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Abstract— A large amount of heterogeneous event data are
increasingly generated, e.g., in online systems for Web services
or operational systems in enterprises. Owing to the difference
between event data and traditional relational data, the matching
of heterogeneous events is highly non-trivial. While event names
are often opaque (e.g., merely with obscure IDs), the existing
structure-based matching techniques for relational data also fail
to perform owing to the poor discriminative power of depen-
dency relationships between events. We note that interesting
patterns exist in the occurrence of events, which may serve
as discriminative features in event matching. In this paper,
we formalize the problem of matching events with patterns. A
generic pattern based matching framework is proposed, which
is compatible with the existing structure based techniques. To
improve the matching efficiency, we devise several bounds of
matching scores for pruning. Since the exploration of patterns
is costly and incrementally, our proposed techniques support
matching in a pay-as-you-go style, i.e., incrementally update
the matching results with the increase of available patterns.
Finally, extensive experiments on both real and synthetic data
demonstrate the effectiveness of our pattern based matching
compared with approaches adapted from existing techniques, and
the efficiency improved by the bounding/pruning methods.

I. INTRODUCTION

Information systems (e.g. OA and ERP systems) of different

divisions or branches in large corporations keep on generating

heterogeneous event logs. It is strongly desired to integrate

the event data, e.g., for finding steps leading to a same data

(provenance analysis [21]) in multiple sectors, identifying

similar complex procedures (complex event processing [6])

in different branches, or obtaining a global picture of business

processes (workflow views [4]) in various divisions. Without

exploring the correspondence among heterogeneous events,

query and analysis on the event data (simply merged together)

may not yield any meaningful result.

Unfortunately, directly applying existing schema matching

techniques [19] may fail to obtain the right mapping of

heterogeneous events. Owing to the independent encoding

systems in different sources, the widely used methods based

on typographic similarity (e.g. string cosine similarity [10])

or linguistic similarity (using dictionary of ontology like

WordNet [18]) of event names are often unlikely to perform

(see examples below).

To solve the matching problem with “opaque” names,

graph based matching approaches [13] exploit the structural

information among attributes (events in our case). It relies on

the statistics of dependency relationships, e.g., how often two

events appear consecutively. The more similar the dependency

relationship is, the more likely the corresponding events can
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(a) A trace σ1
1 of events in L1 (b) A trace σ2

1 of events in L2
ID Trace

σ1
1 <ABCDEF>

σ1
2 <ACBDEF>

σ1
3 <ACBDFE>

σ1
4 <ABCDFE>

σ1
5 <ACBDEF>

σ1
6 <ACBDEF>

σ1
7 <ACBDFE>

σ1
8 <ACBDFE>

σ1
9 <ACBDFE>

σ1
10 <ACBDFE>

(c) Event log L1

ID Trace

σ2
1 <12354678>

σ2
2 <12345678>

σ2
3 <2135468>

σ2
4 <1235467>

σ2
5 <12345687>

σ2
6 <12345687>

σ2
7 <21354687>

σ2
8 <12345687>

σ2
9 <12354687>

σ2
10 <12354687>

(d) Event log L2
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(e) Dependency graph G1 for L1 (f) Dependency graph G2 for L2

Fig. 1: An example of heterogeneous event logs

be mapped with each other. The matching problem is to

find a “best” mapping that can maximize the similarity of

dependency relationships between two datasets. Unfortunately,

as illustrated in the following example, the dependency rela-

tionships (w.r.t. two consecutive events) are not discriminative

enough to find the right matching.

Example 1. Figure 1 illustrates two event logs, L1 and L2,

from order processing systems of a bus manufacturer, which

belong to two departments located at distinct industrial parks,

respectively. Each trace, e.g., σ1
1 in Figure 1(a), denotes a se-

quence of events (steps) for processing one order. An event log

consists of many traces, among which the sequences of events

may be different, since some of the events can be executed

concurrently (e.g. Payment(B) and Check Inventory(C) in L1),

or alternatively (e.g., FT(8) in σ2
3 or DL(7) in σ2

4 in L2).

As shown between Figures 1(a) and (b), events in L1 and L2
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have opaque names. According to our manual investigation,

Ship Goods in L1 is found corresponding to an event namely

FH (which is an abbreviation of Chinese phonetic representa-

tion) in L2. Such a mapping cannot be automatically identified

through a string similarity comparison (even with the help

of dictionaries). For simplicity, we use ABCDEF to denote

opaque event names in L1, while 12345678 are events in L2.

Figures 1(e) and (f) capture the statistical and structural

information of L1 and L2, respectively. Each vertex in the

directed graph denotes an event, while an edge between two

events (say AB in Figure 1(e) for instance) indicates that

they appear consecutively in at least one trace (e.g., σ1
1 in

Figure 1(c)). The numbers attached to vertices and edges

represent the normalized frequencies of corresponding events

and consecutive event pairs. For instance, 0.2 of AB means

that A,B appear consecutively in 20% traces of the event log.

Frequencies of individual events are obviously not discrimi-

native for matching, e.g., events A,B,. . . ,1,2,. . . share the same

frequency 1.0. According to the dependency graphs, DE shares

the same frequency with 34, as well as DF with 35, BD

with 23, and CD with 13. Following the intuition of high

dependency relationship similarity, D → 3 may be mapped

referring to the aforesaid similar dependency edges. However,

D and 3 denote two different events in real world.

We note that besides the simple dependency relationships,

more complex event patterns (a.k.a. composite events [6])

often exist in event logs and may serve as more discriminative

features. Informally, an event pattern is a group events with

several dependency relationships declared inside. It is not

surprising that such a complex event pattern (with multiple

dependency relationships) is more discriminative than single

dependency relationships.

Example 2 (Example 1 continued). Consider the pattern p1
in blue dashed line in G1 with four events {A,B,C,D} and

six edges {AB,AC,BC,CB,BD,CD}. It states that events

B and C must occur after A before D, in either the order of

BC or CB. A trace (say σ1
1) matches with the pattern if a

substring of the trace <ABCD> is a topological sort of all

events in the pattern.

Note that in G2, there is a subgraph p2 with events

{3, 4, 5, 6} isomorphic to p1. It means that there may exist

traces in L2 following the pattern p1 as well. As event vertices

and edges, we can also study the frequency of event patterns,

i.e., the number of traces matching the pattern. By evaluating

in L1 and L2, respectively, p1 and p2 are found to share

the same normalized frequency 1.0. It suggests that these two

patterns may represent the same tasks (composite events). A

mapping, say A → 3, B → 4, C → 5, D → 6, among pattern

p1 and p2 is probably reliable, rather than the aforesaid

D → 3 in Example 1 by a single dependency relationship.

It is notable that vertices and edges (dependency relation-

ships) can be interpreted as special patterns. More complex

event patterns can be declared by users for certain interests,

or discovered from data [2], [16], [3] (also see a discussion

of choosing discriminative patterns in Section II). Therefore,

in this paper, given certain patterns over event logs, we study

the problem of finding an optimal mapping that can maximize

the frequency similarity (matching score) w.r.t. the patterns.

