
Matching Heterogeneous Event Data

Xiaochen Zhu§ Shaoxu Song§ Xiang Lian† Jianmin Wang§ Lei Zou‡

§KLiss, MoE; TNList; School of Software, Tsinghua University, China
zhu-xc10@mails.tsinghua.edu.cn {sxsong, jimwang}@tsinghua.edu.cn

†University of Texas - Pan American, USA lianx@utpa.edu
‡Peking University, China zoulei@pku.edu.cn

ABSTRACT
Identifying duplicate events are essential to various business
process applications such as provenance querying or process
mining. Distinct features of heterogeneous events includ-
ing opaque names, dislocated traces and composite events,
prevent existing data integration from techniques perform-
ing well. To address these issues, in this paper, we propose
an event similarity function by iteratively evaluating similar
neighbors. We prove the convergence of iterative similarity
computation, and propose several pruning and estimation
methods. To efficiently support matching composite events,
we devise upper bounds of event similarities. Experiments
on real and synthetic datasets demonstrate that the pro-
posed event matching approaches can achieve significantly
higher accuracy than the state-of-the-art matching methods.

Categories and Subject Descriptors
H.2.5 [Database Management]: Heterogeneous Databases

Keywords
Schema matching; event matching

1. INTRODUCTION
Owing to various mergers and acquisitions, information

systems (e.g., Enterprise Resource Planning (ERP) and Of-
fice Automation (OA) systems), probably developed inde-
pendently in different branches or subsidiaries in large-scale
corporations, keep on generating heterogeneous event logs.
We surveyed a major bus manufacturer who recently started
a project on integrating their event data in the OA systems
of 31 subsidiaries. These OA systems have been built inde-
pendently on 5 distinct middleware products in the past 20
years. More than 8190 business processes are implemented
in these systems, among which 68.8% are indeed different
implementations of the same business activities in different
subsidiaries. For instance, in the following Example 1, we
illustrate two versions of turbine order processing processes

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2588570.

in 31 subsidiaries. Duplicate events commonly exist in these
heterogeneous processes for the same business activities.

The company has started to integrate these heterogeneous
event data into a unified business process data warehouse
[3, 4], where different types of analyses can be performed,
e.g., querying similar complex procedures or discovering in-
teresting event patterns in different subsidiaries (complex
event processing, CEP [6]), comparing business processes
in different subsidiaries to find common parts for process
simplification and reuse [19], or obtaining a more abstract
global picture of business processes (workflow views [2]) in
the company. Without exploring the correspondence among
heterogeneous events, applications such as query and analy-
sis over the event data may not yield any meaningful results.

The event matching problem is to construct the similar-
ity and matching relationship of events from heterogeneous
sources. Although there are 49 system integrators (subject-
matter experts) employed by the bus manufacturer in the
project of OA system integration, given the large number
of more than 100,000 event activities, manually checking
the correspondences of all possible event pairs is highly im-
practical for two reasons: 1) manual checking is obviously
inefficient, and 2) manual checking results could be inaccu-
rate and contradictory. An automatic approach is highly
demanded for matching these heterogeneous event data.

Different from conventional schema matching on attributes
in relational databases [7], there are strong relationships of
consecutive occurrence among events. The event data in-
tegration is challenging due to the following features com-
monly observed in the general event data.

(1) Event names could be opaque, due to various encoding,
syntax or language conventions in heterogeneous systems.

(2) Event traces might be dislocated. Only a part (e.g., the
beginning) of a trace 1 corresponds to a distinct part (e.g.,
the end) of another trace 2.

(3) Composite event may exist. That is, one event in a
source corresponds to several decomposed ones in another
source, known as composite event in CEP [6].

Example 1. Figure 1 illustrates two fragments of event logs
L1 and L2 for turbine order processing in two different sub-
sidiaries of the bus manufacturer, respectively. Two exam-
ple traces are shown in each fragment, and each trace de-
notes a sequence of events (steps) for processing one order.
An event log consists of many traces, among which the se-
quences of events may be different, since some of the events
can be executed concurrently (e.g. Ship Goods(E) and Email

1211

ID Trace

t1

t2

Paid by Cash (A) Check Inventory (C) Validate (D) Ship Goods (E) Email Customer (F)

Paid by Credit Card (B) Check Inventory (C) Validate (D) Email Customer (F) Ship Goods (E)

...

ID Trace

s1

s2

Order Accepted (1) Paid by Cash (2) Inventory Checking & Validation (4) ????????? (5) Send Notification (6)

Order Accepted (1) Paid by Credit Card (3) Inventory Checking & Validation (4) Send Notification (6) ???????? (5)

...

B

C

A

D

E

F

1

2

3

4

5

6

(a) Event log L1

(b) Event log L2

(c) Dependency Graph G1 of L1

(d) Dependency Graph G2 of L2

0.4

0.6

0.4

0.6

0.4 0.6

0.60.4

0.4

0.60.60.6

0.40.4

1.0

Figure 1: Fragments of two event logs and their dependency graphs

Customer(F) in L1), or exclusively (e.g., Paid by Cash(2) or
Paid by Credit Card(3) in L2).

Note that opaque names exist in L2 as shown in Figure
1(b). The event “????????(5)” is collected from a database
whose encoding is distinct from others, which makes the
event name garbled. According to expert investigation, the
original name of “????????(5)” should be “Delivery(5)”, and
the true event corresponding relation between L1 and L2 is
highlighted by red dashed lines in Figures 1(a) and (b).

Dislocated matching exists between the first traces in L1

and L2. Event Paid by Cash(A) that appears at the beginning
of traces in L1 corresponds to event Paid by Cash(2), which
appears in the middle of traces in L2, having another event
Order Accepted(1) before it.

Moreover, two events Check Inventory(C) and Validate(D)
in L1 correspond to one composite event Inventory Checking
& Validation(4). For simplicity, we use ABCDEF to denote
event names in L1, while 123456 are events in L2.

Unfortunately, existing techniques cannot effectively ad-
dress the aforesaid three challenges in event matching. A
straightforward idea of matching events is to compare their
names (a.k.a. event labels). String edit distance (syntactic
similarity) [13] as well as word stemming and the synonym
relation (semantic similarity) [20] are widely used in the la-
bel similarity based approaches [14, 19, 5, 23]. As shown in
Example 1, such a typographical similarity cannot address
the identified Challenge 1, i.e., opaque event labels.

Structural similarity may be considered besides the typo-
graphical similarity. The idea is to construct a graph for de-
scribing the relationships among events, e.g., the frequency
of appearing consecutively in an event log [8]. Once the
graphical structure is obtained, graph matching techniques
can be employed to identify the event (behavioral/structural)
similarities. Unfortunately, existing graph matching tech-
niques cannot handle well the dislocated matching of events1,
i.e., the aforesaid Challenge 2. Graph edit distance (GED)
[5] for general graph data and normal distance for matching
with opaque names (OPQ) [11] concern a local evaluation
of similar neighbors. However, as illustrated in Example 1,
dislocated matching events may have distinct neighbors (see
more details below). Rather than local neighbors, another
type of Simrank [10] like behavioral similarity (BHV) [19]
considers a global evaluation via propagating similarities
in the entire graph in multiple iterations. Unfortunately,
directly applying the global propagation does not help in

1According to our survey on 5642 processes with redundancy
(68.8% of 8190) of the bus manufacturer, more than 44% of
them involve dislocated event traces.

matching dislocated events that do not have any predeces-
sor, e.g., Paid by Cash(A) in Figure 1.

Example 2. Figures 1(c) and 1(d) capture the statistical
and structural information of L1 and L2, respectively (see
Definition 1 for constructing G1 and G2). Each vertex in the
directed graph denotes an event, while an edge between two
events (say AC in Figure 1(c) for instance) indicates that
they appear consecutively in at least one trace (e.g., trace 1
in Figure 1(a)). The numbers attached to edges represent
the normalized frequencies of consecutive event pairs. For
instance, 0.4 of AC means that A,C appear consecutively in
40% of the traces of the event log.

Since GED and OPQ concern more about the local simi-
larity, e.g., the high similarity of (A,C) and (1, 2), an event
mapping M = {A → 1, B → 3, C → 2, D → 4, E → 5, F →
6} will be returned by GED with distance 0.16 and OPQ
with score 10.7. The true mapping M ′ = {A → 2, B →
3, C/D → 4, E → 5, F → 6} in ground truth shows a higher
GED distance 0.233 (lower is better) and lower OPQ score
10 (higher is better) instead. BHV does not help in capturing
dislocated mapping, e.g., between A and 2 with BHV similar-
ity 0. Instead, A and 1 with no input neighbors have higher
similarity 1, i.e., unable to find the dislocated matching.

When matching composite events, i.e., Challenge (3), com-
puting efficiency becomes a major issue. For instance, one
may be interested in composite events {C,D}, {D,E} and
{E,F} in Figure 1(c). Given a candidate set of n composite
events, there may exist 2n possible combinations, for each
of which we need to evaluate the corresponding event simi-
larities. Unfortunately, structural similarities such as GED
are already costly to compute for one combination.

