task F in Fig. 1a).

Fig. 12 illustrates some samples for the event sequences
(before recovering and after recovering, along with the cor-
responding specification). Specifically, the first sequence
<ABCDEFGH> in Fig. 12b is a complete/correct execution of
component manufacturing, while the other five sequences
have missing events. The proposed method can successfully
recover all the missing events in the sequences from No. 2 to
5, with recovery results <ABCDEFGH>. It is notable that the
missing rate of the fifth sequence is up to 75 percent. Only
the recovery over the last sequence (No. 6 with missing rate
87.5 percent) fails, which returns <ABIH>.

To verify the effectiveness of minimum recovery, we ran-
domly remove events from the complete sequences in the
data set, and apply the recovery methods to recover the
removed events. Let removed be the set of all the sequences
that are removed between two events, and recovered be the
set of the recovered sequences between two events. We use
the F-measure of precision and recall to evaluate the accuracy,

given by precision ¼ jremoved\recoveredj
jrecoveredj ; recall ¼ jremoved\recoveredj

jremovedj ,

Fig. 11. Well-formed specification productions R:

Fig. 12. Example of component manufacturing.

WANG ETAL.: EFFICIENT RECOVERYOF MISSING EVENTS 2953

and F-measure¼ 2
 precision
recall
precisionþrecall. A larger F-measure denotes a

higher recovery accuracy.
Besides accuracy and time performance, we also study

the space cost of branching indexes in exact approaches,
and cached shortest paths/executions for heuristic. The
numbers of transitions and places are quite similar. Below,
we use the size of transitions to evaluate space costs.

6.1 Experiments on Exact Algorithm

We first compare the proposed exact algorithms with Align-
ment [4]. Fig. 13 presents the comparison on accuracies and
times costs by varying missing rates, specification sizes and
sequence sizes.

In Figs. 13a and 13b, we use all the specifications with
sizes varying from 3 to 63, and all the event sequences
with sizes ranging from 3 to 200. Figs. 13c and 13d report
the average F-score/time of all the missing rates from 0.1
to 0.9. In Figs 13e and 13f, we use the specifications with
loop structures (67 of 149, about 45 percent), and the miss-
ing rate is fixed to 0.4. The same settings are applied to the
other figures.

A missing rate, e.g., 0.4, denotes that 40 percent events are
missing in the dataset. That is, only 60 percent events are
retained in sequences. It is worth noting that the recovery
relies on the (60 percent) remaining events to infer themissing
events (w.r.t. process specifications). The higher the missing
rate is (> 0:4), the fewer the events are retained and utilized
in recovery. The corresponding F-scores are lower as well.
Nevertheless, as illustrated in Fig. 13, the F-score of our pro-
posed method is as high as the existing Alignment approach
[4], while the time cost of our method (Local) is significantly
lower. The results verify the major contribution of this study
on improving the recovery efficiency.

For a high missing rate, e.g., 0.9, most events are miss-
ing in a sequence. It is very likely that almost any branch,
in our branch-and-bound based method, could form a
valid recovery and quickly prune the other branches.

Moreover, our Local Optimality technique proposed in Sec-
tion 4.2 further narrows down the candidate branches that
have to be considered. Thereby, the algorithm runs effi-
ciently, even over a large sequence length. On the other
hand, if the missing rate is low, the algorithm needs to try
more branches for seeking valid recoveries that do not con-
flict with existing events. Consequently, the time cost
drops a bit as the increase of missing rates in Fig. 13b. Nev-
ertheless, as illustrated in Fig. 13f, the exponential cost is
still clearly observed in our Local method.

6.2 Experiments on Heuristic

Next, we evaluate the performance of the heuristic, 1) with
Path which fills the gaps with shortest paths, and 2) with
Reduce which uses pre-computed minimum executions by
process reduction in Section 5. The Exact algorithm (Local)
is compared as the baseline.

According to our survey on the real dataset, 103
(69 percent) specifications are state machines, 69 (46 per-
cent) specifications are well-formed specifications, and all
the 149 (100 percent) specifications are post-set equivalence
specifications.