Challenges: The main challenge of event matching origi-

nates from the large space of all possible mappings. To support

efficient search of optimal mapping, it is essential to devise

bounds of matching scores w.r.t. the patterns and prune those

mappings with low matching scores. Due to the existence of

various mappings, e.g., a pattern (say {D,E, F}) can either

be mapped to {3, 4, 5} or {6, 7, 8}, computing tight bound

for each possibly mapped pattern is unpractical. Indeed, it is

already hard to find all possibly mapped patterns, which is

known as the subgraph isomorphism problem [9].

Moreover, we cannot expect that all the event patterns

are given ahead. Obtaining event patterns would be costly,

especially when involved with business semantics or man-

power, and is often conducted gradually. Thereby, the event

matching should also be performed in a pay-as-you-go style

[20]. Efficiently updating the optimal matching after the arrival

of a new pattern, however, is highly nontrivial. The matching

results could be completely diverse, e.g., with or without the

pattern p1 in Figure 1. A naive idea is to recompute the optimal

matching from scratch, which is obviously inefficient.

Contributions: Our major contributions in this paper are

summarized as follows.

• We propose a pattern based generic framework for event

matching, which is compatible with existing structure

based matching methods. Efficient bounding and pruning

w.r.t matching scores of possible mappings are developed.

• We devise an advanced bounding function together with

two indices to accelerate the computation of the optimal

event matching. In particular, a tighter bound is calculated

without the costly subgraph isomorphism step.

• We extend the proposed techniques to support matching

in a pay-as-you-go style and returning a list of top-k

optimal mappings.

• We report extensive experimental evaluations on both real

and synthetic datasets. It demonstrates that our proposed

pattern based matching methods can achieve higher accu-

racy compared with the state-of-the-art approaches, and

the advanced bounding function significantly reduces the

time cost (up to 2 orders of magnitudes improvement).

The rest of this paper is organized as follows: Section II

introduces preliminaries and formalizes the event matching

problem. Section III describes the generic pattern based event

matching framework with a simple bounding function. Section

IV illustrates an advanced bounding function. SectionV and

Section VI present the extensions of pay-as-you-go matching

and top-k mappings, respectively. We report the experimental

evaluation in Section VII. Finally, Section VIII discusses

related work and Section IX concludes this paper.
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II. EVENT MATCHING PROBLEM

In this section, we formalize syntax and definitions for the

event matching problem. Graph based uninterpreted matching

techniques are introduced for event matching, which motivate

us to study more complex event patterns. Table I lists the

frequently used notations in this paper.

A. Uninterpreted Event Matching

Let V be a set of events. A trace σ is a finite sequence

of events v ∈ V ordered by their occurrence timestamps. An

event log L is a collection of traces.

To capture the structural and statistical information among

events, we introduce the dependency graph (originally for

schema matching [13]) to event logs.

Definition 1 (Event Dependency Graph). An event depen-

dency graph G is a labeled directed graph denoted by

(V ,E , f), where each event in V corresponds to a vertex,

E is the edge set, and f is a labeling function of normalized

frequencies that

• for each v ∈ V , f(v , v) is the normalized frequency of

event v , i.e., the number of traces in L that contain v

(divided by |L|), and

• for each edge (v1, v2) ∈ E , f(v1, v2) is the normalized

frequency of two consecutive events v1v2, i.e., the number

of traces in L where v1v2 occur consecutively at least

once (divided by |L|).

We ignore those edges with frequency 0, i.e., no dependency

relationship between two events that do not appear consecu-

tively in any trace of the event log.

Consider two event logs L1 and L2, with event sets V1 and

V2 (without loss of generality supposing that |V1| ≤ |V2|).
A mapping M of events between V1 and V2 is an injective

mapping M : V1 → V2. For an event v1 ∈ V1, v2 = M(v1)
is called the corresponded event of v1, and v1 → v2 is called

a matching/corresponding event pair.

Owing to the absence of typographic or linguistic similarity,

the uninterpreted schema matching method [13] relies on the

similarity of dependency relationships. A score function is

employed w.r.t. any mapping M , namely normal distance, to

evaluate the similarity of two event logs.

Definition 2 (Normal Distance). Let M be a mapping of

vertices (events) over dependency graphs G1(V1,E1, f1) and

G2(V2,E2, f2). The normal distance of M is defined as:

DN (M) =
∑

v1 ,v2∈V1

(1−
|f1(v1 , v2 )− f2(M(v1 ),M(v2 ))|

f1(v1 , v2 ) + f2(M(v1 ),M(v2 ))
)

Two forms of normal distances are studied. If v1 = v2 is

required in the formula, the normal distance considers only the

frequencies of individual events, i.e., vertex form. Otherwise,

the normal distance is in vertex+edge form which considers

both vertex frequencies and edge frequencies.

Normal distance is indeed the summation of frequency

similarities (or differences) of corresponding vertices or edges

w.r.t. mapping M . The higher the normal distance is, the

TABLE I: Frequently used notations

Symbol Description

v ∈ V an event v in event set V

p ∈ P an event pattern p in pattern set P

G(V ,E , f) event dependency graph

DN (M) normal distance of a mapping M

δ(p) contribution of a pattern p to normal distance

∆(p, U) upper bound of δ(p)

more similar the vertices and edges captured by M are. As

discussed in [13], the summation of similarities is favored

for matching rather than the normalization of similarities.

The rationale is that the normal distance function attempts

to find corresponding events (vertices) as many as possible,

whereas the similarity normalization function may only return

one matching event pair with the highest frequency similarity.

Consequently, the matching problem is to find a mapping

M that has the highest normal distance.

Problem 1 (Event Matching Problem). Given two event logs

L1 and L2, the event matching problem is to find an event

mapping M that maximizes DN (M).

Example 3 (Example 1 continued). Consider the dependency

graphs G1 and G2 shown in Figures 1 (e) and (f). We can

use normal distance to evaluate event mappings. For the true

mapping M = {A → 3, B → 4, C → 5, D → 6, E → 7, F →
8} illustrated in Figure 1, we have normal distance DN

v (M) =
5.89 (E → 7 and F → 8 have similarities 1− 1−0.9

1+0.9 = 0.947,

where other four event pairs have similarities 1.0) in vertex

form and DN
v+e(M) = 13.91 in vertex+edge form based on the

Definition 2. However, neither of them is the highest normal

distance. In fact, the event mapping with the highest normal

distance is M ′ = {A → 6, B → 2, C → 1, D → 3, E → 4,

F → 5}, where DN
v (M ′) = 6.00 and DN

v+e(M) = 14.00.

Hence, the vertex and edge frequencies are not discriminative

to find the right mapping.

B. Event Matching with Patterns

As mentioned in Section I, complex patterns can be discrim-

inative features in event matching. Following the convention

of expressing complex event processing queries [6], we define

event patterns with SEQ and AND operators as follows.

Definition 3 (Event Pattern). An event pattern specifies partic-

ular orders of event occurrence, which are defined recursively:

• A single event e is an event pattern;

• SEQ(p1, p2, . . . , pk) is an event pattern in which the

patterns pi, i ∈ 1, . . . , k, occur sequentially;

• AND(p1, p2, . . . , pk) is an event pattern that requires the

concurrent occurrence of the patterns pi, i ∈ 1, . . . , k,

i.e., the order of pi does not matter.

To keep the pattern discriminative, we do not allow any

other events to appear between the two patterns addressed by

two consecutive parameters in the operators.

