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Abstract Dataspaces are recently proposed to manage heterogeneous data, with fea-
tures like partially unstructured, high dimension and extremely sparse. The inverted
index has been previously extended to retrieve dataspaces. In order to achieve more
efficient access to dataspaces, in this paper, we first introduce our survey of data
features in the real dataspaces. Based on the features observed in our study, several
partitioning based index approaches are proposed to accelerate the query processing
in dataspaces. Specifically, the vertical partitioning index utilizes the partitions on
tokens to merge and compress data. We can both reduce the number of I/O reads
and avoid aggregation of data inside a compressed list. The horizontal partitioning
index supports pruning partitions of tuples in the top-k query. Thus, we can reduce
the computation overhead of irrelevant candidate tuples to the query. Finally, we also
propose a hybrid index with both vertical and horizontal partitioning. The extensive
experiment results in real data sets demonstrate that our approaches outperform the
previous techniques and scale well with the large data size.

Keywords partitioning index · dataspaces

1 Introduction

Data records extracted from Web are often heterogeneous and loosely structured
[23]. The concept of dataspaces is proposed in [16, 17], which provides a co-existing
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Figure 1 Example of 2 tuples from Wikipedia.

system of heterogeneous data. Instead of traditionally integrating the heterogeneous
data into an uniform interface in advance, dataspaces offer a best-effort integration
in a pay-as-you-go style [21, 27, 30]. In particular, the semantic schema of dataspaces
may not be fully explored or identified. Therefore, dataspace systems rely on schema-
less services to access the data before identifying semantic relationships [14]. Exam-
ples of these interesting dataspaces are now prevalent, especially on the Web [18].

In Wikipedia,1 each article usually has a tuple with some attribute value pairs
to describe the basic structured information of the entry. For instance, as shown
in Figure 1, a tuple describing the Nikon Corporation may contain attributes like
{founded: Tokyo Japan (1917); industry: imaging; products: cameras . . . }. The
attributes of tuples in different entries are various (i.e., heterogeneous), while each
tuple may only contain a limited number of attributes (i.e., sparse). Thus, all these
tuples form a huge dataspace in Wikipedia.

Given another example, Google Base2 is a very large, self-describing, semi-
structured, heterogeneous database. As shown in Figure 2, each tuple consists of
several attribute value pairs and can be regarded as a tuple in the dataspaces.
According to our observations (see Section 2), there are total 5,858 attributes in
307,667 tuples (random sample items), while most of these tuples only have less than
30 attributes individually. Therefore, the dataspace is extremely sparse.

The traditional tables in a relational database mainly focus on specific domains,
with a limited number of attributes or columns, while dataspaces are in universal
agents like the Web, with loose or even no limitations on the attributes. Therefore,

1http://www.wikipedia.org/
2http://base.google.com/

http://www.wikipedia.org/
http://base.google.com/
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Figure 2 Example of 3 tuples in Google Base.

comparing with the traditional tables, we intuitively conjecture the characteristics of
dataspaces.

– Heterogeneous. Rather than a specific domain, the items come from universal
areas. The contents, e.g., attributes and values in the tuples, are various.

– Sparse. Although the entire dataspace is in a high dimensions space of attributes,
each single tuple may only have a very small set of attributes.

– Large scale. The data might be contributed from the Web around the world. Up
till 2008, there have been 2,330,427 articles in English Wikipedia.

The queries over dataspaces can be abstracted to two typical operators, i.e., and /
or queries. The and query returns the candidate answers that satisfy all the query
predicates. For example, a query may specify predicates like industry = imaging
and products = cameras. The returned tuples should contain these two values in
the corresponding attributes, respectively. Moreover, the query over dataspaces may
not only searches the specified attributes, e.g., the Website attribute in a query
Website=www.wikipedia.org, but also the heterogeneous attributes correlated to
the specified attributes,3 such as URL. That is, the query returns tuples with either
Website=www.wikipedia.org or URL=www.wikipedia.org. This or query returns
the candidate answers that may only satisfy some predicates. Finally, the returned
candidate tuples are then ranked according to their (similarity) scores to the query.
We have previously studied the optimization of dataspace queries, e.g., by using
materialization [32] or semantic data dependencies [31]. As a complementary aspect
of query optimization, in this paper, we focus on the indexing of dataspaces.

According to our survey in real data in Section 2, the attribute frequency in the
dataspaces follows the Zipf law [37] like distribution. This interesting observation
motivates us to explore the successful inverted index [7, 33, 35, 38, 39] in information
retrieval to manipulate the dataspaces. As presented in the previous indexing of
dataspaces [14], each pair of attribute label and value maps to a token, then the
inverted index can be extended to manipulate dataspaces. However, this basic

3As mentioned, the correlations of heterogeneous attributes are often identified by pay-as-you-go
approaches [21, 27, 30], which is out the scope of this study.

http//:www.wikipedia.org
http//:www.wikipedia.org
http//:www.wikipedia.org
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technique, which also serves as a baseline approach in this study, falls short in the
efficiency consideration. Given a query, all the referred tuple lists have to be merged
for ranking, which is quite expensive in terms of I/O and CPU cost. In fact, the main
bottleneck of inverted list like index is the time cost to merge the tuple lists of large
sizes [29]. Rather than the whole bunch of result tuples, a typical query may only
be interested in the top-k answers in the real application. Thus, the aggregating and
ranking for those low score tuples are wasting.

To address efficient accessing of dataspace, we develop a framework of indexing
on partitioning. Our contributions in this study are organized as follow:

First We propose a vertical partitioning index. According to our observations in the
real data, we find that some attributes always appear together in the same tuples.
In other words, tokens in these attributes share similar inverted lists of tuples. We
can merge the similar tuple lists of these tokens as compression. When a query with
these tokens comes, we can directly utilize the compressed tuple lists. Following
the convention of representing tuples by token vectors, the groups of tokens in
certain compressed lists indeed form the partitioning over the token vector space.
Thereby, we name this token relationship based approach vertical partitioning index.
We benefit from this technique in the following aspects: the storage is saved by
merging similar tuple lists; the number of I/O reads is reduced (e.g., two query tokens
refer to one same vertical partition list); the cost is avoided for merging the lists of
two query tokens in a same vertical partition list.