As illustrated in Figs. 14a, 14d, and 14g, the accuracy of
(shortest) Path-based heuristic is a bit lower than that of
Exact, while Reduce with the more accurate minimum exe-
cutions shows better performance (closer to Exact). Indeed,
the recovery distance (number of recovered events) of heu-
ristic is very close to Exact, in Figs. 14b, 14e, and 14h. In par-
ticular, the Reduce-based heuristic shows almost the same
distance as Exact, i.e., with approximation ratio almost 1.
The number of recovered events by Path is much higher on
large specifications than the others due to the existence of
loops. On the other hand, Reduce achieves the lowest time
cost in Figs. 14c, 14f, and 14i, and shows an improvement of
up to two orders of magnitudes compared to Exact.

Fig. 15 reports the space cost (number of cached events)
of shortest Path, minimum execution in process Reduction
for heuristic, and branching net for Exact algorithms. As

Fig. 13. Performance of exact algorithms over real dataset.

2954 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 11, NOVEMBER 2016

introduced in Section 5, the heuristic stores only the shortest
paths or the minimum executions in process reduction
between places and transitions in a specification, instead of
caching the branching net. As shown in Fig. 15, Path/
Reduce methods need only 10-30 percent space of branch-
ing (for Exact algorithm).

In short, the heuristic (with process reduction) shows sig-
nificantly lower time and space costs, compared to the exact
algorithm, without losing much accuracy.

6.3 Experiments on Systematic Errors

Instead of injecting random errors, we consider systematic
errors, where some event is always missing after another.

For instance, the Evaluation event is always missing after
the Outsourcing event of passing tasks to outsourcing com-
panies. Fig. 16 reports the results over various numbers of
systematic errors. Specifications in the experiments have
sizes varying from 11 to 41, and the sizes of event sequences
are between 12 and 51.

The results are generally similar to those with random
errors, in Figs. 13 and 14 under various missing rates. First,
it is not surprising that the accuracy in Fig. 16a drops with
the increase of systematic error number. All the approaches
have similar accuracy, which is also observed in Figs. 13a
and 14a w.r.t. random errors. Moreover, our proposed Local
algorithm with both indexing and pruning shows signifi-
cantly lower time cost compared to the existing Alignment.
The heuristic algorithms Reduce and Path can further
improve the time performance, as illustrated in Fig. 16b.

7 RELATED WORK

Petri net are directly employed in a number of real applica-
tions. For example, YAWL, Yet Another Workflow Lan-
guage based on Petri nets, is used by the European Defence
Agency (EDA) for modelling and implementing personnel
management processes.2 Moreover, Petri net is a general
notation for modeling workflows and has a well-developed

Fig. 14. Performance of heuristic over real dataset.

Fig. 15. Space costs over real dataset. 2. www.yawlfoundation.org/pages/impact/uptake.html

WANG ETAL.: EFFICIENT RECOVERYOF MISSING EVENTS 2955

www.yawlfoundation.org/pages/impact/uptake.html

mathematical theory for process analysis. Due to such a
generality, other notations of industry standards, such as
BPEL, BPMN and EPCs, are often translated to Petri nets, in
order to perform advanced analysis and application [14].
For example, van der Aalst et al. [22] study the conformance
checking for Web services, which are specified by Business
Process Execution Language (BPEL, another process specifi-
cation language). BPEL process definitions are translated
into Petri nets and Petri net-based conformance checking
techniques are applied. Therefore, in this study, we also
employ Petri nets as process specifications in conformance
checking, to inspect missing events.

In incomplete data management, previous studies focus
on concise representation of possible recoveries [1]. Owing
to the distinctness between integrity constraints and process
specifications, techniques for imputing relational data [19]
are not directly applicable to the event data in this study.

Event recovery works like a reverse engineering of the
event summarization task. As presented in [12] and [9], the
event summarization seeks concise summaries of event
sequences. In contrast, the recovery performs in the other
direction, i.e., filling the detailed events back to the (summa-
rized) sequences. However, it is not suggested to perform
the recovery over the event summaries. Instead, one may
apply the recovery directly to the original event sequences,
to fill potentially missing events, so that the event summari-
zation over the recovered event sequences could be more
precise. In this sense, event recovery is complementary to
the event summarization task.