378



An event pattern can naturally be represented as a directed

graph, where each vertex corresponds to an event [24]. In-

tuitively, SEQ operator specifies edges between consecutive

pi and pi+1, i ∈ 1, . . . , k − 1, while AND operator indicates

edges between any two pi and pj , i 6= j, i, j ∈ 1, . . . , k. It is

worth noting that for all the events e1, e2, ..., ek included in a

pattern and i 6= j, i, j ∈ 1, . . . , k, we assume that there should

be ei 6= ej , since some translated graphs of distinct patterns

may be the same if the duplication of events are permitted

(e.g. SEQ(A,B,A,B) and AND(A,B)).

Definition 4 (Trace Matching Pattern). Let σ be a trace and

p be an event pattern in graph form. We say that σ matches

with p, if there is a substring of σ which is a topological sort

of all events in p.

We define the normalized frequency f(p) of a pattern p as

the number of traces matching pattern p divided by the total

number of traces in event log L. Without loss of generality, in

the following, we denote p as the patterns in L1 by default.

For the patterns in L2, the computation is symmetric.

Definition 5 (Pattern Normal Distance). Let M be a map-

ping of events over dependency graphs G1(V1,E1, f1) and

G2(V2,E2, f2). For a set of patterns P , the pattern normal

distance of M is defined as:

DN (M) =
∑

p∈P

1−
|f1(p)− f2(M(p))|

f1(p) + f2(M(p))
, (1)

where M(p) is the pattern in G2 corresponding to p in G1

via the mapping M such that each event v in p maps to an

event M(v) in M(p).

We denote δ(p) = 1 − |f1(p)−f2(M(p))|
f1(p)+f2(M(p)) for convenience in

the following, i.e., DN (M) =
∑

p∈P δ(p).

Following the intuition of dependency similarity in ver-

tex/edge based matching, we expect that the normalized fre-

quencies of p in L1 and its corresponding M(p) in L2 are as

similar as possible, i.e., maximize the pattern normal distance.

Note that vertices and edges are special patterns. Therefore,

pattern based matching can be interpreted as a generalization

of the existing vertex/edge based matching.

Example 4 (Example 3 continued). Consider a pattern

p1 =SEQ(A,AND(B,C),D) in Figure 1 (e). We describe p1
as a graph. The vertices of events are {A,B,C,D}. We add

two edges BC, CB due to pattern AND(B,C). According to

SEQ(A,AND(B,C),D), both B and C can be performed after

A and should be done before D. Thus, we add another 4 edges

AB, AC, BD and CD. The graph translated from p1 is a

subgraph of G1 surrounded by blue dashed line in Figure 1(e).

For the true mapping M = {A → 3, B → 4, C → 5, D →
6, E → 7, F → 8}, pattern p1 (in G1) corresponds to a

subgraph p2 in G2. Since all traces in L1 and L2 match with

p1 and p2, respectively, we have f1(p1) = f2(p2) = 1.0. By

considering all vertices and edges as patterns in formula (1),

the pattern normal distance of M is DN (M) = 14.91.

However, the pattern p1 has no mapped pattern w.r.t. M ′ =
{A → 6, B → 2, C → 1, D → 3, E → 4, F → 5}. The

pattern normal distance of M ′ is still 14. By introducing p1,

the true mapping M with the highest pattern normal distance

beats M ′.

Although it is not the focus of this study, we note that

interesting event patterns are often obtained in two ways. 1)

Event patterns may be available in business process analyzing

systems of enterprises [6]. 2) There are many existing methods

for discovering event patterns in event log [2], [16], [3].

We provide some guidelines instead, for choosing possi-

bly “good” event patterns for matching. Intuitively, an event

pattern is probably discriminative if no other patterns can be

found with the same structure, or its frequency is different

from other patterns with the same structure. On the other hand,

a pattern with common structure (e.g., a 3-vertex-path pattern

{A,B,D} in Figure 1) may be less discriminative, since it has

a high chance of mapping to many irrelevant patterns.

III. A GENERIC EVENT MATCHING FRAMEWORK

The total number of distinct mapping M is n(n − 1)(n −
2)...(n − m + 1), where n = max(|V1|, |V2|), m =
min(|V1|, |V2|). Obviously, it is highly time-consuming to

enumerate all the possible corresponding relations and choose

the one that maximizes the normal distance. Instead, we

employ the A* search strategy to gradually construct the

optimal mapping, and prune other mappings according to their

upper bounds of normal distances. There are two key issues to

address in the search algorithm: 1) the efficient computation of

a pattern’s contribution δ(p), in particular its frequency f(p)
in event logs; 2) the effective estimation of upper bounds of

contributions δ(p) in possible mappings.

A. Overview of A* Search

The process of A* search algorithm follows the growth

of A* search tree, e.g., in Figure 2. Each node in the tree

represents an intermediate result (M,U1, U2), where M is the

current partial matching on a subset of events V1\U1 and V2\
U2, U1 is the set of unmapped events (vertices) in V1, and U2

is the set of unmapped events in V2. Two important values g

and h are defined on each tree node. The value g is the normal

distance of the current partial matching, i.e., g = DN (M). The

value h is an upper bound of normal distances which can be

further contributed by matching the remaining events among

U1 and U2. Consequently, g(M,U1, U2)+h(M,U1, U2) serves

as an upper bound of all mappings expanded from M . (The

computation of g and h will be presented soon.)

Algorithm 1 presents the pseudo code of the A* search

algorithm. Initially, we add (∅,V1,V2) as the root of search

tree, in Line 1. In each iteration, we select an un-visited tree

node (M,U1, U2) with the maximum g + h value (i.e., with

the maximum upper bound, in Line 3). If either of U1 and

U2 is empty, the optimal mapping M is obtained; otherwise,

we further expand the mapping. In the latter case, we pick up

one event a from U1 (see the selection of a below). For each

b ∈ U2, we create a child node for (M,U1, U2) by appending
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Fig. 2: An example of A* search tree

a → b to M and removing a, b from U1 and U2, respectively.

We denote (M ′, U ′
1, U

′
2) a child node of (M,U1, U2) where

U ′
1 = U1\{a}, U

′
2 = U2\{b} and M ′ : V1 \ U ′

1 → V2 \ U ′
2.

That is, we expand M to M ′ with the new mapping a → b,

in Line 7.

To select a ∈ U1 for expanding in Line 5, we consider an

ordering of events by the number of patterns that the event

is involved in. Intuitively, the early the patterns are included

in M , the higher the change is of pruning other mappings.

Thereby, we select a vertex which is included by most of the

patterns in each step.

