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ABSTRACT
Errors are prevalent in data sequences, such as GPS trajec-
tories or sensor readings. Existing methods on cleaning se-
quential data employ a constraint on value changing speeds
and perform constraint-based repairing. While such speed
constraints are effective in identifying large spike errors, the
small errors that do not significantly deviate from the truth
and indeed satisfy the speed constraints can hardly be iden-
tified and repaired. To handle such small errors, in this pa-
per, we propose a statistical based cleaning method. Rather
than declaring a broad constraint of max/min speeds, we
model the probability distribution of speed changes. The
repairing problem is thus to maximize the likelihood of the
sequence w.r.t. the probability of speed changes. We for-
malize the likelihood-based cleaning problem, show its np-
hardness, devise exact algorithms, and propose several ap-
proximate/heuristic methods to trade off effectiveness for
efficiency. Experiments on real data sets (in various appli-
cations) demonstrate the superiority of our proposal.

1. INTRODUCTION
Data sequences are often found with dirty or imprecise

values, such as GPS trajectories or sensor reading sequences
[8]. According to the survey [10], even the data of stock
prices could be dirty. For instance, the price of SALVEPAR
(SY) is misused as the price of SYBASE, which is denoted
by SY as well in some sources. (See more examples below.)

To clean dirty data, constraint-based repairing is often
employed [1]. Existing study [14] on sequential data cleaning
considers the constraints on speeds of value changes, namely
speed constraints. For example, the speed constraints on
fuel meter values state that the fuel consumption of a crane
should not be negative and not exceed 40 liters per hour.
Constraint-based cleaning identifies the violations to such
speed constraints and (minimally) modify the values so that
the repaired results satisfy the specified speed constraints.

While speed constraints can successfully identify large spike
errors (see examples below), the constraint-based cleaning
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repairs the dirty point to a value w.r.t. maximum/minimum
speeds. As indicated in [14], the repair strategy of adjusting
the value to the maximum/minimum allowed is made refer-
ring to the minimum change principle in data repairing [1].
The rationale is that people or systems try to minimize mis-
takes in practice. This minimum change principle is widely
considered in repairing relational data [1, 3]. As the first ap-
plication of the minimum change principle to sequential data
[14], it unfortunately leads to the aforesaid repair strategy
of choosing the maximum/minimum allowable values.

An alternative approach is to consider the average of the
previous values as a repair, a.k.a. smoothing methods [2, 6].
For example, the simple moving average (SMA) [2] smooths
time series data by computing the unweighted mean of the
last k points. Instead of weighting equally, the exponentially
weighted moving average (EWMA) [6] assigns exponentially
decreasing weights over time. As indicated in [14], the prob-
lem of the smoothing methods is over-repairing, i.e., almost
all the data points are modified, most of which are indeed
correct originally and do not need repair.

Moreover, the speed constraints fail to identify the small
errors that do not significantly deviate from the original val-
ues, and indeed satisfy the speed constraints. The small
errors are particularly important in some applications. For
instance, a deviation of 1m in GPS readings is prevalent and
small relative to 10m large spikes. Such a small error (1m),
however, is critical in car localization for automatic driv-
ing. Moreover, aggregating a large number of small errors,
data mining results could be seriously misled, e.g., unable to
form meaningful clusters over imprecise GPS readings with
many small errors [13]. Our results in Section 6.3 also show
that repairing small errors could improve the accuracy of
prediction application.

Instead of considering the aforesaid max/min speeds, in
this paper, we propose a novel statistical-based cleaning by
introducing the likelihoods w.r.t. various speeds. Let us first
illustrate a motivation example below.

Example 1. Figure 1 presents a sequence of stock prices.
Two dirty values appear at time point 1547 and 1569, respec-
tively, in the observed sequence (in black, the corresponding
true values are presented in blue).

Existing speed constraint-based cleaning (SCREEN) [14]
employs the maximum and minimum speed constraints, de-
noting the largest rates of allowed (stock price) value increase
and decrease, respectively.

1) A violation to the speed constraints is detected at time
1547, whose value decrease exceeds the minimum speed con-
straint. The value of time point 1547 is thus repaired to a
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Figure 1: Speed constraint-based cleaning
(SCREEN) can identify the large spike error
but repair it w.r.t. the max/min speed constraints.
The small error that does not significantly deviate
the original values cannot be identified.
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Figure 2: Probability distributions of (a) speeds and
(b) speed changes, on a real GPS dataset presented
in Section 6

new value w.r.t. this minimum speed constraint. Since the
max/min speeds may not be reached all the time in prac-
tice, the repairs w.r.t. the max/min speed constraints could
be away from the truth.

2) Moreover, the small error at time point 1569 indeed
satisfies the max/min speed constraints, and thus is not de-
tected as violations and not repaired.

By considering likelihoods w.r.t. various speeds (see de-
tailed definition and discussion below), our proposed method
computes a most likely repair , instead of a repair restricted
to the max/min speed constraints.

Defining the likelihood of a repair w.r.t. various speeds
is non-trivial. It is not rational by simply measuring the
probabilities of speeds. The reason is that max/min speeds
may also appear with considerably high probability. For
example, stock prices increase in daily limit (max speed)
in a period, or a car drives in its max speed in highway.
As shown in Figure 2(a), the speed probabilities are almost
equal, e.g., from 3 to 7. The probabilities of speeds may not
be able to distinguish the likelihoods of various repairs.

Intuitively, while speeds capture the change of values in
consecutive data points, we may also consider the relation-
ships of speeds between data points in a sequence, i.e., mod-
eling the change of speeds. The rationale behind is that the
change of speeds in consecutive data points (roughly inter-
preted as acceleration) should not be significant. As shown
in Figure 2(b), 90% speed changes are within [-1.2, 1.2].

Enlightened by the aforesaid discipline of non-significant
speed changes, we employ the probability distribution of
speed changes, and calculate the likelihood of a sequence

w.r.t. the speed changes (see example in Figure 4 in Exam-
ple 2 below). The cleaning problem is thus to find a repaired
sequence with larger speed change likelihood.

Contributions
Our major contributions in this paper are summarized as:

1) We formalize the problem of repairing sequential data
with the maximum likelihood (Problem 1), show its np-
hardness (Theorem 1), and introduce a pseudo-polynomial
time algorithm for computing the optimal solution (Propo-
sition 2). Efficient pruning is also devised.

2) We devise a quadratic-time constant-factor approxima-
tion algorithm (Proposition 5), again together with efficient
pruning. To further accelerate the computing, a linear-time
heuristic is proposed (Proposition 4).

3) We approximate the discrete probability distribution of
speed changes by a continuous probability distribution, to
support even faster computing. With a proper continuous
probability distribution, we show that the maximum likeli-
hood repairing problem is indeed transformed to a quadratic
programming problem (Proposition 8). Efficient solvers and
simple fast greedy heuristics are directly applicable.

4) We report an extensive experimental evaluation on three
real datasets in different scenarios: i) To evaluate the per-
formance over various errors, the first dataset STOCK is
originally clean and injected with various errors. ii) To eval-
uate real errors, the second dataset collects GPS trajecto-
ries with errors naturally embedded, and the corresponding
truth manually labelled. iii) To apply the methods in prac-
tice, the third experiment performs on a real dataset EN-
GINE with both unknown errors and unknown truth. The
performance is evaluated on an application over the data
with and without repairing. The results demonstrate that
our proposal achieves better performance in both repair ac-
curacy and application accuracy.

The remainder of this paper is organized as follows. We
first introduce the preliminaries and problem statement in
Section 2. The exact and approximate solutions are then
presented in Sections 3 and 4, respectively. Section 5 de-
velops the repairing over the continuous probability distri-
bution. The experimental evaluation is reported in Section
6. Finally, we discuss the related studies in Section 7, and
conclude the paper in Section 8. Table 3 in the Appendix
lists the notations frequently used in this paper.

2. PROBLEM STATEMENT

2.1 Preliminaries
Consider a sequence x = x [1], x [2], . . . , where each x [i] is

the value of the i-th data point from a finite domain. For
brevity, we write x [i] as xi, and xi...j denoting the subse-
quence xi, xi+1, . . . xj of x .

Each xi is associated with a timestamp ti, and an error
range θi. The error range, e.g., specified by engineering tol-
erance, denotes that the true value x ′i of i-th data point may
be in the range of [xi − θi, xi + θi], denoted by x ′i ∈ [xi ± θi].
While some data sequences may have individual θi for each
data point i, e.g., indicated as “accuracy” in GPS readings,
others may specify a single θmax denoting the maximum er-
ror range for all the data points in the sequence, such as in
sensor readings.

