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Efficient Determination of Distance Thresholds
for Differential Dependencies

Shaoxu Song, Lei Chen, and Hong Cheng

Abstract—The importance of introducing distance constraints to data dependencies, such as differential dependencies (DDs), has
recently been recognized. The differential dependencies are tolerant to small variations, which enable them to apply to wide data
quality checking applications, such as detecting data violations. However, the determination of distance thresholds for the differential
dependencies is non-trivial. It often relies on a truth data instance which embeds the distance constraints. To find useful distance
threshold patterns from data, there are several guidelines of statistical measures to specify, e.g., support, confidence and dependent
quality. Unfortunately, given a data instance, users might not have any knowledge about the data distribution, thus it is very
challenging to set the right parameters. In this paper, we study the determination of distance thresholds for differential dependencies,
in a parameter-free style. Specifically, we compute an expected utility based on the statistical measures from the data. According to
our analysis as well as experimental verification, distance threshold patterns with higher expected utility could offer better use in real
applications, such as violation detection. We then develop efficient algorithms to determine the distance thresholds having the
maximum expected utility. Finally, our extensive experimental evaluation demonstrates the effectiveness and efficiency of the
proposed methods.

Index Terms—Database integration, heterogeneous databases

1 INTRODUCTION

THE data collected from different sources are often dirty,
including inconsistencies, conflicts and violations, due

to various errors introduced by humans and machines
(see [2] for a survey). Recently, functional dependencies (FDs)
have been revisited and revised with extensions [3] to cap-
ture the inconsistency in the dirty data [4]. For example, the
following functional dependency fd1 over the Hotel relation
specifies a constraint that for any two tuples in Hotel, if they
have the same Address, then their Region values must be
equal.

fd1 : [Address] → [Region]

The constraints are useful in detecting data violations, a
very important task for data cleaning [5]. For instance, we
can use the above fd1 to detect violations in an instance of
Hotel in Table 1. For the tuples t5 and t6 with the equal
value on Address, they have different values of Region,
which are then treated as a violation of the above fd1.

Unfortunately, real world information often has various
representation formats. The strict equality function limits
the usage of FDs (as well as the extensions that are still
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based on the equality). For example, according to fd1, the
tuples t1 and t2 in Table 1 will be detected as a “viola-
tion”, since they have “different” Region values but agree
on Address. However, “Chicago” and “Chicago, IL” denote
the same region in the real world with different represen-
tation formats, which are not violations. Moreover, t4 and
t6, which have similar Address but different Regions, are
true violations. Unfortunately, they cannot be detected by
fd1, since their address values are not exactly equal.

To address small variations in data formats, functional
dependencies have recently been extended by incorpo-
rating distance constraints, namely differential dependencies
(DDs) [1]. Informally, DDs declare the dependencies between
the determinant attributes X and the dependent attributes
Y, X → Y, with respect to metric distances, such as edit
distance (see [6] for a survey of distance/similarity met-
rics). In contrast to the equality function on each attribute
as FDs, a DD can specify a pattern ϕ of distance thresholds
on attributes of X and Y. For example, in Hotel, we may
have a DD as

dd1 : ([Address] → [Region],< 8, 3 >)

where < 8, 3 > is a pattern ϕ of distance thresholds on
Address and Region respectively. It states a constraint on
metric distance: for any two tuples from Hotel, if they have
distance on Address less than a threshold (≤ 8), then their
Region values should be similar as well, i.e., the edit distance
on Region is less than the corresponding threshold (≤ 3).

This study focuses on DDs as a general type of metric dis-
tance constraints, which employ distance metrics on both
sides of attributes. There are some other notations that spec-
ify distance metrics only in one side [7], [8] and could be
regarded as special cases. Indeed, when all the thresholds
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TABLE 1
Example of Hotel

are set to 0, i.e., equality, DDs have the same semantics as
FDs. For instance, the above fd1 can be represented by a
DD ([Address] → [Region],< 0, 0 >). Thereby, FDs are also
special cases of DDs.

Motivation: Unlike FDs, which already imply the equal-
ity function, it is rather difficult to manually determine
the proper settings of distance thresholds for differential
dependencies. For instance, a DD with a very tight thresh-
old (e.g., close to 0 as FDs) will be too strict to be tolerant to
various information formats, while a loose threshold (e.g.,
close to dmax the maximum distance value) is meaningless
since any data can satisfy it. In light of the dependency
discovery from data [9], we can also rely on a truth data
instance to determine the distance thresholds. The truth
data instance is clean without violations and embeds the
distance constraints.

The problem studied in this paper is then to determine
the distance thresholds ϕ for differential dependencies from
the truth data. Given the attributes X, Y on a data instance,
there are numerous different distance thresholds to choose
for the attributes in DDs. Clearly, not all the settings of
thresholds are useful. Following the evaluation of FDs [10],
we may also study the measures for DDs, in order to indi-
cate how reliable and useful a differential dependency is. As
opposed to the equality function in the previous work, the
major difference of measures for differential dependencies
is about the tolerance via distance metrics.

Specifically, the utility of differential dependencies could
be investigated by certain statistical measures including
support, confidence [11] and the unique dependent quality. Let
ϕ[X] and ϕ[Y] be the projections of thresholds on attributes
X and Y of a distance threshold pattern ϕ.

i) The support of ϕ is the proportion of tuple pairs in the
truth data whose distances satisfy the thresholds in ϕ[XY]
on both attributes of X and Y. When applying the differ-
ential dependencies to detect violations in the dirty data,
a ϕ with high support is preferred in order to detect more
violations.

ii) The confidence of ϕ is the ratio of tuple pairs satisfying
ϕ[XY] to the pairs satisfying ϕ[X]. Note that the confidence
measure is analogous to the precision of violation detection.
Thereby, a ϕ with high confidence is preferred.

iii) The dependent quality of ϕ denotes the quality of
tolerance on the dependent attributes Y. It indicates how
close the distance threshold ϕ[Y] to the equality is. As
shown in the following example, if the dependent quality
is low (i.e., ϕ[Y] is far away from equality), the constraint
is meaningless and useless.1

1. A large ϕ[X] could be meaningful. See Section 3.1 for a discus-
sion.

First, if the dependent quality is set too high, e.g., ϕ[Y] =
0, which is exactly the equality function in FDs, then the
constraint could be too strict and may identify violations by
mistake as illustrated in the previous example. Consequently,
the confidence measure will be low. On the other hand,
consider a ϕ with the lowest dependent quality, i.e., with
thresholdϕ[Y] = dmax the maximum distance value. It has the
highest confidence 1.0, since any tuple pairs can always have
distances ≤ dmax on Y. Unfortunately, such a ϕ would miss
all the violations and is useless. For example, we consider
([Address] → [Region],< 8, dmax >), whose threshold on
the dependent attribute Region is dmax. Since any pair of
tuples always has distance on Region ≤ dmax, the confidence
of this DD is the highest 1.0. However, t4 and t6 in Table 1
cannot be detected by such a DD, while these two tuples are
true violations and can be detected by dd1.

Recognize that real applications such as violation detec-
tion need differential dependencies with high statistical
measures, i.e., high support, high confidence and high
dependent quality at the same time. A straight-forward
idea is to specify the minimum requirements of these three
statistical measures by users, in the determination of dis-
tance thresholds. Unfortunately, given a data instance, users
may have no idea about the data distribution. Without any
prior knowledge, it might be difficult to set the parameters
of minimum support, confidence and dependent quality,
respectively. As illustrated in the above examples, setting
the requirements of some measures too high will make the
others low.

In this work, we propose methods to determine dis-
tance thresholds in a parameter-free style. Intuitively, our
approach targets on automatically returning those “best” ϕ,
i.e., not existing any other settings that can be found hav-
ing higher support, confidence, and dependent quality than
the returned results at the same time. Most important of all,
we verified that these automatically found “best” distance
threshold patterns are indeed more effective than other ran-
domly selected settings (including FDs) in the application
of violation detection.