Contributions. In this paper, we propose a similarity func-
tion that supports dislocated matching and opaque events,
by iteratively computing neighbor similarities. Our major
contributions in this paper are summarized as follows.

(1) We formally define the similarity function, which is it-
eratively computed by incorporating other similarity crite-
ria in the iteration. Intuitively, as discussed in Example 2,
directly applying OPQ that concerns a local evaluation of
similar neighbors is ineffective in matching dislocated events
with possibly distinct neighbors. In contrast, the proposed
iteration based similarity function concerns the global eval-
uation via propagating similarities, and thus overcomes the
impact of local neighbor distinctness.

(2) We prove the convergence of the proposed iteration
based similarity function and devise a pruning technique

1212

Table 1: Frequently used notations

Symbol Description

v ∈ V an event v in event set V

G(V,E, f) an event dependency graph

vX an artificial event

•v, v• the pre/post set of an event

Sn(v1, v2) the similarity between events v1 and v2 after the
nth iteration

l(v1) the longest distance from vX to v1

U a composite event

U a collection of composite event candidates

for efficient computations. Moreover, we introduce a fast
estimation with a constant number of iterations. In partic-
ular, by varying the number of maximum iterations from 0
to larger, it provides a trade-off between matching accuracy
and computing time.

(3) We study the complexity bound of the composite event
matching problem. The problem of finding the optimal com-
posite event matching is proved to be NP-hard. Owing to
the large number of possible composite event matching can-
didates, applying existing OPQ is inefficient (as discussed in
related work in Section 6 and observed in the experiments
in Section 5). Therefore, we propose greedy heuristics for
efficiently matching composite events, identify event pairs
that can avoid updating similarities between greedy steps,
and design upper bounds of similarities for efficient pruning.

(4) We report an extensive experimental evaluation on both
real and synthetic datasets. The results demonstrate that
our proposed matching methods can achieve higher accuracy
than the state-of-the-art methods.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview of the event matching framework.
Section 3 illustrates the computation of event similarity be-
tween two event logs. Section 4 extends the matching ap-
proach to capture composite event similarities. Section 5
reports the experimental evaluation. Finally, Section 6 dis-
cusses related work and Section 7 concludes this paper.

2. OVERVIEW OF EVENT MATCHING
We formalize syntax and definitions for the event match-

ing problem. Table 1 lists the frequently used notation in
this paper. Let V be a set of events, i.e., events that can be
recorded in a log. A trace is a finite sequence of events from
V . An event log L is a multi-set of traces from V ∗.

Capturing structural information. Detecting correspon-
dences on raw logs is difficult, since the event names could
be “opaque”. Other than typographic similarity, we can ex-
ploit the structural information for matching events.

Following the same line of [11], we employ a simple graph
model, namely dependency graph, which consists of both de-
pendency relations and frequencies.

Definition 1 (Event Dependency Graph). An event depen-
dency graph G is a labeled directed graph (V ,E , f), where
each vertex in V corresponds to an event, E is an edge set,
and f is a labeling function of normalized frequencies that

B
C

A

D

E

F

1

2

3

4

5

6
(a) Dependency Graph G1 of L1 (b) Dependency Graph G2 of L2

0.4

0.6

0.4

0.6

0.4 0.6 0.60.4

0.4

0.60.60.6

0.40.4

1.0

v1
X

v2
X

0.4

0.6

1.0

0.6

0.4
1.0

1.0
1.0

1.0

1.0

1.0

1.0

Figure 2: Dependency graphs with artificial events

(1) for each v ∈ V , f(v , v) is the normalized frequency of
event v, i.e., the fraction of traces in L that contain v, and
(2) for each edge (v1, v2) ∈ E, f(v1, v2) is the normalized
frequency of two consecutive events v1v2, i.e., the fraction of
traces in which v1v2 occur consecutively at least once.
For any v ∈ V , the pre-set of v is defined as •v = {v ′|(v ′, v) ∈
E} and the post-set of v is defined as v• = {v ′|(v , v ′) ∈ E}.

With the presence of dislocated matching, any event in an
event log can be a starting/ending event. That is, a trace
can start/end with any event v within it by ignoring those
events before/after v. Based on this intuition, we extend the
dependency graph G by adding an artificial event vX and
several artificial edges as follows.

(1) An artificial event vX is added into V , which denotes
the virtual beginning/end of all traces in an event log.

(2) For each event v ∈ V except vX , we add two arti-
ficial edges (v, vX) and (vX , v), i.e., each event can be a
virtual starting event (edge (vX , v)) and a virtual ending
event (edge (v, vX)). Moreover, we associate f(vX , v) =
f(v, vX) = f(v) based on the intuition that a trace can
start/end with event v at all the locations where v occurs.

Example 3. In order to support dislocated matching, we
add an artificial events and edges into dependency graphs,
denoted by vertices and edges in dashed lines in Figures
2(a) and 2(b). As the virtual beginning/end of all traces,
vX1 and vX2 connect to all the events in V1 and V2, respec-
tively. The weight on each artificial edge is assigned by the
normalized frequency of the occurrence of each event. For
instance, since event C appears in all the traces of L1, we
have f(vX1 , C) = 1.0. Event A only appears in 40% traces
of L1, which indicates f(vX1 , A) = 0.4.

Filtering with minimum frequency control. Intuitively,
edges in the dependency graph with low frequencies may not
help much in matching events since they have few statistical
information. We can filter out those edges whose frequencies
are lower than a predefined threshold. The average degree of
a dependency graph may decrease after filtering out those
edges, which can accelerate the computation of similarity.
Hence, the minimum edge frequency control could be inter-
preted as a trade-off between accuracy and efficiency.

Computing pair-wise similarities. Based on the depen-
dency graphs of statistical information in two event logs,
the similarity between each event pair, denoted S(v1, v2),
can be computed. Motivated by the unique features of het-
erogeneous events as indicated in the introduction, we pro-
pose a similarity measure by iteratively utilizing structural
information in Section 3. In particular, the proposed mea-
sure is extensible by integrating with other similarities such
as typographic or linguistic similarities [20].

1213

Selecting matching correspondences. Once all the pair-
wise similarities are gained, there are various existing ap-
proaches to capture the corresponding events. It is worth
noting that the event pairs containing either vX1 or vX2 should
be omitted since these two events are introduced artificially
and do not actually exist in event logs. As it is not the focus
of this study, we briefly outline the approaches of selecting
correspondences from pair-wise similarities in Section 6.

Matching composite events. Most existing graph match-
ing approaches are restricted to finding 1:1 correspondences
[14], i.e., one event should be mapped exactly to another.
Such a strong restriction fails to detect the matching of
composite events. Owing to heterogeneous settings, a single
event in one process could be divided into several events in
another process. Therefore, the m:n correspondences, which
are called complex matches in [23], should also be addressed.

When matching composite events with various candidate
combinations, it needs to frequently compute the (compos-
ite) event similarities. We devise upper bounds of the pro-
posed similarity function for efficient pruning in Section 4.

3. EVENT MATCHING SIMILARITY
Three categories of techniques may be considered for eval-

uating event similarities: 1) content-based such as typo-
graphic similarities [20], 2) structure-based similarities which
concern local structures such as GED [5] and OPQ [11], and
3) structure-based similarities with a global view of the en-
tire graph like Simrank [10]. Unfortunately, as illustrated
in the introduction, content based similarities often fail to
perform owing to opaque event names, while GED and OPQ
cannot handle dislocated matching well. On the other hand,
the widely used Simrank [10] is not directly applicable to
event data for two reasons: 1) Simrank concerns only the
pure structural similarity, while the utilization of other cri-
teria such as typographic similarities is not supported, even
when they are available; 2) Simrank does not take edge sim-
ilarities into consideration, which are the key properties of
consecutive occurrence between events.

In this section, we present an adaption of Simrank like
structural similarity function for matching events, and dis-
cuss its convergence. Efficient pruning of unnecessary simi-
larity updates based on early convergence and fast (one it-
eration) estimation of similarities are devised.

3.1 Structural Similarity Function
Intuitively, following the same line of Simrank, an event,

say v1 ∈ V1, is similar to event v2 ∈ V2, if they frequently
share similar predecessors (in-neighbors). We use s(v1, v2)
to denote how often a predecessor v′1 of v1, v

′
1 ∈ •v1, can

find a similar v′2 ∈ •v2, predecessor of v2. Note that this s
measure is asymmetric, i.e., s(v1, v2) 6= s(v2, v1).

Next, to adapt Simrank like evaluation for event similar-
ity, we further take edge similarities into consideration. Al-
though the predecessors v′1 and v′2 of v1 and v2, respectively,
have high similarity, if the frequency of (v′1, v1) deviates far
from the frequency of (v′2, v2), the similarity of v′1 and v′2
will have less effect on the similarity of v1 and v2.

Finally, although it supports matching events with opaque
names, we take label similarities (typographic similarities of
event names) into account, in case they are available.

Following these intuitions, we define a forward similarity.

