The VLDB Journal (2013) 22:253-274
DOI 10.1007/s00778-012-0285-7

REGULAR PAPER

Comparable dependencies over heterogeneous data

Shaoxu Song - Lei Chen - Philip S. Yu

Received: 6 November 2011 / Revised: 23 April 2012 / Accepted: 27 June 2012 / Published online: 31 July 2012

© Springer-Verlag 2012

Abstract To study the data dependencies over heteroge-
neous data in dataspaces, we define a general dependency
form, namely comparable dependencies (CDs), which speci-
fies constraints on comparable attributes. It covers the seman-
tics of a broad class of dependencies in databases, including
functional dependencies (FDs), metric functional dependen-
cies (MFDSs), and matching dependencies (MDs). As we illus-
trated, comparable dependencies are useful in real practice
of dataspaces, such as semantic query optimization. Due to
heterogeneous data in dataspaces, the first question, known
as the validation problem, is to tell whether a dependency
(almost) holds in a data instance. Unfortunately, as we pro-
ved, the validation problem with certain error or confidence
guarantee is generally hard. In fact, the confidence valida-
tion problem is also NP-hard to approximate to within any
constant factor. Nevertheless, we develop several approaches
for efficient approximation computation, such as greedy and
randomized approaches with an approximation bound on the

S. Song

Key Laboratory for Information System Security,
Ministry of Education; TNList; School of Software,
Tsinghua University, Beijing, China

e-mail: sxsong @tsinghua.edu.cn

L. Chen (<)

Department of Computer Science and Engineering,
The Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong

e-mail: leichen@cse.ust.hk

P.S. Yu

Department of Computer Science, University of Illinois at Chicago,
Chicago, IL, USA

e-mail: psyu@cs.uic.edu

P.S. Yu
Computer Science Department, King Abdulaziz University,
Jeddah, Saudi Arabia

maximum number of violations that an object may introduce.
Finally, through an extensive experimental evaluation on real
data, we verify the superiority of our methods.

Keywords Comparable dependencies - Dataspaces

1 Introduction

The importance of dataspace systems has already been
recognized and emphasized in handling heterogeneous data
[23,29,37,47,46]. Generally, dataspaces consider three lev-
els of elements, object, attribute, value, in the form of
object : {(attribute : value)}. We illustrate a sample data-
space of several product objects with certain attribute value
pairs in Example 1.

Example 1 We consider a dataspace with 3 objects,

t1 : {(name : iPod), (color : red), (manu : Apple Inc.),
(addr : InfiniteLoop, CA), (tel : 567),
(website : itunes.com)};

ty : {(name : iPod), (color : cardinal), (prod : Apple),
(post : InfiniteLoop, Cupert), (tel : 123),
(website : apple.com)};

t3 : {(name : iPad), (color : white), (manu : Apple Inc.),
(post : InfiniteLoop), (phn : 567),
(website : apple.com)}.

where manu denotes an attribute of manufacturer, prod is
producer, and addr denotes address.

The comparable correspondences between values (e.g.,
Apple vs. Apple Inc) on comparable attributes (e.g., manu
vs. prod) denote the synonym relationships between elements
from heterogeneous sources. They are often recognized

@ Springer

254

S. Song et al.

incrementally in a pay-as-you-go style [29], for example,
gradually identified according to users’ feedback when nec-
essary. For instance, acomparison operator ‘manu ~-s prod’
states that any two respective values of manu and prod are
said to be comparable, for example, Apple Inc and Apple, if
their edit distance is < 5. Such comparable correspondence
on metric distance of values is often obtained by a metric
operator [41]. Moreover, the matching correspondence [29]
can also be identified between two elements that denote the
same entity in real world, for example, red and cardinal are
said to be matched as comparable color. It is usually con-
firmed by a matching operator, for example, via update with
dynamic semantics [17] or users’ feedback [29].

Data dependencies have already shown to be important in
various data-oriented practice [15], such as optimizing query
evaluation [36], capturing data inconsistency [5], removing
data duplicates [17], etc. It is promising to study data depen-
dencies for the heterogeneous data in dataspaces as well.
Unfortunately, little work has been drawn to address such
data dependencies. Although Wang et al. [53] extends func-
tional dependencies (FDs) with probability for data integra-
tion systems, namely probabilistic functional dependencies
(pFDs), this extension of FDs is still declared based on the
equality of values and not directly applicable in dataspaces.
As mentioned, data values in dataspaces are highly heteroge-
neous with various comparable correspondences instead of
precise equality.

In this paper, to adapt data dependencies to dataspaces, we
introduce a general comparison function to specify the com-
parable correspondences on attributes with respect to various
comparison operators.

1.1 Motivation example

Intuitively, the comparable correspondence may occur either
in the same attribute (e.g., fj[manu] vs. rz[manu]) or
between comparable attributes (e.g., t;[manu] vs. r, [prod]).
A comparison function specified on two attributes (manu,
prod) w.r.t. metric operators in Example 1 can be

0(manu, prod) : [manu ~-s manu, manu ~ s prod,
prod ~ -5 prod].

Two objects are said to be comparable on (manu, prod)
if at least one of these three comparison operators in
6(manu, prod) evaluates to true. For example, (71, t;) are
comparable on (manu, prod), since the edit distance of
(t1[manu], r[prod]) is < 5. Similarly, (71, 13) are also
comparable on (manu, prod), where (¢;[manu], r3[manu])
satisfy ‘manu ~s manu’. Note that the edit distance
thresholds in different attribute pairs in a comparable func-
tion are not necessary to be the same, and the identification
of such comparable functions is not the focus of this study.

@ Springer

Let

0(addr, post) : [addr ~-g addr, addr ~-g post,
post ~ g post]

be another comparison function. A general form of depen-
dencies is then defined on such comparison functions, namely
comparable dependencies (CDs), e.g.,

@1 : (manu, prod) — 6(addr, post).

It states that if the manu or prod values of two objects
are comparable, then their corresponding addr or post val-
ues should also be comparable. As data dependencies have
been found useful in various data-oriented applications [15],
comparable dependencies are also promising for dataspace
applications.