Algorithm 1 EVENT MATCHING ALGORITHM

Input: Two event logs L1 and L2 with event sets V1 and V2

Output: The optimal event mapping M with the maximum

pattern normal distance

1: Q := {(∅,V1,V2)}
2: repeat

3: (M,U1, U2) := argmax(Mi,Ui

1
,Ui

2
)∈Q g(M i, U i

1, U
i
2) +

h(M i, U i
1, U

i
2)

4: Q := Q\{(M,U1, U2)}
5: if a := the next event in U1 exists then

6: for each b ∈ U2 do

7: compute g and h for child (M ′, U ′
1, U

′
2) of

(M,U1, U2) by expanding a → b

8: Q := Q ∪ {(M ′, U ′
1, U

′
2)}

9: until U1 = ∅ or U2 = ∅
10: return M

Example 5. Figure 2 illustrates an example of conducting

the A* search algorithm for matching L1 and L2 in Figure

1. Suppose that all the vertices, edges and p1 are patterns

defined on L1. According to Algorithm 1, we create a root

node tn0 at the first iteration. To expand the mapping, B is

selected from U1, since B is included by 6 patterns. For each

vertex v ∈ U2, we add a child node of tn0 which appends

B → v to M . Suppose that tn4 is currently the tree node with

the maximum g+h score. In the second iteration, we visit tn4

and generate its child nodes tn9 to tn16. After several times of

iteration, it reaches the node tnx with empty U1. The mapping

M of tnx is returned as the optimal matching result. There

is no need to visit any other un-visited nodes remained in the

A* search tree, since their upper bounds of normal distances

are no greater than the normal distance of tnx.

B. Efficiently Computing the Normal Distance G

Let PM ′ be the set of patterns whose events are all defined

in M ′, and PM be all the patterns corresponding to M . It is

evident that PM ⊆ PM ′ . We denote Pnew = PM ′ \PM as the

set of new introduced matching pattern pairs by appending

a → b to M . According to the definition of g(M,U1, U2),
i.e., DN (M), we have

g(M ′, U ′
1, U

′
2) = g(M,U1, U2) +

∑

p∈Pnew

δ(p)

according to formula (1).

Therefore, instead of recalculating g for each node, we use

a more efficient three-step method to conduct the incremental

computation of g of a child node from the g of its parent node.

Firstly, we capture the patterns which are newly introduced.

Then, for each newly introduced pattern p, we find out

whether the corresponding structure w.r.t. M ′ exists in the

other G2. Finally, we calculate the frequency of all patterns

for computing δ(p).

Capturing newly introduced patterns: As the first step

of calculating g, we need to know which patterns are new

introduced, i.e., Pnew. An inverted index Ip is employed, where

each v ∈ V maps to a list of patterns involving v , denoted

as Ip(v). Consequently, the newly introduced patterns can

be computed as Pnew = (
⋃

v∈V1\U ′

1

Ip(v) \
⋃

v∈U ′

1

Ip(v)) \
(
⋃

v∈V1\U1
Ip(v)\

⋃

v∈U1
Ip(v)). That is, all the patterns with

vertices from V1 \ U ′
1, but not those ones that have already

been included by the previous M (i.e., not PM ).

Pruning no contribution patterns: For a pattern p ∈ Pnew

from L1, it is possible that no trace in the other side L2

matches the corresponding M(p), i.e., f2(M(p)) = 0. This

pattern p will have no contribution to the normal distance

having δ(p) = 0. Recall that each pattern can be represented

as a directed graph. We can identify and prune such patterns,

without evaluating frequencies in the event log, by the follow-

ing pattern existence property in dependency graph.

Proposition 1 (Pattern Existence). For a pattern p over an

event log L and the dependency graph G of L, if p is not a

subgraph of G , we have f(p) = 0 w.r.t. L.

Consequently, for each newly introduced pattern p ∈ Pnew,

if M(p) is not a subgraph of G2, we directly conclude δ(p) =
0 without computing over L2.

Calculating the frequency of pattern: Finally, to calculate

δ(p), it is indeed to compute f1(p) and f2(M(p)). Instead of

scanning the whole event log to count frequencies, we employ

another inverted index It, where each event, say v ∈ V1,
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Fig. 3: Expanding a new mapping a5 → b5 to M

corresponds to a list of traces σ ∈ L1 containing v , denoted

by It(v). Let V (p) denote all the events involved in p. Instead

of the whole event log L1, we only need to scan a part of traces
⋂

v∈V (p) It(v) for counting f1(p). It is similar for computing

f2(M(p)).

C. A Simple Upper Bound of H

To compute the upper bound h(M ′, U ′
1, U

′
2) of normal

distances that can be further contributed, we consider all the

remaining patterns, P \ PM ′ . In the following, we show that

an upper bound ∆(p, U2) of δ(p) can be computed such that

the events in p can only be mapped to events in U2 (see the

following Problem 2 for formal definition). Consequently, we

have

h(M ′, U ′
1, U

′
2) =

∑

p∈P\P
M′

∆(p,M ′(V (p) \ U ′
1) ∪ U ′

2).

Note that a simple bound of δ(p) is 1.0, as each pattern con-

tributes at most 1.0 to the pattern normal distance according

to formula (1). It follows h(M ′, U ′
1, U

′
2) = |P \ PM ′ |.

Example 6. Figure 3 illustrates an example of expanding a

new mapping a5 → b5 to a partial matching M = {a1 →
b1, a2 → b2, a3 → b3, a4 → b4}. Then we have PM =
{SEQ(a1, a2, a3)}, PM ′ = {SEQ(a1, a2, a3),AND(a4, a5)},

thus Pnew = {AND(a4, a5)}. By checking the existence of

edge b4b5 (M(a4)M(a5)) and b5b4 (M(a5)M(a4)) in G2, we

confirm that M(AND(a4, a5)) may exist in G2 and cannot be

pruned. At last, we have the remaining patterns SEQ(a7, a8)
and SEQ(a5, a6).

Algorithm analysis: First, to compute the frequency of a

pattern in the event log L, we need to traverse every events

of each trace in L. The maximum length of trace is |V1|, the

possible total number of events in L is |V1| ∗ |L|. That is,

the complexity of evaluating a pattern p in the event log is

O(|V1| ∗ |L|). In the worst case, the optimal mapping will be

obtained after the A* search tree is fully expanded to all its leaf

nodes (either U1 = ∅ or U2 = ∅). Let n = max(|V1|, |V2|).
As mentioned, there are at most n! possible mappings, i.e.,

possible leaf nodes. Note that during the expansion of a

mapping, any pattern will be evaluated once for computing

δ(p) in g function, while the estimation of h function does not

need to evaluating the event log. Therefore, the complexity of

the event matching algorithm is O(|V1| ∗ |L| ∗ |P| ∗ n!).

IV. A TIGHTER BOUND ON NORMAL DISTANCE

Rather than simply assigning the largest ∆ = 1.0, in this

section, we study a tighter (smaller) upper bound of δ(p)
for estimating h. The tighter the upper bound is, the more

tree nodes can be pruned during the A* algorithm. We first

formalize the problem of finding bound ∆(p, U2).

Problem 2 (Upper Bound Problem). Given a pattern p from

L1 and a set of events U2 ⊆ V2 of L2, it is to find an upper

bound ∆(p, U2) of δ(p) w.r.t. any mapping M : V (p) → U2.

Unfortunately, obtaining a tight bound is highly nontrivial.

The most tight bound is ∆(p, U2) = 0. We identify a trivial

case such that a tightest bound ∆(p, U2) = 0 can be concluded

efficiently. That is, if a remaining pattern p is larger than the

size of U2, the upper bound ∆(p, U2) is 0. For instance, in

Figure 3, we have ∆(SEQ(a6, a7, a8), {b6, b7}) = 0.

To obtain tight bounds for general patterns, it is unlikely to

capture all the possible subgraphs isomorphic to the pattern.

Instead, we compute the bounds by utilizing vertex and edge

frequencies as follows to avoid subgraph isomorphism.