Second We propose a horizontal partitioning index. Recall that the previous in-
dex [14] cannot tell the most relevant answers until aggregating all the tuples in the
inverted lists that are referred by query tokens. The top-k answers are the tuples
similar to the query with the highest ranking scores, while most of the remaining
candidate tuples are irrelevant to the query with low scores. Our approach is dedi-
cated to reduce the computation of these irrelevant candidate tuples. According to
our survey in real data, the tuples in a specific domain usually share similar contents,
while the contents of tuples in different domains are various. Thus, we can partition
the tuples into groups of similar contents. Given a query, we can find an upper-bound
of ranking scores for the tuples in each partition. Then, we first process the partitions
with the highest probability of containing top-k answers. If the current top-k answers
already have higher scores than the upper-bounds of the remaining partitions, then
these partitions of tuples can be safely pruned. Since this technique partitions tuples,
we name this tuple relationship based approach horizontal partitioning index.

Third We propose a hybrid index which cooperates with both the vertical and
horizontal partitioning strategies. Specifically, we present a framework for indexing
based on both token and tuple partitions. Then, the query processing can conduct
pruning on the horizontal partitions, and utilize the compressed vertical partition
lists in each horizontal partitions.

Finally We report the experimental study on evaluating the proposed approaches.
By using two real datasets, Google Base and Wikipedia, we compare the proposed
approaches of vertical partitioning index, horizontal partitioning index, hybrid index,
as well as the previous index without partitioning [14] as the baseline approach. Our
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approaches, especially the hybrid index, outperform the previous technique and scale
well with large data sizes.

The rest of this paper is organized as follows. Section 2 introduces the basic index
on dataspaces and presents our observations of data features in the real dataspaces.
In Section 3, we present the vertical partitioning index based on the token partitions.
Section 4 introduces the horizontal partitioning approach and discusses the query
processing with efficient pruning on the tuple partitions. We present the hybrid index
in Section 5. Section 6 reports the experimental results of our approaches. Finally, we
discuss the related work in Section 7 and conclude this paper in Section 8.

2 Basic index and observations

In this section, we discuss the features of dataspaces, and introduce the basic
framework for indexing and querying on the sparse data. More importantly, we
also present advanced observations on the real data to further motivate the efficient
indexing.

2.1 Sparse features

We use the real data, Google Base, to illustrate the sparse features. In this test
case, there are total 5,858 attributes observed in 307,667 tuples (items). However,
most of these tuples only have less than 30 attributes, thus, the table is extremely
sparse. Specifically, in Figure 3, we present the statistics of attribute frequency in the
dataspaces. The Y-axis denotes the number of tuples that contains a certain attribute
x, i.e. the frequency of attribute x. The X-axis represents all the attributes, which are
ranked according to their corresponding frequency values.

As shown in Figure 3, there are only about 10 attributes that appears in more than
1%(10−2) tuples. In other words, for the rest huge amount attributes, the frequencies
of appearance in tuples are very low, for example, less than 0.1% (10−3) for those
attributes ranked start from 102 to 5,858. In other words, most of the attributes

Figure 3 Attribute frequency
distribution.
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appear in a small number of tuples. This observation demonstrates the extreme
sparse characteristic in the real dataspaces.

Moreover, according to the observation in Figure 3, the attribute frequency distri-
bution follows the Zipf law [37] like style. This interesting observation motivates us
to explore the successful inverted index [7, 22, 25, 33, 35, 38, 39] used in information
retrieval to manipulate the dataspaces.

2.2 Indexing

2.2.1 Data modeling

To extend inverted index for dataspaces [14], the attribute label and value data are
encoded by tokens. Specifically, we use a pair of (attribute label, attribute value),
denoted by (a, v), to represent the content of a tuple. Thus, a tuple in dataspaces can
be represented by a vector

{(a1, v1), (a2, v2), . . . , (a|t|, v|t|)}. (1)

For example, {area: clear water bay} can be represented by {(area:clear),
(area:water), (area:bay)}, if the word token is considered. Let token u be a unique
identifier of the pair (a, v), e.g., can be simply the string area:bay. Then, the tuple is
actually a vector of tokens

{u1, u2, . . . , u|D|}. (2)

where the domain D denotes all the unique identifiers of distinct (a, v) pairs in the
whole dataset.

Definition 1 (tuple vector) We use the vector space model [28] to represent the
attribute label and value appearing in a tuple t.

t = (
w1, w2, . . . , w|D|

)
, (3)

where wi denotes the weight of token ui in the dataset.

Here, the weight wi of token ui, i.e., pair (ai, vi), can be the number of occurrences
in the tuple t, i.e., term frequency. Advanced weight schemes, such as idf [28] in
information retrieval, can also be applied.

2.2.2 Inverted index

The inverted index, also known as inverted f iles or inverted lists, consists of a
vocabulary with domain D and a set of inverted lists. Each token e corresponds to
an inverted list of tuple ids, where each id reports the occurrence of token e in that
tuple.

Since the tuples in dataspaces are transformed into vectors of tokens, the inverted
index is applicable [14]. As shown in Figure 4, we use an example to illustrate the
index framework. The dataset consists of 11 tuples with the vocabulary domain size
|D| = 12. In the inverted lists, for each token (an attribute label and value pair), we
have a pointer referring to a specific list of tuple IDs, where the token appears. For
instance, Figure 4b shows an example of the inverted lists of token d, which indicates
that the token d appears in the tuples 2, 3, 5, 8, 11. In the real implementation, each
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(a) (b) (c)

Figure 4 Indexing dataspaces.

tuple id in the list is associated with a value, which denotes the weight of the token d
in that tuple.

2.3 Query processing

In this paper, we consider the queries that are also a set of attribute label and value
predicates, e.g., industry = imaging, products = cameras. Thus, the query inputs can
be represented in the same way as we model the tuples in dataspaces.

We mainly consider two logical connective conditions, i.e., the and condition
query and the or condition query. Given a query Q, for example Q={d, f, i, j}, we want
to find the tuples containing all the tokens (and condition) or tuples containing the
most tokens (or condition). As shown in Figure 4c, we first load all the inverted lists
corresponding to the query tokens. For the or aggregation, tuple 2 has the highest
frequency of 4 in the query Q, and is ranked first in the results (assume each token
with weight 1). For the and query, there is only one tuple 2 that contains all the query
tokens and will be ranked in the first place in the returned result.

2.3.1 Ranking function

During the aggregation of all the tuple lists referred by the query, by the and or or
condition, the candidate tuples are ranked according to their ranking scores to the
query. In this work, we evaluate the ranking score based on the content of matching
tokens, i.e., (attribute label, attribute value) pairs, between the query and tuple. We
use the ranking function as follows.

Definition 2 (ranking function) Consider any tuple t = {w1, w2, . . . , w|D|} and the
query Q = {q1, q2, . . . , q|D|} with domain D. The score of the ranking function is
defined by the intersection of these two vectors.

score(t, Q) =
∑

1≤i≤|D|
min(t.wi, Q.qi). (4)
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where wi and qi denote the weight of token ui in the tuple t and the query Q
respectively.