Indeed, the most important motivation of this study is to
improve the dataspace query efficiency [51], in particular
with the proposed comparable dependencies. Recall that, in
semantic query optimization [36], a conjunctive query can
be rewritten by using part of predicates according to the data
dependencies. Such optimization can also be introduced to
queries in dataspaces on comparable attributes. For example,
we consider a query object with (post : InfiniteLoop, CA)
and (manu : Apple). The query evaluation [13] searches not
only in the manu, post attributes specified in the query, but
also in the comparable attributes prod, addr according to the
comparison functions 6(manu, prod) and 6(addr, post),
respectively. Recall the semantics of the above dependency
¢1. If (manu, prod) of the query object and a data object
are found comparable, then the data object can be directly
returned as answer without evaluation on post, addr since
their corresponding (post, addr) values must be comparable
as well. Consequently, the query efficiency is improved (see
details in Sect. 7).

1.2 Applications

Besides optimizing dataspace queries, we believe that the
proposed comparable dependencies can meet a wide range
of applications as the previous integrity constraints. As it is
not the major focus of this study, we briefly describe several
applications below and leave more details as future work.

Violation Detection Due to heterogeneous data, detecting
violations is urgent to enhance the utility of dataspaces. Previ-
ously, data dependencies were often employed to handle vio-
lations in data [5,34], that is, those objects not satisfying data
dependencies. Given a set X' of dependencies, the violation
detection problem is to find a minimum set of objects from
the data (which do not satisfy the given dependencies) such
that the dependencies in X' hold in the remaining data. Unfor-
tunately, as we proved in Sect. 4, it is already hard to find a

Comparable dependencies over heterogeneous data

255

minimum violation set with respect to a single comparable
dependency. The violation detection over a set X' of CDs is
thus highly non-trivial.

Consistent Query Answering Methods are proposed to
remove the violations by repairing [15]. However, dataspaces
often collect data from various sources without permission
to write (repair). Thus, it is particularly interesting to study
consistent query answering [1], which can return objects
that have no violations without updating original data in
dataspaces. The complexity of consistent query answering
problem is determined by repair model, constraint language
and query language. In dataspaces scenario, given dependen-
cies with general comparison functions, the X-repair [10] by
removing a minimum set of violation objects is already hard.
Moreover, as stated in the aforesaid motivation example, a
query over dataspaces not only considers the attributes speci-
fied in the query but also expands to other attributes according
to comparison functions, which makes the consistent query
answering more challenging.

Object Identification Since data are collected from various
sources, it is not surprising that there are many duplicates in
dataspaces. When matching operator is adopted in the right-
hand-side, a matching dependency is considered. Matching
dependencies (MDs) [15] and the corresponding deduction
techniques [17] are proved useful in identifying duplicate
objects (see [14] for a survey) in traditional databases. As
one type of comparable dependencies we considered in
dataspaces, MDs are naturally applicable to identify dupli-
cate objects in dataspaces as well.

1.3 Challenges and contributions

To our best knowledge, this is the first work on adapting
data dependencies to the heterogeneous data in dataspaces.
Unfortunately, it is highly non-trivial to study data dependen-
cies in dataspaces, with the consideration of comparable cor-
respondence. Due to the extremely high heterogeneity, data
dependencies may “almost/approximately’ hold in dataspac-
es. As illustrated below, it is already hard to tell whether a
dependency approximately hold in a dataspace, that is, the
validation problem. Moreover, since comparable correspon-
dences are often identified in an incremental style, namely
pay-as-you-go, an incremental discovery of data dependen-
cies with respect to the newly identified comparison func-
tion is urgent and not considered in previous dependency
discovery.

Our main contributions in this paper are summarized as
follows.

(1) We formalize the notations of data dependencies in
dataspaces. Our comparable dependencies (CDs) on

comparison functions cover the semantics of a broad
class of dependencies well known in databases, such
as functional dependencies, metric functional depen-
dencies [34] and matching dependencies [15]. The
widely used error and confidence measures are intro-
duced to evaluate how a dependency approximately
holds in a dataspace.

(i) We characterize the validation problem of dependen-
cies in dataspaces. As we proved, the computation of
confidence or error measures for approximate depen-
dencies with general comparison functions is NP-hard.
The corresponding decision version, that is, the vali-
dation problem, is NP-complete. In fact, even the spe-
cial case of aligned attributes, that is, with 0 (A;, A;)
only, is still NP-complete.

(iii)) We develop approximation computation of confi-
dence and error measures. According to our theo-
retical analysis, the error measure computation can
be approximated in polynomial time with a con-
stant factor, while the confidence has no constant-
factor approximation unless P = NP. We develop
greedy approaches with approximation ratio on the
bound of violations that an object may introduce.
Moreover, randomized approaches are further devel-
oped to improve the efficiency, where approximation
bound with an additive error is obtained with high
probability.

(iv) We introduce a pay-as-you-go approach for discov-
ering dependencies in a given dataspace. Note that
comparable correspondences are often identified in
an incremental style, namely pay-as-you-go. Thereby,
we investigate a framework that incrementally dis-
covers data dependencies with respect to the newly
identified comparison function.

(v) We study the semantic query optimization in data-
spaces with comparable dependencies. As mentioned,
according to the semantics of data dependencies, we
can safely eliminate query predicates. Two types of
predicate elimination techniques are presented. It is
worth noting that applying approximate dependencies
in the query rewriting will never lose query answers.

(vi) Finally, we report an extensive experimental evalua-
tion of proposed approaches on real data sets. Both the
effectiveness and efficiency of proposed approxima-
tion computation techniques are illustrated. The dis-
covery performance is also evaluated on real data sets.
Moreover, we demonstrate the accuracy and time per-
formance of query optimization by using the returned
comparable dependencies.

The remainder of this paper is organized as follows. First,
we discuss the related work in Sect. 2. Then, in Sect. 3,

@ Springer

256

S. Song et al.

we study the foundations of comparable dependencies in
dataspaces. Section 4 introduces the validation problem of
approximate dependencies. In Sect. 5, we develop efficient
approaches for computing error and confidence measures.
Section 6 studies the pay-as-you-go discovery of compara-
ble dependencies in dataspaces. Section 7 presents the tech-
niques for optimizing dataspace queries. In Sect. 8, we report
our extensive experimental results. Finally, Sect. 9 concludes
this paper. An early version of this work appears in [50].

2 Related work

Although data dependencies have been well studied in dat-
abases, little work was drawn over heterogeneous data,
especially in dataspaces with comparable correspondences.
Table 1 lists the most typical related works, compared with
our CDs.