A. Upper Bound via Vertex Frequency

We first investigate the relationships between the bound of

normal distances and the bound of pattern frequencies. Let

fU
2 denote an upper bound of f2(M(p)), for all the possible

mapping M : V (p) → U2.

Lemma 2. If fU
2 ≤ f1(p), we have ∆(p, U2) = 1− f1(p)−fU

2

f1(p)+fU

2

.

Proof. According to f1(p) ≥ fU
2 ≥ f(M(p)) for all possible

M , we have |f1(p) − fU
2 | = f1(p) − fU

2 and |f1(p) −
f2(M(p))| = f1(p) − f2(M(p)). It follows ∆(p, U2) =

1− f1(p)−fU

2

f1(p)+fU

2

≥ 1− f1(p)−f2(M(p))
f1(p)+f2(M(p)) = δ(p). That is, ∆(p, U2) =

1− f1(p)−fU

2

f1(p)+fU

2

is an upper bound of δ(p).

Obviously, the smaller the bound fU
2 is, the tighter ∆(p, U2)

would be. A straightforward method is to capture every M(p)
w.r.t. all possible mappings M , calculate f2(M(p)) for each

M(p) and use the highest f2(M(p)) as fU
2 . It would be pro-

hibitively expensive, as enumerating all subgraphs isomorphic

to p is already unlikely to afford. We attempt to find a more

efficient way to estimate fU
2 .

A natural intuition is to consider the frequencies of a

pattern’s substructures. Since vertices are the most primitive

substructures in a pattern, we start from the frequency rela-

tionship between a pattern and its vertices.

Proposition 3. For a pattern p over an event log L with event

set V , it always has f(p) ≤ f(v), ∀v ∈ V (p).

Proof. Consider any event v ∈ V (p) in the pattern p. For each

trace matching the pattern, event v must appear at least once

in this trace. It follows that f(v) is no less than f(p).
That is, f2(M(p)) should be no greater than the frequency

of any event involved in M(p).
Let fn = maxv∈U2

f2(v) be the highest vertex frequency

among U2. We have f2(M(p)) ≤ fn, i.e., an upper bound fU
2
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of f2(M(p)) for possible M : V (p) → U2. 1

According to Lemma 2, if fn ≤ f1(p), we can obtain a

tighter upper bound

∆(p, U2) = 1−
f1(p)− fn
f1(p) + fn

.

Example 7. Suppose that we need to compute

∆(AND(B,C), {7, 8}) in Figure 1. According to L1,

we have f(AND(B,C)) = 1.0, and the highest

vertex frequency fn in {7, 8} is 0.9. Thus we have

∆(AND(B,C), {7, 8}) = 1 − 1.0−0.9
1.0+0.9 = 0.95. That is, the

pattern AND(B,C) can contribute at most 0.95 of normal

distance by possible mappings from {B,C} to {7,8}.

B. Upper Bound via Edge Frequency

Next, besides vertices, more complex substructures, e.g.,

edges or paths, can be exploited for further tightening the

upper bound ∆(p, U2). We first consider two simple types of

SEQ and AND patterns without other patterns nested. Then,

the techniques are extended to general patterns.

Upper bound for simple SEQ patterns: We start

with a special case SEQ(v1, . . . , vk), where all sub-patterns

v1, . . . , vk are individual events, named simple SEQ pattern.

Dealing with this special case is meaningful, since we will

show below that AND patterns and general SEQ patterns with

AND patterns nested as sub-patterns can be split into a set of

simple SEQ patterns w.r.t. frequencies.

We consider the frequency of the smallest subsequence

which only contains two events, i.e., the frequency of edges

in dependency graph.

Proposition 4. For a simple pattern p = SEQ(v1, v2, ..., vk)
over an event log L, it always has f(p) ≤ f((vi, vi+1)), i ∈
1, . . . , k − 1.

Proof. Consider any consecutive events (vi, vi+1) in the pat-

tern p = SEQ(v1, v2, ..., vk). For each trace matching the

pattern, (vi, vi+1) must appear at least once in this trace,

and not vice versa. Therefore, f((vi, vi+1)) is no less than

f(p).
That is, the frequency of a pattern p is always no greater

than that of any edge w.r.t. two consecutive events (vi, vi+1)
in the pattern.

Let fe = maxv ,u∈U2
f2((v , u)) be the highest edge fre-

quency in a subgraph of G2 with vertices from U2 only.

According to Proposition 4, we have f2(M(p)) ≤ fe, i.e.,

an upper bound fU
2 of f2(M(p)). 2

Consequently, for a simple SEQ pattern p =
SEQ(v1, v2, ..., vn), if fn ≤ f1(p), according to Lemma

2, we have a tighter upper bound

∆(p, U2) = 1−
f1(p)− fe
f1(p) + fe

.

1Indeed, it is also sufficient to use |p|-th highest vertex frequency in U2 as
fn, since f2(M(p)) should be no greater than the lowest frequency among
|p| events involved in M(p).

2Again, it is indeed sufficient to use (|p|−1)-th highest edge frequency as
fe, since f2(M(p)) should be no greater than the lowest frequency of any
edge of |p| − 1 edges in M(p).

Fig. 4: Simple and general patterns

Example 8. Suppose that we need to compute

∆(SEQ(B,D), {7, 8}) in Figure 1. According to L1,

we have f(SEQ(B,D)) = 0.8, and the highest edge

frequency fe in the subgraph of G2 w.r.t. {7, 8} is 0.6. Thus

we have ∆(SEQ(B,D), {7, 8}) = 1− 0.8−0.6
0.8+0.6 = 0.86.

Upper bound for simple AND patterns: To study the

bound, we first give a split of AND patterns into a set of

SEQ patterns w.r.t. frequencies.

Lemma 5. Given any pattern p = AND(p1, p2, ..., pk), we

have f(p) =
∑

(p′

1
,p′

2
,...,p′

k
)∈Q f(SEQ(p′1, p

′
2, ..., p

′
k)), where

Q is a set containing all distinct permutations of p1, p2, ..., pk.

Proof. Since the order of sub-patterns does not matter for the

AND pattern, there will be k! possible orders of the sub-

patterns which correspond to all the possible permutations

of p1, p2, ..., pk. As illustrated in Figure 4(a), for instance,

AND(A,B) can be split into SEQ(A,B) and SEQ(B,A).
Referring to the definition of AND pattern, any trace of

events matching with p should follow exactly one of the orders

in Q (since an event appear at most once in a pattern or trace).

It follows the conclusion of frequency summation.

Now, we consider a simple AND pattern AND(v1, ..., vk)
where v1, . . . , vk are individual events.

Proposition 6. For a simple pattern p = AND(v1, v2, ..., vk)
over L1, we always have f2(M(p)) ≤ k!fe, for any mapping

M : V (p) → U2.

Proof. According to Lemma 5, a simple AND pattern with

k events can be split into at most k! simple SEQ patterns.

As mentioned in Lemma 4, the frequency of a SEQ pattern is

bounded by the highest edge frequency fe. So the frequency of

a simple AND pattern with k events is bounded by k!fe.

In other words, for a simple AND pattern p containing

k events, k!fe serves as an upper bound fU
2 of f2(M(p)).

Referring to Lemma 2, if k!fe ≤ f1(p), the upper bound is

∆(p, U2) = 1−
f1(p)− k!fe
f1(p) + k!fe

.