Definition 2. The forward similarity of two events is

S(v1, v2) = α(s(v1, v2) + s(v2, v1))/2 + (1− α)SL(v1, v2),

where SL(v1, v2) is the label similarity of v1 and v2, α ∈ [0, 1]
is a weight, s(v1, v2) and s(v2, v1) are one-side similarities

s(v1, v2) =
1

| • v1|
∑

v′1∈•v1

max
v′2∈•v2

C(v1, v
′
1, v2, v

′
2)S(v′1, v

′
2),

given that C(v1, v
′
1, v2, v

′
2) = c∗(1− |f(v1,v

′
1)−f(v2,v

′
2)|

f(v1,v
′
1)+f(v2,v

′
2)

), where

c is a constant that has 0 < c < 1.

We now explain how these formulas implement our in-
tuition. In the formula of s(v1, v2), for each in-neighbor
v′1 of v1, we find an event v′2 with the highest similarity
to v′1 among all the in-neighbors of v2. Besides the node
similarity S(v′1, v

′
2) which evaluates how similar v′1 and v′2

are, we also consider the similarity of the edges (v′1, v1)
and (v′2, v2) which denote the consecutive occurring relation-
ships of events, by C(v1, v

′
1, v2, v

′
2). Obviously, if (v′1, v1) and

(v′2, v2) have similar normalized frequencies, C(v1, v
′
1, v2, v

′
2)

is close to c; otherwise close to 0, where c gives the rate of
similarity decay across edges. To support label similarity,
we use a weighted aggregation of the structural similarity
1
2
(s(v1, v2) + s(v2, v1)) and the label similarity SL(v1, v2).

3.2 Iterative Computation
To compute S(v1, v2) from predecessors, we present an it-

eration method by iteratively applying the formulas in Def-
inition 2. Let Sn(v1, v2) denote the forward similarity of
(v1, v2) after the nth iteration. The computation has two
steps: the initialization step which assigns S0(v1, v2) for ev-
ery event pair (v1, v2), and the iteration step which computes
the value of Sn(v1, v2) by using Sn−1(v1, v2) according to
Definition 2, when n ≥ 1.

1) Initialization. For the artificial events vX1 and vX2 , the
initial similarities S0(vX1 , v

X
2) is set to 1.0 since both of them

are defined as the virtual beginning and ending of traces.
S0(vX1 , v2) (and S0(v1, v

X
2)) is set to 0 if one event is real but

the other is artificial. For any other real event pair (v1, v2),
S0(v1, v2) is set to 0, since there is no priori knowledge for
assigning nonzero values as initial similarities.

2) Iteration. In each iteration, we refresh S for each event
pair (v1, v2) using the similarities of their neighbors in the
previous iteration. For instance, according to Definition 2,
Sn which denotes the forward similarity of (v1, v2) after the
nth iteration can be computed by:

Sn(v1, v2) = α(sn(v1, v2) + sn(v2, v1))/2 + (1− α)SL(v1, v2),

sn(v1, v2) =
1

| • v1|
∑

v′1∈•v1

max
v′2∈•v2

C(v1, v
′
1, v2, v

′
2)Sn−1(v′1, v

′
2).

(1)

The similarities between artificial events and real events (e.g.
S(vX1 , v2), S(v1, v

X
2) and S(vX1 , v

X
2)) are not updated during

the iteration. The algorithm stops when the difference be-
tween Sn(v1, v2) and Sn−1(v1, v2) for all event pairs (v1, v2)
is less than a predefined threshold.

Example 4 (Example 2 continued). At the beginning of the
iteration, S0(vX1 , v

X
2) is assigned with 1.0, and S0(v1, v2) is

1214

assigned with 0 for any other event pairs where v1 6= vX1 and
v2 6= vX2 . Consider the event pair (A, 1). Let α = 1, on the
1st iteration, we have s1(A, 1) = 1

|•A|C(vX1 , A, v
X
2 , 1)S0(vX1 ,

vX2) = 0.457 and s1(1, A) = 1
|•1|C(vX1 , 1, v

X
2 , A)S0(vX1 , v

X
2) =

0.457, so that S1(A, 1) = 0.5 ∗ (s1(A, 1) + s1(1, A)) = 0.457.
For the event pair (A, 2), we have s1(A, 2) = 1

|•A| max(C(vX1 ,

A, vX2 , 2)S0(vX1 , v
X
2), C(vX1 , A, 1, 2)S0(vX1 , 1)) = 0.8 and s1(2,

A) = 1
|•2| (C(vX2 , 2, v

X
1 , A)S0(vX2 , v

X
1) + C(1, 2, vX1 , A)S0(1,

vX1)) = 0.4, so that S1(A, 2) = 0.5 × (0.8 + 0.4) = 0.6. It
is notable that A and 2 have higher similarity than A and
1, which solves the problem of dislocated matching. Con-
sequently, we can compute an average similarity of all the
event pairs in the true mapping M ′ in Example 2, i.e., 0.551,
which is higher than the average similarity 0.506 of M .

The time complexity of computing forward similarity is
O(k|V1||V2|davg), where k is the number of iterations and
davg is the average degree of all the events in the dependency
graph. When the density of the dependency graph as well as
the numbers of iterations is high (i.e., davg and k are high),
the iterative computation is time-consuming.

3.3 Convergence
We show that the iterative computation converges to lim-

its satisfying the similarity function in Definition 2.

Theorem 1. For all v1 ∈ V1, v2 ∈ V2, limn→∞ Sn(v1, v2) =
S(v1, v2).

Proof. Existence. Firstly, the monotonicity of Sn(v1, v2)
can be simply proved by induction.

Monotonicity: 0 ≤ Sn−1(v1, v2) ≤ Sn(v1, v2) ≤ 1, for all
v1 ∈ V1, v2 ∈ V2, n ≥ 1.
Basis: Let n = 1. According to formula (1), there is
s1(v1, v2) = 1

|•v1|
∑
v′1∈•v1

maxv′2∈•v2 C(v1, v
′
1, v2, v

′
2)S0(v′1, v

′
2).

That is, s1(v1, v2) ∈ (0, 1] iff vX1 ∈ •v1 and vX2 ∈ •v2; oth-
erwise, s1(v1, v2) must be 0. Similarly, we have s1(v2, v1) ∈
[0, 1], and thus S1(v1, v2) ∈ [0, 1]. Since the similarity Sn(v1, v2)
will be updated only if both v1 and v2 are real events,
we have S0(v1, v2) = 0 and S1(v1, v2) ∈ [0, 1], that is,
0 ≤ S0(v1, v2) ≤ S1(v1, v2) ≤ 1. Therefore, the monotonic-
ity holds for n = 1.
Induction: Assume that the monotonicity holds for n = k,
i.e., 0 ≤ Sk−1(v1, v2) ≤ Sk(v1, v2) ≤ 1. According to for-
mula (1), we have sk+1(v1, v2) = 1

|•v1|
∑
v′1∈•v1

maxv′2∈•v2
C(v1, v

′
1, v2, v

′
2) × Sk(v′1, v

′
2) ≥ 1

|•v1|
∑
v′1∈•v1

maxv′2∈•v2
C(v1, v

′
1, v2, v

′
2) × Sk−1(v′1, v

′
2) = sk(v1, v2). It thus follows

Sk+1(v1, v2) ≥ Sk(v1, v2), and implies that 0 ≤ Sn−1(v1, v2) ≤
Sn(v1, v2) ≤ 1 also holds for n = k + 1.
As both basis and induction have been performed, by math-
ematical induction, the monotonicity holds for all n ≥ 1.

Therefore, for any event pair (v1, v2), the sequence Sn(v1, v2)
is bounded and non-decreasing along with the increase of n.
According to the Completeness Axiom of calculus, each se-
quence Sn(v1, v2) has a limit S(v1, v2) ∈ [0, 1].

Uniqueness. We prove the uniqueness of the limit of
S(v1, v2) by contradiction. Suppose that there are two dis-
tinct limits of forward similarity, denoted by S1 and S2. For
each event pair (v1, v2), let ∆(v1, v2) = S1(v1, v2)−S2(v1, v2)
be the difference of two limits, and ∆M = maxv1∈V1,v2∈V2

|∆(v1, v2)| be the maximum absolute value of any ∆(v1, v2).
For artificial events vX1 and vX2 , we have ∆(vX1 , v2) = ∆(v1, v

X
2)

= 0 because their similarity is never updated during an it-
eration. Otherwise, for two real events v1 and v2, we have:

∆M =S1(v1, v2)− S2(v1, v2)

=
α

2

(1

| • v1|
∑

v′1∈•v1

(max
v′2∈•v2

C(v1, v
′
1, v2, v

′
2)S1(v′1, v

′
2)

− max
v′2∈•v2

C(v1, v
′
1, v2, v

′
2)S2(v′1, v

′
2))

+
1

| • v2|
∑

v′2∈•v2

(max
v′1∈•v1

C(v1, v
′
1, v2, v

′
2)S1(v′1, v

′
2)

− max
v′1∈•v1

C(v1, v
′
1, v2, v

′
2)S2(v′1, v

′
2))
)

≤α
2

(1

| • v1|
∑

v′1∈•v1

(max
v′2∈•v2

(C(v1, v
′
1, v2, v

′
2)S1(v′1, v

′
2)

− C(v1, v
′
1, v2, v

′
2)S2(v′1, v

′
2)))

+
1

| • v2|
∑

v′2∈•v2

(max
v′1∈•v1

(C(v1, v
′
1, v2, v

′
2)S1(v′1, v

′
2)

− C(v1, v
′
1, v2, v

′
2)S2(v′1, v

′
2)))

)
≤α

2
c(

1

| • v1|
| • v1|∆M +

1

| • v2|
| • v2|∆M) = cα∆M

Note that, ∆M ≤ cα∆M and ∆M is an absolute number.
If it holds ∆M > 0, we have 1 ≤ cα, which is in contra-
diction with 0 ≤ cα ≤ 1. It concludes ∆M = 0, and thus,
S1(v1, v2) = S2(v1, v2).2

3.4 Pruning
Next, we identify that the similarities of some node pairs

are guaranteed to converge in a certain number (say h) of
iterations. These similarities do not need to be updated in
the nth iterations, where n > h.