Due to the data heterogeneity, data dependencies might not
exactly hold in the entire database of all tuples. Therefore,
conditional functional dependencies (CFDs), as an extension
of traditional FDs with conditions, are first proposed in [5] for
data cleaning. The basic idea of CFDs is making the FDs, orig-
inally hold for the whole table, valid only for a set of tuples
specified by the conditions. However, the equality function
is still considered in CFDs, which cannot address the various
information formats of data from different sources, especially
in dataspaces. Note that the error (confidence) measure is also
used in evaluating and discovering CFDs [16,22]. Moreover,
since CFDs are declared over a subset of tuples specified by
conditions, a support measure is further introduced to report
the number of tuples agreeing the given condition.

Wang et al. [53] extends functional dependencies with
probability for data integration systems, namely probabilis-
tic functional dependencies (pFDs), which is similar to the
concepts of approximate FDs [33] and soft FDs [28]. Given a
mediated schema and mappings from each source to the med-
iated schema, the probability of an FD in each data source is
merged together as a global measure. However, this exten-
sion of traditional FDs is still on equal values and not directly
applicable to dataspaces, where data values are highly heter-
ogeneous with various comparable correspondences instead

Table 1 Related work

of precise equality. In particular, dataspace systems often
provide services without investigating a mediated schema as
traditional data integration systems. Thus, data dependen-
cies incorporating with comparison functions are necessary
in dataspaces.

Koudas et al. [34] study metric functional dependencies
(MFDs) with metric operator on attribute A when given the
equality on X, where X and A are attributes in relation
schema R. An MFD has the form X — *A, where A > Ois a
threshold of metric distance on A. For example, an MFD can
be name —? addr. In our work, we adapt such dependen-
cies with metrics to dataspaces by introducing comparison
functions. Note that techniques in [34] only verify whether or
not an MFD exactly holds, that is, exact MFDs, while the val-
idation problem is not studied to tell whether a dependency
almost/approximately holds with certain error/confidence
guarantee, that is, approximate MFDs. As we investigated in
special cases (Sect. 4), the validation problem of approximate
MFDs in databases is NP-complete, which is not addressed in
previous works.

Song and Chen [48] introduce differential dependencies
(DDs), which employ metric operators on both sides of attri-
butes in the dependency. Thereby, DDs can also be interpreted
as a generalization of MFDs. The basic idea of DDs is: based
on the metric distance constraints on certain attributes X,
we can imply the corresponding metric distance constraints
on the attributes Y. The determination of distance threshold
for metric operators is also studied [49]. Again, since DDs
consider the metric operator in an attribute in databases, the
comparable correspondence among heterogeneous attributes
in dataspaces are not addressed.

Fan [15] proposes matching dependencies (MDs) for spec-
ifying matching rules for object identification. An MD across
two relations has a form A[A; ~; B;] — [Y| = Y»], where
A; and Y] are attributes in relation schema R;, B; and Y, are
attributes in R, and ~%;, = denote the corresponding met-
ric/matching operators on attributes of (A;, B;) and (Y1, Y»),
respectively. It states that for any two tuples from the instance
of relations Ry and R», respectively, if they are similar (*)
on attributes in the left-hand-side, then their right-hand-side
Y1, Y» values should be matched (=). Reasoning mechanism
for deducing MDs from a set of given MDs is studied in [17].

Dependencies Operators Comparable correspondences Measures Validation
PFDs [53] Equality operator Cannot address Probability PTIME

CFDs [5] Equality operator Cannot address Confidence and condition support PTIME
MFDs [34] Equality and metric operators Cannot address Not studied Not studied
MDs [15] Metric and matching operators Cannot address Not studied Not studied
Our CDs All the above operators Address Error or confidence NP-complete

@ Springer

Comparable dependencies over heterogeneous data

257

The MDs and their reasoning techniques can improve both
the quality and efficiency of object identification methods.
As one type of dependencies we considered in dataspaces,
MDs are naturally applicable to identify duplicates in data-
spaces as well. Again, the validation problem of MDs is not
considered in previous works.

Measures are necessary during the discovery to evaluate
how a dependency holds in arelation instance [22,26,27]. For
evaluating FDs, the g3 measure [33] is widely used, that is,
the minimum number of tuples that have to be removed from
the relation instance for the FD to hold. It can be efficiently
computed by grouping tuples according to equal values. This
error measure and its variations are widely used in discover-
ing approximate functional dependencies [27,32] and eval-
uating CFDs [16,22]. In this study, we also employ the error
measure to validate comparable dependencies in dataspaces
which is, however, not easy to compute. Besides the error
measure, Pfahringer and Kramer [35,43] propose a mea-
sure based on the minimum description length principle. An
encoding length of a table T is defined based on X — Y
to compress 7. Giannella and Robertson [21] develop an
approximation measure of FDs based on the intuition: the
degree to which X — Y is approximate in a table T is the
degree to which T determines a function from Iy (7') to
[Ty (T). In addition, Chiang and Miller [8] also study some
other measures such as conviction and y -test for evaluating
CFDs. In our study, since we consider comparable correspon-
dence in tuple pairs instead of groups of tuples on equality
function, the above measures defined on equal values are not
appropriate for evaluating CDs.

The discovery of dependencies from a given relation
instance is widely studied [4,35,39,40]. In discovering FDs,
previous work targeted on generating a canonical cover of
all FDs. Huhtala et al. [26,27] propose a level-wise algo-
rithm, namely TANE, together with efficient pruning when
searching in the lattice of attributes. Remarkably, the TANE
algorithm also supports the discovery of approximate FDs.
Wyss et al. [54] study a depth-first, heuristic-driven algo-
rithm, namely FastFDs, which is (almost) linear to the size of
FDs cover. Flach and Savnik [19] discover FDs in a bottom-up
style, which considers the maximal invalid dependencies
first. When searching in a hypotheses space, the maximum
invalid dependencies are used for pruning the search space.
In discovering CFDs, Chiang and Miller [8] explore CFDs by
considering all the possible dependency rules when X — Y
is not specified. In [16], Fan et al. also study the case when
the embedded FDs are not given and propose algorithms for
different scenarios. When a rule X — Y is suggested, Go-
lab et al. [22] study the discovery of optimal CFDs with the
minimum pattern tableau size. A concise set of patterns are
naturally desirable that may have lower cost in applications
such as violation detection by CFDs. Unfortunately, all the
above previous works on dependency discovery consider

equality function without considering the comparable cor-
respondence. Different from FDs and CFDs, there are various
comparison functions that can be specified on the compara-
ble attributes in CDs. Recognizing the hardness of discovering
a canonical cover of all dependencies in a given dataspace,
we focus on practically returning a subset of dependencies
within a certain length.