Referring to [14], the speed is defined on the change of
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value, e.g., vi−1,i =
xi−xi−1

ti−ti−1
from data point i− 1 to i. Let

ui = vi,i+1 − vi−1,i =
xi+1 − xi
ti+1 − ti

− xi − xi−1

ti − ti−1
(1)

denote the change of speed before and after the i-th point.
The likelihood L(x ) of a sequence x w.r.t. speed changes is

L(x ) =

n−1∑
i=2

L(ui) =

n−1∑
i=2

logP (ui), (2)

where P (ui) denotes the probability of speed change ui, and
L(ui) denotes the corresponding (log) likelihood. The em-
pirical probability distribution P on speed changes can be
estimated simply by statistics on the sequence.

Example 2 (Probability distribution and likelihood compu-
tation). Consider a sequence x = {11, 12, 15, 14, 15, 15, 17},
with timestamps t = {1, 2, 3, 4, 5, 6, 7}. Figure 3(a) illus-
trates the data points (in black) and Figure 4 shows the cor-
responding probability distribution of speed changes.

The probability of speed change on the 3rd point (x3) is

P (u3) = P (
14− 15

4− 3
− 15− 12

3− 2
) = P (−4) = 0.1,

with likelihood L(u3) = log(0.1) = −1.2. By similarly com-
puting the likelihoods on other data points, we have the like-
lihood of the sequence x , i.e., L(x ) = log(0.25) + log(0.1) +
log(0.25) + log(0.2) + log(0.25) = −8.1.

Indeed, the 3rd data point is dirty with error value x3 = 15.
The corresponding truth value should be x ′3 = 13 instead.
With this truth value, the likelihood is L(x ′) = 3 ∗ log(0.3) +
log(0.2)+log(0.25) = −6.6, which is higher than L(x ) of the
aforesaid x with dirty value.

Referring to formula (2), the likelihood L(x ) is computed
by the summation over the probabilities of speed changes
P (ui). Consider the probability distribution of speed changes
in Figure 4 for Example 2. The maximum likelihood will be
reached when the probability of speed change P (ui) is max-
imized for each ui, i.e., having speed change ui ∈ (−1, 1]
with P (ui) = 0.3. Consequently, the maximum likelihood is
L(x∗) = 5 ∗ log(0.3) ≈ −6.0.

2.2 Repair Problem
Following the intuition (presented in Figure 2 in the intro-

duction) that speeds should not change significantly before
and after a data point, we propose to find a repaired se-
quence x ′ of x such that the likelihood w.r.t. speed changes
increases. On the other hand, referring to the minimum
change principle in data repairing [1], a repaired sequence
x ′ close to x is preferred. Therefore, as in [14], we also con-
sider the repair cost from x to x ′

∆(x , x ′) =

n∑
i=1

|x ′i − xi|.

Following the same line of maximal likelihood repairing
over relational data [15], we describe the problem of likelihood-
based repairing over sequential data as follows. (See Section
7 for a discussion on the difference between likelihood-based
relational and sequential data repairing.)

Problem 1. Given a finite sequence x of n data points and a
repair cost budget δ, the maximum likelihood repair problem
is to find a repair x ′ such that ∆(x , x ′) ≤ δ and the likelihood
L(x ′) is maximized.

Figure 3: Possible repairs of an example sequence
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Figure 4: Probability distribution of speed changes

It is worth noting that the bound δ on repair cost is often
necessary to avoid over-repaired results (see example below).
As illustrated in Section 6, such a budget threshold could
be practically determined by observing the likelihoods of
returned repair results.

We formalize the repair problem as follows.

max

n−1∑
i=2

logP

(
x ′i+1 − x ′i
ti+1 − ti

− x ′i − x ′i−1

ti − ti−1

)
(3)

s.t.

n∑
i=1

|x ′i − xi| ≤ δ

x ′i ∈ [xi ± θi] 1 ≤ i ≤ n

Example 3 (Repair and cost). Consider the sequence in
Figure 1, a real segment from the STOCK1 dataset, with
probability distribution on speed changes in Figure 9(a). The
error range is θi = 12 for all the data points i. That is, a
value in the range of [xi − 12, xi + 12], simply denoted by
[xi ± 12], could be considered as a repair x ′i of xi.

Given a small repair cost budget, e.g., δ = 5, referring to
the optimization problem in formula (3), a repair x ′ will be
returned, with four points changed at time 1553, 1561, 1569
and 1573, as shown in Figure 5. It has repair cost ∆(x , x ′) =
|x1553−x ′1553|+|x1561−x ′1561|+|x1569−x ′1569|+|x1573−x ′1573| =
5 ≤ δ, with the maximized likelihood L(x ′) = −50.1. It is
notable that the large spike at time 1547 could not be repaired
under this small budget.

On the other hand, if the repair cost budget is too large,
e.g., δ = 35, a repair x ′ with a large number of modi-
fied points is returned. The corresponding repair cost is
∆(x , x ′) = 33 ≤ δ, with the maximized likelihood L(x ′) =
−27.0.

Intuitively, we would consider a “proper” setting of re-
pair cost budget, e.g., δ = 15, which is neither too small
1http://finance.yahoo.com/q/hp?s=AIP.L+Historical+
Prices
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Figure 6: Repair result (a) error and (b) likelihood
under various repair cost budgets δ

(δ = 5 with data points barely repaired and low returned
likelihood) nor too large (δ = 35 with data points over re-
paired but no significant likelihood improvement). Follow-
ing this guideline, a good δ could be practically chosen by
observing the repair likelihoods returned together with the
repair results. For instance, the likelihood does not signif-
icantly increase by setting δ from 15 to 20 in Figure 6(b).
That is, with δ in the range from 15 to 20, the data is nei-
ther insufficiently repaired (with a low likelihood) nor over-
repaired (with too large repair cost budget but no much like-
lihood gain). Thereby, the corresponding repair result error
(see Section 6.1 for formal definition) is low in Figure 6(a).
(Similar results are also observed in other real datasets in
Section 6, which verify again the guideline on selecting a
proper repair cost budget δ.)

3. EXACT SOLUTION
In this section, we first prove the np-hardness of the max-

imum likelihood repair problem, which motivates us to de-
vise a pseudo-polynomial time algorithm based on dynamic
programming in Section 3.2.

3.1 Hardness
Consider the sequence x = {11, 12, 15, 14, 15, 15, 17} in

Example 2. Suppose that the error range is θi = 3 for all
the data points i. That is, for each point xi, there are 7
potential modifications, x ′i = {xi − 3, . . . , xi + 3}. A large
number of 77 combinations could be considered as possible
repairs. In particular, the repairing of x ′i is affected by the
choices of x ′i−1 and x ′i+1 w.r.t. the speed change probability
(in Figure 4). Intuitively, we can build a reduction from the
0/1 knapsack problem, by modeling the item values as the
speed change probabilities, and thus show the hardness of
our repairing problem.

Figure 7: Recurrence equation

Theorem 1. Given a sequence x with error range θ, repair
cost budget δ, and likelihood threshold `, the problem is np-
complete to determine whether exists a repair x ′ of x such
that ∆(x , x ′) ≤ δ and L(x ′) ≥ `.

3.2 Exact Algorithm
Referring to the aforesaid hardness on the maximum like-

lihood repair problem, we introduce a pseudo-polynomial
time algorithm based on dynamic programming. Let us first
illustrate the recurrence equation, upon which the dynamic
programming algorithm naturally conducts. The correctness
is also analyzed in the proof of Proposition 2.

3.2.1 Recurrence Equation
Intuitively, referring to formulas (1) and (2), the speed

change and the corresponding likelihood on a point i are
determined together with the preceding point i− 1 and the
successive point i+ 1. As illustrated in Figure 7, by consid-
ering one additional data point, say i, in the recurrence of
dynamic programming, a new likelihood L(u ′i−1) defined on
data point i − 1 is introduced. Thereby, to find an optimal
solution, we need to consider possible x ′i−2, x

′
i−1, x

′
i values in

each recurrence.
Let x ′1...i be a repair of the subsequence x1...i with the max-

imum likelihood L(x ′1...i), whose cost is ∆(x ′1...i, x1...i) = ci,
and the last two values of x ′1...i are x ′i−1, x

′
i , respectively. We

denote this maximum likelihood L(x ′1...i) by D(i, ci, x
′
i−1, x

′
i ).

The recurrence computation is as follows

D(i, ci, x
′
i−1, x

′
i ) (4)

= max
x ′i−2∈[xi−2±θi−2]

D(i− 1, ci−1, x
′
i−2, x

′
i−1) + L(u ′i−1)

where ci−1 = ci−∆(x ′i , xi), and u ′i−1 =
x ′i−x ′i−1

ti−ti−1
− x ′i−1−x ′i−2

ti−1−ti−2
.