Example 9. Suppose that we need to compute

∆(AND(B,C), {1, 3}) in Figure 1. According to L1,

we have f(AND(B,C)) = 1.0, and the highest edge

frequency fe in the subgraph of G2 w.r.t. {1, 3} is 0.2. Thus

we have ∆(AND(B,C), {1, 3}) = 1− 1.0−2!×0.2
1.0+2!×0.2 = 0.57.

Upper bound for general patterns: Finally, we consider

a general pattern p. Following the same intuition of dealing

with simple AND patterns, we first study the number of simple

SEQ patterns can be split from a pattern p, denoted by ω(p).
The number ω(p) can be calculated by a recursive way.
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TABLE II: Summary of Tighter Upper Bounds

Case of patterns p Upper Bound

a general pattern 1− f1(p)−fn
f1(p)+fn

a simple pattern SEQ(v1, . . . , vk) 1− f1(p)−fe
f1(p)+fe

a simple pattern AND(v1, ..., vk) 1− f1(p)−k!fe
f1(p)+k!fe

a general pattern 1− f1(p)−ω(p)fe
f1(p)+ω(p)fe

Lemma 7. Given a general pattern p, we have:

ω(p) =







1 if p is a single event
∏

i∈1,...,k ω(pi) if p is SEQ(p1, ..., pk)

k!
∏

i∈1,...,k ω(pi) if p is AND(p1, ..., pk)

Proof. ω(p) = 1 is evident for a single event. If

p is a SEQ(p1, ..., pk) pattern, ω(p) is the combination

of ω(p1), ..., ω(pk), which is
∏

i∈1,...,k ω(pi). If p is an

AND(p1, ..., pk) pattern, we have ω(p) = k!
∏

i∈1,...,k ω(pi)
referring to Lemma 5.

For instance, we consider the pattern SEQ(AND(A,B),

C, AND(D,E)) illustrated in Figure 4(b). Recall that

AND patterns, e.g., AND(A,B), can be split into

SEQ(A,B) and SEQ(B,A). Therefore, the pattern

SEQ(AND(A,B), C, AND(D,E)) corresponds to four

possible orders SEQ(A,B,C,D,E), SEQ(B,A,C,D,E),
SEQ(A,B,C,E,D) and SEQ(B,A,C,E,D). That

is, we have ω(SEQ(AND(A,B),C,AND(D,E))) =
ω(AND(A,B))× ω(C)× ω(AND(D,E)) = 2!× 1× 2! = 4.

Proposition 8. Given any pattern p over L1, we always have

f2(M(p)) ≤ ω(p)fe, for any mapping M : V (p) → U2.

Proof. According to Lemma 7, a general pattern p can be

split into at most ω(p) simple SEQ patterns. As mentioned in

Lemma 4, the frequency of a simple SEQ pattern is bounded

by the highest edge frequency fe. Therefore, the frequency of

p is bounded by ω(p)fe.

Again, according to Lemma 2, if ω(p)fe as the upper bound

fU
2 of f2(M(p)) has ω(p)fe ≤ f1(p), we have an upper bound

∆(p, U2) = 1−
f1(p)− ω(p)fe
f1(p) + ω(p)fe

.

Example 10. Suppose that we need to compute

∆(p1, {1, 3, 6, 7}) in Figure 1. By evaluating p1 in L1, we have

f(p1) = 1.0. The highest edge frequency fe in the subgraph

of G2 w.r.t. {1, 3, 6, 7} is 0.3, and ω(p1) = 2 owing to Lemma

7. Thus we have ∆(p1, {1, 3, 6, 7}) = 1− 1.0−2×0.3
1.0+2×0.3 = 0.75.

C. Put the Upper Bounds Together

Thus far, we have presented the rationale of computing

the upper bound ∆(p, U2) for various patterns p by either

using vertex frequencies or edge frequencies (as summarized

in Table II). Obviously, the smaller one will be returned as a

tighter upper bound.

Algorithm 2 illustrates an overview for computing the upper

bound ∆(p, U2). First, Line 1 to Line 2 examines if the upper

bound is 0 as stated in the beginning of Section IV. If not,

the algorithm tries to estimate the upper bound via vertex

frequency as stated in Section IV-A, or via edge frequency

as stated in Section IV-B, from Line 3 to Line 10. When none

of these estimation methods is applicable, we just return 1.0,

i.e., the simple upper bound in Line 12.

Algorithm 2 UPPERBOUND(p, U2)

Input: p is a pattern in L1 and U2 is the set of events in L2.

Output: The upper bound ∆(p, U2) of δ(p) w.r.t. possible

mappings M : V (p) → U2.

1: if |V (p)| > |U2| then

2: return 0
3: fn := the highest frequency of events (vertices) in U2

4: fe := the highest frequency of edges in the subgraph of

G2 with vertices of U2

5: if fn ≥ ω(p)fe then

6: fmin := ω(p)fe
7: else

8: fmin := fn
9: if fmin ≤ f(p) then

10: return 1− f(p)−fmin

f(p)+fmin

11: else

12: return 1.0

V. PAY-AS-YOU-GO MATCHING

In real event data management, interesting event patterns are

often gradually identified by managers or business analysis in a

pay-as-you-go style. When new pattern comes, the previously

found optimal matching of events may change. Instead of re-

computing the optimal matching from scratch, event matching

approaches are expected to support incremental computation,

as other pay-as-you-go data integration systems [20].

Suppose that a new pattern p is added to L1. We first discuss

special cases that the previously found matching is still the

optimal after p comes. Then, two strategies are presented to

improve the efficiency of recomputing the optimal matching.

A. The Previous Event Matching is Still The Optimal

In some case, introducing a new pattern p may not affect

the optimal matching. According to Definition 5, a new pattern

can contribute at most 1.0 to the pattern normal distance.

Proposition 9. Let Mold be the previous optimal event map-

ping. Given a new pattern p′, if δ(p′) = 1.0 w.r.t. Mold, the

previous optimal mapping is still the optimal mapping under

the new pattern set P ∪ {p′}.

Proof. Let D′N (Mold) be the normal distance of Mold over the

new pattern set P ∪ {p′}, having D′N (Mold) = DN (Mold) +
δ(p′) = DN (Mold) + 1.0. For any other mapping M , accord-

ing to the previous optimal mapping, we have DN (M) ≤
DN (Mold). Moreover, we have δ(p′) ≤ 1.0 for any mapping

M . It concludes that D′N (Mold) is still the largest among all

possible mappings.

Otherwise, for the case of δ(p′) < 1.0 w.r.t. Mold, we update

the normal distance of the previous optimal matching Mold
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by adding δ(p′), i.e., D′N (Mold) = DN (Mold) + δ(p′). It is

compared with the highest upper bound (g+h) among all the

intermediate results remaining in queue Q in Algorithm 1, i.e.,

the upper bound of the second largest normal distance.

Proposition 10. If DN (Mold) + δ(p′) ≥ g + h+ 1.0, Mold is

still the optimal mapping after introducing p.