Intuitively, for a node v1 (often the source node) with
only one predecessor, artificial vX1 , we can show that the
similarity of v1 to any node will be fixed (converged) after
one iteration according to the similarity definition. Conse-
quently, in the next iteration, a node whose predecessors are
all converged (like v1) is guaranteed to converge too.

Let l(v) denote the longest distance from vX to v (could
be ∞ if loops exist from vX to v).

Proposition 2. For any two events v1 ∈ V1 and v2 ∈ V2,
Sh+1(v1, v2)− Sh(v1, v2) = 0, for all h ≥ min(l(v1), l(v2)).

Proof. This proposition can be proved by induction.
Basis: Obviously, when min(l(v1), l(v2)) = 1, Sh(v1, v2)
will never change after the first iteration.
Induction: Assume that the proposition holds for all v1
and v2 satisfying min(l(v1), l(v2)) = k. For all v1 and v2
satisfying min(l(v1), l(v2)) = k+ 1, the similarity Sh(v′1, v

′
2)

of their input neighbors will never change after the kth itera-
tion due to the assumption. Therefore, Sh(v1, v2) will never
change after the (k + 1)th iteration.

By mathematical induction, the proposition holds for all
min(l(v1), l(v2)) ≥ 1.

Based on this proposition, we first compute l(v1) and l(v2)
for all the events, so that there is no need to compute those
similarities for event pairs (v1, v2) with min(l(v1), l(v2)) < k

2Due to the limit of space, we include the complete proof in
http://ise.thss.tsinghua.edu.cn/sxsong/doc/ematch.pdf

1215

at the kth iteration. In addition, we can say for sure that
the iterative computation will stop after the nth iteration,
where n = min(maxv1∈V1 l(v1),maxv2∈V2 l(v2)). It is worth
noting that if G1 and G2 have loops, the early convergence
property still holds for those node pairs (v1, v2) where all
the ancestors of v1 and v2 are not involved in loops.

Example 5. Considering the event pair (A, 1) where h =
min(l(A), l(1)) = 1. According to formula (1), the value of
Sn(A, 1) will only be affected by the value of Sn−1(vX1 , v

X
2).

Since Sn(vX1 , v
X
2) never changes, the value of Sn(A, 1) will

not change after the 1st iteration. Likewise, the value of
Sn(C, 2) will not change after the 2nd iteration, since S(A, 1)
and S(A, 2) converged at the 1st iteration. Therefore, we
prune the computation of Sn(A, 1) and Sn(B, 1) where n ≥
1, the computation of Sn(C, 2) and Sn(C, 3) where n ≥ 2
and the computation of Sn(D, 4) where n ≥ 3.

3.5 Estimation
We further improve the efficiency by introducing an es-

timation of each S(v1, v2) with fewer iterations, e.g., even
with only one iteration. Thereby, the estimation has an
O(|V1||V2|) time complexity in an extreme case that only one
iteration is conducted, or conduct more iterations to make
the estimated similarity closer to the exact similarity, which
can be interpreted as trading the accuracy for efficiency.

First, we rewrite the formula of Sn(v1, v2) as follows:

Sn(v1, v2) =
α

2

[1

| • v1|

(
C(vX1 , v1, v

X
2 , v2)S(vX1 , v

X
2)+∑

v′1∈{•v1}\{v
X
1 }

max
v′2∈•v2

C(v1, v
′
1, v2, v

′
2)Sn−1(v′1, v

′
2)
)

+
1

| • v2|

(
C(vX1 , v1, v

X
2 , v2)S(vX1 , v

X
2)+∑

v′2∈{•v2}\{v
X
2 }

max
v′1∈•v1

C(v1, v
′
1, v2, v

′
2)Sn−1(v′1, v

′
2)
)]
.

In the formula above, we assume that each C(v1, v
′
1, v2, v

′
2)

achieves the maximum value c, and we replace the similarity
of v′1 and v′2 by the similarity of v1 and v2. For simplicity,
we denote C as C(v1, v

′
1, v2, v

′
2), A as | • v1|, and B as | • v2|.

The formula is further derived.

Sn(v1, v2) ≈ Snes(v1, v2) =
αc(2AB −A−B)

2AB
Sn−1
es (v1, v2)

+
α(A+B)

2AB
C + (1− α)SL(v1, v2).

Let q = αc(2AB−A−B)
2AB

and a = α(A+B)
2AB

C+(1−α)SL(v1, v2).
It follows

Snes(v1, v2) =qSn−1
es (v1, v2) + a

qSn−1
es (v1, v2) =q2Sn−2

es (v1, v2) + aq

...

qn−I−1SI+1
es (v1, v2) =qn−ISIes(v1, v2) + aqn−I−1,

where 0 ≤ I ≤ n− 1, I ∈ N. By eliminating the correspond-
ing items on the left and the right sides, it implies

Snes(v1, v2) =qn−ISIes(v1, v2) + a(1 + q + q2 + · · ·+ qn−I−1).

By summing the geometric sequence, Snes(v1, v2) is given by

Snes(v1, v2) =qn−ISIes(v1, v2) +
a(1− qn−I)

1− q . (2)

According to the early convergence proposed in Section
3.4, n should not be greater than h = min(l(v1), l(v2)) (or
n could be ∞, if l(v1) or l(v2) is ∞). Thereby, the estima-
tion of S(v1, v2) is Shes(v1, v2). Noting that I is a constant
number of iterations of exact computation before estimation,
SIes(v1, v2) can be replaced by the exact value SI(v1, v2). It
provides a trade-off between accuracy and time. The larger I
is, the closer the estimation values and the exact values are,
which costs more time to do the iterations (see the experi-
ments in Section 5 for the effect of varying I). In addition, I
should be no greater than h according to early convergence.

Example 6. Referring to the estimation formula, given I =
0 and α = 1. The value of S(A, 1) can be estimated by
S1
es(A, 1) = C(vX1 , A, v

X
2 , 1)c = 0.6, which is equal to the

exact value of S(A, 1). However, for the event pair (C, 4),
the estimated value is 0.409 while the exact value is 0.587.
This is because the estimation formula treats the similarity of
event C and 4 as the similarity of their ancestors. However,
if we set I = 10, the estimated similarity of event pair (C, 4)
is 0.557, which is closer to the exact value.

3.6 Algorithm
Finally, Algorithm 1 summarizes the procedure of itera-

tive computation and estimation of forward similarity. All
the similarities are initialized in Line 1. From Line 2 to
Line 5, we first conduct I rounds of iterations according
to formula (1). We consider the early convergence in Line
4, by skipping the iterative computations for those simi-
larities that are early converged. Then, the estimation is
conducted from Line 6 to Line 8 based on formula (2). Al-
gorithm 1 has the lowest time complexity O(|V1||V2|) when
I = 0, and is equivalent to the exact algorithm if we set
I > min(l(v1), l(v2)), for all v1 ∈ V1 and v2 ∈ V2.

Algorithm 1 ExactEstimationTradeOff(G1, G2, I)

Input: two dependency graphs G1 and G2, and a constant
I of iterations

Output: the 1:1 matching similarity S
1: S0(v1, v2) := 1 for vX1 and vX2 , otherwise S0(v1, v2) := 0
2: for each i from 1 to I do
3: for each v1 ∈ V1 \ {vX1 },v2 ∈ V2 \ {vX2 } do
4: if i ≤ min(l(v1), l(v2)) and Si(v1, v2) is not con-

verged then
5: Si(v1, v2) := α(si−1(v1, v2)+si−1(v2, v1))/2+(1−

α)SL(v1, v2)
6: for each v1 ∈ V1 \ {vX1 },v2 ∈ V2 \ {vX2 } do
7: if I < h = min(l(v1), l(v2)) then

8: Ses(v1, v2) := qh−ISI(v1, v2) + a(1−qh−I)
1−q

9: return Ses

Similarities in two directions
The similarity function in Definition 2 considers only the
predecessors (in-neighbors, e.g., events A and B of event C
in Figure 1), known as forward similarity. Symmetrically, we
may also investigate successors (out-neighbors, e.g., events 2
and 3 are out-neighbors of event 1), namely backward simi-

1216

larity. As shown in the experiments, by aggregating the for-
ward and backward similarities together (e.g., by average),
we can successfully address the matching with dislocations.