Initially, for i = 2, we have

D(2, c2, x
′
1, x
′
2) = 0,∀x ′1 ∈ [x1 ± θ1], ∀x ′2 ∈ [x2 ± θ2].

For each i ∈ {2, . . . , n}, ci ∈ {0, . . . , δ}, x ′i−1 ∈ [xi−1 ±
θi−1], x ′i ∈ [xi ± θi], we compute D(i, ci, x

′
i−1, x

′
i ) according

to the aforesaid recurrence. Algorithm 1 presents the pro-
cedure of this recurrence computation.

Let D(n, cn, x
′
n−1, x

′
n) be the maximum likelihood, among

all cn, x
′
n−1, x

′
n. By retracing all D(i, ci, x

′
i−1, x

′
i ) leading to

this maximum likelihood, an optimal solution x ′ is obtained.

Example 4 (Recurrence computing). Consider again the
sequence x = {11, 12, 15, 14, 15, 15, 17} in Example 2, with
probability distribution on speed changes in Figure 4. Sup-
pose that the repair cost budget is δ = 3.

To perform the recurrence on D(i, ci, x
′
i−1, x

′
i ) in formula

(4), we need to maintain a 4-dimension structure. Table 1
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Algorithm 1: DP(x , θ, δ)

Data: data sequence x , error range θ, repair budget δ
Result: the maximum likelihood of the optimal repair

1 initialize D(2, c2, x
′
1, x
′
2)← 0 for each c2, x

′
1, x
′
2;

2 for i← 3 to n do
3 for ci ← 0 to δ do
4 foreach x ′i ∈ [xi ± θi] do
5 ci−1 ← ci −∆(x ′i , xi);
6 foreach x ′i−1 ∈ [xi−1 ± θi−1] do
7 D(i, ci, x

′
i−1, x

′
i )← −∞;

8 foreach x ′i−2 ∈ [xi−2 ± θi−2] do
9 if D(i− 1, ci−1, x

′
i−2, x

′
i−1) 6= −∞

then
10 l ←

D(i−1, ci−1, x
′
i−2, x

′
i−1) + L(u ′i−1);

11 if l > D(i, ci, x
′
i−1, x

′
i ) then

12 D(i, ci, x
′
i−1, x

′
i )← l ;

13 if D(i, c, x ′i−1, x
′
i ) + Lu(xi−1...n) ≤ Lw(x )

then
14 D(i, c, x ′i−1, x

′
i )← −∞;

15 return maxcn,x
′
n−1,x

′
n

D(n, cn, x
′
n−1, x

′
n)

illustrates two dimensions on i and c, and omits the other
two dimensions of x ′i , x

′
i−1 for simplicity. Each cell, e.g., for

i = 3, ci = 2, presents one of the D(3, 2, x ′2, x
′
3).

The recurrence performs from i = 3 to i = n = 7, with
ci ∈ [0, 3] (as δ = 3). The cell of i = 7, ci = 3 obtains
a D(7, 3, x ′6, x

′
7) = −6.0. with the maximum likelihood. By

retracing all D(i, ci, x
′
i−1, x

′
i ) leading to this maximum like-

lihood, an optimal solution x ′ = {11, 12, 13, 14, 15, 16, 17} is
obtained. It is exactly the solution x ′ under δ = 3 in Exam-
ple 3, with likelihood L(x ′) = −6.0.

Intuitively, to show the correctness of Algorithm 1, it is
sufficient to illustrate that the recurrence equation in for-
mula (4) in dynamic programming always calculates the
maximum likelihood in each step.

Proposition 2. Algorithm 1 computes the optimal solution
in O(nθ3maxδ) time with O(nθ2maxδ) space.

3.2.2 Pruning with Likelihood Bounds
Intuitively, D(i, ci, x

′
i−1, x

′
i ) in each recurrence obtain the

optimal results on the subsequence x1...i. If we can obtain
an upper bound of likelihood for the remaining subsequence
xi+1...n, efficient pruning on subsequent recurrence involving
this D(i, ci, x

′
i−1, x

′
i ) enables.

Given a subsequence xi...n, we can quickly compute an
upper bound of maximum likelihood for possible repair x ′i...n

Lu(xi...n) = (n− i− 1) · log pmax ≥ L(x ′i...n) =

n−1∑
j=i+1

L(x ′j),

where pmax is the maximum probability of a speed change.
Let x ′′ be a currently known repair with ∆(x , x ′′) ≤ δ,

e.g., efficiently computed by the simple greedy method below
(introduced in Section 5.2), or simply x ′′ = x . We use the
likelihood L(x ′′) as the lower bound Lw(x ) of the maximum
likelihood of the optimal solution x∗

Lw(x ) = L(x ′′) ≤ L(x∗).

Table 1: Example of recurrence

i\ci 0 1 2 3 Lui

1

2 x ′1=11,
x ′2 = 12

Lu2=-6.0

3 x ′′2 =12,
x ′′3 =15,
D=-1.4

x ′2=12,
x ′3=13,
D=-1.2

Lu3=-4.8

4 x ′′3 =15,
x ′′4 =14,
D=-3.7

x ′3=13,
x ′4=14,
D=-2.4

Lu4=-3.6

5 x ′′4 =14,
x ′′5 =16,
D=-6.0

x ′4=14,
x ′5=15,
D=-3.6

Lu5=-2.4

6 x ′5=15,
x ′6=16,
D=-4.8

Lu6=-1.2

7 x ′6=16,
x ′7=17,
D=-6.0

Proposition 3. The recurrence on D(i, ci, x
′
i−1, x

′
i ) could

be pruned, if

D(i, ci, x
′
i−1, x

′
i ) + Lu(xi−1...n) ≤ Lw(x ).

As Line 14 shown in Algorithm 1, we set D(i, ci, x
′
i−1, x

′
i )←

−∞ to stop the subsequent recurrence on D(i, ci, x
′
i−1, x

′
i ).

Example 5 (Pruning with likelihood). Let us still consider
the sequence x in Example 4. According to the probability
distribution in Figure 4, we have pmax = log(0.3) = −1.2.
For each level i, an upper bound of

Lu(xi−1...n) = −1.2 ∗ (7− i)

is computed, denoted by the column Lui in Table 1. For in-
stance, for i = 2, we have Lu2 = Lu(x1...7) = −6.0. It denotes
that any repair on the (sub)sequence x1...7 will not have like-
lihood greater than −6.0.

Moreover, we use the likelihood of the input sequence x as
the lower bound Lw(x ) = L(x ) = −8.1, which is calculated
in Example 2.

Consider the cell of i = 5, ci = 1 (in red in Table 1) with
D(5, 1, 14, 16) = −6.0. According to Lu5 = Lu(x4...7) = −2.4,
we have D(5, 1, 14, 16) + Lu(x4...7) = −6.0 − 2.4 = −8.4 <
Lw(x) = −8.1. It indicates that, given the current repair
x ′′1...4 = {11, 12, 15, 14} on the processed subsequence x1...4,
no matter how the remaining x5...7 is repaired, the generated
result x ′′ will always have likelihood L(x ′′) lower than the
lower bound, and thus cannot be the optimal solution. Any
subsequent recurrence on this D(5, 1, 14, 16) could be pruned.

4. APPROXIMATE SOLUTION
As introduced at the beginning of Section 3, Algorithm 1

is pseudo-polynomial, whose complexity is determined by δ
the budget of repair cost. Depending on the granularity of
data values, there may be a huge number of possible repair
costs to enumerate within δ. For instance, in bad cases, the
considered repair cost budget δ could be as high as δ = 4500
in Figure 14 on STOCK data, or a δ = 3500 in Figure 17
for ENGINE data.
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To support efficient computing, our first method (in Sec-
tion 4.1) is to map the space of possible repair cost values
in [0, δ] to a constant space. While this simple approxima-
tion makes Algorithm 1 runs in linear time, no guarantee on
approximation performance is obtained.

To trade off the complexity for approximation performance
guarantee, we devise a quadratic-time constant-factor ap-
proximation algorithm (in Section 4.2). The intuition is,
rather than approximating repair cost, we approximate the
likelihood instead.

4.1 Linear Time Heuristics
We map the space of granted repair cost from [0, δ] to

a constant space [0, d ], where d is an integer constant, by
introducing an approximate repair cost function. Let

H =
δ

d
.