We further notice that automatically determining the
“best” settings of distance thresholds is non-trivial in terms
of computation cost. Indeed, the determination process
has to consider the combination of distance thresholds
in the attributes. Therefore, we explore several pruning
opportunities to speed up the determination process.

Contributions: To sum up, we make the following contri-
butions in this work.

i) We propose the expected utility of distance thresh-
old patterns, such that higher support, confidence and
dependent quality will yield a higher expected utility.

ii) We develop efficient pruning algorithms for the
distance threshold determination, together with several
advanced pruning bounds with respect to the expected
utility.

iii) We conduct an extensive experimental evaluation
over three real data sets. In particular, we evaluate the
effectiveness of returned results in the violation detection
application. The experiments also demonstrate that our
pruning strategies can significantly improve the efficiency
of determination.
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The remainder of this paper is organized as follows.
First, we introduce some related work in Section 2 and the
preliminary of this study in Section 3. Section 4 develops
the computation of expected utility, together with analysis
on its semantics. In Section 5, we present pruning algo-
rithms. Our extensive experimental evaluation is reported
in Section 6. Finally, Section 7 concludes this paper.

2 RELATED WORK

The importance of similarity constraints has recently been
recognized for data dependencies [12]–[14]. Besides the dif-
ferential dependencies (DDs) [1], other notations of metric
distance constraints are also studied.

Dependency with Metric: Koudas et al. [7] propose the
metric functional dependencies (MFDs), which employ dis-
tance metrics in the dependent attributes Y but have the
equality function in the determinant side X. As MFDs are
tolerant of small variations in the Y attributes, they are
more useful than the traditional FDs in detecting data vio-
lations. Moreover, the notation of differential dependencies
(DDs) [1], introducing distance metrics on both sides of
attributes, can have even more expressive power as illus-
trated in the introduction. Indeed, MFDs can be regarded
as special cases of DDs, and the threshold determination
techniques proposed in this study can be directly applied
to MFDs.

Fan et al. [8] introduce the matching dependencies (MDs) for
record matching, another important aspect of data cleaning.
Instead of detecting data violations as DDs and MFDs do,
MDs aim to identify the duplicates based on the similarity
on certain attributes X. Reasoning mechanism for deducing
MDs from a set of given MDs is studied in [8]. As illus-
trated, MDs and their reasoning techniques can improve the
effectiveness of record matching. A sound and complete
inference system is also presented in [15] for the deduc-
tion analysis of MDs. In addition, comparable dependencies
(CDs) over heterogeneous data are also studied in [16],
which need the more complicated schema mapping sup-
port. Golab et al. [17] propose sequential dependencies,
which also target on the metric distance/similarity of Y val-
ues. A sequential dependency, in the form of X →g Y, states
that when tuples are sorted on X, the distance/similarity
between the Y-values of any two consecutive tuples should
be within the interval g. We believe that our proposed
threshold determination techniques could be useful and
possibly extended for determining these more complex
metric distance constraints in the future work.

Dependency Discovery: The DDs discovery in [1] targets
on a minimal cover of all DDs that hold in a data instance,
while the statistical measures for DDs w.r.t. the utility are
not studied. Such statistical measures are essential to tell the
importance of a DD. Therefore, in this study, we first intro-
duce three statistical measures, i.e., support, confidence and
dependent quality, for DDs, and then study the distance
threshold determination regarding the statistical measures.

Indeed, the discovery of data dependencies from a
data instance has been widely studied [18]–[20]. In dis-
covering FDs, Huhtala et al. [9], [21] propose a level-wise

algorithm, namely TANE, together with efficient pruning
when searching in the lattice of attributes. Remarkably,
TANE algorithm also supports the discovery of approxi-
mate FDs, with statistical measures. Wyss et al. [22] study
a depth-first, heuristic-driven algorithm, namely FastFDs,
which is (almost) linear to the size of FDs cover. Flach
and Savnik [23] discover FDs in a bottom-up style, which
considers the maximal invalid dependencies first. When
searching in a hypotheses space, the maximum invalid
dependencies are used for pruning the search space. Fan
et al. [24] also extend the above algorithms for discover-
ing FDs with conditions. Unfortunately, since the equality
function is usually considered, these previous works can
hardly address the determination of distance thresholds for
metric distance constraints. The most related work is [25]
about MDs discovery. It differs from our current work in
two aspects: (1) the determination on metric distance only
needs to be considered in the determinant side X for MDs;
and (2) there is no issue about tolerance to address for
dependent attributes in MDs. Most importantly, the previ-
ous work needs to specify the parameters for the measures
manually, while the problem introduced in this study is to
determine the distance thresholds in a parameter-free style.

Dependency Measure: A dependency rule can be mea-
sured in various ways. In the measures of FDs [9], g3
measure [10] is widely used, that is, the minimum num-
ber of tuples that have to be removed from the relation
instance for the FD to hold. The computation of g3 mea-
sure relies on grouping tuples by equal values, which
cannot be applied to distance metrics on tuple pairs. The
confidence and support measures are also used in eval-
uating FDs [11] and conditional FDs [24], [26], [27]. The
confidence can be interpreted as an estimate of the prob-
ability that a randomly drawn pair of tuples agreeing
on X also agrees on Y [11]. In our study, we also uti-
lize support and confidence for differential dependencies,
which are defined based on tuple pairs. The major dif-
ference of measures for differential dependencies to the
previous work is about dependent quality. As introduced
in the introduction, differential dependencies need an addi-
tional measure to evaluate the quality of tolerance in the
dependent attributes.

Instead of setting minimum requirements of several
measures, in association rule mining [28], it is also studied
to return the most interesting rules according to the spec-
ified measures. For example, Han et al. [29] indicate that
setting minimum support requirement is quite subtle: a too
small threshold may lead to the generation of thousands
of patterns, whereas a too big one may often generate no
answers. Webb and Zhang [30] study the k-optimal rule dis-
covery, where the leverage is used as a single value measure
instead of support and confidence separately. Scheffer [31]
studies the trade-off between support and confidence for
finding association rules, by computing an expected predic-
tion accuracy. Compared with the previous work on mining
association rules, our problem for differential dependen-
cies is different and more challenging in two aspects: (1)
the support and confidence measures are defined with
respect to the distance in tuple pairs, instead of the group
(set) of identical items in association rules; (2) besides
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TABLE 2
Notations

support and confidence, we have to balance the additional
measure of dependent quality on distance, which is a con-
cept that does not exist in association rules. Consequently,
our expected utility needs to consider more measures, i.e.,
support, confidence and dependent quality, which has more
complicated computation and semantics as illustrated in
Section 4.

3 PROBLEM STATEMENT

In this section, we first introduce the formal definition and
statistical measures for differential dependencies. It raises
the problem of determining thresholds with high utility.
Table 2 lists the frequently used notations in this paper.

3.1 Preliminary
Consider a relation R. For each attribute A ∈ R, we asso-
ciate a distance metric dA, e.g., edit distance [32] or cosine
similarity [33] on text, or the metric on numeric data [34].
The selection of distance metric is out of the scope of this
study. Please refer to [6] for a survey. Let dA(a1, a2) denote
the distance between two values a1 and a2 on attribute A.

Definition 1. A differential dependency (DD) [1] is a pair
(X → Y, ϕ), where (1) X ⊆ R denotes a set of determinant
attributes; (2) Y ⊆ R is a set of dependent attributes;
and (3) ϕ is a pattern (vector) of distance thresholds on
attributes X and Y, also denoted by ϕ[XY], where the projec-
tion ϕ[A] of ϕ on attribute A ∈ X ∪ Y denotes the distance
threshold of A.