4. MATCHING COMPOSITE EVENTS
As mentioned earlier, an event in one source could possibly

correspond to multiple events in another source, known as
composite events [6]. For the set V of events appearing in
an event log L, let U ⊆ V denote a composite event that
consists of a subset of singleton events from V . We consider
a collection of composite event candidates U = {U ⊆ V },
where different candidates may overlap.3 We call W ⊆ U a
subset of non-overlapping composite events, i.e., ∀U1, U2 ∈
W, U1 ∩ U2 = ∅.

Let W1,W2 be two sets of composites from the candi-
date sets U1,U2 for L1 and L2, respectively. To evaluate
the similarities with composite events, i.e., S(W1,W2), we
can simply treat each composite event as one node (in con-
structing the dependency graph) and thus directly apply the
similarity function in Definition 2.

It is easy to see the large number of possible combinations
of non-overlapping composite events in each event log. Dif-
ferent combinations may yield distinct similarity results. In-
tuitively, the higher the similarities in S(W1,W2), the better
the composite events are matched. We denote avg(S(W1,W2))

=
∑

W1∈W1,W2∈W2
S(W1,W2)

|W1|·|W2|
the average of all the pair-wise

similarities between composite events in W1,W2.

Problem 1 (Composite event matching). Given two sets of
candidate composite events U1 and U2 for two event logs L1

and L2, respectively, the optimal composite event matching
problem is to find two subsets of non-overlapping composite
events W1 ⊆ U1 and W2 ⊆ U2 such that the average com-
posite event similarity avg(S(W1,W2)) is maximized.

Unfortunately, the problem is highly non-trivial.

Theorem 3. The problem of finding the optimal composite
event matching is np-hard.

Proof idea. To show the np-hardness, we build a reduction
from the maximum set packing problem, which is one of
Karp’s 21 np-complete problems [12]. Given a universe V
and a family U of subsets of V , a packing is a subfamily
W ⊆ U of sets such that all sets in W are pairwise dis-
joint. The maximum set packing problem asks for the max-
imum weighted aggregation of pairwise disjoint sets, which
is analogous to a set of composite events with the maximum
similarity in the matching problem.

Hence, in the following, we focus on greedy heuristics that
iteratively select one composite event in a step to form the
results. Note that in each step of selecting one composite
event, similarities of some node pairs may not be affected
and thus have no need to be recomputed. Moreover, to
enable pruning among possible combinations, we devise the
upper bounds of similarities.

4.1 Heuristics
Consider all the remaining candidate composite events

that can be further selected C1 = {U ∈ U1 | U ∩ W =
∅,W ∈ W1}, i.e., those U not overlapping with any compos-
ite event W in W1. As mentioned above, for a U ∈ C1, we

3Candidates of composite events can either be manually
identified or automatically discovered [6].

can directly obtain the dependency graph w.r.t. W1 ∪ {U}
by updating the graph of W1.

In each step, we greedily select a composite event U1 ∈ C1
of L1 that can maximize the average similarity, i.e.,

U1 = arg max
U∈C1

avg(S(W1 ∪ {U},W2))− avg(S(W1,W2)).

Similarly, we obtain a U2 ∈ C2 of L2. The one, either U1 ∈ C1
or U2 ∈ C2, with higher average similarity improvement will
be confirmed to add to the corresponding W1 or W2.

Since the similarity improvement could be negative, a
threshold δ of minimum similarity improvement can be spec-
ified, e.g. δ = 0 with the requirement of similarity in-
crease avg(S(W1 ∪ {U1},W2)) − avg(S(W1,W2)) > 0 or
avg(S(W1,W2) ∪ {U2})− avg(S(W1,W2)) > 0.

Example 7. Suppose that composite event candidates are
U1 = {{A}, {B}, {C}, {D}, {E}, {F}, {C,D}, {E,F}} for L1

on the dependency graph shown in Figure 1(c) and δ is 0.005.
We first compute the pairwise similarities of singleton events
of G1 and G2, S = S({A,B,C,D,E, F}, {1, 2, 3, 4, 5, 6}),
having avg(S) = 0.502 (let α = 1). Then, we construct

two new dependency graphs G
{C,D}
1 and G

{E,F}
1 by merging

events CD and EF in G1, respectively. The pairwise event
similarities of each candidate S{C,D} = S({A,B,CD,E, F},
{1, 2, 3, 4, 5, 6}) and S{E,F} = S({A,B,C,D,EF}, {1, 2, 3, 4,
5, 6}) are computed, with average similarities avg(S{C,D}) =

0.508 and avg(S{E,F}) = 0.478. The composite event can-

didate {C,D} with higher avg(S{C,D}) − avg(S) > δ is ac-
cepted. Since {C,D} and {E,F} do not overlap, we further

test merging both CD and EF in G1 by computing S{C,D},{E,F}
= S({A,B,CD,EF}, {1, 2, 3, 4, 5, 6}). However, the aver-

age similarity avg(S{C,D},{E,F}) = 0.478 < avg(S{C,D})
decreases. {C,D} is returned in composite event matching.

4.2 Identifying Unchanged Similarities
Since introducing a new composite event U changes the

structure of the dependency graph, the similarity of existing
events (not involved in U) may change. A straightforward
idea is to recompute all the similarities from scratch. We
note, however, if there does not exist a path from U to v,
the similarities on v will not change in this iteration.

Let U be the currently selected composite event in a greedy
step. We denote AN(v) all the ancestors of a node v w.r.t.
prerequisites.

Proposition 4. If AN(v) ∩ U = ∅, all the similarities
S(v, u) will be unchanged after integrating U .

Proof. According to formula (1), the similarity of S(v, u)
will only be affected by the similarities of AN(v) and AN(u).
Obviously, if AN(v)∩U = ∅, the pairwise similarities of the
ancestors of v and u remain unchanged, thus S(v, u) will not
change after integrating U .

Therefore, we only need to update the similarities whose
ancestors are changed w.r.t. the composite event U .

4.3 Pruning via Similarity Upper Bounds
Although a greedy heuristic is employed, it is still costly in

each greedy step to compute the similarity for selecting each
possible composite event candidate. In the following, we
show that we can compute an upper bound of similarity for
any pair of events between two dependency graphs. Such an
upper bound enables pruning of composite event candidates,

1217

whose similarity upper bound is lower than some currently
computed results.

The idea is that the similarity is not only increasing (The-
orem 1) between two iterations, but also increases within a
certain bound w.r.t. the iteration number. For those event
pairs that converge in a constant number of iterations (Propo-
sition 2), we can develop a certain bound of similarity. A
general upper bound for any event pair is also derived.

Lemma 5. Let v1 ∈ V1 and v2 ∈ V2 be two events, c the
upper bound of function C. The difference of similarity be-
tween the nth and (n− 1)th iterations (n ≥ 1) holds:

0 ≤ Sn(v1, v2)− Sn−1(v1, v2) ≤ (αc)n

Proof. 0 ≤ Sn(v1, v2) − Sn−1(v1, v2) has been proved by
the monotonicity, and we only need to prove Sn(v1, v2) −
Sn−1(v1, v2) ≤ cn. It can be proved by induction.
Basis: Let n = 1. S1(v1, v2)− S0(v1, v2)

=
α

2

(1

| • v1|
∑

v′1∈•v1

max
v′2∈•v2

C(v′1, v1, v
′
2, v2)S0(v′1, v

′
2)

+
1

| • v2|
∑

v′2∈•v2

max
v′1∈•v1

C(v′1, v1, v
′
2, v2)S0(v′1, v

′
2)
)
.

Since 0 ≤ S0(v′1, v
′
2) ≤ 1, we have

S1(v1, v2)−S0(v1, v2) ≤ α

2
(

1

| • v1|
|•v1|c+

1

| • v2|
|•v2|c) = αc.

The lemma holds for n = 1.
Induction: Assume that the lemma holds for n = k, i.e.,
Sk(v1, v2)−Sk−1(v1, v2) ≤ (αc)k. When n = k+ 1, accord-
ing to Definition 2, we have

Sk+1(v1, v2)− Sk(v1, v2)

≤α
2

(
c

| • v1|
∑

v′1∈•v1

max
v′2∈•v2

(Sk(v′1, v
′
2)− Sk−1(v′1, v

′
2))

+
c

| • v2|
∑

v′2∈•v2

max
v′1∈•v1

(Sk(v′1, v
′
2)− Sk−1(v′1, v

′
2)))

≤α
2

(
c

| • v1|
| • v1|(αc)k +

c

| • v2|
| • v2|(αc)k) = (αc)k+1.

Thus, the conclusion also holds for n = k + 1.
By mathematical induction, Lemma 5 holds for n ≥ 1.
We are now ready to compute an upper bound of similarity

between any two events.

Proposition 6. Let v1, v2 be two events, c be the upper
bound of function C, and Sk(v1, v2) be the similarity after
kth iteration. The upper bound of similarity S(v1, v2) is:

SU (v1, v2) = Sk(v1, v2) +
(αc)k

1− αc .