We define

∆′(x ′i , xi) = d |x
′
i − xi|

H
e. (5)

With this approximate repair cost function, instead of all
ci ∈ {0, . . . , δ}, we calculate only D(i, c′i, x

′
i−1, x

′
i ) for

c′i ∈ {H · d
ci
H
e ≤ δ | ci ∈ {0, . . . , δ}}, (6)

with a total number d + 1 of possible cost values.
Moreover, instead of considering all candidates x ′i ∈ [xi ±

θi], we only need to consider candidates in

x ′i ∈ {xi ± (H · j) | j ∈ [−b θi
H
c, b θi

H
c]} (7)

with a total number 2 · b θi
H
c+ 1 of candidates. The reason is

that all the candidates x ′i ∈ [H · j,H · j + H ) share the same
approximate repair cost j, and thus are not considered.

Example 6 (Linear time computation). Consider the se-
quence x in Example 2, with error range θi = 3 for all data
points i. Given a repair cost budget δ = 4 and d = 2, we
have H = δ

d
= 2.

According to formula (6), we calculate D(i, c′i, x
′
i−1, x

′
i )

only for the repair cost values c′i ∈ {0, 2, 4} instead of all
possible repair costs ci ∈ {0, 1, 2, 3, 4}.

In addition, the number of candidates is also reduced. For
instance, for x3 = 15 with θ3 = 3, the considered candidates
in the exact algorithm are x ′3 ∈ {12, 13, 14, 15, 16, 17, 18}. In
the approximate computing, according to formula (7), only
the candidates x ′3 ∈ {13, 15, 17} are considered instead.

Proposition 4. Algorithm 1 with approximate repair cost
∆′ in formula (5) runs in O(nd4) time with O(nd3) space,
where d is a fixed constant.

While this simple approximation performs well in practice
(as shown in Section 6 of experiments), unfortunately, we
did not obtain a theoretical bound of approximation ratio
compared to the optimal solution.

4.2 Constant-Factor Approximation
Intuitively, rather than approximating repair cost, by di-

rectly approximating the likelihood, it might be more practi-
cal to keep the approximate likelihood bounded compared to
the exact one. We present below a quadratic-time (for fixed
error range θ), constant-factor approximation algorithm, by

Figure 8: Space of likelihood values considered in
recurrence

approximating the likelihood. Before introducing the ap-
proximation, let us first revise the recurrence defined on
likelihood (instead of defined on repair cost in Section 3.2).

4.2.1 Recurrence Equation
Referring to the same intuition for the recurrence equation

in formula (4), we still need to consider possible x ′i−2, x
′
i−1, x

′
i

values, to address the likelihood incrementation in each re-
currence.

Let x ′1...i be a repair of the subsequence x1...i, whose likeli-
hood is L(x ′1...i) = li, the last two values of x ′1...i are x ′i−1, x

′
i ,

respectively, and the cost ∆(x ′1...i, x1...i) minimized. We de-
note this minimized cost ∆(x ′1...i, x1...i) by C (i, l , x ′i−1, x

′
i ).

The recurrence computation is as follows

C (i, li, x
′
i−1, x

′
i ) (8)

= min
x ′i−2∈[xi−2±θi−2]

C (i− 1, li−1, x
′
i−2, x

′
i−1) + ∆(x ′i , xi)

where li−1 = li − L(u ′i−1), and u ′i−1 =
x ′i−x ′i−1

ti−ti−1
− x ′i−1−x ′i−2

ti−1−ti−2
.

Initially, for i = 2, we have

C (2, 0, x ′1, x
′
2) = ∆(x ′1, x1) + ∆(x ′2, x2),

∀x ′1 ∈ [x1 ± θ1], ∀x ′2 ∈ [x2 ± θ2].
For each i, we consider li in the range from lstarti to lendi ,

where

lstarti = (i− 2) · log pmin

lendi = (i− 2) · log pmax

(See the specific li values considered in the range soon in
Section 4.2.2.)

Example 7. Consider again the sequence x in Example 2.
Referring to the probability distribution of speed changes in
Figure 4, we have log pmax = log(0.3) = −1.2, log pmin =
log(0.1) = −2.3.

Figure 8(a) illustrates the range [lstarti , lendi ] of possible
likelihoods that need to be considered for each i. For in-
stance, we have lstart3 = −2.3, lendi = −1.2.

4.2.2 Approximation Algorithm
Intuitively, the likelihood approximation is performed by

mapping the range of likelihood, from lstarti to lendi , to a
space presented in formula (10) below with the total number
of likelihood values bounded (see the bound in the proof of
Proposition 5).
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Consider

K = −ε · log pmax,

where ε > 0 is an error parameter in approximation.
For each point xi, we define approximate likelihood

L′(u ′i) = bL(u ′i)

K
c. (9)

In recurrence, for each i, we only need to consider the
following approximate likelihood values

l ′i ∈ {b
lstarti

K
c, b lstarti

K
c+ 1, . . . , b lendi

K
c}, (10)

with a total number (i − 2)b 1
ε
( log pmin
log pmax

− 1)c of considered

approximate likelihood values (according to formula (14) the
proof of Proposition 5).

By further considering each x ′i−1 ∈ [xi−1 ± θi−1], x ′i ∈
[xi±θi], we compute C (i, l ′i , x

′
i−1, x

′
i ) according to the afore-

said recurrence. Algorithm 2 presents the procedure of this
recurrence computation with approximate likelihood.

Algorithm 2: DPC(x , θ, δ, ε)

Data: data sequence x , error range θ, repair budget δ,
approximation factor ε

Result: the maximum likelihood of the optimal repair
1 K ← −ε · log pmax;
2 initialize C (2, 0, x ′1, x

′
2)← ∆(x ′1, x1) + ∆(x ′2, x2) for each

x ′1, x
′
2;

3 for i← 3 to n do

4 for l ′i ← b
lstarti

K
c to b l

end
i
K
c do

5 foreach x ′i ∈ [xi ± θi] do
6 l ′i−1 ← l ′i − L′(u ′i);
7 foreach x ′i−1 ∈ [xi−1 ± θi−1] do
8 C (i, l ′i , x

′
i−1, x

′
i )←∞;

9 foreach x ′i−2 ∈ [xi−2 ± θi−2] do
10 if C (i− 1, l ′i−1, x

′
i−2, x

′
i−1) 6=∞ then

11 c ←
C (i−1, l ′i−1, x

′
i−2, x

′
i−1)+∆(x ′i , xi);

12 if c ≤ δ and c < C (i, l ′i , x
′
i−1, x

′
i )

then
13 C (i, l ′i , x

′
i−1, x

′
i )← c;

14 return maxln,x
′
n−1,x

′
n

C (n, l ′n, x
′
n−1, x

′
n)

Let l ′n be the maximum (approximate) likelihood with
C (n, l ′n, x

′
n−1, x

′
n) ≤ δ, among all l ′n, x

′
n−1, x

′
n. By retrac-

ing all C (i, l ′i , x
′
i−1, x

′
i ) leading to this C (n, l ′n, x

′
n−1, x

′
n), an

approximate solution x ′ is obtained.

Example 8. Consider the ranges of likelihood in Figure
8(a) in Example 7. Given ε = 0.5, we have K = −ε ·
log(pmax) = −0.5 ∗ −1.2 = 0.6.

According to formula (10), for each level i, we compute a
finite set of approximate likelihood values to consider in re-
currence. For instance, as illustrated in Figure 8(b), we con-

sider l ′3 ∈ {−4,−3,−2} for i = 3, where b l
start
3
K
c = b−2.3

0.6
c =

−4, b l
end
3
K
c = b−1.2

0.6
c = −2.

Proposition 5. Algorithm 2 with approximate likelihood L′

outputs a repair x ′ with L(x ′) ≥ (1+ε) ·L(x∗), in O(n2θ3max)
time with O(n2θ2max) space.

4.2.3 Pruning
Similar to the pruning for the exact algorithm in Section

3.2.2, let us consider Lu(x ) and Lw(x ), the upper and lower
bounds of the likelihood of the optimal solution.

Proposition 6. The recurrence on C (i, li, x
′
i−1, x

′
i ) stops, if

li + Lu(xi−1...n) ≤ Lw(x ).

Indeed, since Lu(xi−1...n) < 0, any li ≤ Lw(x ) can be
directly ignored. We can further set

lstarti = max ((i− 2) · log pmin,L
w(x )) . (11)

For the approximate l ′i considered in the implementation
of recurrence, the pruning condition is as follows.

Corollary 7. The recurrence on C (i, l ′i , x
′
i−1, x

′
i ) could be

pruned, if

K · (l ′i + i− 2) + Lu(xi−1...n) ≤ Lw(x ).

Example 9. Similar to Example 5, we use the likelihood of
the input sequence x as the lower bound Lw(x ) = L(x ) =
−8.1, which is calculated in Example 2.