A DD states the constraint that, for any two tuples t1
and t2 in a relation instance r of R, if dAi(t1[Ai], t2[Ai]) ≤
ϕ[Ai],∀Ai ∈ X, then it must have dAj(t1[Aj], t2[Aj]) ≤
ϕ[Aj],∀Aj ∈ Y, where ϕ[Ai] and ϕ[Aj] are distance thresh-
olds on the attributes of Ai and Aj respectively.

For example, a DD ([Address] → [Region],< 8, 3 >) in
the Hotel relation specifies the constraint that if two tuples
have similar Address (with edit distance no greater than
ϕ[Address] = 8) then their Region values are also similar
(with edit distance ≤ ϕ[Region] = 3).

Note that the distance thresholds on the determinant
attributes X could be large. If ϕ[X] is close to dmax the max-
imum distance value, it states that no matter whether the
X values are similar or not, the constraints on Y can be
achieved anyway. The larger the ϕ[X] is, the weaker the Y
side depends on the similarity of X. When ϕ[X] = dmax, the
constraint on X is unlimited, i.e., any tuple pair can always
have distance ≤ dmax. In fact, for any attribute A ∈ R\(X∪Y)

that does not appear in a DD (X → Y, ϕ), it already implies
an unlimited constraint ϕ[A] = dmax on A. We say that ϕ[Y]
is independent of A.

3.2 Statistical Measures
In order to compute the measures of support, confidence
and dependent quality, we define the following statistics.
Following the support and confidence measures defined on
tuple pairs [11], we study the statistics of tuple pairs with
respect to metric distance. Given an instance of relation R
with N data tuples, we conduct a pair-wise matching of all
N tuples. The metric distance of each tuple pair is denoted
by a matching tuple b, where b[A] is the distance of the data
tuple pair on attribute A ∈ R. As illustrated below, for the
evaluation of each ϕ, we have to visit all the tuple pairs
once. To avoid the re-computation among the evaluation of
different ϕ, we can pre-compute the matching tuples from
all tuple pairs and store them for reuse.

Let M be a matching relation with total M = |M| =
N(N−1)

2 matching tuples obtained from the pair-wise match-
ing. If the distance values on X of a matching tuple b can
satisfy the corresponding thresholds ϕ[X], we say that b sat-
isfies ϕ[X], denoted by b � ϕ[X]. Let count(b � ϕ[X]) denote
the total number of matching tuples b ∈ M that can satisfy
ϕ[X]. We introduce the following statistics.

Definition 2. The confidence of ϕ is the ratio of tuple pairs
satisfying ϕ[XY] to the pairs satisfying ϕ[X].

C(ϕ) = count(b � ϕ[XY])
count(b � ϕ[X])

. (1)

For example, in Table 1, among 6 pairs of tuples satisfy-
ing ϕ[X] of dd1, there are 4 tuple pairs also having Region
distances ≤ 3. Thereby, the confidence of dd1 is 4/6.

Definition 3. We define D(ϕ) as the support of ϕ[X] (the left-
hand-side of ϕ).

D(ϕ) = count(b � ϕ[X])
M

. (2)

To illustrate the computation of statistical measures, we
consider the previously used running example in Table 1
in the Introduction. Since there are 15 tuple pairs in Table
1 and 6 of them have distance ≤ 8 on Address, we have
D(dd1) = 6/15 = 0.4.

Definition 4. The overall support of ϕ is the proportion of tuple
pairs whose distances satisfy the thresholds in ϕ[XY] on both
attributes of X and Y.

S(ϕ) = C(ϕ)D(ϕ). (3)

Consequently, the support of dd1 can be computed, i.e.,
S(dd1) = 4/15.

Definition 5. The dependent quality Q(ϕ) denotes the qual-
ity of tolerance in the dependent side, i.e., how the distance
thresholds ϕ[Y] on dependent attributes Y is close to the
equality.

Q(ϕ) =
∑

A∈Y dmax − ϕ[A]
|Y| × dmax

. (4)

Intuitively, as presented in formula 4, the smaller the dis-
tance thresholds on Y are, the higher the dependent quality
Q(ϕ) is. When the distance thresholds are set to the small-
est 0, the dependent quality will be the highest 1.0, i.e., the
equality case. On the other hand, the largest threshold dmax
will have the lowest dependent quality 0.0.
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3.3 Threshold Determination Problem
There are various distance threshold settings that can be
associated to the DDs on X → Y, while only some of
them with high utility are interesting to users, i.e., those
ones with high support, confidence and dependent qual-
ity. The determination process often needs users to spec-
ify the minimum requirements of these three statistical
measures.

As mentioned in the introduction, it is difficult to set
parameters of minimum support, confidence and depen-
dent quality respectively. Setting some requirements high
may lead other measures to be low. To avoid tuning param-
eters manually, we are interested in an overall evaluation
of utility.

For any matching tuple b, a possible interpretation of
the utility U(ϕ) of a dependency ϕ could be the prediction
accuracy of b satisfying ϕ[Y] with dependent quality Q(ϕ)

given b satisfies ϕ[X], i.e.,

Pr(b � ϕ[Y], Q(ϕ) | b � ϕ[X]), (5)

Intuitively, according to this prediction, high confidence
and high dependent quality may lead to high utility.
However, the contribution of support in utility is not inves-
tigated yet. Therefore, we aim to refine the utility w.r.t.
confidence and dependent quality by using support, i.e.,
to compute the expected utility,

Ū(ϕ) = E(U(ϕ) | C(ϕ), D(ϕ), Q(ϕ))

=
∫

uP(U = u | C(ϕ), D(ϕ), Q(ϕ))du,

where C(ϕ), D(ϕ) and Q(ϕ) are the statistics observed from
the matching relation M. It is to consider the probabilities
of possible utility values u. The computation and seman-
tics of the expected utility are discussed in the following
Section 4. In short, we can find that the expected utility of
a ϕ is high if it has high support, confidence and dependent
quality.

Finally, we formulate the determination problem without
manually specifying the individual requirements.

Definition 6. Given the determinant attributes X and the
dependent attributes Y, the distance threshold determination
problem is to find a distance threshold pattern ϕ for the DD
on X → Y with the maximum expected utility Ū(ϕ).

4 COMPUTING EXPECTED UTILITY

In this section, we present the detailed computation steps
of the expected utility, and then analyze the properties of
expected utility to illustrate its semantics.

4.1 Computation
Given a data instance, we can compute the aforesaid statis-
tics C(ϕ), D(ϕ), Q(ϕ) denoted by C, D, Q. According to the
Bayesian rule, we have the expected utility as follows,

Ū(ϕ) = E(U | C, D, Q)

=
∫

uP(U = u | C, D, Q)du

=
∫

u
P(U = u, C, D, Q)

P(C, D, Q)
du

=
∫

u
P(C, Q | U = u, D)P(U = u | D)

P(C, Q | D)
du

=
∫

uP(C, Q | U = u, D)P(U = u | D)du
P(C, Q | D)

.

Consider all possible u values,
∫

P(U = u | C, D, Q)du = 1

⇔
∫

P(U = u, C, D, Q)

P(C, D, Q)
du = 1

⇔
∫

P(C, Q | U = u, D)P(U = u | D)

P(C, Q | D)
du = 1

⇔ P(C, Q | D) =
∫

P(C, Q | U = u, D)P(U = u | D)du.

Based on the above two derivations, we have

E(U | C, D, Q) =
∫

uP(C, Q | U = u, D)P(U = u | D)du
∫

P(C, Q | U = u, D)P(U = u | D)du
.

P(C, Q | U = u, D) can be modeled exactly as a Binomial
distribution [35], denoted by DCQ ∼ B(D, u). Recall the
definition of Binomial distribution: Consider a set of n
objects, each of which yields success with probability p,
then the probability of k successes in n objects is given by
the probability mass function of Binomial distribution:

f (k; n, p) =
(

n
k

)

pk(1 − p)n−k.