Proof. According to Lemma 5, we have

Sn(v1, v2) =Sk(v1, v2) + (Sk+1(v1, v2)− Sk(v1, v2))

+ (Sk+2(v1, v2)− Sk+1(v1, v2)) + · · ·
+ (Sn(v1, v2)− Sn−1(v1, v2))

≤Sk(v1, v2) + (αc)k+1 + (αc)k+2 + · · ·+ (αc)n

=Sk(v1, v2) +
(αc)k − (αc)n

1− αc .

When n→∞, (αc)n → 0, we have S(v1, v2) ≤ Sk(v1, v2) +
(αc)k

1−αc .
According to Proposition 2, if there exists a longest path

with finite length h from the artificial node vX to v, the
similarity on v will always converge in h steps. Rather than
the general bound in Proposition 6, we can develop an upper
bound of such events as follows.

Corollary 7. For any two events v1 ∈ V1 and v2 ∈ V2,
let h ≥ min(l(v1), l(v2)). The upper bound of similarity
S(v1, v2) is:

SU (v1, v2) = Sk(v1, v2) +
(αc)k − (αc)h

1− αc .

Finally, Algorithm 2 presents the procedure of greedy
merge. At the beginning, the event similarity S of origi-
nal dependency graph G1 and G2 is computed. From Line 2
to Line 12, we use the greedy strategy to determine the best
solution of node aggregation. We first gain all the possible
candidates U . For each candidate, we reconstruct the de-
pendency graphs by merging events (or composite events).
Then, we compute S ′ for reconstructed G′1 and G′2 in Line
6. It is worth noting that the pruning methods proposed in
Sections 4.2 and 4.3 can be utilized in this step. After all the
candidates are processed, we compare the maximum average
similarity avg(Smax) among all the S ′ in this iteration with
the maximum average similarity avg(S) of last iteration. If
the increment is higher than a predefined threshold δ, the
candidate that produces Smax is confirmed as a proper merg-
ing candidate, and the iteration will go on. Otherwise, we
return S as the best similarity since the average similarity
cannot be improved significantly.

Algorithm 2 CompositePrune(G1, G2)

Input: two dependency graph G1 and G2

Output: the m:n matching similarity S
1: S:= compute event similarity of G1 and G2

2: for i from 1 to infinite do
3: U :=all possible candidate pairs
4: for each candidate W in U do
5: G′1, G

′
2 := reconstructed G1 and G2 by merging

events
6: S ′:= compute event similarity of G′1 and G′2
7: if avg(S ′) > avg(Smax) then
8: Smax :=S ′,Gmax

1 := G′1,Gmax
2 := G′2

9: if avg(Smax)− avg(S) < δ then
10: break
11: else
12: S := Smax ,G1 := Gmax

1 ,G2 := Gmax
2

13: return S

Example 8 (Example 7 continued). Suppose that we now
consider the composite event candidate U = {E,F} in Fig-
ure 1 (c). For those events in V1, we have AN(A) ∩ U =
AN(B) ∩ U = AN(C) ∩ U = AN(D) ∩ U = ∅. Hence, for

event v1 ∈ {A,B,C,D}, we have S{C,D}(v1, v2) = S(v1, v2)
according to Proposition 4.

Now suppose that we are computing S{E,F} after avg(S{C,D})
= 0.508 is gained. When the 15th iteration is done, the upper

bound of average similarity avg(S{E,F}U) is lower than 0.504,

which satisfies avg(S{E,F}U) < avg(S{E,F}). Therefore, we

can immediately stop the computation of S{E,F}.

1218

5. EVALUATION
In this section, we report an experimental evaluation on

comparing our method with the state-of-the-art event match-
ing approaches, graph edit distance (GED) [5], opaque name
matching (OPQ) [11] and behavioral similarity (BHV) [19].

5.1 Implementation and Settings

Data sets. We employ a real data set of 149 event log pairs,
which are extracted from 10 different functional areas in
the OA systems of two subsidiaries of a bus manufacturer.
Each event log pair denotes two event logs doing the same or
similar works in two subsidiaries, respectively. The matching
relationships in event log pairs are manually identified.

The data set is divided into two groups, where the first
group with 103 event log pairs does not contain composite
events, while the remaining 46 event logs in the second group
have composite events.

To study the performance on dislocations, we categorize
the dataset into 3 testbeds w.r.t. matching positions. The
first one, namely DS-F, consists of 23 event log pairs where
the dislocated events appear at the end of traces between
two logs. In the second testbed, namely DS-B with 22 event
log pairs, those dislocated events locate in the beginning of
traces between two logs. Finally, DS-FB may involve dislo-
cated events at both the beginning and the end of traces.

A state-of-the-art string similarity measure, cosine simi-
larity with q-grams [9], is employed to compute the label
similarity. Candidates of composite events are obtained by
grouping singleton events that always appear consecutively,
following the convention of SEQ pattern in CEP [6].

Besides real data sets, we also generate a synthetic data
set to evaluate the scalability of our approaches. Firstly,
we generate 10 groups of random process specifications by
varying event sizes ranging from 10 to 100. Each event size
contains 20 distinct process specifications. For each process
specification, we randomly generate 2 event logs, which form
an event log pair. Therefore, we have 20 event log pairs on
each distinct event size. Obviously, the events in two logs
with the same name correspond to each other. All these
models and logs are generated by an open source toolkit
BeehiveZ4 using existing generating approaches [18, 15].

Criteria. After pair-wise similarities of events are computed,
we use the maximum total similarity selection method [17]
to select event correspondences. The ground truth, i.e., the
true mapping of events among 149 event log pairs, is sup-
plied by 49 subject-matter experts in MIS (Management In-
formation Systems) departments of each subsidiaries of the
bus manufacturer during a long-period deliberation. Let
found denote the matching correspondences produced by
event matching approaches. We use the f-measure of preci-
sion and recall to evaluate the accuracy of event matching,

given by precision = |truth∩found|
|found| , recall = |truth∩found|

|truth| , and f-

measure= 2 · precision·recall
precision+recall

. A larger f-measure indicates a
higher matching accuracy.

Besides the accuracy performance, we also evaluate time
costs of matching approaches.

4http://code.google.com/p/beehivez/

 0

 0.2

 0.4

 0.6

 0.8

 1

DS-F DS-B DS-FB

P
re

ci
si

on

(a) precision

GED
OPQ
BHV
EMS

EMS+es

 0

 0.2

 0.4

 0.6

 0.8

 1

DS-F DS-B DS-FB

F-
m

ea
su

re

(c) f-measure

GED
OPQ
BHV
EMS

EMS+es

 0

 0.2

 0.4

 0.6

 0.8

 1

DS-F DS-B DS-FB

R
ec

al
l

(b) recall

GED
OPQ
BHV
EMS

EMS+es

 0
 100
 200
 300
 400
 500
 600

DS-F DS-B DS-FB

Ti
m

e
co

st
 (m

s)

(d) time cost

GED
OPQ
BHV
EMS

EMS+es

Figure 3: Performance on matching singleton events

 0

 0.2

 0.4

 0.6

 0.8

 1

DS-F DS-B DS-FB

P
re

ci
si

on

(a) precision

GED
OPQ
BHV
EMS

EMS+es

 0

 0.2

 0.4

 0.6

 0.8

 1

DS-F DS-B DS-FB
F-

m
ea

su
re

(c) f-measure

GED
OPQ
BHV
EMS

EMS+es

 0

 0.2

 0.4

 0.6

 0.8

 1

DS-F DS-B DS-FB

R
ec

al
l

(b) recall

GED
OPQ
BHV
EMS

EMS+es

 0
 100
 200
 300
 400
 500
 600

DS-F DS-B DS-FB

Ti
m

e
co

st
 (m

s)

(d) time cost

GED
OPQ
BHV
EMS

EMS+es

Figure 4: Integrating with typographic similarity

Our programs are implemented in Java and all experi-
ments were performed on a PC with Intel(R) Core(TM) i7-
2600 3.40GHz CPU and 8 GB memory.

5.2 Evaluating Event Similarity
We first report the experimental results on computing sin-

gleton event similarity. The compared approaches include
our proposed event matching similarity (EMS) and the esti-
mation EMS+es with I = 5, as well as existing approaches
GED, OPQ and BHV.

Figure 3 presents the average accuracy and time costs of
event matching. In order to observe the performance in the
scenario of opaque events, we do not employ other similar-
ities such as typographic similarities on event names, and
rely on the structural similarity of dependency graphs only.
First, the accuracy of our proposed EMS is higher than all
the existing methods in all the testbeds. The rationale is
that GED and OPQ concern local similarity, while dislo-
cated events often have distinct neighbors and prevent these
two approaches performing well as explained in Example 2.
Moreover, BHV performs better than GED and OPQ on
testbed DS-F, where the correspondences of events at the
beginning of traces can be addressed by the forward simi-
larity of BHV. However, BHV’s accuracy is much lower on
testbed DS-B compared with DS-F, since it only considers
one-direction similarity and cannot handle well the dislo-
cated events at the beginning of traces (in DS-B as well as
DS-FB) as indicated in Example 1. Our EMS considers sim-
ilarities in both directions (as indicated in Section 3.6) and
employs the artificial event to reduce the impact of distinct
neighbors of dislocated events. Consequently, EMS outper-
forms BHV on all the testbeds.