According to formula (11), for i = 6, we have the new
lstart6 = max (−9.2,−8.1) = −8.1, where −9.2 is the original
lstart6 , as shown in Figure 8(a).

Referring to K = 0.6 in Example 8, the new b l
start
6
K
c =

b−8.1
0.6
c = −14 is sufficient, as also illustrated in Figure 8(b).

5. FROM DISCRETE TO CONTINUOUS
Rather than approximating the computation, in this sec-

tion, we approximate the discrete probability distribution
P by a continuous probability distribution. The intuition
is that, with a proper continuous probability distribution,
the maximum likelihood repairing problem could be trans-
formed to a quadratic programming problem (according to
Proposition 12). It enables more fast computing and the
application of existing efficient solvers.

5.1 Transformation
First, let us illustrate the high similarity between the dis-

crete probability distribution observed in real datasets and
the continuous probability distribution.

Example 10 (Probability distribution approximation). We
study the probability distribution of speed changes over three
real datasets (see Section 6 for details of these datasets),
together with the corresponding probability density function
of normal distribution N (µ, σ) for approximation.

Figure 2(a) presents the distribution over GPS dataset, to-
gether with a normal distribution N (0, 1). For the STOCK
dataset, we plot N (0, 1.2) in Figure 9(a). Figure 9(b) illus-
trates the distribution N (0, 0.8) over the ENGINE dataset.

Referring to the aforesaid proximity, assume that the prob-
ability distribution ui follows the normal distributionN (0, σ2),
having the probability density function

P(ui) =
1

σ
√

2π
e
−

u2i
2σ2 . (12)

Proposition 8. Given the probability density function in
formula (12), we have L(x ′) ≥ L(x ′′) if and only if

n−1∑
i=2

(u ′i)
2 ≤

n−1∑
i=2

(u ′′i )2,

where u ′i, u
′′
i are speed changes w.r.t. x ′i , x

′′
i , respectively.
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Figure 9: Probability distribution approximation
over (a) STOCK and (b) ENGINE datasets

Therefore, we can rephrase Problem 1 as

min

n−1∑
i=2

(
x ′i+1 − x ′i
ti+1 − ti

− x ′i − x ′i−1

ti − ti−1

)2

(13)

s.t.

n∑
i=1

|x ′i − xi| ≤ δ

x ′i ∈ [xi ± θi] 1 ≤ i ≤ n

Existing tools on quadratic programming, e.g., Gurobi2,
can be directly applied.

5.2 Simple Greedy
To compute very fast a repair (e.g., for pruning in Section

3.2.2), we can use a simple greedy heuristic for the transform
problem in formula (13).

Let x ′ be a current repair, initially x ′ = x . A natural
greedy strategy is to select a x ′i with the maximum |u ′i|, and
pay one unit cost on such x ′i towards the reduce of |u ′i|.

x ′i = arg max
x ′i∈[x

′
i±1]∩[xi±θi]

∣∣∣∣x ′i+1 − x ′i
ti+1 − ti

− x ′i − x ′i−1

ti − ti−1

∣∣∣∣ .
The algorithm terminates after δ iterations or no |u ′i| could
be further reduced.

Example 11 (Greedy computation). Consider again the
sequence x = {11, 12, 15, 14, 15, 15, 17} in Example 2. The
simple greedy algorithm will first select a data point, i.e.,
x3 = 15, with the maximum |u3| = 4. A unit cost repair
will be performed on x3, i.e., x ′3 = 14 such that |u ′3| = 2 is
reduced, as illustrated in Figure 10(a). It is notable that such
a repair x ′3 on data point 3 also affects the speed changes in
data points 2 and 4, having u ′2 = 1, u ′4 = 1 in the repaired
sequence.

In the next iteration, the greedy algorithm will choose the
current largest |ui|, i.e., still u ′3. It generates a new repair
with x ′′3 = 13, as shown in Figure 10(b).

The iteration carries on by further repairing x ′′′6 = 16
in Figure 10(c). Since all the speed changes become 0 in
Figure 10(d), i.e., no |u ′i| could be further reduced, the al-
gorithm terminates, and returns a repaired sequence x ′′′ =
{11, 12, 13, 14, 15, 16, 17}.

If a repair cost budget δ = 2 is given, the greedy compu-
tation will stop after two iterations. The returned repair is
x ′′ = {11, 12, 13, 14, 15, 15, 17} as illustrated in Figure 10(b).

Proposition 9. The greedy algorithm runs in O(max(n, δ))
time.

2http://www.gurobi.com

Figure 10: Simple Greedy Example

6. EXPERIMENT
In this section, we experimentally compare our proposed

methods, (1) DP the exact algorithm in Section 3.2, (2) DPC
the quadratic-time constant-factor approximation algorithm
in Section 4.2, (3) DPL the linear time heuristic algorithm
in Section 4.1, (4) QP the quadratic programming solver in
Section 5.1, (5) SG the simple greedy algorithm in Section
5.2, with (6) SCREEN the state-of-the-art approach [14]. We
omit reporting the other methods, such as the smoothing-
based EWMA [6], or the constraint-based [7], owing to the
clearly worse results (which are also observed in [14]).

The experiment runs on three real datasets and one syn-
thetic datasets. (1) The STOCK dataset is originally clean,
and errors are injected by randomly replacing the values of
some data points. Thereby, the original clean data serves
as the ground truth. (2) For the GPS data, collected by
carrying a smartphone and walking around at campus, we
manually mark the trajectory during data collection in a
map and use the trajectory as the ground truth. (3) For
the ENGINE data, we do not have the ground truth of
sensor reading sequences. However, we have another ob-
servation (switching-count), which could be predicted from
sensor readings. Therefore, instead of directly evaluating
w.r.t. the ground truth of sensor readings (which are not
available), we evaluate the prediction of switching-count by
sensor readings with/without repairing. The switching-count
observation serves as the ground truth of prediction. (4) For
the SYNTHETIC data, generated by ourselves, we naturally
have the ground truth.

The probability distributions of speed changes are esti-
mated over the employed datasets. For each data point in
a sequence, we calculate its speed change value before and
after the point, according to formula (1). By counting the
appearance of speed change values in the sequence, we es-
timate the probabilities of the speed changes. Figures 9(a),
2(b), 9(b) and 18 report the estimated probability distribu-
tions over the STOCK, GPS, ENGINE and SYNTHETIC
datasets, respectively.
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Figure 11: Varying error range θ, over STOCK with
error number 600 and data size 1282
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Figure 12: Varying error numbers, over STOCK
with error range θ = 5 and data size 2564
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Figure 13: Scalability, over STOCK with error range
θ = 5 and error size 400

6.1 STOCK with Various Injected Errors
The STOCK dataset records the daily prices of a stock

from 1984-09 to 2010-02, with 12826 data points in total.
Since the data is originally clean, following the same line of
precisely evaluating the repair effectiveness [1], errors are in-
jected by randomly replacing the values of some data points.

Let xtruth be the ground truth of clean sequence, and
xrepair be the repaired sequence. The repair accuracy is mea-
sured by root-mean-square error (RMS) [8], evaluating how
close the repaired sequence xrepair is to the ground truth
xtruth. The lower the RMS error is, the closer (more accu-
rate) the repair is to the ground truth.

Besides the RMS performance on repairing accuracy, we
also report the corresponding time cost and report the like-
lihood of repair results.

For the original clean STOCK dataset, we have error range
θ = 0 (i.e., no need to repair). To evaluate the repair perfor-
mance, we manually inject errors in the dataset with error
range θ > 0. Figure 11 presents the results by varying the
ranges of injected errors from θ = 1 to 10. First, as shown
in Figure 11(a), it is not surprising that the larger the error
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Figure 14: Varying repair cost budget δ, over
STOCK with error range θ = 5, error number 600
and data size 1282
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Figure 15: Detailed results with δ in the range of
1200 to 1800 in Figure 14

range is, the higher the RMS distance will be between the
truth and repair results. Our exact approach DP achieves
the lowest RMS measure, while its corresponding time cost
is the highest in Figure 11(b). While both the approximate
methods DPC (with ε = 2) and DPL (with d = 1000) also
have a considerably low RMS, the time cost of the linear
time heuristic DPL is significantly lower.

To evaluate the scalability, Figure 12 reports the results
on various number of errors that are injected in the data,
and Figure 13 presents the results over various data sizes.
Generally, similar results are observed as in Figure 11. DP,
DPC and DPL methods show better RMS performance, while
their time costs are higher. The existing method SCREEN
has worse RMS measure, but runs faster. QP and SG provide
a trade-off between effectiveness and efficiency.