In our scenario, we find D instances from the matching rela-
tion M satisfying ϕ[X], i.e., n = D (Recall that D denotes
D(ϕ) for simplicity). Among them, we observed D × C × Q
instances satisfying ϕ[Y] with high dependent quality (i.e.,
k = D × C × Q successes). Moreover, according to formula
5, u is the probability of predicting Y with high depen-
dent quality given X (i.e., p = u). Finally, the probability of
observing C, Q is given by f (D × C × Q; D, u). Thereby, we
can rewrite the computation formula,

E(U | C, D, Q) =
∫

uf (D × C × Q; D, u)P(U = u | D)du
∫

f (D × C × Q; D, u)P(U = u | D)du
.

P(U = u | D) is exactly P(U = u), since the utility
U is independent of D which concerns X only. The prior
P(U = u) denotes the distribution of ϕ, i.e., the fraction of
ϕ with U = u. Note that the observed CQ can be interpreted
as an estimation of the prediction accuracy of utility u, i.e.,
the probability of matching tuples that satisfy ϕ[X] also sat-
isfying ϕ[Y] with dependent quality Q(ϕ). Thus, we use the
histogram P(CQ) to estimate P(U = u). Let CQ be the mean
of CQ. Following the intuition of modeling prediction accu-
racy as binomial distribution [36], we also treating the prior
of utility (prediction accuracy) in a similar way. Specifically,
each matching tuple can be identified as either satisfying
a ϕ or rejecting it. The chance of the former happening is
CQ. It leads to a Binomial distribution, denoted by π(u),

P(U = u) = π(u) = f (u; 1, CQ).

Finally, we can compute the expected utility Ū(ϕ) by

Ū(ϕ) = E(U | C, D, Q) =
∫

uf (D × C × Q; D, u)π(u)du
∫

f (D × C × Q; D, u)π(u)du
. (6)
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(a) (b)

(c)

Fig. 1. Contribution to expected utility. (a) Same support S(ϕ). (b) Same
confidence C(ϕ). (c) Same dependent quality Q(ϕ).

4.2 Semantics
We discuss the semantics of the expected utility, that is, how
the support, confidence and dependent quality measures of
ϕ contribute to the expected utility Ū(ϕ).

Theorem 1. For any ϕ1, ϕ2, if ϕ1 has higher support than ϕ2,
denoted by S(ϕ1)

S(ϕ2)
= ρ, ρ ≥ 1, and the confidence and depen-

dent quality of ϕ1 are higher than those of ϕ2 as follows
C(ϕ1)
C(ϕ2)

≥ ρ,
Q(ϕ1)
Q(ϕ2)

≥ 1
ρ
, then we have Ū(ϕ1) ≥ Ū(ϕ2).

Proof. First, according to D(ϕ1)C(ϕ1) = ρD(ϕ2)C(ϕ2) and
Q(ϕ1) ≥ 1

ρ
Q(ϕ2), we have

� = D(ϕ1)C(ϕ1)Q(ϕ1) − D(ϕ2)C(ϕ2)Q(ϕ2) ≥ 0.

Moreover, since C(ϕ1) ≥ ρC(ϕ2), we have

�′ = D(ϕ2) − D(ϕ1) ≥ 0

as well. According to Lemma 3 in Supplemental
Results, which is available in the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TKDE.2013.84 we prove the conclusion.
This conclusion verifies our intuition that higher sup-

port, confidence and dependent quality will contribute to
a larger expected utility. In Fig. 1, we use running exam-
ples to illustrate the expected utility of different ϕ, which
have various D, C, Q measures. To illustrate the contribu-
tions of measures clearly, we fix one of them, and observe
the contributions of the other two measures. For instance,
Proposition 1 states that if any ϕ1, ϕ2 have the same sup-
port, and the confidence and dependent quality of ϕ1 are
higher than those of ϕ2, then the utility Ū(ϕ1) is larger than
that of ϕ2 as well. As presented in Fig. 1(a), under the same
support S(ϕ) = 0.8, with the increase of C(ϕ) and Q(ϕ), the
corresponding expected utility Ū(ϕ) is also larger. Although
the confidence of a ϕ could be high, e.g., C(ϕ) = 0.9, if the
corresponding dependent quality is low, e.g., Q(ϕ) = 0.1,
the expected utility Ū(ϕ) = 0.07 is still low. Similar con-
clusions can be drawn under the same confidence C(ϕ) or
dependent quality Q(ϕ) in Fig. 1(b) and (c), according to
Proposition 2 and Proposition 3 respectively.

Proposition 1. For any ϕ1, ϕ2 with the same support

S(ϕ1) = S(ϕ2),

if the confidence and dependent quality of ϕ1 are higher than
those of ϕ2 respectively, i.e., C(ϕ1) ≥ C(ϕ2), and Q(ϕ1) ≥
Q(ϕ2), we have Ū(ϕ1) ≥ Ū(ϕ2).

Proposition 2. For any ϕ1, ϕ2 with the same confidence

C(ϕ1) = C(ϕ2) = C,

if ϕ1 has higher support than ϕ2, S(ϕ1) = ρS(ϕ2), ρ ≥ 1, and
the dependent quality of ϕ1 is higher than that of ϕ2 as follows
Q(ϕ1) ≥ 1

ρ
Q(ϕ2) + ρ−1

C , then we have Ū(ϕ1) ≥ Ū(ϕ2).

Proposition 3. For any ϕ1, ϕ2 with the same dependent quality

Q(ϕ1) = Q(ϕ2),

if ϕ1 has higher support than ϕ2, S(ϕ1) = ρS(ϕ2), ρ ≥ 1,
and the confidence of ϕ1 is higher than that of ϕ2 as follows
C(ϕ1) ≥ ρC(ϕ2), then we have Ū(ϕ1) ≥ Ū(ϕ2).

Referring to formula (6) of computing Ū(ϕ), Proposition
1 and Proposition 3 can be directly proved by Lemma 3,
and Proposition 2 is proved by Lemma 4 in Supplemental
Results, available online.

So far, we have presented the computation of expected
utility with clarification on the corresponding semantics.
We are now ready to find the distance threshold patterns
for DDs with the maximum expected utility in a parameter-
free style, instead of studying how to specify the minimum
requirements of several statistical measures.

5 DETERMINATION ALGORITHM

In this section, we study the finding of one (or several)
setting of distance thresholds for the DDs on X → Y with
the maximum expected utility, i.e., ϕmax = arg maxϕ Ū(ϕ).
The determination process has mainly two steps: (i) to
find the best ϕ[Y] when given a fixed ϕ[X]; (ii) to find
the desired ϕ[X] together with its best ϕ[Y] which has the
maximum Ū(ϕ).

The previous FDs discovery considers the combination of
attributes [9] and targets on minimizing a single measure,
such as g3 [10]. In contrast, we study the determination of
distance thresholds on certain attributes X, Y and aim to
maximize the expected utility with respect to three mea-
sures. Recognizing the major difference and challenges, in
the following, we investigate several pruning methods and
bounds, by exploring the unique features of the expected
utility.

5.1 Determination for Dependent Attributes
First, we consider the determination for the dependent
attributes: given a fixed ϕ[X], to find the corresponding
best ϕ[Y] on the dependent attributes Y with the maximum
Ū(ϕ).

For an attribute A ∈ Y, we can consider the search space
of distance threshold ϕ[A] from 0 to dmax. Let CY denote
the set of distance threshold patterns ϕ[Y] by enumerating
all the distance thresholds ϕ[A] ∈ dis for all the dependent
attributes A ∈ Y.