Proof. As mentioned before, the new pattern p′ can contribute

at most 1.0 to the pattern normal distance. If DN (Mold) +
δ(p′) ≥ g + h + 1.0, there could not be any matching result

derived from intermediate results in queue Q with normal

distance higher than DN (Mold) + δ(p′).
Indeed, since DN (Mold) is the previous optimal mapping,

we have DN (Mold) ≥ g + h. Therefore, Proposition 9

can be derived by Proposition 10 as a special case, where

D′N (Mold) = DN (Mold) + 1.0.

B. Incremental Computation

When Proposition 10 is not applicable, we cannot guarantee

that the previous optimal event matching is still the optimal.

Nevertheless, the previous optimal mapping Mold and the

queue Q containing all partial mapping results provide impor-

tant information that can be utilized to reduce the recalculation

of the new optimal mapping.

In the following, we propose two incremental computing

strategies for different scenarios. The former approach utilizes

the queue Q in Algorithm 1 and the latter approach utilizes

only the previous optimal mapping Mold.

Continuing A* algorithm from Q: When a new pattern p
comes, we do not have to recompute the whole A* search tree.

As illustrated in Figure 2, any possible mapping (including the

new optimal mapping) can be obtained by expanding the tree

nodes in Q (i.e., {tn1, tn8, tn9, tn16}). Recomputing normal

distances for processed nodes (that have been expanded, e.g.,

tn0, tn4 and tn13) is not necessary. We can update g and h for

the nodes in Q, and then continue the search in A* algorithm.

It is notable that we do not have to recompute both g and h

for each node (M,U1, U2). If all the events of the new pattern

p′ are already included in M , we only need to update the g

value. Otherwise, we just recompute the h value for p′.
This strategy favors certain scenarios. It is not surprising

that if the new optimal mapping Mnew has many common

corresponding event pairs as Mold, this approach may save

time. On the contrary, if Mnew deviates far from Mold, it is

unworthy to recompute g and h and expand the nodes in Q.

Hence, we develop another matching strategy for the latter

scenario.

Restart A* algorithm with pruning by the previous optimal

matching: In this method, we conduct the A* algorithm

again from the root node. In particular, we utilize the updated

normal distance D′N (Mold) = DN (Mold) + δ(p′) of the

previous optimal matching for pruning the nodes in A* search

tree. When a new node is expanded, we compare g+h with

D′N (Mold). If g + h ≤ D′N (Mold), this node can be safely

pruned (with no further expanding) since it can never yield

results better than the previous optimal matching.

Unfortunately, we do not know ahead on whether Mnew is

similar with or deviates far from Mold before conducting the

A* algorithm. We evaluate both strategies on real datasets in

experiments.

VI. ON TOP-K MATCHING RESULTS

While precisely matching heterogeneous events is not al-

ways possible by an uninterpreted approach, instead of re-

turning only one optimal matching result, we produce a list

of event mappings with the top-k maximum normal distances.

Such top-k matching is naturally supported in the A* search

algorithm, by altering Line 9 in Algorithm 1 to return a list

of k matching results rather than only one matching result. A

result is added to the list when either U1 = ∅ or U2 = ∅.

Top-k meets pay-as-you-go: Our pay-as-you-go matching

approaches can be easily adapted to support top-k matching

as well. Let us first reconsider Proposition 10. Given a

new pattern p′, we can renew the normal distances for the

previous top-k optimal matchings w.r.t. p′, and compare each

updated normal distance with the highest g+h among all the

intermediate results remaining in Q.

Suppose that the updated normal distances of the previous

top-k matching are D′N (M1
old), D

′N (M2
old), ..., D

′N (Mk
old) in

the descending order. According to Proposition 10, if we have

D′N (M i
old) ≥ g+h+1.0, for some i ∈ 1, . . . , k, the mappings

M1
old,M

2
old, ...,M

i
old are still the top-i optimal matching after

introducing the new pattern p. Consequently, we only need to

find the (i + 1)th, (i + 2)th, ..., kth optimal matching instead

of recalculating all the top-k matching.

Otherwise, for the general case, we review two pay-as-

you-go matching strategies proposed in Section V-B. The

former approach continuing from Q is directly supported

as top-k A* search. We adapt the later strategy to top-k

matching by replacing the pruning bound D′N (Mold) with

minj∈1,...,k D
′N (M j

old), i.e., the minimum updated top-k score

that we know so far from the previous optimal top-k matching.

VII. EXPERIMENT

In this section, we report the experimental evaluations

by comparing our proposed method with the state-of-the-art

schema matching approaches [13], [17]. The programs are

implemented in Java and all the experiments were performed

on a computer with Intel(R) Core(TM) i7-2600 3.40GHz CPU

and 8 GB memory.

Data set: We employ a real data set from a bus manufacturer.

There are 38 event logs extracted from the ERP systems of two

departments located at distinct industrial parks, respectively.

The numbers of distinct events (analogous to schema size

in schema matching) in these logs ranges from 2 to 11, and

the number of traces (instance size of the number of tuples)

ranges from 5 to 3000. For each different event set size, two

corresponding event logs of distinct departments are used. The

patterns are manually assigned by the guidelines discussed in

Section II.

Moreover, in order to evaluate the scalability of our ap-

proach and the performance on another system, we generate
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Fig. 6: Efficiency of matching real data

a synthetic data set by employing process specifications (in

corresponding pairs) from a boiler manufacturer. Event logs

are generated based on these process specifications with trace

numbers up to 100000, by using the log generator of BeehiveZ

[12]. Each trace is generated as a topological sort on the

process specification graph. The generator randomly chooses

a branch when multiple alternatives exist.

Criteria: Besides time performance, we also evaluate the

effectiveness of our event matching approach, by using F-

measure of precision and recall, which is widely used in

text retrieval community. Let truth be the ground truth

of event mapping discovered manually, and found be the

event corresponding relation found by our method, we have

precision = |found∩truth|
|found| , recall = |found∩truth|

|truth| and F-

Measure= 2 · precision·recall
precision+recall

.

Exp. on effectiveness: We compare the accuracy of the

proposed approach (Pattern) with existing approaches [13]

(Vertex, Vertex+Edge) and [17] (Iterative). In particular, [13]

employs the normal distance by considering Vertex or Ver-

tex+Edge similarities. Instead of enumerating possible map-

pings and ranking the corresponding normal distances, [17]

computes the vertex similarity in page-rank like iterative way.

Figure 5 reports the F-measure of all approaches by varying

event set sizes and trace numbers. As shown in the figure, our

pattern based approach outperforms others with the highest

accuracies. Note that the accuracy drops from sizes 2 to 4

of event sets in Figure 5 (a). The rationale is that not many

patterns can be employed in such a small number of events.

Moreover, one error will significantly debase the F-measure
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Fig. 9: Scalability on synthetic data

when the event set size is small. The accuracy increases along

with the increase of trace number, since more distinct events or

patterns become more discriminative in a larger trace number.

Exp. on efficiency: We compare the time performance of

all approaches in Figure 6. To evaluate the pruning power

of upper bounds of h, we test the proposed approaches with

simple bound (Pattern-Simple) in Section III-C or tight bound

(Pattern-Tight) in Section IV. Figures 6 (a) and (b) report time

costs of all approaches by varying event set sizes and trace

numbers. The time costs of approaches increases fast when

the event set size is large. It is not surprising owing to the

large number of possible mappings, i.e., factorial of the event

set size, as mentioned at the beginning of Section III. The time

cost also rises along with the growth of trace number since it

needs more time to compute the frequencies in traces.