2.3.2 Algorithm without partitioning

The first algorithm evaluates the query directly on the basic index without partition-
ing [14]. As shown in Algorithm 1, given a query Q, we first read all the inverted
tuple lists corresponding to Q by the function tuple-lists(Q). Let T be all the tuple
lists referred by the query as candidates. For each tuple list Ti.list, we merge and
aggregate all the tuples in the list with their corresponding weights, and rank the
scores in the current top-k answers. Note that in this algorithm, we cannot find out
which tuple will be ranked high in the final result until all the candidate tuples are
aggregated and ranked.

Algorithm 1 Top-k query without partitioning

The only difference between the and query and the or query is the different
version of aggregate() function. The or query aggregates any tuple that appears
in any list in T, while the and query only aggregates the tuple appearing in all the
tuple lists in T. Once the candidate tuples are generated, the same ranking function
is applied to these candidates in both and and or queries.

2.3.3 Problems

In this framework, with the increase in data sizes, the lengths of the inverted lists
will be large, which will increase the high cost in merging. In addition, this basic
framework does not take the user’s interests into consideration. For example, very
often, users may only be interested in the top-k ranked answers to their queries.
However, the basic framework cannot tell the most relevant answers directly.

Therefore, the straight forward question is whether we can predicate some impor-
tant candidates, or whether we can prune some irrelevant tuples to avoid aggregating
the entire inverted lists. It is difficult to make such a quick judgment by the first
glance of the traditional full text data, where the data are totally unstructured. Thus,
we study the advanced features of distributions in the real dataspaces and utilize
them to construct efficient index.

2.4 Observations

We study the features and patterns existing in the real dataspaces, Google Base. First,
we observe the attribute distribution on different categories of tuples. As shown in
Figure 5, the X-axis denotes all the attributes. A point (x, y) in the figure denotes
the attribute x appears in the tuple y. Then, each tuple is represented by a vector of
attributes (feature points) in the figure. The tuples between two horizontal dash lines
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Figure 5 Item attribute
distribution.
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have the same category. This observation illustrate two important hints in studying
the dataspaces: first, the tuples within the same category shares similar attributes;
second, the attributes in dif ferent categories are often dif ferent from each others.

The interesting block structures arouse our curiosity on the relationship between
the attributes. Thus, we partition all the attributes into attribute pairs. In Figure 6,
the X-axis denotes all the possible pairs of attributes. For each attribute pair (A ·
B), we study the conditional probability of attribute A on B, that is, Pr(A | B) =
Pr(A·B)

Pr(B)
. The semantic meaning is the probability of A’s appearance if B has appeared

in a tuple, which can be regarded as the relationship between attribute A and B.
The attribute pairs are sorted according to their conditional probability values. In
Figure 6, there are about 20% attribute pairs with the probability of 1. In other words,
all these attributes always appear together in the same tuples. This property could
be utilized in the compressing of dataspace index. Moreover, based on those pairs
with high probability of appearing together, we might introduce heuristic strategies
in accelerating the dataspace retrieval.

Figure 6 Attribute pair
distribution.
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3 Vertical partitioning index

According to the above observation, the tuples in the same domains might share
similar contents of describing tokens (attributes and values). In the view of tokens,
we can utilize the token relationships of appearing together. Specifically, we consider
two tokens u1 and u2. Suppose that we observe these two tokens appearing together
frequently in the tuples. Now, a query with {u1, u2} is posed. Recall that each tokens
u corresponds to an inverted list in the disk. During the query processing, we have
to read and merge these two inverted lists, to get the ranked tuple answers. Based
on the observation of u1 and u2, we can first compress the index by merging parts
of the results in order to accelerate the query processing. Following the vector space
based description of tuples as shown in Figure 4a, the tokens {u1, u2} form a vertical
partition of tokens in the token vector space. We name these token relationship
based approaches vertical partitioning.

3.1 Indexing

3.1.1 Compression

Recall that the heavy cost arises from two aspects during the query processing:
first, the I/O cost of reading inverted lists from disks; second, the aggregation of
these inverted lists for ranking results. However, there are many tokens that always
appearing together, that is, P(A | B) = 1. Therefore, rather than separately storing
their corresponding inverted lists with duplicates, we can compress the index.

For example, in Figure 7, suppose that the tokens a, e, h, l always appear together
in the same tuples. Thus, the inverted lists of these tokens are exactly the same, i.e.,
duplicates. In the compressed index, all these four tokens point to the same inverted
list. Note that each inverted list is stored in the continuous blocks in the disk. Without
compression, we need three random disk accesses separately for the query {e, h, l}.
In the compressed index, only one random disk access is needed for the same query.
Moreover, besides reducing the I/O cost, we also avoid the aggregation of these four
inverted tuple lists in the query.

Moreover, instead of exactly the same appearance, two tokens may also share
similar inverted lists. We can also compress the index similarly.

For instance, in Figure 7, the inverted lists of token d, f are combined together as
a big single list. We have several sections in each vertical partition list, such as the
tuple list with both d and f, the tuple list with only d, and the tuple list with only f.
Again, when a query covers {d, f}, we can both reduce the I/O cost of random disk
access and the aggregation cost of inverted lists. Note that the compression case is

Figure 7 Vertical partition
on tokens.
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a special case of materialization, where there is only one section of tuple list whose
tuples contain all the tokens in the vertical partition list.

We call these compressed lists, which share the same tokens or almost the same
tokens, the vertical partition lists.

3.1.2 Crack vertical partitioning

Now the problem is to select the tokens to merge their corresponding tuple lists.
Intuitively, the tokens with similar (or same) tuple lists are preferred to be merged to
save the space and reduce the aggregation cost in potential queries. In other words,
we want to merge those tokens that always appear together in the same tuples.
This interesting intuition leads us to the famous frequent itemset mining algorithms
[4, 20]. The tuples can be treated as transactions, while each token is an item. Then,
we can select the frequent k-itemsets (token sets) with the highest supports as the
vertical partitions. It is notable that the indexing requires the partitions to be disjoint.
Thereby, we can consider the frequent k-itemsets in the descending order of their
supports. In each iteration, we select the currently highest support token set as a valid
partition, if it does not overlap with the previously selected partitions; otherwise,
discard it. The existing efficient algorithms can be utilized, such as Apriori [4] or FP-
growth [20], which are not the focuses of this paper. Note that when query workload
is available, the exploration of token relationships can be conducted on the query log
as well.