8 CONCLUSION

In this paper, we study the problem of finding minimum
recoveries for missing events. The problem is first found to
be NP-hard. To efficiently find the optimal recovery, we pro-
pose a backtracking idea to reduce the redundant sequences
with respect to parallel events. A branching framework with
branching index is then introduced, where each branch can
apply the backtracking directly. Moreover, the local optimal
method can identify groups of transitions that always share
the same branching and thus only one of them needs to be
computed. Finally, we propose efficient heuristic with pre-
computed path/execution. The experiment results demon-
strate that the minimum recovery paradigm is able to effec-
tively and efficiently retrieve themissing events.

ACKNOWLEDGMENTS

This work is supported in part by the Tsinghua University
Initiative Scientific Research Program; Tsinghua National

Laboratory Special Fund for Big Data Science and Technol-
ogy; National Key Technology Support Program No.
2015BAH14F02; China NSFC under Grants 61572272,
61325008, 61370055 and 61202008. A preliminary/confer-
ence version of this paper appears in [25]. Shaoxu Song is a
corresponding author.

REFERENCES

[1] L. Antova, C. Koch, and D. Olteanu, “1010
6
worlds and beyond:

Efficient representation and processing of incomplete
information,” in Proc. IEEE 23rd Int. Conf. Data Eng., 2007,
pp. 606–615.

[2] Z. Bao, S. C. Boulakia, S. B. Davidson, A. Eyal, and S. Khanna,
“Differencing provenance in scientific workflows,” in Proc. IEEE
25th Int. Conf. Data Eng., 2009, pp. 808–819.

[3] P. Bohannon, M. Flaster, W. Fan, and R. Rastogi, “A cost-based
model and effective heuristic for repairing constraints by value
modification,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2005, pp. 143–154.

[4] M. de Leoni, F. M. Maggi, and W. M. P. van der Aalst, “Aligning
event logs and declarative process models for conformance
checking,” in Proc. 10th Int. Conf. Business Process Manage., 2012,
pp. 82–97.

[5] L. Ding, S. Chen, E. A. Rundensteiner, J. Tatemura, W.-P. Hsiung,
and K. S. Candan, “Runtime semantic query optimization for
event stream processing,” in Proc. IEEE 24th Int. Conf. Data Eng.,
2008, pp. 676–685.

[6] J. Engelfriet, “Branching processes of Petri nets,” Acta Inf., vol. 28,
no. 6, pp. 575–591, 1991.

[7] D. Fahland, et al., “Instantaneous soundness checking of indus-
trial business process models,” in Proc. 7th Int. Conf. Business Pro-
cess Manage., 2009, pp. 278–293.

[8] T. Heinis and G. Alonso, “Efficient lineage tracking for scientific
workflows,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2008,
pp. 1007–1018.

[9] Y. Jiang, C. Perng, and T. Li, “Natural event summarization. in
Proc. 20th ACM Int. Conf. Inf. Knowl. Manage., 2011, pp. 765–774.

[10] B. Kang, D. Kim, and S. Kang, “Periodic performance prediction
for real-time business process monitoring,” Ind. Manage. Data
Syst., vol. 112, no. 1, pp. 4–23, 2011.

[11] R. M. Karp, “Reducibility among combinatorial problems,” in
Complexity of Computer Computations, R. E. Miller and J. W.
Thatcher, Eds. New York, NY, USA: Plenum, 1972, pp. 85–103.

[12] J. Kiernan and E. Terzi, “Constructing comprehensive summaries
of large event sequences,” in Proc. 14th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2008, pp. 417–425.

[13] Y. Kobayashi, A. Kishimoto, and O. Watanabe, “Evaluations of
hash distributed a* in optimal sequence alignment,” in Proc. 22nd
Int. Joint Conf. Artificial Intell., 2011, pp. 584–590.

[14] N. Lohmann, E. Verbeek, and R. M. Dijkman, “Petri net transfor-
mations for business processes-a survey,” in Transactions on Petri
Nets and Other Models of Concurrency II. Berlin, Germany: Springer,
2009, pp. 46–63.