To evaluate the pruning power of tight upper bounds, we

observe the number of processed tree nodes in Figures 6

(c) and (d). As shown in Figure 6 (c), the approach using

tight bounding function expands less tree nodes during the

A* search, especially in large event set sizes. Consequently,

as discussed in Figure 6 (a), the approach with tight bound

shows at most 2 orders of magnitudes improvement in time

costs. Figure 6 (d) shows the growth of trace number does not

affect the pruning power much.

Exp. on pay-as-you-go matching: In this experiment, we

gradually add a number of patterns from 0 to 6, and observe

both the accuracy and time performance in Figure 7. As

illustrated in Figure 7 (a), compared with no pattern, there

is a significant improvement of accuracy after considering 1-2
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Fig. 11: Evaluation of top-k matching

patterns. Since the accuracy has already been high (larger than

0.8), the improvement of effectiveness by further introducing

patterns is not as significant as the previous ones.

Figure 7 (b) reports the time cost of three approaches,

where Scratch stands for recomputing the optimal matching

from scratch when new patterns come, Continue (form Q)

and Restart (with pruning) denote two pay-as-you-go strategies

proposed in Section V. Compared with the Scratch method,

both the pay-as-you-go approaches show less time to obtain

the new optimal matching. In particular, the Restart strategy

performs better than the Continue approach, since the new

optimal matching results often vary from the previous one (as

discussed in Section V).

Figure 8 studies how different complex patterns in various

density will affect the accuracy and the time cost of matching.

Let nv , ne be the numbers of vertices and edges of a pattern

p, respectively. The density of p is ne/nv(nv − 1), i.e., the

number of edges in pattern divides the number of edges in

complete graph with the same vertices in p. Intuitively, the

higher the density is, the more complex a pattern would

probably be. According to Figure 8 (a), patterns with higher

density perform generally better in accuracy. As discussed at

the end of Section II, a more complex pattern is probably more

discriminative than a simple pattern (e.g. a path). The results

verify our discussion on choosing discriminative patterns. The

complex patterns also need more time to match with traces in

event log, according to the result of time performance reported

in Figure 8 (b).

Exp. on synthetic data set: Figures 9 and 10 reports

the experimental results on the larger synthetic data set as

introduced at the beginning of this section. In general, similar

results as in the real data set are observed. First, in Figure

9, the proposed method still outperforms other methods in

accuracy on this data set. The approach with tight bound

again has a considerable pruning power compared with the

approach with simple bound especially when the trace number

is extremely large. The accuracy increases along with the

growth of pattern amount in the pay-as-you-go experiment

reported in Figure 10 (a) Finally, the Restart with pruning

strategy has the best time performance in Figure 10 (b), which

is similar with the result reported in Figure 7.

Exp. on top-k extension: Finally, we report the experimental

results on top-k matching. Figures 11 (a) and (c) present

the highest F-measure of k matching results. As illustrated,

the top-5 and top-10 matching can improve the accuracy

compared with top-1 matching, especially on small event set

sizes. However, when the event number is large, the top-1

result already shows good performance and top-5 or 10 result

can hardly improve the accuracy further. It is also observed

that top-5 and top-10 matching need more time to obtain the

top-k best matchings in Figures 11 (b) and (d). To sum up,

it is suggested to consider top-k matching on small event

set sizes, where the accuracy can be significantly improved

without paying much more overhead.

VIII. RELATED WORK

The quality of event data has recently been highlighted.

Rather than addressing inconsistencies existing in event logs

[22], in this study, we focus on matching the heterogeneous

events collected from different sources.

Structure based matching: Owing to opaque event names,

the event matching problem relies on the structure based

uninterpreted matching methods.

Madhavan et al. [15] proposed an approach for matching

XML schema tree based on label similarities among XML

nodes and attributes, which cannot be applied in uninterpreted

matching with opaque event names. Jeh et al. [11] proposed

an approach named Simrank which calculates the similarity

of graph vertices. However, it can only be applied on vertices

within one graph.

Nejati et al. [17] proposed a method by calculating the

vertex similarity between two graphs through iterative com-

putations. According to the experimental results in Section

VII, the iterative method [17] shows lower matching accuracy

than our proposed pattern based matching. Kang et al. [13]

proposed an uninterpreted approach for matching database

schema (attributes) by using dependency graphs with fre-

quency information on vertices and edges. As analyzed as

well as experimental evaluated, these information are not

discriminative enough in matching event data. Xin Dong et

al. [7] proposed a graph-based approach which exploits the

similarities among attributes of tuples to identify those data

instances that represent the same real-world entity. However,

such graph is hard to apply on event data since the attributes

among events(names, operators) have very low similarities due

to the heterogeneity.
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Capturing structure information among events: Graph is

often employed to represent the structural information among

events. While vertices usually denote events, the edges in

the graph are associated with various semantics exploited

from event logs in different perspectives. Agrawal et al. [1],

Cook et al. [5], and Ferreira et al. [8] use a graphical form

of Markov transition matrix whose edges are weighted by

the conditional probability of one event directly followed by

another. However, the conditional probability cannot tell the

significance of the edge. Weijters et al. [23] proposed another

edge-weighted graph, namely D/F-graph, which uses several

heuristic rules to calculate the “causality” between two events,

which is not discriminative enough (many edges have the same

causality), and also has a high computational complexity. In

this paper, we employ the dependency graph proposed in [13]

by weighting vertices and edges with normalized frequencies,

since it distinguishes the significance of distinct edges, and is

easy to interpret.

Discovering event pattern: The discovery of complex event

pattern has been studied in complex event processing (CEP)

[14]. Agrawal et al. [2] and Mannila et al. [16] study the

problem of discovering frequent event patterns, i.e., the fre-

quency of a subsequence is higher than a support degree. The

discovery algorithm is starting with simple subpatterns and

incrementally build larger pattern candidates. Bettini et al. [3]

improve the efficiency of the discovery algorithm, and has

ability to discover more complex patterns. As mentioned, the

discovery or design of patterns is not the focus of this study.

Instead, we directly utilized the given/discovered patterns.

Nevertheless, heuristics are discussed in Section II on choosing

discriminative patterns for matching.

IX. CONCLUSIONS

In this paper, we study the problem of matching hetero-

geneous events. Owing to opaque event names, we consider

the structure based uninterpreted matching of events. Besides

individual events and dependency relationship between events,

complex event patterns are introduced as discriminative feature

in matching. To support efficient pruning, we propose an A*

search like framework for computing the optimal matching.

Two indices are developed for accelerating the computation

of normal distance. Furthermore, we devise a tight bounding

function which can prune more non-optimal mappings as

early as possible. Since the event patterns are often gradually

explored, we adapt our algorithm to support matching in a pay-

as-you-go style, i.e., to incrementally and efficiently update the

best matching after the arrival of a new pattern. Finally, we

extend the approaches to answer top-k best matching. Experi-

mental results demonstrate that our proposed approach shows

significantly higher accuracy than the state-of-the-art structure

based matching approaches. Moreover, the advanced bounding

function and the pay-as-you-go matching significantly reduce

the time costs.

As future work, it is interesting to consider the more

complicated 1 : n matching for the events with different

granularity in distinct processes. Moreover, we may exploit

other attributes of events besides the sequential dependencies

for matching.
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