3.2 Query processing

Next, we study the matching of tuples to a given query Q in vertical partition lists. In
the real implementation, each vertical partition list consists of two parts, the head and
tuple lists. As the example in Figure 8, the head part stores all the tokens associated to
the vertical partition list, that is, {c, g, m}. The tuple lists part stores all the lists of tuple
IDs with various token appearances. We use three binary digits xxx to represent the
appearance of these three tokens. Specifically, the list mapping to 010 includes all
the tuples with token g but not c or m. The tuples in list 101 contain both token c

Figure 8 Matching vertical partition lists.
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and m but not f. There may have 2m − 1 tuple lists at most in a vertical partition list
with m tokens.

Given a query, for example Q={c, f, m}, we first read the vertical partition lists
that are referred by the query. Then, the query is matched with the tokens in the
head of the vertical partition list to generate an indicator. The indicator denotes all
the tokens in the vertical partition list that are referred in the query. For example, the
indicator 101 in Figure 8 denotes that token c and m in this vertical partition list are
requested in the query. Finally, we return and aggregate those tuple lists matching
with the indicator. For the and query, we return the tuple list with all the tokens
represented in the indicator, i.e. xxx&101 = 101. The or query returns the tuple lists
that contains any token in the query, i.e., xxx&101 > 0.

3.2.1 Algorithm with vertical partitioning

The query algorithm with vertical partitioning index is described in the following
Algorithm 2. We consider a query Q and an integer k. Let Vi, i ∈ [1, V.size] be all
the vertical partition lists referred by the query Q. Let Vi.T j, j ∈ [1, Vi.size] be all
the tuple lists in the vertical partition list Vi. Let Vi.T j.tokens denotes the tokens
associated to the tuple list T j in the vertical partition list Vi. Those tuple lists whose
tokens are matched with the query Q are aggregated in the results.

Algorithm 2 Top-k query with vertical partitioning

Again, different aggregate() functions are used in and and or queries, which
are the same as those in Algorithm 1 in the basic inverted index. Moreover, as
mentioned, we have different matching condition in and and or queries as well.
The match() function for and query can be Q = Vi.T j.tokens, while it is Q ∩
Vi.T j.tokens �= ∅ for the or query.

3.2.2 Cost evaluation

Consider a vertical partition list v with M tokens, which corresponds to M inverted
tuple lists in the basic approach. Thus, there may be 2M − 1 of tuple lists at maximum
in v. Let l be the average length of the tuple lists. Suppose that a query Q covers all
the tokens in v. Then, the cost to aggregate the tuples in v can be

O(v) = M · l · O(A) , (5)

where O(A) is the cost of aggregating one tuple ID in the top-k ranking.
Let B = {Bi | i ∈ [1, M]} be all the tuple lists corresponding to these M tokens

in the basic index. According to the definition of vertical partitioning, the vertical
partition list v is a compression of all the tuples in B. Let v.T j be the j-th tuple list
in v with m tokens. Then, v.T j must be the sub-list of some lists in B, that is, existing
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a B′ = {Bi | v.T j ⊆ Bi, Bi.token ∈ v.T j.tokens, i ∈ [1, M]} having |B′| = m. In other
words, each v.T j maps to m sub-lists in the basic index, where m is the number of
tokens associated to v.T j. Thereby, the cost of aggregating these tuples in the basic
index can be l · m · O(A). To sum up, the cost of aggregating all the tuples in v in the
basic index is

O(B) =
M∑

m=1

l · m · O(A) · Cm
M = M · 2M−1 · l · O(A) ,

which is higher than the cost of vertical partitioning approach in (5) if M > 1. When
there is only one token in each vertical partition, i.e., M = 1, the vertical partitioning
approach is equivalent to the basic inverted index. According to the above cost
analysis, our vertical partitioning index can improve the query efficiency, which is
also verified in the experimental evaluation in Section 6.

4 Horizontal partitioning index

Recall that, in our observations, block style structures exist in dataspaces. The
tuples from different domains or categories might have distinct contents of tokens
(attributes and values). On the other hand, rather than covering all the universal
areas, a certain user query probably concentrates in specific topics in one or several
categories. Due to the above mentioned characteristics of dataspaces, during the
query processing, there might be some tuples (probably from not so close categories)
matching part of the query tuples. The matching size will not be large, thus, these
tuples do not rank highly in the results but affect the query efficiency. In this section,
we develop an index based on the partitions of tuples, for the efficient query of top-k
answers. The proposed techniques are applicable to both the and / or queries.

4.1 Indexing

Intuitively, the categories or partitions of tuples in the dataspaces can be utilized to
prune the unqualified results. That is, among a large number of candidate tuples in
the inverted tuple lists, it is desirable to first identify those groups of tuples that are
most related to the query. Then, after testing these high probability candidates, we
can prune some remaining groups of tuples with low chances to be the answers.

4.1.1 Physical partition

We partition all the tuples into a set of groups according to the tuples similarities.
For example, as shown in Figure 9a, we group the tuple set into four partitions. Let
A, B, C, D be the four partitions of the tuple set. For each partition, we build an
inverted index individually in Figure 9b. For example, there are five inverted tuple
lists, corresponding to tokens a, b, c, e, k, for the tuples in the partition A.

Note that the partitioning of tuples is exclusive. In other words, if a tuple t
appears in the tuple lists of the partition A, then this tuple t will never appear in
the tuple lists of other partitions again. Based on the exclusive property, we can
develop the upper-bound of scores of the tuples in a partition when given a query.
Those tuples in the partitions with low upper-bounds of scores are then identified
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(a) Tuple partition (b) Physical partition (c) Logical partition

Figure 9 Horizontal partition on tuples.

as irrelevant answers to the query. After processing some partitions, we can safely
prune these partitions whose upper-bounds are lower than the scores of the current
top-k answers. Consequently, we implement the intuition of pruning tuples in the
horizontal partitioned index.

In real implementation with large size data, the vocabulary of the inverted
index is indexed with an efficient access, for example the B+-tree structure. The
corresponding inverted tuple list of each token, due to the large sizes, is disk resident.
We need one random access of disk block to read the inverted list of a token. When
building the inverted index for each partition in Figure 9b, we increase the total
number of inverted lists. There are duplicate tokens among different partitions, such
as token e in both partition A and B. If the pruning rate is low, then we have to
read almost all the tuple lists for one token. That is, the total number of random disk
accesses increases, thus the query processing cost is increased as well. In order to
reduce the disk access costs, we propose the following advanced partitioning strategy.