One interesting result is that the time cost of DP is lower
than that of DPC, with small error range in Figure 11(b), or
with small error number in Figure 12(b). The reason is that
with a small error range, the corresponding repair budget δ
needed is small as well (see results on various repair budgets
below). The DP algorithm with O(nθ3maxδ) complexity runs
faster as well. For the same reason, in Figure 12(b), a larger
number of errors lead to larger δ, and thus DP shows higher
time cost (closer to that of DPC).

Figure 14 reports the results by varying the repair cost
budget δ. As shown in Figure 14(a), if the repair cost bud-
get is set too small, the dirty points cannot be fully repaired,
with higher RMS measure. The corresponding likelihood of
repair results in Figure 14(b) is low as well. On the other
hand, if the repair cost budget δ sets too large, the sequence
might be over-repaired. The RMS measure is high as well.
Note that by further increasing the repair cost budget, the
likelihood could not increase further in Figure 14(b). The
reason is that the repaired sequence reaches the allowed re-
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Figure 16: Varying repair cost budget δ over GPS

pair range θ. The corresponding RMS measure in Figure
14(a) does not change either.

Nevertheless, Figure 14 provides a guideline of setting the
repair cost budget δ in practice. That is, by increasing δ, we
observe the corresponding likelihood of results. When the
likelihood does not significantly increase, e.g., with δ = 1500
in Figure 14(b), the corresponding repair result is the best
(with the lowest RMS). It denotes the case where the se-
quence is neither insufficiently repaired (with a low likeli-
hood) nor over-repaired (with too large repair cost budget
but no much likelihood gain).

It is worth noting that a range of δ could be considered,
from 15 to 20 in Figure 6(b) in Example 3 as aforesaid, such
that the repair error keeps low in Figure 6(a). We illustrate
a very large range of δ in Figure 14 in order to verify the
guideline of choosing a proper δ. Once a proper range of δ
is identified, e.g., from 1500 to 1800 where the likelihood no
longer significantly increases, the repair results are stable.
To demonstrate the robustness, Figure 15 for the results
with δ in the range of 1200 to 1800. As shown, the result
appears to be less sensitive in the chosen range of δ under
the aforesaid guideline.

6.2 GPS with Naturally Embedded Errors
In order to evaluate over a real dataset with true errors

(instead of synthetically injected errors), a real GPS dataset
is collected by a person carrying a smartphone and walking
around at campus. Since we know exactly the path of walk-
ing, a number of 150 dirty points are manually identified
(among total 2358 clear points in the trajectory). True lo-
cations of dirty points are also manually labeled, as ground
truth.

Since the errors are originally embedded, we don’t have
experiments on various errors settings in this dataset. There
is only one parameter to tune, i.e., the repair cost budget δ.

Figure 16 reports the RMS measure and likelihood of re-
sults, by varying the repair cost budget δ. Similar to Figure
14, when the budget δ is small, dirty data might not be suf-
ficiently repaired and thus the likelihoods of results are low.
By granting more budget (larger δ), while the data could be
over-repaired (higher RMS error), the likelihood does not
significantly increase further. The results verify again the
aforesaid guideline of setting the repair cost budget δ, by
observing the likelihood of results.

6.3 ENGINE without Labeled Errors and Truth
To demonstrate the effectiveness in real applications, we

employ the ENGINE dataset, where neither the dirty data
nor the corresponding ground truth are labeled. The EN-
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Figure 17: Varying repair budget δ over ENGINE

Table 2: ENGINE variables

Variable Description Domain

DT0 Current of a proportioner
called DT0

[200, 800]

engine-speed Rotate speed of the engine [800, 2000]

pump-volume Swept volume of the pump [0, 100]

switching-count Times the crane pumping
per minute

[3, 27]

GINE dataset collects four sequences of a crane, produced
by a heavy industry company, including DT0, engine-speed,
pump-volume and switching-count, which monitor the work-
ing status of the device. The meaning of variables and their
domains are presented in Table 2. The total number of data
points in each sequence is 464. (Link to data will be publicly
available after anonymous review.)

Owing to the sensor issues, the readings of engine-speed
are often inaccurate, and thus need cleaning. Instead of di-
rectly measuring the accuracy of repairs (which is not pos-
sible since no error and truth are known in advance), we
evaluate the application performance over the data with and
without cleaning. Since switching-count is often missing in
practice, the application is to predict switching-count accord-
ing to the readings of DT0, engine-speed, pump-volume. To
perform the prediction, we use the LinearRegression Class in
WEKA3, i.e., switching-count = α∗pump-volume+β∗DT0+
γ ∗ engine-speed, where α, β, γ are parameters of regression.

To evaluate the application accuracy, two measures are
employed, RMS reporting the closeness of the predicted val-
ues to the observed switching-count values (that are not miss-
ing) and R2 the coefficient of determination [5]. A lower
RMS error or a higher R2 measure denotes better predic-
tion accuracy.

Figure 17 illustrates the results by varying the repair cost
budget δ. RAW denotes the results of prediction application
over the raw data without performing cleaning. As shown,

3http://www.cs.waikato.ac.nz/˜ml/weka/
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Figure 19: Repair results on various repair cost bud-
get δ over SYNTHETIC-clean
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Figure 20: Repair results on various repair cost bud-
get δ over SYNTHETIC-injected

by a proper setting of repair cost budget δ, the RMS and
R2 of prediction application improves, compared to RAW
without repairing.

The RMS and R2 measures over the application are not
as stable as the RMS of repair results, owing to the predic-
tion model. Nevertheless, as illustrated in Figure 17(b), the
likelihoods of repair results are stable, which is similar to
the observation in other datasets. It is also observed that
a result, neither insufficiently repaired (with a low likeli-
hood) nor over-repaired (with too large repair cost budget
but no much likelihood gain), leads to better (application)
effectiveness.

As shown in Figure 17(a), the existing SCREEN repair
leads to higher RMS error in prediction. It is not surprising
given the higher RMS error of repairing by SCREEN, e.g., in
Figure 14(a) over STOCK and Figure 16(a) over GPS. The
other prediction measure R2 of SCREEN in Figure 17(d) is
lower, which verifies again the results.

6.4 SYNTHETIC Evaluating False Positives
We consider two synthetic datasets, SYNTHETIC-clean

and SYNTHETIC-injected. The SYNTHETIC-clean dataset
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Figure 21: Prediction results on various repair cost
budget δ over SYNTHETIC-clean

is generated by using speeds with changes sampled from the
probabilistic model (Gaussian distribution with µ = 0 and
σ = 0.8) as the p.d.f. shown in Figure 18. By injecting er-
rors into SYNTHETIC-clean data, following the same line
of injection over STOCK dataset, with error range θ = 5, we
obtain the SYNTHETIC-injected version. Figure 18 shows
the probabilistic distribution of speed changes over SYN-
THETIC data.

Figures 19 and 20 present repair results over SYNTHETIC-
clean and SYNTHETIC-injected, respectively. The results
verify again the guideline on setting the repair cost budget δ
(see Example 3 for more details about the guideline). That
is, as shown in Figure 20(b) over SYNTHETIC-injected, a
budget δ from 500 to 700 will be preferred, where the like-
lihood stops significantly increase. The RMS error of re-
pair results under such δ is lower in Figure 20(a). Similarly,
for the SYNTHETIC-clean data in Figure 19(b), no signifi-
cant increase of likelihood is observed. A small δ such as
150 is sufficient, i.e., the approach prefers to make little
change over the clean data. This conservative result over
SYNTHETIC-clean data also demonstrates that our pro-
posed algorithm is not over aggressive.

Moreover, to perform the prediction experiments (as in
Section 6.3), we generate similarly other two determinant se-
quences plus one dependent sequence. In the SYNTHETIC-
clean version without error injection, the dependent sequence
could be predicted from determinant sequences, i.e., the
standard baseline that always predicts the mean from the
training data.

Figures 21 and 22 present the prediction results over the
SYNTHETIC-clean and SYNTHETIC-injected data, respec-
tively. Again, referring to the guideline of setting repair cost
budget δ, a small δ = 150 is preferred in Figure 21(b) on
SYNTHETIC-clean. The corresponding prediction results
are closest to the standard baseline, i.e., the prediction over
the RAW clean data without repairing, in Figure 21(a). Re-
call that the standard baseline (on RAW over SYNTHETIC-
clean) always predicts the dependent sequence with RMS
error 0. Moreover, a budget δ around 600 will be chosen ac-
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Figure 22: Prediction results on various repair cost
budget δ over SYNTHETIC-injected

cording to Figure 22(b) on SYNTHETIC-injected. Again,
the corresponding prediction RMS error is lower under such
δ in Figure 22(a).