Since ϕ[X] on the determinant attributes X is fixed in the
current step, according to formula 2, the D(ϕ) value is the
same for any ϕ such that ϕ[Y] ∈ CY. Therefore, we mainly
study the other two measures C(ϕ) and Q(ϕ) in terms of
contributions to the expected utility Ū(ϕ).
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Theorem 2. Consider any two ϕ1, ϕ2, having the same D(ϕ1) =
D(ϕ2) = D. If their confidence and dependent quality satisfy
C(ϕ1)Q(ϕ1) ≥ C(ϕ2)Q(ϕ2), then we have Ū(ϕ1) ≥ Ū(ϕ2).

Proof. Let

� = C(ϕ1)Q(ϕ1) − C(ϕ2)Q(ϕ2)

D
≥ 0

and

�′ = D(ϕ2) − D(ϕ1) = 0.

According to Lemma 3 in Supplemental Results, avail-
able online, we can prove the conclusion.
According to Theorem 2, for a fixed ϕ[X], to find a

ϕ with the maximum Ū(ϕ) is equivalent to find the one
with the maximum C(ϕ)Q(ϕ). For each ϕ[Y] ∈ CY, we can
directly calculate the dependent quality Q(ϕ) by formula 4.
Moreover, together with the given ϕ[X] on the determinant
attributes X, we can also compute the measure C(ϕ) from
M using formula 1. The result ϕ with the maximum Ū(ϕ)

can be found by one pass through all the ϕ[Y] ∈ CY.
Algorithm 1 presents the approach of finding the best

ϕ[Y] for a given ϕ[X] such that the expected utility Ū(ϕ) is
maximized. As mentioned, to find the result, we only need
to compute C(ϕi)Q(ϕi) for each ϕi such that ϕi[Y] ∈ CY and
ϕi[X] = ϕ[X]. Line 3 in Algorithm 1 computes the C(ϕi)

from M by using formula 1. Let Vmax denote the maximum
value of C(ϕ)Q(ϕ) in the first i − 1 candidates, i.e.,

Vmax = i−1
max
j=1

C(ϕj)Q(ϕj).

Initially, we can set Vmax = 0. The ϕmax in Line 5 records
the distance threshold pattern with the maximum C(ϕ)Q(ϕ)

value, and will be returned as the result.

Example 1. Supposing that the maximum distance value
is 10, we denote all the distance thresholds as dis =
{0, 1, 2, . . . , 10}. Consider two attributes in Y, e.g.,
“venue” and “year” in Rule 1 used in the experiments in
Section 6, having the same dis = {0, 1, 2, . . . , 10}. Fig. 2(a)
illustrates all the distance threshold patterns in CY, from
< 0, 0 > to < 10, 10 >. Each node, such as < 1, 2 >,
corresponds to a pattern ϕ[Y] ∈ CY. That is, the dis-
tance threshold of the first attribute “venue” is 1, and
the second attribute “year” has distance threshold equal
to 2. Algorithm 1 traverses all these patterns in Fig.
2(a) to find a ϕ[Y], which has the maximum C(ϕ)Q(ϕ)

value. For instance, according to the results in Table 3
in the experiments, the pattern < 3, 1 > for Y attributes
“venue” and “year” has the maximum C(ϕ)Q(ϕ) val-
ues, i.e., 0.376*0.8. As shown in Table 3, such a result
with a high expected utility (large confidence C(ϕ) and

(a)  (b)

Fig. 2. Pruning on dependent attributes. (a) Dominant relationships.
(b) Measure relationships.

dependent quality Q(ϕ)) may leads to relatively good
performance in applications (high precision and recall).

Suppose that we consider d values of distance thresholds
in each attribute, i.e., |dis| = d. In this PA approach, we need
to consider the combination of d distance thresholds in all
Y attributes as the candidate patterns in CY, i.e., |CY| = d|Y|
in size. For each candidate ϕ, there is a costly step to com-
pute C(ϕ). According to formula 1, for each ϕ, we have
to count the number of matching tuples in M which can
satisfy ϕ[XY]. With the increase of data sizes, the match-
ing relation size M = |M| will be large as well. The cost
O(Md|Y|) of PA is high. Therefore, we propose the follow-
ing pruning techniques to reduce the number of candidates
during the computation.

Pruning approach: To study the pruning of pattern candi-
dates, let’s first introduce the relationships between distance
threshold patterns. Consider any attribute set Z of R.

Definition 7. For any ϕ1, ϕ2, if ϕ1[A] ≥ ϕ2[A] holds for all the
attributes, ∀A ∈ Z, then we say that ϕ1[Z] dominates ϕ2[Z],
denoted by ϕ1[Z] � ϕ2[Z].

Fig. 2(a) shows the dominant relationships of candidates
in CY. An arrow from a node ϕ2[Y] to ϕ1[Y] denotes that
ϕ1[Y] dominates ϕ2[Y], i.e., ϕ1[Y] � ϕ2[Y]. We present the
dominant relationships between two neighbor levels. For the
domination between other levels, we can derive them by the
transitivity property, i.e., if ϕ1[Y] � ϕ2[Y] and ϕ2[Y] � ϕ3[Y],
we have ϕ1[Y] � ϕ3[Y] as well. For example, in Fig. 2(a),
< 1, 1 > also dominates < 0, 0 >, which is not shown.

Lemma 1. For any two ϕ1, ϕ2, having ϕ1[X] = ϕ2[X] and
ϕ1[Y] � ϕ2[Y], then C(ϕ1) ≥ C(ϕ2) and Q(ϕ1) ≤ Q(ϕ2).

Proof. Let b be any matching tuple from M. First of all,
since ϕ1[X] = ϕ2[X], we have

count(b � ϕ1[X]) = count(b � ϕ2[X])

as well. Moreover, for any b satisfying ϕ2, having b[A] ≤
ϕ2[A], A ∈ Y, according to Definition 7, we always have
b[A] ≤ ϕ2[A] ≤ ϕ1[A], i.e., b also satisfies ϕ1. In other
words, count(b � ϕ1[XY]) is greater than that of ϕ2, that
is, C(ϕ1) ≥ C(ϕ2).
Next, since we have ϕ1[A] ≥ ϕ2[A] for each attribute

A ∈ Y, the dependent quality Q(ϕ1) is lower than Q(ϕ2).
According to Lemma 1, by a downward traversal of candi-

dates in the dominant graph, the dependent quality increases
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from 0 to 1. On the other hand, as shown in Fig. 2(b), the
confidence increases from 0 to 1 in an upward traversal.

Consider the current ϕi in traversal of CY. Let ϕmax
denote the candidate with the maximum C(ϕmax)Q(ϕmax) =
Vmax in the previously processed i − 1 candidates in CY,

ϕmax = arg maxϕj,j∈[1,i−1]C(ϕj)Q(ϕj).

We have the opportunity of pruning the following two sets
of remaining ϕk without conducting the costly computation
of C(ϕk):

i) Pruning by ϕmax. The first pruning opportunity is
introduced by ϕmax of the previously processed i − 1
candidates.

Proposition 4. For any ϕk[Y] ∈ CY with Q(ϕk) ≤ Vmax, we
have Ū(ϕk) ≤ Ū(ϕmax).

Proof. Since the confidence is always less than or equal to 1,
we have C(ϕk)Q(ϕk) ≤ Q(ϕk) ≤ Vmax = C(ϕmax)Q(ϕmax).

According to Theorem 2, we have Ū(ϕk) ≤ Ū(ϕmax).
Let S0 = {ϕk | Q(ϕk) ≤ Vmax, ϕk[Y] ∈ CY}. Then, all the ϕk

in S0 can be safely pruned without computing C(ϕk) from
M.

ii) Pruning by ϕi. The second pruning opportunity is
developed according to the current ϕi in i-th step.

Proposition 5. For any ϕk[Y] ∈ CY with ϕi[Y] � ϕk[Y] and
Q(ϕk) ≤ Vmax

C(ϕi)
, we have Ū(ϕk) ≤ Ū(ϕmax).