4.1.2 Logical partition

In order to address the above problem of duplicate tokens in different partitions, we
do not partition and store the inverted index physically for each partition. Instead,
as shown in Figure 9c, we partition the tuples inside the inverted lists. Then, given
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a query token, we do not read the inverted lists for different partitions separately.
By using the logical partition strategy in Figure 9c, the tuples are still partitioned
with the same groups. But for each token, we only need to read the random disk
address once. This is the reason we call this partition the logical implementation of
the physical partition.

Each inverted list is stored in sequential disk blocks when the list is larger than
the block size. Therefore, even when the inverted list is larger than one disk block,
the costs of sequential read in logical partitions are smaller than the random seeks
of physical partitions in the disk. The pruning still works to avoid aggregating those
tuple lists that are located in not-so-relevant partitions.

4.1.3 Hierarchy implementation

Given a query, now the problem is how to quickly determine the partitions having
the highest relevance to the query. The brute force approach is to compare the query
input with each partition, and pick the partition with the highest upper-bounds of
tuple scores in each step. However, if the number of partitions is much larger than
the query inputs, m 	 |Q|, it is inefficient to compare the partitions one by one.

Therefore, we build an index over both the partitions and tuples, namely hori-
zontal partition lists. There are two parts in each horizontal partition list, the head
and the tuple lists. Since the number partitions are less than the original number
of tuples, thus, as shown in Figure 10, we store the inverted partition lists in the
head part for efficient partition selection before conducting the query on the inverted
tuple lists. In fact, each partition P in the inverted partition lists of a token e maps
to a subsequence of the corresponding inverted tuple lists (i.e., all the tuples in
the partition P with the occurrence of token e). Furthermore, each partition in
the partition list is also associated with a weight of the corresponding token in this
partition for the computation of score bounds.

Figure 10 Horizontal partition lists.
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Then, given a query Q, we can fast identify the partitions having the most
relevance to the query. For example, consider a query Q ={d, e, f, g} in Figure 10.
Since the partitions are associated with weights of corresponding tokens, partition B
has the highest bound of similarity scores to the query (i.e., covers 4 query tokens
assuming weight 1 for each). Thus, partition B will be queried first, while the tuples
in partition A, P and D are probably pruned if the returned results in B are high in
ranking score.

So far, we have presented the framework for indexing with horizontal partitions.
Next, we discuss the mechanism and correctness of the query with pruning on
horizontal partitions. Moreover, we will also present the implementation of query
processing on the horizontal partitions.

4.2 Pruning top-k candidates

First of all, we discuss the representation of partitions. A partition P consists of a
number of tuples, while each tuple contains a set of tokens. Thus, the partition can
also be represented by a set of tokens that appear in the tuples of this partition. We
denote a partition by a partition vector.

Definition 3 (partition vector) Let t be any tuple in the partition P. Then, the
partition P can be represented by a partition vector,

P = (w1, w2, . . . , w|D|) (6)

where w j is the weight of the token u j in the partition P. The weight P.w j is
defined by

P.w j = max
t∈P

(t.w j). (7)

where t is any tuple in the partition P, and t.w j is the weight of token u j in the
tuple t.

For example, in Figure 10, we consider the weight of token l in the partition D,
i.e., D.wl. Let l.D.list be the list of tuple ids in partition D that contains token l. Then,
we have

D.wl = max
t∈l.D.list

(t.wl) ,

where t.wl is the weight of token l of any tuple t in the list of l.D.list.
Once we have represented the partition P by a vector as the query Q, a score of

partition P can also be measured by using the score function in formula 4. Given a
query Q and a partition P, the partition score is given by the intersection of these two
vectors

score(P, Q) =
∑

1≤i≤|D|
min(P.wi, Q.wi), (8)

where |D| is the domain size of all the tokens. In fact this score(P, Q) is exactly the
upper-bounds of the tuple scores in the partition P.
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Theorem 1 Let t be any tuple in a partition P, then we have a upper-bound of ranking
score(t, Q), i.e.

P.bound(Q) = score(P, Q) ≥ score(t, Q). (9)

where Q is the query.

Proof Let ui be any token in the domain D. According to the definition of partition
vector in formula 7, for any tuple t in the partition P, we have P.wi ≥ t.wi. Given
a query Q, the weight of Q.wi is fixed. Thereby, we have min (P.wi, Q.wi) ≥
min(t.wi, Q.wi). To sum up all the tokens of ui, we finally get score(P, Q) ≥
score(t, Q). ��

For the and condition query, it is required that the returned tuples should contain
all the query tokens. Therefore, if one partition vector P does not cover all the query
tokens, then the tuples inside this partition cannot contain all the query tokens either.
In other words, the partition P can be pruned without further computing the upper-
bound according to P’s partition vector. We can directly set P.bound(Q) = 0 to avoid
aggregating the tuples in this partition P.

In each query processing step, we pick up the next partition P′ with the next
highest P.bound(Q) to the query. Now, the problem is to determine whether the next
g + 1 partition and all the other remaining partitions can be safely pruned, after g
steps of querying on the first g partitions with highest upper-bounds.

Theorem 2 Let t′ be the tuple with the minimum score in the top-k answers in the
previous g steps. For the next g + 1 partition, if we have

score(t′, Q) > score(Pg+1, Q), (10)

then the partition Pg+1 can be safely pruned in the query.

Proof According to Theorem 1, for any tuple t in the partition Pg+1, we have
score(t′, Q) > score(Pg+1, Q) ≥ score(t, Q). Since t′ is the tuple in the current top-
k results with the minimum ranking score, in other words, the tuples in partition
Pg+1 will never be ranked higher than t′ and can be pruned safely without further
evaluation. ��

For the remaining partitions Pg+2, Pg+3, . . . , since each query step selects the
partition with the highest upper-bounds of scores, we have

score(t′, Q) > score(Pg+1, Q) > score(Pg+x, Q),

where x = 2, 3, . . . . Therefore, we can prune all the remaining partitions, starting
from Pg+1.

4.3 Query processing

Intuitively, the query proceeding with pruning of tuples can be conducted as fol-
lows. Let Pi.tokens be the set of tokens in the partition Pi, where each token is
associated with a weight discussed in formula 7. When a top-k query comes, we
first develop the upper-bound of similarity scores of the tuples in partition Pi to
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the query Q, i.e., Pi.bound(Q) = score(Q, Pi). Then the first evaluated partition is
P′ = arg maxi Pi.bound. By conducting the query on the tuple lists of partition P′, we
get a set of ranked tuples K as the top-k answers in P′. Suppose that the minimum
top-k ranking score in the K is K[k] = mint∈K score(t, Q). Let P′′ be the partition
with the next highest upper-bound of scores. If K[k] > P′′.bound, then the query
processing can prune the candidate tuples in P′′. Otherwise, we repeat the processing
recursively.