The major difference of querying in dataspaces originates
from the heterogeneous attributes with comparable corre-
spondence, which prevents directly applying the previous
database tools to optimize the dataspace queries [51]. Typ-
ical semantic query optimization techniques include predi-
cate elimination, predicate introduction, join elimination and
so on [7]. Based on the features of dataspaces queries, in
this work, we mainly study the predicate elimination with
comparable dependencies. Most previous works of semantic
query optimization focus the theoretical aspects [6,9,36]. In
order to make semantic query optimization useful in prac-
tice, many integrity constraints should be defined for a given
database. Otherwise, only few queries could be optimized
semantically. Consequently, in the practice of experimental
evaluation, e.g., in [7,25,52], representative sample queries
are usually considered, where the given integrity constraints
can be applied. The experiments compare the query perfor-
mance with and without semantic query optimization by such
integrity constraints. Following this convention of represen-
tative sample queries, our experimental study evaluates the
trade-off between the query time performance and the query
accuracy performance, by applying different approximate
dependencies.

The application of detecting violations is also known as
a type of data repairing, that is, X-repair via tuple deletion
[10]. When given a single FD or CFD, it is easy to find a min-
imum set of tuples to delete in order to ensure the remaining
data satisfying the constraint. This minimum violation set
computation is also known as the validation evaluation of
a dependency over a dataset, as studied in Table 1. Unfor-
tunately, for the CDs studied in our paper, we have shown
that computing the minimum violation set for a single CD is
already hard. When given a set of data dependencies instead
of a single one, repairing w.r.t. a set of CFDs is NP-com-
plete [5], while repairing w.r.t. denial constraints on numer-
ical attributes is MAXSNP-hard [3]. As CDs appear harder
than CFDs in the single dependency case, it is not surpris-
ing that repairing w.r.t. a set of CDs could be no easier than
that of CFDs. In our theoretical analysis results, we have con-
structed the connections between the CDs violations and the
general notation of graph. As future work, by leveraging the
relationships between CDs on heterogeneous attributes and
denial constraints on numerical attributes, it is interesting
to study the potential of applying the proposed approxima-
tion and randomization techniques to repairing on numerical
values.

@ Springer

258

S. Song et al.

Table 2 Notations

Symbol Description

S A dataspace

Aj <ij Aj A comparison operator of attribute A;, A

0(Ai, Aj) A general comparison function on attribute A;, A
© A dependency with general comparison functions
g Error measure of a dependency

c Confidence measure of a dependency

n Requirement of a measure

o Approximation ratio

8 Approximation probability guarantee

€ Approximation additive error

A A bound of violations of an object

3 Foundations

In this section, we address the fundamental issues of adapting
data dependencies to the heterogeneous data in dataspaces.
Table 2 lists the frequently used notations.

3.1 Comparable dependencies

Let <>;; denote a comparison operator between two attri-
butes A;, A; in a dataspace S, which is a generic operator
that can have either one of the following semantics.

— <>;j can be an equality operator A; = A, whichis con-
sidered in traditional functional dependencies. Let a;, a;
be the values of A;, A, respectively. The comparison
operator = evaluates to true if a; = a;, thatis, identical.

— <>;j can also be a metric operator A; ~; Aj, whichis
raised in metric functional dependencies [34]. Let d;; be
a distance metric' defined on the domains of two compa-
rable attributes A;, A ;. The metric operator ~; evaluates
to true if d;j(a;, aj) < A, that is, the metric distance is
less than a threshold A.

— <>;j could be a matching operator as well, A; = Aj,
which is studied in matching dependencies [15]. The
matching operator = evaluates to true if a; and a; are
identified as matched, that is, make them identical via
dynamic semantics [15] or by users’ feedback [29].

The comparison operator <>;; can have but is not limited
to the semantics mentioned above. In general, we assume that
the comparison operator is commutative, thatis, A; <>;; A;
and A; <>;; A; are equivalent. However, it is not necessary
to be idempotent, as two values from the same attribute A;

I For example, the absolute value of difference on numerical values,
or edit distance on string values (see [41] for a survey).

@ Springer

might not always evaluate to true. For each pair of attributes
A;, A;in S, we consider one comparison operator on them.

3.1.1 Comparison function

A general comparison function
0(Ai, Aj) 1 [Ai <ii Ai, Ai <ij Aj, Aj <jj Ajl

specifies a constraint on comparable correspondence of two
values from attribute A; or A j, according to their correspond-
ing comparison Operators <>;;, <>jj Or <> jj.

Definition 1 Given any two objects 71, #, in the dataspace,
we say that 71, 1 agree on a comparison function, denoted
by

(t1,12) X 0(A;, Aj),

if at least one pair of (#1[A;], 2[A:]), (11[A:], ©2[A}]),
(t1[A}], [A;]D or (11[A], 12[A]) agrees on the correspond-
ing comparison operator specified by 0(A;, A;), that is,

(t1[Ai] < B[A]D V (@[Ai] < 2[A;D V
(2[Ai] <5 1[A;]D VvV (11[Aj] < jj [A}]) = true;

otherwise, disagree, denoted by (1, 12) % 0(A;, Aj)

For instance, we have (¢, t;) < 6(manu, prod) in Exam-
ple 1, since the edit distance between #{[manu] and 7, [prod]
is < 5. In a special case, a comparison function with aligned
attributes A; is 0(A;, A;) : [A; < Ail.

It is worth noting that a sophisticated comparison opera-
tor may interact with more than two attributes, for example,
among (addr, street, city). Since the comparison operator
is not the focus of this study, we will leave such comparison
operators as our future work.

3.1.2 Comparable dependency

A comparable dependency (CD) ¢ with general comparison
functions over a dataspace S is in the form> of

¢: [\ 0(Ai. Aj) — 0(B1. By,

where 0(A;, Aj) and 6(B1, By) are comparison functions in
the dataspace S. We denote A 0(A;, Aj) and 0(By1, B) by
the LHS and RHS of ¢, respectively.

Definition 2 Given any two objects ¢, , in the dataspace S,
we say that 7, r, satisfy adependency ¢, denoted by (¢1, t2) F
@, if (11, 12) < LHS(g) implies (71, 2) < 0(B1, Ba).

2 In this study, we focus on dependencies in the standard form with
only one function in the right-hand-side. Dependencies with multiple
comparison functions in RHS can be naturally inferred according to the
reflexivity and augmentation rules presented below.

Comparable dependencies over heterogeneous data

259

That is, if #, > agree on all the comparison functions
0(A;, Aj) in the left-hand-side of the dependency ¢, then
they must also agree on the right-hand-side comparison func-
tion 6(B1, B»).