Proof. According to ϕi[Y] � ϕk[Y], we have C(ϕk) ≤
C(ϕi). It implies C(ϕk)Q(ϕk) ≤ C(ϕi)Q(ϕk) ≤ Vmax =
C(ϕmax)Q(ϕmax). Referring to Theorem 2, the conclusion
is proved.
Let S1 = {ϕk | ϕi � ϕk, Q(ϕk) ≤ Vmax

C(ϕi)
, ϕk[Y] ∈ CY}.

According to Proposition 5, all the ϕk in S1 can be safely
pruned as well, without computing C(ϕk).

Example 2. Let ϕi in Fig. 2(b) denote the current candidate,
and Vmax be the maximum value of C(ϕ)Q(ϕ) in the first
i − 1 candidates. As mentioned, the dependent quality
increases with a downward traversal of candidates in the
dominant graph. The shaded area S0 denotes the candi-
dates ϕk with Q(ϕk) ≤ Vmax. According to Proposition
4, all the candidates in S0 are safely pruned. Similarly,
according to Proposition 5, those candidates ϕk with
Q(ϕk) ≤ Vmax

C(ϕi)
and dominated by ϕi are pruned as well,

i.e., the other shaded area of S1 in Fig. 2(b).

Based on the above two propositions, we develop
Algorithm 2, namely PAP, which prunes the candidates
of S0 and S1 when passing through each ϕi ∈ CY. The
operation prune(ϕ, q) removes all the patterns dominated
by ϕ from the candidate set CY, whose dependent quality
Q(ϕk) is less than or equal to q. For example, in Line 7,
prune(ϕi,

Vmax
C(ϕi)

) removes patterns ϕ in S1 from CY, accord-
ing to Proposition 5. Note that any ϕk is dominated by ϕ0,
ϕ0[Y] � ϕk[Y], where ϕ0 has ϕ0[A] = dmax for each attribute
A ∈ Y. Therefore, in Line 6, we can also use the same
function prune(ϕ0, Vmax) to prune the set S0, according to
Proposition 4.

5.2 Determination for Determinant Attributes
Next, we consider all possible distance threshold patterns
of the determinant attributes X, say CX, and find a ϕ with

the maximum Ū(ϕ). The straight-forward approach is to
compute the best ϕ[Y] for each ϕ[X] ∈ CX respectively by
using PA, and then return the one with the maximum Ū(ϕ).

Algorithm 3 presents the straight-forward computation
of a distance threshold ϕmax with the maximum expected
utility. For each ϕi[X] ∈ CX, Line 3 computes D(ϕi) from M
by using formula 2. By calling the PA or PAP algorithm, we
can compute the best ϕi[Y] with respect to the current ϕi[X].
For the initial bound Vmax, as mentioned before, we can set
Vmax = 0 as illustrated in Line 4. Finally, the expected utility
Ū(ϕi) of each ϕi in Line 5 is computed by using formula 6
as presented in Section 4. Here, Umax records the maximum
expected utility in the first i − 1 candidates,

Umax = i−1
max
j=1

Ū(ϕj).

Initially, we set Umax = 0. The returned ϕmax is the distance
threshold pattern with the maximum expected utility Umax.

Example 3. As CY in Fig. 2(a), we can also enumerate all the
distance threshold patterns for CX. Let the bar in Fig. 3(a)
denote the sequence of all ϕi[X] ∈ CX. Algorithm 3 tra-
verses all these candidates in CX to find a ϕmax[X] which
has the maximum expected utility. When computing the
dependents for each ϕi[X], the initial pruning bound can
be simply given as Vmax = 0.

Again, considering all d distance threshold values in
each attribute, there are d|X| and d|Y| candidates in set CX
and CY respectively. Let c = |X|+ |Y| be the total number of
attributes in X and Y. The total number of candidates eval-
uated in the algorithm is |CX × CY| = dc. Note that for each
candidate, we have to traverse the matching relation M in
order to compute corresponding measures such as confi-
dence. Therefore, the entire complexity of the approaches,
e.g., DA+PA, is O(Mdc), where M is the total number of
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(a)

(b)

(c)

Fig. 3. Pruning on determinant attributes. (a) Candidate order. (b)
Pruning bound. (c) Expected utility.

matching tuples in M. Note that pruning version PAP
can be applied to replace the basic approach PA, namely
DA+PAP.

Advanced pruning bound using ϕmax: The most costly part
of the above DA algorithm is still the computation of ϕi[Y]
by using PA or PAP, which traverses M frequently. As men-
tioned, in order to improve the pruning power of PAP, we
expect to find a larger pruning bound Vmax. Let’s first study
the following properties in terms of the expected utility.

Theorem 3. Consider any two ϕ1, ϕ2, having D(ϕ1) ≥ D(ϕ2).
If their confidence and dependent quality satisfy

C(ϕ2)Q(ϕ2) ≤ 1 − D(ϕ1)

D(ϕ2)

(
1 − C(ϕ1)Q(ϕ1)

)

then we have Ū(ϕ1) ≥ Ū(ϕ2).

Proof. Let

� = D(ϕ1)C(ϕ1)Q(ϕ1) − D(ϕ2)C(ϕ2)Q(ϕ2)

and

�′ = D(ϕ1) − D(ϕ2) ≥ 0.

With the condition of C(ϕ1) and C(ϕ2), we have � ≥
�′. According to Lemma 4 in Supplemental Results,
available online, we can prove the conclusion.
Intuitively, we can prune those ϕ2 whose C(ϕ2)Q(ϕ2) is

no higher than 1− D(ϕ1)
D(ϕ2)

(
1−C(ϕ1)Q(ϕ1)

)
, i.e., the new prun-

ing bound Vmax. To apply this pruning bound, we require
a precondition D(ϕ1) ≥ D(ϕ2).

Therefore, we can adopt an ordering of candidates in
CX having D(ϕi1) ≥ D(ϕi2) for any i1 < i2. The ordering
can be done in linear time by amortizing the D(ϕ) values
into a constant domain. In the following algorithms, we
assume that the candidates in CX have already been listed
in descending order of D(ϕ) values.

Let ϕmax be the current result with the maximum
expected utility by evaluating the first i−1 candidates in CX.
Since we process CX in descending order of D(ϕ) values,
for the next ϕi, we have D(ϕmax) ≥ D(ϕi). According to
Theorem 3, we can compute an advanced pruning bound

Vmax = 1 − D(ϕmax)

D(ϕi)

(
1 − C(ϕmax)Q(ϕmax)

)
(7)

for the computation of ϕi[Y] by using PAP, in the current
ϕi.

Algorithm 4 extends Algorithm 3 by introducing the
advanced pruning bound Vmax instead of simply assigning
Vmax = 0 in the original DA. We compute the advanced
pruning bound in Line 4 by using formula 7, and use
this Vmax for pruning in the determination on dependent
attributes Y (Line 5). Note that all candidates in CY might be
pruned in PAP by the advanced Vmax, i.e., no ϕi[Y] returned
(Line 6). Then, the current ϕi[X] can be discarded safely
without computing the corresponding Ū(ϕi).

Example 4. As shown in Fig. 3(a), candidates in CX are
ordered by D(ϕ). For any candidate ϕi with C(ϕi)Q(ϕi)

less than the pruning bound Vmax specified in for-
mula (7), i.e., in the range of {1} in Fig. 3(b), it can be
directly pruned according to Theorem 3, that is, with
Ū(ϕi) ≤ Ū(ϕmax) as illustrated in Fig. 3(c).

If the calculated bound Vmax is less than 0, we can simply
assign 0 to it. Once the bound is Vmax > 0, it can achieve
a tighter pruning bound. Therefore, practically, the worst
case of DAP is exactly the basic DA algorithm. In fact, as we
can find, Theorem 2 is a special case of Theorem 3 when
D(ϕ1) = D(ϕ2). In other words, theoretically, the advanced
pruning (e.g., DAP+PAP) developed based on Theorem 3
is a generalization of the basic pruning DA+PAP based on
Theorem 2. Our experiments in Section 6 also verify that
DAP+PAP is at least no worse than DA+PAP.