Summary
We list the proposed methods in the decreasing order of
time cost as follows: (1) The exact DP algorithm is pre-
ferred, in order to achieve better repair accuracy (as shown
in Figure 11(a)), while its time cost is high given the pseudo-
polynomial time complexity O(nθ3maxδ) in Proposition 2. (2)
The DPC approximation algorithm, with time complexity
O(n2θ3max) not directly related to δ in Proposition 5, shows
better time performance when given a larger repair cost bud-
get δ, e.g., δ = 3500 in Figure 17(c). (3) The DPL approxi-
mation algorithm, with time complexity O(nd4) where d is
a constant in Proposition 4, achieves even lower time cost,
but its repair error could be higher, as shown in Figure 11.
(4) The QP algorithm can have significantly lower time cost
without losing much repair accuracy, when the exact discrete
probability distribution is similar to the approximate con-
tinuous probability distribution, e.g., when the error range
is small in Figure 11. (5) The simple heuristic algorithm SG
always achieves the lowest time cost among the proposed
methods, while its repair accuracy could not be guaranteed.

7. RELATED WORK

Constraint-based Cleaning
Besides speed constraints [14], sequential dependencies [7]
also specify constraints on sequential data. Instead of con-
cerning the speeds of value changes, sequential dependencies
consider the range of value changes between two consecu-
tive data points, while the distances on timestamps between
data points are not involved. In this sense, sequential de-
pendencies could be interpreted as a special class of speed
constraints declared on time series with fixed time intervals.

With either constraint, the constraint-based cleaning iden-
tifies and repairs only the violations to the constraints, with-

out indicating the most likely answers among all the valid
repairs that satisfy the constraints. As reported in Section
6, by further revealing the likelihood of repairs, our proposal
can obtain more accurate repair results than the constraint-
based method.

Statistical-based Cleaning
The likelihood-based repairing over relational data has been
studied in [15]. For the relation to repair, several attributes
are identified with dirty values, namely flexible attributes,
which can be modified, while the other attributes contain
correct values, called reliable attributes. Dependencies be-
tween reliable attributes and flexible attributes are modeled
and changed with flexible attributes repaired. The repairing
is thus to maximize the likelihood of data replacement, given
the data distribution in the relation. The difference between
relational data and our studied sequential data is obvious,
and thus this likelihood-based repairing over relational data
[15] is not directly applicable to sequential data.

A more complex relational dependency network is intro-
duced in [11] to model the probabilistic relationships among
attribute, such as cyclic relational dependencies. Instead
of maximizing the likelihood as in [15] and our proposal,
the repairing in [11] performs iteratively, and observe the
change of distributions before and after a repair. The clean-
ing process terminates when the divergence of distributions
is sufficiently small. Again, without a clear dependency rela-
tionship, the relational dependency network cannot be built
for single data sequences, and thus this method [11] is not
applicable.

To assess the quality of a repair, a statistical distortion
method is proposed in [4]. While the statistical distortion
directly observes the value distribution, our considered like-
lihood is defined on the changes of speed (value changes).

8. CONCLUSIONS
In this study, we study the cleaning of dirty vales in a se-

quence. First, we show that existing speed constraint-based
approach either does not precisely repair large spike errors
or simply ignore small errors. Rather than restricting the
repair w.r.t. max/min speed constraints, we model the like-
lihood of a repair by observing its speed changes. Under the
discipline that speeds should not change significantly in a
time point, the likelihood-based repairing is thus to maxi-
mize the likelihood on speed changes, instead of minimizing
the changes in the constraint-based repairing.

To efficiently compute the maximum likelihood solution,
we propose 1) a pseudo-polynomial time exact algorithm, 2)
a quadratic-time constant-factor approximation algorithm,
3) a linear time heuristic algorithm, 4) a quadratic program-
ming transformation approximation, and 5) a simple greedy
heuristic. Experiments on several real datasets demonstrate
the better performance of our proposal, in both repairing
and application accuracies, compared to the state-of-the-art
constraint-based repairing.
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APPENDIX
A. PROOFS

Proof of Theorem 1
Proof. The problem is clearly in np. Given a repair x ′, it can
be verified in polynomial time whether each point repair x ′i is
in the valid range and ∆(x , x ′) ≤ δ. Besides, the likelihood
L(x ′) can also be computed in polynomial time.

To prove the NP-hardness, we show a reduction from
the 0/1 knapsack problem, which is one of Karp’s 21 np-

complete problems [9]. Given a set of n items numbered
from 1 up to n, each with a weight wi and a value vi, along
with a maximum weight capacity, the problem is to max-
imize the sum of the values of the items in the knapsack
so that the sum of the weights is less than or equal to the
knapsack’s capacity.

We create five data points with values xi1, . . . , xi5 for each
item i, having

xi1 = bi, θi1 = 0,

xi2 = bi, θi2 = 0,

xi3 = 2bi, θi3 = wi,

xi4 = 4bi, θi4 = 0,

xi5 = 7bi, θi5 = 0,

where bi = 4 ∗ (w1 + · · ·+ wi−1) + 2wi + i.
The probabilities of speed changes in P are defined as

P(ui) =



0 if ui = ui1 = 0,

vi/3 if ui = ui2 = bi + wi,

vi/3 if ui = ui3 = bi − 2wi

vi/3 if ui = ui4 = bi + wi,

0 if ui = ui5 = −7bi,

0 otherwise

for i = 1, . . . , n.
We can show that there is a subset of items with total

weight W and total value V , if and only if there is a repair
x ′ with ∆(x , x ′) = W and L(x ′) = V .

Proof of Proposition 2
Proof. First, we show the correctness of the recurrence equa-
tion in formula (4) in the dynamic programming. That is,
D(i, ci, x

′
i−1, x

′
i ) in formula (4) always calculates the maxi-

mum likelihood L(x ′1...i) whose cost is ∆(x ′1...i, x1...i) = ci,
and the last two values are x ′i−1, x

′
i .

Suppose that there is another repair x ′′ whose cost is also
∆(x ′′1...i, x1...i) = ci, and the last two values are also x ′′i−1 =
x ′i−1, x

′′
i = x ′i , and L(x ′′) > L(x ′).

If x ′′i−2 6= x ′i−2, referring to L(x ′′) > L(x ′), we have

D(i− 1, ci−1, x
′′
i−2, x

′′
i−1) + L(u ′′i−1)

>D(i− 1, ci−1, x
′
i−2, x

′
i−1) + L(u ′i−1).

It contradicts the condition that formula (4) takes a x ′i−2

with the maximum D(i− 1, ci−1, x
′
i−2, x

′
i−1) + L(u ′i−1).

If x ′′i−2 = x ′i−2, we have L(u ′′i−1) = L(u ′i−1). It follows

D(i− 1, ci−1, x
′′
i−2, x

′′
i−1) > D(i− 1, ci−1, x

′
i−2, x

′
i−1),

which contradicts the condition that D(i−1, ci−1, x
′
i−2, x

′
i−1)

is the maximum likelihood whose cost is ci−1, and the last
two values are x ′i−2(= x ′′i−2), x ′i−1(= x ′′i−1).

The correctness of the recurrence equation is proved.
Given the recurrence equation in formula (4), we need

O(nθ2δ) space to maintain D(i, ci, x
′
i−1, x

′
i ). By considering

2θ + 1 candidates for x ′i−2 in [xi−2 ± θi−2], in each calcula-
tion of D(i, ci, x

′
i−1, x

′
i ), the dynamic programming runs in

O(nθ3maxδ) time.
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Table 3: Notations

Symbol Description

x a sequence of n data points

x ′ repair of sequence x

x [i] or xi value of i-th data point in x

xi...j a subsequence of x from i-th to j-th data
points

ti timestamp of i-th data point

θ error range of each data point

δ cost budget for repairing

ui speed change before and after i-th data
point

P probability distribution of speed changes

pmax, pmin max/min probabilities in distribution P

L(x ) The likelihood of a sequence x w.r.t.

speed changes (Equation 2)

D(i, ci, x
′
i−1, x

′
i ) The maximum likelihood of the subse-

quence x1...i, whose cost is ci and the
last two values are x ′i−1, x

′
i , respectively

(Equation 4)

C (i, li, x
′
i−1, x

′
i ) The minimized cost of subsequence x1...i,

whose likelihood is li and the last two val-
ues are x ′i−1, x

′
i , respectively (Equation 8)

Proof of Proposition 3
Proof. We show that

L(x ′) = L(x ′1...i) + L(x ′i−1...n)

= D(i, ci, x
′
i−1, x

′
i ) + L(x ′i−1...n)

≤ D(i, ci, x
′
i−1, x

′
i ) + Lu(xi−1...n)

≤ Lw(x ) ≤ L(x∗).