Definition 3 Given a dataspace S and a dependency ¢, we
say that the dataspace S satisfies ¢ or the dependency ¢
holds in S, denoted by S F ¢, if any two objects #1, t, from
S always have (¢,) F ¢, that is, any two objects in S
satisfy ¢.

Example 2 Consider the dataspace S as illustrated in
Example 1. A comparable dependency can be

@2 : [name = name] — #(manu, prod),

which states that if two products have the same name, then
their (manu, prod) should be comparable.
To give another example, we consider

6 (website, website) : [website = website].

The following comparable dependency
@3 : 6(manu, prod) A6 (addr, post) — 6 (website, website),

states that if any two product objects have comparable
(manu, prod) and comparable (addr, post), then their
website should be matched, for example, itunes.com and
apple.com are matched URLs of the same web site.

It is notable that comparable dependencies are differ-
ent from the concept of tail in dataspaces [45,46]. A tail
is denoted as Qr[.Cr] — Qr[.Cg], which means that
the query on the left Q[.Cr] includes the query on the
right Qr[.Cgr]. In other words, whenever we query for
Qr[.Cr] we should also query for Qg[.Cgr]. Thereby, it
can naturally be extended to a bidirectional trail such as
Qr[.CL] < QRr[.Cg]. Instead of the comparison relation-
ship between query components Q[.Cr] and Qg[.Cg], we
study the dependencies upon different comparison relation-
ships.

3.2 Approximate dependencies

Due to the extremely high heterogeneity, data dependencies
might not exactly hold in a given dataspace, that is, the data-
space approximately satisfies the dependencies. Given a pair
of objects 11, t, from dataspace S, we say that (¢, t») violates
adependency ¢, denoted by (¢, 1) F ¢, if (¢1, t2) < LHS(p)
but (¢1, 2) % RHS(p).

For instance, let

0 (tel, phn) : [tel = tel, tel = phn, phn = phn]

be a comparison function in Example 1. We consider a depen-
dency

@4 : O(manu, prod) — 6 (tel, phn).

We have (1, 13) F ¢4 but (¢1, 1) ¢4, since 11, tp agree on
the left-hand-side 6(manu, prod) of ¢4 but have different
tel. Such data dependencies that “almost” or “approximately”
hold in the data with some violations are called approximate
dependencies [26,33].

3.2.1 Error measure

To evaluate how a dependency almost/approximately holds in
adata instance, g3 error measure [33] is widely used [26,27].
We can also adopt this measure to evaluate a dependency ¢
over a dataspace S.

Definition 4 The g3 measure evaluates the minimum num-
ber of objects that have to be removed from dataspace S for
the dependency ¢ to hold, that is,

ISI—max{|T| | T S S, TF ¢}

g3(p, S = S ,

where T is a subset of objects in S that do not violate ¢.

We call V = S\ T a candidate violation set such that all
the objects in T satisfy the given dependency ¢.

For example, {#,} in Example 1 is a minimum violation set
w.r.t. the above ¢4, such that all the remaining objects {z1, #3}
satisfy ¢4. Thereby, we have g3 = 1/3.

3.2.2 Confidence measure

Instead of measuring violations, a confidence [11,22] defines
the proportion of tuples after removing minimum tuples
(objects in dataspace) of violations w.r.t. ¢.

Definition 5 The confidence measure evaluates the maxi-
mum number of objects 7" from the dataspace S such that the
dependency ¢ holds in 7',
max{|T| | T €S, T F ¢}

IS ’

where T is a subset of objects in S that do not violate ¢.

conf(p, S) =

As claimed in [53], this confidence measure is close to the
concept of probability of FDs, which also consider the maxi-
mum number of tuples (objects) that follow the dependency.
We call the above T a candidate keeping set such that all the
objects in T C & satisfy the given dependency ¢, that is,
non-violation.

For instance, {1, #3} in Example 1 is a maximum keeping
set w.r.t. the above ¢4, having conf = 2/3.

Note that the g3 measure denotes the minimum number of
objects removed, while the confidence measure reports the
maximum number of objects reserved, which are essentially
equivalent. When g3 = 0 or equivalently conf = 1, it is the
case of exact dependency.

@ Springer

260

S. Song et al.

4 Validation problem

Given a dataspace and a dependency, the validation prob-
lem is to determine whether or not the dependency (approx-
imately) holds in the dataspace. Recall that confidence and
error measures tell how a dependency approximately holds in
a data set. Thereby, we can formalize the validation problem
as follows.

Problem 1 Given a dataspace S with n objects, the vali-
dation problem is to decide whether or not the error/confi-
dence measure of adependency ¢ over S satisfies the measure
requirement 7. More precisely, the error validation problem
is to determine whether g3(¢, S) < 1., and the confidence
validation problem is to determine whether conf(¢, S) > ..

4.1 The hardness

Essentially, given a dataspace and a dependency, we are
required to compute the error and confidence of the depen-
dency in the dataspace. For FDs and their extensions in
traditional databases, polynomial time algorithms can be
developed to efficiently compute these measures [11,27].
Unfortunately, in the scenario of dataspaces with general
comparison functions, the problem of computing error/con-
fidence is highly non-trivial. Intuitively, the transitivity is no
longer valid on a general comparison function, that is, from
(t1,) < 6(A;, Aj) and (12, 13) =< 6(A;, Aj), it does not
necessarily follow that (71, 13) < 6(A;, A;). See the follow-
ing Example 3 for instance. The efficient validation compu-
tation based on disjoint grouping [27] cannot be applied to
this case with general functions. In fact, we can prove the
hardness of validation problem.

Theorem 1 Both the error validation and confidence vali-
dation problems with general comparison functions are NP-
complete.

Proof The error/confidence validation problem is clearly in
NP: given a set W of objects in S, it is easy to check whether
W is a violation set/keeping set with respect to a dependency
such that %V—I‘ satisfies the measure requirement 7.