The corresponding time cost of EMS is no more than the
double of BHV’s and significantly lower than that of GED

1219

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

0 1 2 3 4 5 6 7 8 9 10MAX

P
re

ci
si

on

Number of iterations before estimation

(a) precision

 0.5
 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

0 1 2 3 4 5 6 7 8 9 10MAX

F-
m

ea
su

re

Number of iterations before estimation

(c) f-measure

 0.5
 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

0 1 2 3 4 5 6 7 8 9 10MAX

R
ec

al
l

Number of iterations before estimation

(b) recall

 0

 50

 100

 150

 200

0 1 2 3 4 5 6 7 8 9 10MAX

Ti
m

e
co

st
 (m

s)

Number of iterations before estimation

(d) time cost

EMS+es
BHV

Figure 5: Trade-off in estimation

 10000

 15000

 20000

 25000

 30000

 35000

DS-F DS-B DS-FB

P
ru

ne
 p

ow
er

(a) total iterations of all event pairs

Base
Prune

 100

 150

 200

 250

 300

 350

DS-F DS-B DS-FB

Ti
m

e
co

st
 (m

s)

(b) time cost

Base
Prune

Figure 6: Prune power of early convergence

and OPQ. It is not surprising owing to the high complexity
of computing graph edit distance or normal distance. Most
importantly, the similarity estimation approach (EMS+es,
with 5 iterations) shows the lowest time cost among all the
evaluated approaches. Although the improvement in terms
of time by EMS+es is not great compared with BHV, the
accuracy of EMS+es outperforms BHV significantly (espe-
cially in DS-B and DS-FB), which is also observed in the
following experiments such as Figure 4.

Figure 4 illustrates the results by integrating structural
similarities with typographic similarities (cosine similarity
of event names). In general, the results are very similar
to Figure 3 without considering the typographic similarity.
The major difference is that the accuracies of all approaches
are improved except OPQ, since OPQ does not benefit from
label similarity. The results demonstrate that our proposed
similarity measure can improve the matching accuracy, no
matter with or without typographic similarities.

Figure 5 evaluates the trade-off in performance by esti-
mation. As shown in the figure, when the number of fixed
iterations is small, e.g., 0, the estimation f-measure is com-
parable with the state-of-the-art BHV and shows about an
order of magnitude improvement in time costs. On the other
hand, for a large number of iterations, such as 10 or MAX
(precise measure without estimation), the improvement of
f-measure is up to 0.25, i.e., from 0.55 to 0.8.

Figure 6 evaluates the performance of the pruning method
proposed in Section 3.4. Note that when pruning is applied,
each pair of events may need a different number of itera-
tions (each iteration performs a computation of formula (1)).
Thereby, we observe the total number of iterations w.r.t. all
event pairs, i.e., the total times of calculating formula (1).
As illustrated in Figure 6(a), the total number of iterations
for all event pairs can be significantly reduced by pruning,
and the corresponding time costs are reduced in Figure 6(b).

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.00 0.05 0.10 0.15 0.20 0.25

F-
m

ea
su

re

Frequency threshold

(a) f-measure

 100

 1000

0.00 0.05 0.10 0.15 0.20 0.25

Ti
m

e
co

st
 (m

s)

Frequency threshold

(b) time cost

GED
OPQ
BHV
EMS

EMS+es

Figure 7: Trade-off by frequency filtering

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 20 30 40 50 60 70 80 90 100

F-
m

ea
su

re

Event size

(a) f-measure

GED
OPQ
BHV
EMS

EMS+es
 1

 10

 100

 1000

 10000

10 20 30 40 50 60 70 80 90 100

Ti
m

e
co

st
 (m

s)

Event size

(b) time cost

Figure 8: Scalability on the number of events

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0 1 2 3 4 5 10 20 30 50

F-
m

ea
su

re

Number of dislocated events

(a) f-measure

GED
BHV
EMS

EMS+es
 0

 200

 400

 600

 800

 1000

 1200

0 1 2 3 4 5 10 20 30 50

Ti
m

e
co

st
 (m

s)

Number of dislocated events

(b) time cost

Figure 9: Performance on handling dislocated events

To evaluate the minimum frequency control proposed in
Section 2, we gradually remove the edges with frequency
lower than a threshold (varying from 0.05 to 0.25) from de-
pendency graphs. According to the result reported in Figure
7(a), the accuracy decreases along with the increase of prun-
ing ratio, due to the absence of more statistic and structural
information. Nevertheless, the time cost also decreases as
shown in Figure 7(b), since the average degree of depen-
dency graph is decreasing, which makes the computation
faster. Hence, we can utilize the minimum frequency con-
trol to trade the accuracy for computation efficiency.

Figure 8 reports the results of scalability on the number
of events (up to 100 events).5 As shown in Figure 8(a), the
accuracy of all the approaches decreases along with the in-
crease of event size. It is not surprising since more choices of
events lead to a higher chance of mismatching. Remarkably,
the falling speed of our EMS is slower than other approaches,
which means the EMS method is more reliable in event logs
with a large number of distinct events. The time cost of
all approaches increases heavily in Figure 8(b). OPQ can-
not even finish the matching of events more than 30, due to
the highest time complexity O(n!). Nevertheless, EMS+es
always achieves the lowest time cost when the number of
events is increasing from 10 to 100.

Figure 9 evaluates the performance over various sizes of
dislocated events (in the synthetic dataset of 100 events). To

5Real event logs, however, often have the number of events
bounded by about 60, according to the recent survey [22].
Indeed, referring to the process modeling guidelines [16],
workflows should be decomposed if they have more than
50 events, so that they are easier to read and understand.

1220

 0

 0.2

 0.4

 0.6

 0.8

 1

DS-F DS-B DS-FB

P
re

ci
si

on
(a) precision

GED
OPQ
BHV
EMS

EMS+es

 0

 0.2

 0.4

 0.6

 0.8

 1

DS-F DS-B DS-FB

F-
m

ea
su

re

(c) f-measure

GED
OPQ
BHV
EMS

EMS+es

 0

 0.2

 0.4

 0.6

 0.8

 1

DS-F DS-B DS-FB

R
ec

al
l

(b) recall

GED
OPQ
BHV
EMS

EMS+es

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

DS-F DS-B DS-FB
Ti

m
e

co
st

 (m
s)

(d) time cost

GED
OPQ
BHV
EMS

EMS+es

Figure 10: Matching composite events

 0

 0.2

 0.4

 0.6

 0.8

 1

DS-F DS-B DS-FB

P
re

ci
si

on

(a) precision

GED
OPQ
BHV
EMS

EMS+es

 0

 0.2

 0.4

 0.6

 0.8

 1

DS-F DS-B DS-FB

F-
m

ea
su

re

(c) f-measure

GED
OPQ
BHV
EMS

EMS+es

 0

 0.2

 0.4

 0.6

 0.8

 1

DS-F DS-B DS-FB

R
ec

al
l

(b) recall

GED
OPQ
BHV
EMS

EMS+es

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

DS-F DS-B DS-FB

Ti
m

e
co

st
 (m

s)

(d) time cost

GED
OPQ
BHV
EMS

EMS+es

Figure 11: Performance on matching composite
events by integrating with typographic similarity

simulate the different sizes of dislocated events presented in
Example 1, we synthetically remove the first m events of
each trace in one event log for every event log pair. By
increasing m, i.e., the number of dislocated events, the ac-
curacy of all the approaches drops. In particular, BHV’s ac-
curacy drops fast, with performance as poor as GED when
the dislocated event size is large. Our proposed EMS shows
the highest and relatively steady accuracy. These results
verify again the superiority and demonstrate scalability of
EMS in handling a larger number of dislocated events.

5.3 Matching Composite Events
In Figures 10 and 11, we report the results on matching

composite events, without and with typographic similarity,
respectively. In general, the results are very similar to Fig-
ures 3 and 4 of matching singleton events. That is, our
similarity such as EMS can achieve higher accuracy, while
the time cost of computation with estimation is much lower.
A major difference observed in matching composite events
is the significantly higher time costs of GED and OPQ. As
mentioned in the introduction, we need to frequently com-
pute the similarities of events for various combinations of
candidate composite events, which is not affordable for simi-
larity measures with high computational costs (such as GED
and OPQ). Nevertheless, our proposed similarity measures
can keep time costs low. Especially, EMS+es shows 1-2 or-
ders of magnitude time cost improvement while the accuracy
still outperforms GED.