That is, any solution x ′ with this D(i, ci, x
′
i−1, x

′
i ) is not

optimal and can be pruned. The conclusion is proved.

Proof of Proposition 4
Proof. According to formula (6), the total number of c′i to
consider is δ

H
= d . Similarly, referring to formula (7), the

total number of x ′i to consider is 2b θi
H
c + 1. Since δ is the

bound of repair cost, it follows the maximum number of x ′i to
consider, 2b δ

H
c+1 = 2d+1. Considering all D(i, c′i, x

′
i−1, x

′
i ),

the dynamic algorithm runs in O(n(2d + 1)3d) time with
O(n(2d + 1)2d) space. The conclusion is proved.

Proof of Proposition 5
Proof. According to formula (9), for any u ′i, we have

L(u ′i) ≤ (L′(u ′i) + 1) ·K .

Table 4: Significance on STOCK with error number
600, data size 1282, θ = 5, δ = 1800

significant
p-value

DPL SG SCREEN QP

DPL - 0.040 8.238E-10 3.989E-6

SG yes - 2.427E-10 2.201E-4

SCREEN yes yes - 1.784E-11

QP yes yes yes -

Table 5: Significance on GPS with error number
360, data size 4712, θ = 38, δ = 660

significant
p-value

DPL SG SCREEN QP

DPL - 1.348E-5 1.575E-8 7.835E-8

SG yes - 1.935E-5 4.282E-10

SCREEN yes yes - 3.340E-15

QP yes yes yes -

Table 6: Significance on ENGINE with error num-
ber unknown, data size 464, θ = 20, δ = 1000

significant
p-value

DPL RAW SG SCREEN QP

DPL - 1.6E-12 0.015 2.2E-7 0.013

RAW yes - 1.1E-14 0.011 5.3E-6

SG yes yes - 2.434E-6 0.007

SCREEN yes yes yes - 2.0E-6

QP yes yes yes yes -

Let x∗ denote the optimal solution. We have

L(x∗)−K · L′(x∗) =

n−1∑
i=2

(
L(u∗i )−K · L′(u∗i )

)
≤
n−1∑
i=2

K

= (n− 2) ·K

It follows

L(x ′) ≥ K · L′(x ′)

≥ K · L′(x∗)

≥ L(x∗)− (n− 2) ·K
= L(x∗) + (n− 2) · ε · log pmax

≥ (1 + ε) · L(x∗)

For each i, the range of likelihood that needs to be con-
sidered is

lend − lstart = (i− 2) · log
pmax

pmin
.

With the approximate likelihood L′ defined in formula (9),
only a finite number of approximate likelihoods that need to
be considered for each i, i.e.,

b
(i− 2) · log pmax

pmin

K
c = (i− 2)b−

log pmax
pmin

ε · log pmax
c (14)

= (i− 2)b1
ε

(
log pmin

log pmax
− 1)c
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Table 7: Significance on SYNTHETIC-clean with
error number 0, data size 500, θ = 5, δ = 225

significant
p-value

DPL SG SCREEN QP

DPL - 8.349E-11 2.331E-12 1.315E-7

SG yes - 3.734E-13 7.495E-16

SCREEN yes yes - 5.876E-19

QP yes yes yes -

Table 8: Significance on SYNTHETIC-inject with
error number 150, data size 500, θ = 5, δ = 225

significant
p-value

DPL SG SCREEN QP

DPL - 0.002 1.333E-11 3.998E-5

SG yes - 8.039E-11 8.179E-6

SCREEN yes yes - 3.297E-12

QP yes yes yes -

Table 9: Significance on SYNTHETIC-clean predic-
tion with error number 0, data size 500, θ = 5, δ = 150

significant
p-value

DPL RAW SG SCREEN QP

DPL - 0.005 2.7E-5 4.4E-10 1.1E-6

RAW yes - 7.6E-20 4.4E-12 1.1E-12

SG yes yes - 4.0E-11 8.5E-9

SCREEN yes yes yes - 1.4E-10

QP yes yes yes yes -

Table 10: Significance on SYNTHETIC-inject pre-
diction with error number 150, data size 500, θ = 5,
δ = 600

significant
p-value

DPL RAW SG SCREEN QP

DPL - 7.8E-34 4.3E-26 3.2E-9 7.4E-4

RAW yes - 2.1E-27 4.4E-12 1.7E-12

SG yes yes - 1.9E-10 6.3E-9

SCREEN yes yes yes - 2.3E-9

QP yes yes yes yes -

It concludes O(n2θ3max) time and O(n2θ2max) space.

Proof of Proposition 6
Proof. For any repair x ′ with C (i, li, x

′
i−1, x

′
i ), we have

L(x ′) = L(x ′1...i) + L(x ′i−1...n)

= li + L(x ′i−1...n)

≤ li + Lu(xi−1...n)

≤ Lw(x ) ≤ L(x∗).

That is, x ′ is not optimal and can be safely pruned. The
conclusion is proved.

Proof of Corollary 7
Proof. According to formula (9), for any u ′i, we have

L(u ′i) ≤ (L′(u ′i) + 1) ·K .
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Figure 23: Case study on STOCK repair results
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Figure 24: Case study on GPS repair results
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Figure 25: Case study on ENGINE prediction re-
sults

For any repair x ′ with C (i, l ′i , x
′
i−1, x

′
i ), we have

L(x ′) = L(x ′1...i) + L(x ′i−1...n)

=

i−1∑
j=2

L(u ′j) + L(x ′i−1...n)

≤
i−1∑
j=2

K ·
(
L′(u ′j) + 1

)
+ L(x ′i−1...n)

= K · l ′i + K · (i− 2) + L(x ′i−1...n)

≤ K · (l ′i + i− 2) + Lu(xi−1...n)

≤ Lw(x ) ≤ L(x∗).

That is, x ′ is not optimal and can be safely pruned. The
conclusion is proved.
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Figure 26: Case study on SYNTHETIC-clean repair
results
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Figure 27: Case study on SYNTHETIC-injected re-
pair results

Proof of Proposition 8
Proof. According to formula (12), we have

L(x ) =

n−1∑
i=2

logP (ui)

=

n−1∑
i=2

log

(
1

σ
√

2π
e
−

u2i
2σ2

)

=

n−1∑
i=2

(
log

1

σ
√

2π
− u2

i

2σ2
log e

)

= (n− 2) log
1

σ
√

2π
− log e

2σ2

n−1∑
i=2

u2
i

It follows L(x ′) − L(x ′′) ≥ 0 if and only if
∑n−1
i=2 (u ′i)

2 −∑n−1
i=2 (u ′′i )2 ≤ 0, where u ′i, u

′′
i are speed changes w.r.t. x ′i , x

′′
i ,

respectively.

Proof of Proposition 9
Proof. The greedy computation terminates in at most δ iter-
ations. By amortizing the likelihood values over a constant
domain, data points with low likelihood could be directly
obtained. The algorithm runs in O(max(n, δ)) time.

B. STATISTICAL SIGNIFICANCE ON EX-
PERIMENTS

In order to demonstrate that the differences in algorithms
are real in all the experiments, we report the statistical sig-
nificance calculations [12]. Consider the null hypothesis that
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Figure 28: Case study on SYNTHETIC-clean pre-
diction results
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Figure 29: Case study on SYNTHETIC-injected
prediction results

two compared algorithms are the same. Let the significance
level be α = 0.05. We run each experiment 10 times, and
conduct the Student’s Paired t-test by using APACHE math
lib4. Tables 4, 5, 6, 7, 8, 9 and 10 report the calculated
p-values of all the experiments, as well as the correspond-
ing determination of whether the null hypothesis should be
rejected or not. As shown, all the results are statistically
significant, i.e., rejecting the null hypothesis with p < 0.05.

C. CASE STUDY ON EXPERIMENTS
To show the differences between the competing approaches,

Figures 23, 24, 25, 26, 27, 28 and 29 present case studies on
all datasets. (1) The prior method SCREEN cannot capture
“small” errors, e.g., as observed at time 508 in Figure 23,
since it satisfies the max/min speed constraints. (2) While
SCREEN successfully detects the large spike error at time
520 in Figure 23, the max/min speed based repair makes
the result only a bit closer to the truth, not as close as our
proposals (DP, QP, SG, etc.). (3) Generally, the exact DP
shows better performance than the approximate QP and SG,
e.g., in Figure 24. (4) The difference of methods in predic-
tion application in Figure 25 is not as significant as the re-
sults directly on repairs, which verifies the accuracy study in
Figure 17. (5) For the experiments on SYNTHETIC-clean
data in Figure 26, almost all the methods propose to not (or
slightly) modify the data.

4https://commons.apache.org/proper/commons-math/
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