To show that the error validation problem is NP-hard,
we exhibit a polynomial-time reduction from the VERTEX
COVER problem, which is known as one of Karp’s 21 NP-
complete problems [31]. Given a graph G(U, E) with n =
|U| vertices and m = |E| edges, a vertex cover is a subset
C C U of vertices such that for each edge (u;,u;) € E,
C contains at least one of u; or u;. Let ¢ : 6(Ay, A2) —
0(B1, By) be a dependency where (A1, A2) : [A] R<p—1
A1, Al A< Az, A2 <1 A2] specifies a constraint of
the edit distance (< m — 1) between the values of A or A,.
We build a dataspace S where each object f; corresponds to a
vertex u; in G. For each object ¢;, assign t;[B1] = t;[B2] = b;

@ Springer

such that (b;, bj) % 0(By, B2),i # j, Vi, j € [1,n]. More-
over, ti[A1] and #;[A,] values populate a string in length m,
where all the string elements are a; by default, that is, for all
kth element t;[A][k] = t;[A2][k] = a;, k € [1, m]. Simi-
larly, we have a; # aj,i # j, Vi, j € [1, n]. Now, for each
edge ex = (u;,uj) € E, k € [1, m], replace the kth element
by ¢ in the strings of attribute Ay, A> corresponding to
u;j, uj, respectively. That is, assign t;[A1][k] = #;[A2][k] =
tj[A11lk] = tj[A2]lk] = cx where ¢, are different elements
for different k € [1, m]. The transformation completes and
can be done in polynomial time.

We can see that the graph has a vertex cover C of size |C| <
n|U | if and only if there is a violation set V having | V| < n|S]|
objects with respect to the dependency ¢ : 6(A1, Ay) —
6(B1, B>). Recall that a violation set V ensures that all the
remaining objects satisfy the dependency, thatis, S\ V F ¢.

First, let C be a vertex cover of size n|U|. For each edge
ex = (uj,u;) € E with u; € C, we have ;[A(][k] =
ti[A2][k] = t;[A1]lk] = tj[A2][k] = ck. In other words,
edit distances of (#;[A1],7;[A2]) and (#;[A2], t;[A1]) agree
on < m — 1, that is, (t;,7;) < 6(A1, A2). Recall that
we have (1;,t;) % 0(B1, Bz) according to the assignment
of values on Bj, By. Thereby, we can add #; into the vio-
lation set V in order to eliminate (#;,¢;) # ¢. On the
other hand, for any u;,u; ¢ C, there should be no edge
connecting them. Considering the [-th elements in corre-
sponding objects #;,t;, I € [1,m], t;[A1][/] and #;[A2][/]
could be either a; or ¢;, while #;[A1][/] and #;[A2][!] could
be either a; or ¢;. However, #; and f; cannot have ¢; at
the same time, since e¢; denotes an edge, which would
not connect u; and u;. In other words, the edit distances
of (#[A1],t;[A2]) and (#;[A2],¢;[A1]) equal to m which
does not agree on < m — 1, that is, (f;,1;) % 6(Ay, A2).
Consequently, we have (#;,7;) F ¢ which do not belong
to the violation set V. Clearly, we have |V| = n|S| =
nul.

Conversely, we can show that if there is a violation set
V of size |V| < n|S|, then we must have a vertex cover
C of size |C| < n|U|. Suppose that the graph has is a
minimum vertex cover C* of size |C*| > n|U|. Let C
be the set of vertices corresponding to the objects in V.
Obviously, C is not a vertex cover since |C| = |V]| <
|C*|, and there should be at least |C*| — |C| edges con-
necting between different vertices in C* \ C and U \ C*.
For each edge ex = (u;,u;) € E,u; € C*\ C,u; €
U \ C*, their corresponding (t;, ¢;) will introducing a vio-
lation with respect to ¢. Thereby, we have |V| > |C| +
¢ = 1ch = IC* > nlUl = nlS|, which is a
contradiction.

To sum up, the error validation problem is proved to be
NP-complete. Note that a violation set V for error measure
is the complement of the keeping set T for confidence mea-
sure. Thereby, to prove the hardness of confidence validation

Comparable dependencies over heterogeneous data

261

problem, we can build a reduction from the CLIQUE prob-
lem, which follows similar steps as shown in the proof of
Theorem 2.

Although the proof utilizes the original (general) notation
of comparison function 6 (A1, A,), without loss of generality,
it is sufficient to complete the proof by the simple 6 (A1, A1)
on the same attribute. O

It is worth noting that the above conclusion is not only
valid for CDs in dataspaces but also valid for MDs in dat-
abases, where distance metric and matching identification
are applicable. Intuitively, the transitivity is not valid either
on the metric operators used in MDs. Indeed, our proof of
Theorem 1 is sufficient to show that the validation of MDs is
also NP-complete.

4.2 Special case of aligned attributes

An interesting special case is to consider comparison func-
tions on aligned attributes, that is, 6 (A;, A;). In other words,
it is a case without comparable attribute pairs, which is sim-
ilar to the traditional database scenario. Unfortunately, we
cannot assume the transitivity on such case either.

Example 3 We consider a function on aligned attributes
0(A1, Ap) 1 [A1 =<1 Ad]

with edit distance as metric d. Let

t1 {(Ay : abo), ...},
t {(Aq :abcd), ... };
t3 :{(Ay : abcde), ... }.

We have edit distance

d(t1[A1], n[A1]) =1 <1, and
d(r[A1],3[A1]D) =1<1, but
d(ti[A1], 53[A1]) =2 > 1,

that is, (1,) < 6(A1, Ay) and (f,13) < (A1, A1) but
(t1,13) % 0(A1, Ap).

Therefore, it is not surprising that the validation problem
is still hard.

Theorem 2 The error/confidence validation problem with
aligned attributes in general comparison functions is still
NP-complete.

Proof To prove that the confidence validation problem with
aligned attributes is NP-hard, we build a polynomial-time
reduction from the CLIQUE problem. Given a graph G(U, E)
with n = |U| vertices and m = | E| edges, a clique is a com-
plete subgraph of G, that is, a subset O C U of vertices such

that (u;, u;) € E,Vu;,uj € Q.Letg : 0(A, A) — 6(B, B)
be a dependency with comparison functions on aligned attri-
butes where 6 (B, B) : [B ~<,,—1 B]specifies a constraint of
the edit distance (< m — 1) between the values of B. We build
adataspace S where each object #; corresponds to a vertex u;
in G. For each object 1;, assign #;[A] = a such that (;, t;) <
(A, A),i # j,Vi, j €[l,n]. Moreover, t;[B] values popu-
late a string in length m, where all the string elements are b; by
default, that is, for all kth element #;[B][k] = b;, k € [1, m].
We have b; # bj,i # j, Vi, j € [1,n]. Now, for each edge
ex = (u;j,uj) € E, k € [1, m], replace the kth element by ¢
in the strings of attribute B corresponding to u;, u ;, respec-
tively. That is, assign ;[B][k] = ;[B][k] = ¢ where ¢, are
different elements for different k& € [1, m]. The transforma-
tion completes and can be done in polynomial time.