4.3.1 Algorithm with horizontal partitioning

Assume that the horizontal partitioning index has been built in the preprocessing.
Given a query Q and an integer k, the query algorithm is described in the following
Algorithm 3.

Algorithm 3 Top-k query with horizontal partitioning

In this algorithm, the operator partitions(H) is conducted on the horizontal
partition lists H referred by the query. A set of ranked partitions P are returned
in descending order of score upper-bounds to the query Q. Let K[k].score be the
k-th largest score in the current top-k answers. For the partition Pi, if the current
K[k].score is larger than the upper-bound of the tuple scores of partition Pi.bound,
then the partition Pi and all the remaining partitions can be pruned. Otherwise, we
aggregate and rank all the tuples in the partition Pi.

Again, the aggregate() functions are different for the and and or query types,
which have been presented in Algorithms 1 and 2. Furthermore, in computing of the
upper-bounds of partitions in partitions(), the and query directly set the bounds of
those partitions to 0, where the partition vectors do not contain all the query tokens.

4.3.2 Cost evaluation

Let O(B) be the cost of aggregating all the tuples in the basic index for a query
Q. Suppose that there are P partitions covered by the query Q. Let E(P) be the
cost estimation of evaluating the upper-bounds of P partitions. Then, the cost of
querying on the horizontal partitioning index can be estimated by O(P) = (1 − r) ·
O(B) + E(P), where r is the pruning rate. The higher pruning rate r is, the lower
aggregation cost is.

4.3.3 Crack horizontal partitioning

So far, we have presented the approach of indexing and querying the dataspaces with
horizontal partitioning. The partitions of tuples are determined by the intuition that
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the tuples in the same partition share similar contents of tokens. Thus, the tuples
can be grouped based on the tuple similarities. For example, we employ a classifier
to make decisions by going through all tuples. In this study, including the following
experimental settings, we employ the k-means clustering algorithm [19] to partition
the tuples into m clusters without a supervised classifier.

Here, the interesting problem is the selection of the number of partitions m. Recall
that the processing of partitions affects the query cost, i.e., E(P). Obviously, the
number of partitions is an essential issue of E(P), during computing upper-bounds
and ranking the partitions. In fact, the more the partitions are, the higher the cost
E(P) is. In the extreme, if each partition corresponds to exact one tuple, then the
cost E(P) of ordering the horizontal partitions is similar to the cost of querying on
the basic index O(B). On the other hand, if the number of partitions is too small,
e.g., only one partition, then the horizontal partitioning index are equivalent to the
basic one.

5 Hybrid partitioning index

Now, we have two strategies of partitioning index, vertical partitioning (on tokens)
and horizontal partitioning (on tuples), separately. Next, we present a hybrid index
with both vertical and horizontal partitions.

5.1 Indexing

As shown in Figure 11, the hybrid partition index consists of two parts as well, the
head and the tuple lists. Each hybrid partition list contains one or several tokens and
records the horizontal partitions in the head. The tuples are first divided into blocks
according to the horizontal partitions, and in each block they are further divided into

Figure 11 Hybrid partition list.
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sub-tuple lists on the vertical partitions. If one block is generated by compression,
then there is no further division in each horizontal partition. For example, the
hybrid list I in Figure 11 contains four tokens a, e, h, l that are always appearing
together in the same tuples. Thus, there is no vertical partition in each horizontal
partition list. For the compressed data, each horizontal partition is further divided
into sections, according to different token appearances. For example, in the hybrid list
II in Figure 11, the cell x denotes the list of all the tuples in the partition Dwith tokens
c, m except f. Although there are different partitions, vertically and horizontally, all
the tuples in one hybrid partition list are stored in continuous disk spaces and can be
read in one I/O operation.

5.2 Query processing

5.2.1 Algorithm with hybrid partitioning

Given a query Q and an integer k, the query algorithm is described in the following
Algorithm 4. Assume that the hybrid lists Y are loaded into the memory by
hybrid-lists(Q). Let P be all the partitions, which are sorted in descending order
of the upper-bounds of scores to the query Q. For the current partition Pi, we
evaluate the sub-list Y j.Pi corresponding to Pi in each list Y j. In fact, the sub-list
Y j.Pi is exactly a vertical partition list in the vertical partitioning index. Thus, similar
to the Algorithm 2, the tuple list Y j.Pi.Vl in Y j.Pi is aggregated to the result K,
according to the matching of the corresponding tokens and the query Q (line 10–14
in Algorithm 4).

Algorithm 4 Top-k query with hybrid partitioning

Again, the aggregate() is the same function used in Algorithm 1. The match()
function has the same processing as Algorithm 2 for vertical partitioning. The
partitions() function is adopted from Algorithm 3 for horizontal partitioning.
All these functions have versions for and and or queries respectively, which are
discussed above.

5.2.2 Cost evaluation

Let O(V) be the cost of querying on the vertical partitioning index. Let E(P)

be the cost of preparing the partitions’ information in partitions(Y). The cost of
querying on the hybrid partitioning index can be estimated by O(Y) = (1 − r) ·
O(V) + E(P) = (1−r)

2M−1 O(B) + E(P), where r is the pruning rate, M is the average
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Table 1 Cost comparison
of approaches. Approach Cost

Baseline index O(B)

Vertical index
1

2M−1
O(B)

Horizontal index (1 − r) · O(B) + E(P)

Hybrid index
(1 − r)
2M−1

O(B) + E(P)

number of tokens in each hybrid partitioning list, and O(B) is the cost of querying
on the basic inverted index.

Finally, to sum up, we compare the cost evaluation of four index approaches in this
paper as follows (Table 1). Although the improvement of the vertical partitioning
approach is large, it depends on whether the M tokens appear together frequently
in the real query workload. For the horizontal partitioning, we have a balance
of pruning rate r and the partition numbers. If the number of partitions is not
large and the pruning rate is high, the E(P) will be much smaller than the pruned
query cost, i.e., E(P)  r · O(B), and the total cost can be improved. The hybrid
partition index benefits from both. If the number of partitions is moderated large,
the hybrid approach shows lower cost than the other ones, which is also verified in
our experiments in Section 6.