Figure 12 reports the effectiveness of pruning methods,
i.e., identifying unchanged similarities (Uc) in Section 4.2
and pruning with similarity upper bounds (Bd) in Section
4.3. Again, we first observe the total number of iterations
(times of computing formula (1)) for all event pairs. As illus-

 40000

 80000

 120000

 160000

 200000

DS-F DS-B DS-FB

P
ru

ne
 p

ow
er

(a) total iterations of all event pairs

Base
Uc
Bd

Uc+Bd

 300
 400
 500
 600
 700
 800
 900

 1000

DS-F DS-B DS-FB

Ti
m

e
co

st
 (m

s)

(b) time cost

Base
Uc
Bd

Uc+Bd

Figure 12: Prune power of unchanged similarities
and upper bounds of similarities

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

∞ 0.20 0.15 0.10 0.05 0.01

F-
m

ea
su

re

Threshold δ

(a) f-measure

 100

 1000

 10000

∞ 0.20 0.15 0.10 0.05 0.01

Ti
m

e
co

st
 (m

s)

Threshold δ

(b) time cost

GED
OPQ
BHV
EMS

EMS+es

Figure 13: Performance on varying threshold δ

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 2 4 6 8 10 12 14 16 18
F-

m
ea

su
re

Number of candidates

(a) f-measure

 100

 1000

 10000

 100000

0 2 4 6 8 10 12 14 16 18

Ti
m

e
co

st
 (m

s)

Number of candidates

(b) time cost

GED
OPQ
BHV
EMS

EMS+es

Figure 14: Performance on varying candidate sizes

trated, both these approaches show an improvement of time
performance, and the combination of two pruning methods
can further reduce the time cost.

Figure 13 evaluates the effect of δ in Algorithm 2. Ac-
cording to Algorithm 2, a lower δ prefers more composite
events. As illustrated in Figure 13(a), the f-measure first
grows up along with the decrease of δ, since the algorithm
does discover some true matching of composite events. How-
ever, the f-measure starts to drop when δ decreases lower
than 0.10, since many false positive composite events are in-
volved. That is, a moderately large threshold δ is preferred,
in order to achieve a high matching accuracy. It is not sur-
prising that the time cost significantly grows along with the
decrease of δ in Figure 13(b), since Algorithm 2 needs to
conduct the iterative computation of similarity for all the
composite events discovered.

Finally, as shown in Figure 14, by considering more can-
didates, we can identify the matching of more composite
events and thus increase the matching accuracy. The corre-
sponding time costs, however, increase significantly fast.

6. RELATED WORK
A graph is often employed to represent the structural

information among events. While vertices usually denote
events, the edges in the graph are associated with various
semantics exploited from event logs in different perspectives.
Ferreira et al. [8] used a graphical form of Markov transi-
tion matrix whose edges are weighted by the conditional
probability of one event directly followed by another. How-
ever, the conditional probability cannot tell the significance
of the edge. In this paper, we employ the dependency graph
proposed in [11] by weighting vertices and edges with nor-

1221

malized frequencies, since it distinguishes the significance of
distinct edges, and is easy to interpret. An important dif-
ference from [11] is the novel artificial node vX introduced
in the dependency graph for matching dislocated events.

Schema matching techniques [21], as a fundamental prob-
lem in many database application domains, can be employed
to evaluate event similarities. Kang et al. [11] studied the
matching on opaque data. However, as discussed in Exam-
ple 2, OPQ concerns a local evaluation of similar neighbors,
while dislocated matching events may have distinct neigh-
bors which prevents OPQ performing well. In contrast, our
proposed iterative similarity function concerns the global
evaluation via propagating similarities and thus overcome
the effect of local neighbor distinctness. Moreover, [11] needs
to enumerate all the possible matching correspondences and
select the one with the highest normal distance, which is
extremely time-consuming. Consequently, the performance
of [11] is poor in the experimental evaluation in Section 5.

A SimRank [10] like behavioral similarity [19] is employed
by iteratively considering the predecessor similarities of two
events. Unfortunately, this behavioral similarity fails to con-
sider the distinct feature of dislocated events. Therefore, as
illustrated in the experimental evaluation in Section 5, our
proposed similarity measure with the consideration of dislo-
cation shows higher matching accuracy. Weidlich et al. [23]
studies matching composite events due to the different levels
of granularity of business process [1]. However, it uses label
similarity of events to judge m:n matching, which is non-
effective on opaque event names. Another graph based simi-
larity is graph edit distance [5] which falls short in matching
dislocated events. Moreover, another defeat of graph edit
distance is its high computation cost. When matching com-
posite events with various combinations of candidates, the
large matching time costs become a major issue, which is
also observed in the experimental evaluation in Section 5.

7. CONCLUSIONS
In this paper, we first identify the unique features that

often exist in heterogeneous event logs, such as opaque,
dislocated and composite events. Since possibly opaque
event names prevent most existing typographic or linguistic
similarities from performing well, we focus on the structural
information for matching. In particular, an iterative simi-
larity function is introduced with the consideration of dis-
location issues. We prove that the iterative computation of
the proposed similarity function converges. Efficient prun-
ing with the identification of early convergence is developed.
We also propose a fast estimation of similarities with only
a constant number (including 0) of iterations. To efficiently
match composite events, we devise upper bounds of simi-
larities for pruning. Experimental results demonstrate that
our event similarity shows significantly higher accuracy than
state-of-the-art matching approaches. Moreover, the simi-
larity estimation can significantly reduce time costs while
keeping matching accuracy higher/comparable with exist-
ing approaches. Since it is not clear about the difference
of substituting S(v1, v2) and S(v′1, v

′
2), thus far, we do not

get any theoretical bound of estimation. It is interesting to
investigate the bound of estimation as a future study.
Acknowledgment. This work is supported in part by
China NSFC under Grants 61325008, 61202008, 61370055,
and National Grand Fundamental Research 973 Program of
China under Grant 2012-CB316200.

8. REFERENCES
[1] Z. Bao, S. B. Davidson, and T. Milo. Labeling workflow

views with fine-grained dependencies. PVLDB,
5(11):1208–1219, 2012.

[2] O. Biton, S. C. Boulakia, S. B. Davidson, and C. S. Hara.
Querying and managing provenance through user views in
scientific workflows. In ICDE, pages 1072–1081, 2008.

[3] F. Casati, M. Castellanos, U. Dayal, and N. Salazar. A
generic solution for warehousing business process data. In
VLDB, pages 1128–1137, 2007.

[4] F. Casati, M. Castellanos, N. Salazar, and U. Dayal.
Abstract process data warehousing. In ICDE, pages
1387–1389, 2007.

[5] R. M. Dijkman, M. Dumas, and L. Garćıa-Bañuelos. Graph
matching algorithms for business process model similarity
search. In BPM, pages 48–63, 2009.

[6] L. Ding, S. Chen, E. A. Rundensteiner, J. Tatemura, W.-P.
Hsiung, and K. S. Candan. Runtime semantic query
optimization for event stream processing. In ICDE, pages
676–685, 2008.

[7] A. Doan, A. Halevy, and Z. Ives. Principles of data
integration. Morgan Kaufmann, 2012.

[8] D. R. Ferreira, D. Gillblad, and D. Gillblad. Discovering
process models from unlabelled event logs. In BPM, pages
143–158, 2009.

[9] L. Gravano, P. G. Ipeirotis, N. Koudas, and D. Srivastava.
Text joins in an rdbms for web data integration. In WWW,
pages 90–101, 2003.

[10] G. Jeh and J. Widom. Simrank: a measure of
structural-context similarity. In KDD, pages 538–543, 2002.

[11] J. Kang and J. F. Naughton. On schema matching with
opaque column names and data values. In SIGMOD
Conference, pages 205–216, 2003.

[12] R. M. Karp. Reducibility among combinatorial problems.
In R. E. Miller and J. W. Thatcher, editors, Complexity of
Computer Computations, pages 85–103. Plenum Press,
1972.

[13] V. I. Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals. Soviet Physics Doklady,
10(8):707–710, 1966.

[14] S. Melnik, H. Garcia-Molina, E. Rahm, and E. Rahm.
Similarity flooding: A versatile graph matching algorithm
and its application to schema matching. In ICDE, pages
117–128, 2002.

[15] J. Mendling, J. Recker, M. Rosemann, and W. M. P.
van der Aalst. Generating correct epcs from configured
c-epcs. In SAC, pages 1505–1510, 2006.

[16] J. Mendling, H. A. Reijers, and W. M. P. van der Aalst.
Seven process modeling guidelines (7pmg). Information &
Software Technology, 52(2):127–136, 2010.

[17] J. Munkres. Algorithms for the assignment and
transportation problems. Journal of the Society for
Industrial & Applied Mathematics, 5(1):32–38, 1957.

[18] J. Nakatumba, M. Westergaard, and W. M. P. van der
Aalst. Generating event logs with workload-dependent
speeds from simulation models. In CAiSE Workshops,
pages 383–397, 2012.

[19] S. Nejati, M. Sabetzadeh, M. Chechik, S. M. Easterbrook,
and P. Zave. Matching and merging of statecharts
specifications. In ICSE, pages 54–64, 2007.

[20] T. Pedersen, S. Patwardhan, and J. Michelizzi. Wordnet: :
Similarity - measuring the relatedness of concepts. In
AAAI, pages 1024–1025, 2004.

[21] E. Rahm and P. A. Bernstein. A survey of approaches to
automatic schema matching. VLDB J., 10(4):334–350,
2001.

[22] J. Wang, T. Jin, R. Wong, and L. Wen. Querying business
process model repositories - a survey of current approaches
and issues. World Wide Web, 17(3):427–454, 2014.

[23] M. Weidlich, R. M. Dijkman, and J. Mendling. The icop
framework: Identification of correspondences between
process models. In CAiSE, pages 483–498, 2010.

1222