Tighter pruning bound using ϕj: Motivated by the impor-
tance of pruning bound, it is natural to clarify whether the
pruning bound Vmax developed by measures of ϕmax in
formula 7 is the tightest (largest) one. Indeed, ϕmax only
maximizes the Ū(ϕ), but has no guarantee that the pruning
bound Vmax is maximized.

Consider the current ϕi. Recall that for a j ∈ [1, i − 1] we
have D(ϕj) ≥ D(ϕi) according to the ordering of candidates
in CX. Suppose that ϕi can also satisfy the other condition
of C(ϕi)Q(ϕi) in Theorem 3, i.e., having Ū(ϕj) ≥ Ū(ϕi). For
the result ϕmax with the maximum expected utility in the
previous i−1 steps, we have Ū(ϕmax) ≥ Ū(ϕj). Thereby, the
pruning of ϕi by using ϕj is safe, according to

Ū(ϕmax) ≥ Ū(ϕj) ≥ Ū(ϕi).

In other words, any ϕj can be utilized in Theorem 3 to
compute a pruning bound.
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Specifically, for all the ϕj in the previous i − 1 steps, let

Wmin = i−1
min
j=1

D(ϕj) − D(ϕj)C(ϕj)Q(ϕj). (8)

Then, the tightest pruning bound, i.e., the maximum Vmax,
is

Vmax = 1 − Wmin
D(ϕi)

= maxi−1
j=1 1 − D(ϕj)

D(ϕi)

(
1 − C(ϕj)Q(ϕj)

)
.

Algorithm 5, namely DAPT, presents the implementation
with the tighter pruning bound. Instead of computing the
pruning bound Vmax by using the current ϕmax in the pre-
vious i − 1 steps, the tighter bound is obtained by Wmin in
Line 4. According to formula 8, Wmin denotes the minimum
value of D(ϕ)−D(ϕ)C(ϕ)Q(ϕ) for all the ϕ considered in the
previous i−1 steps, which is computed in Line 11. Initially,
we have Wmin = +∞.

Example 5. As shown in Fig. 3(b), an even larger (tighter)
pruning bound Vmax can be obtained by formula (8)
w.r.t. to a ϕtight that is previously processed before ϕi in
Fig. 3(a). Consequently, those candidates in the range of
{2} in Fig. 3(b) can be pruned, i.e., with Ū(ϕi) ≤ Ū(ϕtight)

as illustrated in Fig. 3(c). It is notable that these candi-
dates cannot be identified with expected utility lower
than Ū(ϕmax) by DAP in Algorithm 4 until Ū(ϕi) is
computed.

Note that the current ϕmax is one of the first i − 1 candi-
dates. In other words, the above bound Vmax is at least no
smaller than the one calculated by using ϕmax in formula 7
for DAP. Therefore, the worst case of DAPT algorithm will
be the DAP.

Algorithm Extensions: When users require more than one
answer for specific applications, the proposed algorithms
can be easily extended to find the distance threshold
patterns with second or third or l-th largest expected
utilities. Specifically, instead of the maximum C(ϕ)Q(ϕ),
we use Vmax to denote the l-th maximum C(ϕ)Q(ϕ) in
Algorithms 1, 2 and so on. Then, the return results are a set
of l patterns of distance thresholds with the largest expected
utilities. Since we relax Vmax from the 1st maximum to l-
th maximum, the pruning power will be weaker with the
increase of l. We report the time performance on different
answer sizes l in the experiments.

6 EXPERIMENTAL EVALUATION

In the experimental evaluation, we use three real data sets.
The Cora2 data set, prepared by McCallum et al. [37], con-
sists of records of research papers, such as author, title, year,
publisher, etc. The Restaurant3 data set consists of restaurant
records including attributes name, address, city and type.
The CiteSeer4 data set is selected with attributes includ-
ing address, affiliation, subject, description, etc. During the
preprocessing, we use edit distance with q-grams [38] to
evaluate the distance of tuples in the original data. After
pair-wised computation, we have up to 1,000,000 matching
tuples in the matching relation M for each data set. The
proposed techniques are then evaluated on the prepared
matching relation M.

In the experiments, suppose that users want to deter-
mine the distance thresholds for the differential dependen-
cies on the following X → Y attributes,

Rule1 : cora(author, title → venue, year)

Rule2 : cora(venue → address, publisher, editor)

Rule3 : restaurant(name, address → city, type)

Rule4 : citeseer(address, affiliation, description → subject)

where Rule 2 has a larger Y while Rule 4 has a larger X.
All the algorithms are implemented by Java. The exper-

iment evaluates on a machine with Intel Core 2 CPU (2.13
GHz) and 2 GB of memory.

6.1 Result Study in Real Applications
The first experiment illustrates some example results of dis-
tance threshold patterns, and evaluates the effectiveness of
applying them in the application of violation detection. To
evaluate the detection accuracy, we use the measures of
precision, recall and f-measure [39]. Let truth be the set
of tuple pairs with violations that are manually inserted
in random. Let found be the set of tuple pairs detected
by applying the DDs. We have precision = |truth∩found|

|found| ,

recall = |truth∩found|
|truth| , and f-measure= 2 · precision·recall

precision+recall . The pre-
cision measure denotes the soundness and the recall means
the completeness, while the f-measure is the overall accu-
racy. It is natural that higher precision, recall and f-measure
are preferred.

Tables 3–6 illustrate the example results on Rules 1–4,
respectively. Each row denotes a ϕ with distance thresh-
olds ϕ[X], ϕ[Y] on attributes of X and Y respectively. We
present the corresponding measures of support S(ϕ), confi-
dence C(ϕ), dependent quality Q(ϕ), as well as the expected
utility Ū(ϕ). The results ϕi are listed in the descending order
of Ū(ϕ). In the last row, we also report the corresponding
FDs, where the distance threshold is 0 for each attribute.

The results in Table 5 show the interesting case of inde-
pendence. The distance thresholds of attributes name and
type are 10 in all the results, which are considered as
the maximum distance value. It implies that there is no
clear dependency relationship with respect to the name and
type of Restaurants, while the similarity of city could be

2. http://www.cs.umass.edu/ mccallum/code-data.html
3. http://www.cs.utexas.edu/users/ml/riddle/data.html
4. http://citeseer.ist.psu.edu/
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TABLE 3
Effectiveness of Example Results from Rule 1

TABLE 4
Effectiveness of Example Results from Rule 2

TABLE 5
Effectiveness of Example Results from Rule 3

TABLE 6
Effectiveness of Example Results from Rule 4

dependent on the similarity of address. By applying these
DDs, we cannot detect the violations on type. Moreover,
the similarity of name could not help in detecting the vio-
lations in city. Nevertheless, Table 5 presents the best results
in terms of the expected utility over the address and city
attributes, since no dependency could be found on name
and type.

The results also verify our semantics analysis of expected
utility. According to Theorem 1, if a ϕ (e.g., ϕ2 in Table 3)
has higher support, confidence and dependent quality than
another (e.g., ϕ4 in Table 3) at the same time, then the

expected utility of ϕ2 must be higher than that of ϕ4. As
observed in Table 3, we have Ū(ϕ2) > Ū(ϕ4), which veri-
fies our semantic analysis in Section 4.2. Consequently, it is
ensured that there does not exist any ϕ which has higher
support, confidence and dependent quality at the same time
than the returned ϕ1 with the maximum expected utility.