[15] H. Mannila, H. Toivonen, and A. I. Verkamo, “Discovery of fre-
quent episodes in event sequences,”Data Mining Knowl. Discovery,
vol. 1, no. 3, pp. 259–289, 1997.

[16] K. L. McMillan, “A technique of state space search based on
unfolding,” Formal Methods Syst. Des., vol. 6, no. 1, pp. 45–65,
1995.

Fig. 16. Performance over various numbers of systematic errors.

2956 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 11, NOVEMBER 2016

[17] H. R. M. Nezhad, R. Saint-Paul, F. Casati, and B. Benatallah,
“Event correlation for process discovery from web service interac-
tion logs,” Int. J. Very Large Data Bases, vol. 20, no. 3, pp. 417–444,
2011.

[18] S. Song, H. Cheng, J. X. Yu, and L. Chen, “Repairing vertex labels
under neighborhood constraints. Proc. VLDB Endowment, vol. 7,
no. 11, pp. 987–998, 2014.

[19] S. Song, A. Zhang, L. Chen, and J. Wang, “Enriching data imputa-
tion with extensive similarity neighbors,” Proc. VLDB Endowment,
vol. 8, no. 11, pp. 1286–1297, 2015.

[20] P. Sun, Z. Liu, S. B. Davidson, and Y. Chen, “Detecting and resolv-
ing unsound workflow views for correct provenance analysis,” in
Proc. ACM SIGMOD Int. Conf. Manage. data, 2009, pp. 549–562.

[21] W. M. P. van der Aalst, “Workflow verification: Finding control-
flow errors using Petri-net-based techniques,” in Business Process
Management. Berlin, Germany: Springer, 2000, pp. 161–183.

[22] W. M. P. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, and
E. Verbeek, “Conformance checking of service behavior,” ACM
Trans. Internet Techn., vol. 8, no. 3, 2008, Art. no. 13.

[23] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski,
and A. P. Barros, “Workflow patterns,” Distrib. Parallel Databases,
vol. 14, no. 1, pp. 5–51, 2003.

[24] W. vanderAalst and K. vanHee, Workflow Management: Models,
Methods, and Systems. Cambridge, MA, USA: MIT Press, 2004.

[25] J. Wang, S. Song, X. Zhu, and X. Lin, “Efficient recovery of missing
events,” Proc. VLDB Endowment, vol. 6, no. 10, pp. 841–852, 2013.

[26] X. Yan, P. S. Yu, and J. Han, “Graph indexing: A frequent
structure-based approach,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2004, pp. 335–346.

[27] X. Zhu, S. Song, X. Lian, J. Wang, and L. Zou, “Matching heteroge-
neous event data,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2014, pp. 1211–1222.

[28] X. Zhu, S. Song, J. Wang, P. S. Yu, and J. Sun, “Matching heteroge-
neous events with patterns. in Proc. IEEE 30th Int. Conf. Data Eng.,
2014, pp. 376–387.

Jianmin Wang is a professor in the School of
Software, Tsinghua University. His current
research interests include unstructured data
management, workflow and BPM technology,
benchmark for database system, information sys-
tem security, and large-scale data analytics.

Shaoxu Song is an assistant professor in the
School of Software, Tsinghua University, Beijing,
China. His research interests include data quality
and complex event processing.

Xiaochen Zhu is currently working toward the
PhD degree in the School of Software, Tsinghua
University, Beijing, China. His current research
interests include event data management and
schema matching.

Xuemin Lin is a professor in the School of Com-
puter Science and Engineering, University of
New South Wales. He has been the head of the
Database Research Group, The University of
New South Wales (UNSW), Australia, since
2002. He is a fellow of the IEEE.

Jiaguang Sun is a professor with Tsinghua Uni-
versity. He is dedicated to teaching and R&D
activities in computer graphics, computer-aided
design, formal verification of software, and sys-
tem architecture. He is currently the head of the
School of Information Science and Technology,
Tsinghua University.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

WANG ETAL.: EFFICIENT RECOVERYOF MISSING EVENTS 2957

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