Now, we must show that the graph has a clique Q of size
|Q] > n|U| if and only if there is a keeping set T hav-
ing |T| > n|S| objects with respect to the dependency ¢ :
0(A, A) — 6(B, B).Recall that a keeping set T ensures that
all the objects in T satisfy the dependency, that is, T F ¢.

Let Q beaclique of size n|U |. First, for any vertex u; ¢ Q,
there must exist a vertex u; € Q such that no edge con-
necting them, that is, (u;,u;) ¢ E. Considering the [/-th
elements in corresponding objects #;, ¢, [€ [1, m], ;[B]l/]
could be either b; or ¢;, while ¢;[B][/] could be either b; or ¢;.
However, #; and ¢; cannot have ¢; at the same time, since ¢;
denotes an edge, which would not connect u; and u;. In
other words, the edit distances of (#;[B], t;[B]) equals to m
which does not agree on < m — 1, thatis, (1, t;) % 0(B, B).
Recall that we have (¢;, 1;) < 0(A, A), Vt;, t;. Consequently,
(t;,tj) 7 ¢ implies that #; does not belong to the keeping set
T. On the other hand, for each vertex u; € Q, we have edges
ex = (ui,uj) € E,Vu; € Q.According to the above assign-
ment of values on attribute B, we have t;[B][k] = t;[B][k] =
¢k In other words, we have edit distance of (4;[B], t;[B])
agreeing on < m — 1, that is, (t;, t;) < 6(B, B). It follows
(t;,tj) F @ for all ¢; corresponding to u; in Q. Thereby, we
can add #; into the keeping set T as well. Consequently, we
have |T| = n|S| =n|U| = |Q|.

Next, we can show that if there is a keeping set T of size
|T| > n|S|, then we must have aclique Q of size | Q| > n|U]|.
Suppose that the graph has is a maximum clique Q* of size
|Q*| < n|U]|.Let Q be the set of vertices corresponding to the
objects in 7. Obviously, Q is not a clique since |Q| = |T| >
| 0*|, and there should be atleast | Q| —| Q*| verticesin O\ O*
which are not connected to a different vertex in Q*, respec-
tively. For each pair (u;,u;) ¢ E,u; € Q\ Q*, u; € QF,
their corresponding (#;, ;) will introducing a violation with
respect to ¢. Thereby, we have to remove them from keeping
set such that |7 < [Q] — (I1Q] — Q") = |Q* < n|U| =
n|S|, which is a contradiction.

To sum up, the confidence validation problem with aligned
attributes is NP-complete. The proof of error validation

@ Springer

262

S. Song et al.

problem follows a similar reduction from the VERTEX COVER
problem as shown in the proof of Theorem 1. O

Moreover, our proof of Theorem 2 is also sufficient to find
that the error/confidence validation problem for MFDs in dat-
abases is also NP-complete. As a special case, our approxima-
tion computation techniques proposed below can be naturally
applied to computing error/confidence of MFDs in databases
as well.

4.3 Tractable special case

Finally, another special case with both aligned attributes and
equality function, that is, [A; = A;], is exactly the case
of FDs with equality in traditional databases. As mentioned,
such a special case has been well investigated with efficient
algorithms [27].

5 Approximation computation

Motivated by the above hardness analysis of the validation
problem, in this section, we study efficient approaches to
approximately compute error and confidence measures.

Problem 2 Given a dataspace S and a dependency ¢, the
measure estimation problem is to compute an approximate
error/confidence measure of ¢ over S such that the approxi-
mate measure has arelative performance guarantee compared
with exact measure, for example, g/g < p where g is an esti-
mation of exact error measure g and p is approximation ratio.

An even more relaxed version is to get the approximate
measure with a high probability, for example, Pr[g < pg +
€] > &, where € is an additive error and § is a probability
guarantee.

In Sect. 5.1, we give greedy algorithms for computing
approximate error and confidence with a relative perfor-
mance guarantee p. Since greedy algorithms still have to
consider all the objects in a dataspace, we also develop ran-
domized algorithms in Sect. 5.2, which estimate error and
confidence measures upon only a small subset of objects, and
are still guaranteed by certain approximation bound with a
high probability §.

5.1 Greedy approach

Preliminary Given a comparison function 0(A;, Aj), we
can obtain a set of object pairs that agree on the function,
that is, {(#;,1;) € S | (t;,t;) < 6(A;, Aj)}. By an inter-
section of the sets of object pairs corresponding to the func-
tions in LHS(¢), we obtain those object pairs agreeing on
LHS(¢), say L. Similarly, let H be object pairs agreeing on
both LHS(¢) and RHS(¢). Then, we have the set of object

@ Springer

pairs which violates ¢, thatis, L \ H. Based on these object
pairs of violations, the error and confidence measures can be
computed.

5.1.1 Approximate error

We first present the approximation computation of g3 error.
According to the proof of Theorem 1, computing a minimum
vertex cover of a graph, which corresponds to objects in data-
space S w.r.t. violations of a dependency ¢, will yield a mini-
mum violation set for g3 measure computation. Although the
problem is NP-hard, an efficient greedy algorithm with factor-
2 approximation bound is known for the MINIMUM VERTEX
COVER problem [20], by finding a maximal matching in the
graph.

Specifically, we greedily count both objects when a
violation to the dependency occurs and move them to the
violation set. The procedure terminates if no violation exists
in the dataspace, and we report the proportion of objects in
violation set as the estimated error measure. The pseudo-code
of greedy computation is given in Algorithm 1. Let n be the
number of objects in S. Algorithm 1 returns an approximate
error ¢ with relative performance bounded by factor-2 as it is
used for MINIMUM VERTEX COVER [20]. It is implemented
in linear time w.r.t. the number of objects pairs that are asso-
ciated by comparison functions. Considering possible object
pairs in a dataspace S with n objects, we have the algorithm
complexity O (n?).

Algorithm 1 Greedy ERROR(p, S)

Require: A dependency ¢ over a dataspace S
Ensure: An estimated error measure g

V=0

2. L:={(t;,t;) € S| (t, t;) < LHS(p)}

3: for each pair (#;,¢;) € L do

4: if (#;,t;) ARHS(p)and 1; ¢ V and 1; ¢ V then
5

6

V=V Uiy, t}
: return |V|/|S|

Proposition 1 The greedy Algorithm 1 outputs an estimate
g with a bound g < g < 2g compared with the exact error
measure g. The complexity is O (n?).