6 Experimental evaluation

This section reports the experimental evaluation of querying over the various index
approaches. We compare the following approaches in this study, including the
baseline approach of indexing dataspaces [14], the index with vertical partitioning,
the index with horizontal partitioning, and the hybrid index with both vertical and
horizontal partitioning. The main evaluating criterion is the query time cost of these
approaches, i.e., query efficiency. We run the experiments in two real data sets,
Google Base and Wikipedia. We crawl 7,432,575 tuples (items) from the Google
Base web site, in size of 3.06 GB after preprocessing. The dataspace of Wikipedia
consists of 3,493,237 tuples, in size of 0.82 GB after preprocessing. 100 tuples are
randomly selected from the dataspaces as the query workload for each dataset. In
the evaluation, we conduct these queries and observe the average metrics.

6.1 Evaluating vertical partitioning index

The first experiment evaluates the performance of querying on the vertical parti-
tioning index. Table 2 presents the total number of vertical partition lists that are
retrieved by these queries, the average number of disk I/O operations, and the
average query time cost of or and and queries respectively. We observe the vertical
partitions with different frequent k sets of tokens, k = 1 to 5.

As shown in Table 2, the vertical lists of tuples referred by the or and and queries
are the same under the same query input predicates. Compared with the or query,
the and query only aggregates the tuples with all the query tokens, thus has lower
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Table 2 Query evaluation on vertical partitioning index.

Frequent k set # vertical list # disk I/O or query time and query time
cost (ms) cost (ms)

Base
1 1546 16.58 144.07 30.94
2 1139 12.41 133.29 21.56
3 1018 11.19 132.65 19.53
4 964 10.64 132.04 19.06
5 927 10.27 131.25 18.75

Wiki
1 1707 17.79 212.68 18.15
2 1237 12.97 195.33 15.79
3 1115 11.70 193.13 13.43
4 1038 10.93 168.91 12.82
5 1006 10.61 187.03 12.97

time cost. These results also verify the conjecture that the aggregation of tuples is
costly, especially in the or query with many candidate tuples.

The frequent 1 set, where each token is a partition, is equivalent to the basic
inverted list. Recall that a partitioning of frequent k set denotes that the tuple lists
of the tokens in the same set are compressed. For example, a vertical partition list of
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Figure 12 Pruning rate evaluation on horizontal partitioning index.
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frequent 3 set index may contain 3 tokens at most and their corresponding tuple lists
are merged. Therefore, with increase of k in Table 2, the total number of vertical
partition lists retrieved by the queries decreases. In other words, for each query,
we need a less number of vertical partition lists that are read from the disk as well.
Since the vertical partition lists compress the tuple list of the tokens in the frequent
sets, the query evaluation on these compressed tuple lists can reduce the tuple
aggregation time. As shown in Table 2, the query time cost reduces with the increase
of k.

With the further increase of k, however, the query time cost may not be improved.
Suppose that a query Q only covers 1 token of all the 5 tokens in a (frequent 5 set)
vertical partition list. The I/O cost of reading the information for the other 4 tokens
is wasted. Thus, the time cost of k = 5 is higher than the k = 4 case’s in the Wiki
evaluation in Table 2.

6.2 Evaluating horizontal partitioning index

Next, we study the query performance on the horizontal partitioning index. The
first metric we used is the pruning rate, i.e., the rate of partitions that are pruned
in the query processing. We also present the corresponding time cost in different
top-k queries. Figures 12 and 13 show the results of both two data sets with various
partition numbers (p1 to p10000).
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Figure 13 Time cost evaluation on horizontal partitioning index.
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The partition p1 means that all the tuples are grouped in 1 partition, which is
equivalent to the basic inverted index. According to the query strategies in the
horizontal partitioning index, there is no partition that can be pruned, that is, the
pruning rate of p1 is 0. As shown in Figure 12, with the increase of partition
numbers, the upper-bounds of scores in the partitions are more accurate, thus the
pruning rate is improved as well. The corresponding time cost, in Figure 13, decreases
when more tuples are pruned in higher pruning rate. With the further increase of
partition numbers, the overhead of processing partition information grows, such as
computing the upper-bounds of scores of the partitions for the query. Therefore,
when the partitions are extremely large like p10000, the time performance may not
be improved although the pruning rate is still high. The time cost of p10000 is a
bit higher than the query on p1000. Nevertheless, according to our empirical study,
even a small partition number such as 10 or 100 can already improve the performance
largely.

Note that, in or query, the top-1 query has a significant higher performance than
the others. The reason is that we choose the tuples from the dataset as the queries.
The top-1 answer has a high score after processing the partition which contains the
query. Thereby, the next remaining partitions whose upper-bounds of scores may be
lower than the high top-1 score can be pruned. On the other hand, for the top-9 query
for example, the top-9 score is not as high as the top-1 answer’s, thus the remaining
partitions may have a higher upper-bounds than the top-9 answer and cannot be
pruned. Moreover, in the and query, there may be less than k candidate answers in
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the whole dataset that can cover all the query tokens. Thus, with the increase of k, the
query result does not change much. Nevertheless, as shown in Figure 13, the query
on the horizontal partitioning index (such as p1000) achieves improvement of time
performance comparing with the approach without partitioning (i.e. p1).

6.3 Comparison study

Now, we compare all the four approaches, including the basic inverted index, the
vertical partitioning index, the horizontal partitioning index and the hybrid index.
Again, we first present the time cost evaluation of four approaches in different top-
k queries, in Figure 14. Then, the scalability of these approaches is also studied in
different data sizes. We present the scalability with top-1 and top-10 in Figures 15
and 16, respectively. The vertical partitioning index uses the frequent 4 set as
the token partitions. The horizontal partitioning index processes 1000 partitions of
tuples, i.e., p1000. The hybrid index combines these two partitions together, with
frequent 4 set and p1000 settings.

In the or query, comparing with the basic approach, the improvement of the
vertical partitioning index is not as significant as the horizontal one. Although many
tokens and their tuple lists are compressed in the vertical partitioning index, a certain
query may only covers parts of the compressed token sets. For those tokens not
included in the frequent set, we have to process as the basic inverted lists. In the
same manner, the hybrid approach shows a small improvement comparing with the
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Figure 16 Comparison of approaches on top-10 scalability.

pure horizontal partitioning approach. Moreover, our partitioning based approaches
show good scalability in different data sizes. Especially, in the top-1 or query,
the hybrid index achieves about one tenth of the time cost in the basic inverted
index. As discussed above, since there may be less than k answers in the top-k and
query, the result of top-1 and top-10 are quite similar in Figures 15 and 16. When
the improvements of both the vertical and horizontal partitioning approaches are
limited, the corresponding hybrid approach can barely further reduce the time cost,
e.g., in Figures 14d, 15d and 16d. Indeed, the hybrid method needs to coordinate
both the partitions with more processing cost than that of each single partitioning
index. If such processing cost is larger than the pruned cost, the overall performance
can even be a little bit worse than the single partitioning methods, such as case 9
in Figure 14d and case 3.5 in Figure 16d. Nevertheless, according to the results, the
hybrid approach can achieve significantly better results in most cases, and have only
a little bit higher cost than the single partitioning methods in the other cases.