The application of violation detection demonstrates the
effectiveness of expected utility. As shown in Tables 3–6,
the overall accuracy of detection (f-measure) approximately
decreases with the decrease of the expected utility Ū(ϕ). It
indicates that the expected utility can reflect the usefulness
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Fig. 4. Time performance on various data sizes (return largest Ū).

of differential dependencies in the application. Although
some of the measures of a ϕ are higher, e.g., ϕ6 in Table
3 with support 0.1764 and confidence 0.3985, the detection
accuracy (f-measure) is still low due to the poor depen-
dent quality of ϕ6. This result also confirms that manually
setting requirements of three measures could miss better
results.

Note that some results, e.g., ϕ2 in Table 3, may have a bet-
ter F-measure but lower expected utility. There are mainly
two reasons for such cases. First, the expected utility pro-
vides a good guideline of choosing relatively useful depen-
dency rules, but does not theoretically guarantee the exact
accuracy in application. Second, the discovery of distance
thresholds and the application of violation detection are
conducted on two separated data parts. The gap between
training (determination) and testing (detection) data may
affect the performance as well. Nevertheless, in most cases,
the dependency results with higher expected utilities yield
better accuracy performance in the application.

As illustrated in Table 4, the utility of Rule 2 is extremely
low. The rationale is that based on the only attribute
“venue”, it can barely determine the attributes of “address”,
“publisher” and “editor”.

Finally, as shown in Tables 3–6, although the depen-
dent quality is high in FD, due to the low support, the
expected utility of FD is lower than DDs. Consequently, the
detection effectiveness (f-measure) of FD is poor. In par-
ticular, for Rule 4 in Table 6, it is notable that almost no
records would share the exactly same “description” and
“subject” values. The functional dependency, defined on
equality function, cannot address anything with support
equal to 0, and consequently no violation is detected at all.

6.2 An Overview of Time Performance
Next, we evaluate the time performance of the proposed
determination and pruning techniques. Since our proposed
pruning techniques are proved (in fact also observed in the
experiments) to be safe without missing answers or intro-
ducing errors, the returned results by different approaches
are exactly the same. Therefore, in the following, we focus
on the efficiency evaluation of the proposed techniques
on various data sizes, up to 1,000,000 matching tuples.

Fig. 5. Generation for dependent attributes.

The compared approaches include the basic DA+PA, the
basic pruning DA+PAP, the advanced pruning DAP+PAP,
and the DAPT+PAP with tighter bounds. Note that advanced
pruning bounds have no contribution to the algorithm
PA without pruning techniques. Thus, approaches such as
DAP+PA are equivalent to DA+PA, and omitted in this eval-
uation. Please refer to Section 6.3 below for the additional
results on evaluating the individual methods, such as PA

vs. PAP.
Fig. 4 reports the time cost of returning answers with

the largest Ū. First, the time cost of approaches increases
linearly with the data size, which shows the scalability of
our determination methods. Although some specific tests
may vary slightly in time cost due to the different data
distribution and pruning power, the linear trend can still
be clearly observed. This linear result with respect to the
number of matching tuples M is not surprising, according
to the complexity of determination algorithms O(Mdc) as
illustrated in Section 5.

Moreover, our pruning techniques work well for dif-
ferent rules and can reduce the time cost significantly in
all data sizes. i) The pruning approach PAP of determina-
tion for dependent attributes shows lower time costs than
the basic one PA. For example, in Rule 1, with the same
DA method, the DA+PAP shows significantly lower time
cost than the original DA+PA. ii) The DAP+PAP approach
can provide a pruning bound that is at least no worse
than the DA+PAP one. For instance, under the same PAP,
the results in Rule 1 show better performance of DAP
than DA, while Rule 3 verifies that the DAP is at least
no worse than the DA. iii) The DAPT+PAP approach with
the tightest pruning bounds can always achieve the lowest
time costs in all the rules under various data sizes. These
results demonstrate the efficiency of the proposed prun-
ing techniques, especially the superiority of the advanced
DAPT+PAP approach.

6.3 Evaluation on Specific Steps
In this experiment, we demonstrate the detailed results
by applying different methods in specific steps. As men-
tioned in Section 5, our algorithms can be easily extended
to find the l-largest expected utility answers, which offer
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Fig. 6. Pruning power evaluation.

Fig. 7. Generation for determinant attributes.

more options to users. Therefore, the following additional
experiments also evaluate the performance on various l-th
largest results, including the 1st largest.

Determination for Dependent Attributes: We first study
the PA and PAP algorithms for determination in depen-
dent attributes Y in Fig. 5. The basic PA algorithm has
to traverse all the candidates on Y without any prun-
ing. Therefore, as shown in Fig. 5, no matter how many l
answers are requested, the PA approach has the same time
cost. Meanwhile, the PAP approach can significantly reduce
time cost by pruning candidates based on Propositions 4
and 5. On the other hand, however, with the increase of
the answer size l, the corresponding l-th largest expected
utility value decreases, that is, the pruning bound is relaxed
and the pruning power is weaker. Therefore, as presented in
Fig. 5, time cost of PAP increases with a larger answer size l.

Moreover, the pruning power of PAP is affected by con-
fidence and dependent quality measures, i.e., affected by
data distribution. Thereby, PAP shows different improve-
ment of time cost in four rules tests. In particular, Rule 2,
which has more attributes in the dependent side, may have
more opportunities of pruning by PAP. Consequently, as
shown in Fig. 5, PAP can achieve a significant improve-
ment in Rule 2. Indeed, as discussed in the following

experiments, the pruning bounds calculated by different
techniques may show different performance as well.

Determination for Determinant Attributes: Recall that three
algorithms for determinant attributes, DA, DAP and DAPT,
contribute different pruning bounds. In order to evaluate
the pruning power of these approaches, Fig. 6 observes the
pruning rate, i.e., the proportion of candidates that can avoid
computation. For example, a pruning rate 0.9 denotes that
90% candidates can be safely pruned without computation.
Obviously, the higher the pruning rate is, the lower time
cost will be. We illustrate the time performance of DA, DAP

and DAPT algorithms for determinant attributes X in Fig. 7.
First, the basic DA algorithm initially assigns Vmax = 0

as the pruning bound, while the advanced DAP uses the
current ϕmax to calculate a larger pruning bound (≥ 0).
Therefore, the pruning power of DAP is stronger than the
basic DA, and consequently shows better time performance
in Fig. 7.

Moreover, the DAPT approach can introduce an even
tighter pruning bound Vmax, by considering all the cur-
rently processed i − 1 candidates. Note that the current
ϕmax is one of the first i − 1 candidates. In other words,
the pruning bound of DAPT is at least no worse than that
of DAP. Indeed, as presented in Fig. 7, the DAPT algorithm
can improve the time performance in most cases.

Note that the pruning rates of Rule 2 are already
very high (greater than 0.9). Therefore, even by apply-
ing advanced techniques, we cannot achieve much better
pruning bounds anymore. The corresponding time cost is
then similar as well. Moreover, although the DAP approach
shows quite similar pruning power to the basic DA in Rules
3 and 4, as we discussed in Section 5, the DAP algorithm is
at least no worse than DA. Meanwhile, the DAPT approach
can achieve a better pruning rate in these two rules, and
thus the corresponding time cost is lower.

7 CONCLUSION

Motivated by the utility of differential dependencies (DDs)
in real applications like violation detection, in this paper, we
study the problem of determining the distance thresholds
for differential dependencies from data. Instead of manu-
ally specifying requirements of various statistical measures,
we conduct the determination in a parameter-free style, i.e.,
to compute an expected utility of the distance threshold
pattern and return the results with the maximum expected
utility. Several advanced pruning algorithms are then devel-
oped in order to efficiently find the desired distance thresh-
olds. Finally, the experimental evaluation on three real data
sets demonstrates the performance of our proposed meth-
ods. In particular, we evaluate the effectiveness of returned
results in the violation detection application, and show that
the pruning technique with tight bound can always achieve
the lowest time cost.
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