Summary According to the experimental evaluation, we find the following. (1) The
vertical partitioning index shows better time performance than the previous
dataspaces index [14] without partitioning. (2) Our horizontal partitioning index can
significantly reduce the time cost of top-k queries, especially on the top-1 queries.
(3) The hybrid index can achieve the lowest time cost in most cases, on both the or
and and queries. (4) Our proposed approaches scale well under various large data
sizes, with millions of tuples in a dataspace.
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7 Related work

The concept of dataspaces is proposed in [16, 17], which provides a co-existing system
of heterogeneous data. Recent work [21, 27, 30] is mainly dedicated to offering best-
effort answers in a pay-as-you-go style in view of integration issues. In our study,
instead, we concern the efficiency issues on accessing dataspaces.

The problem of indexing dataspaces is first studied by Dong and Halevy [14] to
support efficient query. Based on the encoding of attribute label and value as tokens,
the inverted index is extended to dataspaces, which is also considered as the baseline
approach in our work. In fact, inverted index [7, 35] has been studied for decades
as efficient access to sparse data. Zobel and Moffat [38] provide a comprehensive
introduction of key techniques in text indexing literature. However, as mentioned,
the straight-forward extension for indexing dataspaces falls short in the efficiency
consideration, while our approaches consider the partitioning-based index motivated
by the observation on real data.

Partitioning-based index is studied as well. Lester [22] partitioning the index for
efficient on-line index. To make documents immediately accessible, the index is
divided into a controlled number of partitions. Nikos Mamoulis [25] studies the
efficient joins on set-valued attributes, by using inverted index. Different from our
large number of attributes, the join predicates are evaluated between two attributes
only. Sarawagi and Kirpal [29] also propose an efficient algorithm for indexing with
a data partitioning strategy. All these efficient techniques are dedicated to the single
attribute problem, while the dataspaces contain various attributes. Although, the
queries over multiple attributes in a relation are studied [24], the original inverted
index is directly applied. In this sense, our partition-based indexing is complementary
to the query optimization techniques. Partitioning of blocks is natural and can be
applied in Web search as well [9]. In particular, to index and query with partitions,
Web pages are segmented into several blocks according to their contents, such as
titles, articles, images, etc. It is notable that our vertical and horizontal partitioning of
tokens and tuples in dataspaces is conducted based on the data distribution in space
vectors as shown in Figure 5, and thus is different from the Web page segmentation.
The partitioning idea is also applied in accelerating XML queries [6, 26, 36]. Instead
of dividing correlated tokens as studied in our work, the partitioning (and com-
pressing) in XML data is conducted over path patterns with structural relationships.
Thereby, the previous XML techniques are not applicable in the dataspaces scenario.

Various storage strategies of sparse data are also proposed. Chu et al. [12] use
a big wide-table to store such sparse data and extract the data incrementally [11].
Rather than the predominant positional storage with a pre-allocated amount of
space for each attribute, the wide-table uses a interpreted storage to avoid allocating
spaces to those null values in the sparse data. Agrawal et al. [1] study a vertical
format storage of the tuples. Specifically, a 3-ary vertical scheme is developed with
columns including tuple identifier, attribute name, and attribute value. Beckmann
et al. [8] extend the RDBMS attributes to handle the sparse data as interpreted
fields. A prototype implementation in the existing RDBMS is evaluated to illustrate
the advanced performance in dealing with sparse data. Abadi et al. [2, 3] provide
comprehensive studies of the column-based store comparing with the row-based
store. The column store with vertical partitioning shows advanced performance in
many applications, such as the RDF data of the Semantic Web [3] and the recent
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Star Schema Benchmark of data warehousing [2]. To efficiently access these attribute
values, further partitioning store techniques are studied. Chaudhuri et al. [10] study
a similarity join operator (SSJoin [5, 10]) on text attributes, which are also organized
in a vertical style. Specifically, each value of text attributes is converted to a set
of tokens (words or q-grams [34]), which are store separately in different tuples
respectively, similar to the attribute partitioning. Our work is independent with
storage of the dataspace, instead we build the index over the data and the query
processing efficiency depends on the index structures only.

In the top-k aggregation query [15], optimization with efficient pruning strategies
are developed. In their scenario, a sorted list is maintained for each attribute. The
top-k answers are determined under a fixed monotone aggregation function of all
the attributes. Thus, it is not directly applicable to our dataspace cases with large
number of sparse attributes. Instead, we develop the partitions of data in the inverted
index, and utilize the monotone aggregation features to do efficient pruning. de Vries
et al. [13] also study the partitioning of data for efficient k-NN search in sparse
data objects but without attributes. In our study, we process the tuples with sparse
attributes whose values are sparse as well.

8 Conclusions and discussion

In this paper, we study the partition-based indexing approaches for efficiently
accessing dataspaces. First, we start from a survey of real dataspaces. Due to the
extremely sparse feature, a basic index with extensions on inverted lists is introduced,
together with the discussion of corresponding problems. Based on the observations
of token relationships in the dataspaces, we develop the vertical partitioning index.
The tokens that share similar tuples lists are merged together and compressed. Then
the query on these compressed vertical partition lists can reduce both the number
of I/O reads and the cost of aggregating the tuples inside the vertical partition
list. Moreover, according to the relationships of tuples, we propose the horizontal
partitioning index. Given a query, we can prune the tuple partitions according to
their upper-bounds of tuple scores. Finally, we present the hybrid index with both
vertical and horizontal partitioning. The extensive experiment results demonstrate
the performance of the proposed index in real dataspaces. Our approaches, especially
the hybrid index, outperform the previous technique and scale well with large
data sizes. These experimental results also verify our theoretical analysis of cost of
different approaches.

As an indexing technique, the proposed partitioning index is complementary
to the query optimization approaches with materialized views in dataspaces [32].
The indexing with compressed lists requires partitions to be disjoint, while the
materialized views allow overlapping and share some common tokens. It is not
surprising that compressing inverted lists in the index could lead to the adaption
of the corresponding materialized views and affect the query performance. Unfor-
tunately, to coordinate these indexing and materialization is highly non-trivial, as
finding a good scheme of materialized views is already hard. Therefore, we leave
it as a future work to generate a synchronized plan of partitioning-based index and
materialization.
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