Although slightly better yet more complicated approxima-
tions can be achieved, for example, with an approximation
factor of 2 — @(Jkl)@) in [30], we do not consider them
here. In fact, due to the hardness of approximating minimum

vertex cover problem [12], it is not surprising to have:

Theorem 3 The g3 erroris NP-hard to approximate to within
any factor 10/5 — 21 ~ 1.36067.

Proof We show that the reduction from the VERTEX COVER
problem in the proof of Theorem 1 is a gap-preserving reduc-

Comparable dependencies over heterogeneous data

263

tion. As shown in the proof of Theorem 1, a graph G(U, E)
has a vertex cover C of size |U| if and only if the dataspace
S has a violation set V of size |S| for the error measure with
respect to dependency ¢. Let C*(G) and V*(¢, S) denote a
minimum vertex cover for G and a minimum violation set for
dataspace S w.r.t. @, respectively. Recall that the exact error
measure is g3(¢, S) = |V*(¢, S)|/|S|. If any approximation
computes an approximate error measure ¢ = |V|/|S| with
g < a-gs(p,S) for some constant o > 1, it will produce a
vertex cover C such that |C| < « - |C*(G)|. More precisely,
the reduction is gap-preserving:

— if |C*(9)] = gIU|, then g3(¢, S) =< g,
— if|C*(G)] > a - g|U], then |g3(p, S)| > & - &,

Itis known that MINIMUM VERTEX COVER cannot be approx-
imated within a factor of & = 10+/5 — 21 & 1.36067 unless
P = NP [12]. Thus, the error measure is NP-hard to approx-
imate to within any constant factor less than 104/5 — 21 ~
1.36067. O

5.1.2 Approximate confidence

Unfortunately, although computing the g3 error is equiva-
lent to finding the confidence, these two problems are not
equivalent in an approximation-preserving way.

Theorem 4 The confidence has no constant-factor approx-
imation unless P=NP.

Proof To show the hardness of confidence approximation,
we give a gap-preserving reduction from the CLIQUE prob-
lem. Proofs of Theorems 1 and 2 show a reduction that a
graph G(U, E) has aclique Q of size n|U | iff there is a keep-
ing set T of size n|S| with respect to dependency ¢ in da-
taspace S. In particular, an approximate confidence measure
can be ¢ = n = |T|/|S|. This reduction is gap-preserving,
since we have:

— if[Q*(Q)| = ¢|U|, then |T*(¢, S)| = ¢S],
— if|Q*(Q)| < Lé|U|, then |T*(g, S)| < Lé8|,

where 0*(G) denotes a maximum clique for G, and T* (¢, S)
is a maximum keeping set for dataspace S w.r.t. ¢. The
NP-hardness of approximating MAXIMUM CLIQUE to within
any constant factor o has been recognized in [18]. Recall
that we have the exact confidence measure conf(¢, S) =
|T*(¢, S)|/|S|. Hence, the confidence measure is NP-hard to
approximate to within in any constant factor as well. O

Despite the hardness of approximation with respect to con-
stant factor, a heuristic greedy algorithm is known for the
maximum independent set problem with performance ratio

on the maximum degree in a graph [24]. We thus greedily
compute approximate confidence as follows.

Specifically, we can iteratively select an object that has
the minimum violations with others, move it to a keeping set,
and delete all the objects having violations with this object.
The procedure terminates when no object is left and reports
the proportion of the number of objects in the keeping set
as the estimated confidence measure. The pseudo-code with
details is given in Algorithm 2. Let A be the maximum num-
ber of violations that an object may introduce in the data-
space. Thatis, an object violates with no more than A objects.
It is often the case according to our observation in Sect. 8 that
the real data are extremely sparse. Algorithm 2 computes an
approximate confidence ¢. The operator arg min in line 5
stands for the argument of the minimum, that is to say, the
objects u in U for which the given expression has the min-
imum value. It can be done in constant time by amortizing
objects u € U into an integer domain of [1, A]. Consider-
ing possible pairs of n objects in a dataspace S, we have the
algorithm complexity O (n?). Note that a clique in a graph
equals to an independent set in the corresponding graph’s
complement. Thus, the greedy algorithm gives a (A 4 2)/3
approximation ratio as itis used for MAXIMUM INDEPENDENT
SET [24].

Algorithm 2 Greedy CONFIDENCE(p, S)

Require: A dependency ¢ over a dataspace S

Ensure: An estimated confidence measure ¢

:T:=0

2: E:={(ti,tj) € S| (ti,tj) < LHS(@), (4, tj) % RHS(p)}
U :=objectsin S

: while U # ¥ do

t == argmin,ey {w | w € U, (w, u) € E}|

T :=TU/{t}

U:=U-{t}U{w|welU, (wt)eE}

: return |T/|S|

A A

Proposition 2 The greedy Algorithm 2 outputs an estimate ¢
with an approximation ratio (A+2)/3, that is, 3c/(A+2) <
¢ < c¢. The complexity is O (n?).

5.2 Randomized approach

Greedy algorithm still has to consider all the objects in a data-
space. Itis desirable to evaluate only a small subset of objects
upon which the estimated measure is still guaranteed by cer-
tain approximation bound with a high probability. Random
sampling has been studied for estimating the error measure
of approximate functional dependencies [33] and the confi-
dence of approximate conditional functional dependencies
[11]. Similarly, motivated by the randomized algorithm for
the minimum vertex cover problem [42], we can also draw a

@ Springer

264

S. Song et al.

subset of objects from S to estimate the error and confidence
measures.

Preliminary Due to the hardness in approximating error
and confidence measures, it is difficult to insist on the rela-
tive performance guarantee in the randomized computation.
Instead, we have an additive errore, 0 < € < 1,allowed upon
the approximation ratio. That is, the approximation ratio with
an additive error € is guaranteed with a high probability at
least 6. In order to locally compute measures with respect
to a subset of objects in dataspaces, again, the number of
violations of each object should be bounded, that is, A.

5.2.1 Estimated error

Suppose that V' is a (approximate) minimum violation set
of objects in S with respect to ¢, having g’ = |V'|/|S]|. We
uniformly and independently draw m objects from S, where

2 2
is determined by certain € and § as discussed below. Let X;
be a random variable with respect to object #;, 1 < i < m,
such that X; = 1 if #; belongs to the minimum violation set
V’; otherwise, X; = 0. We approximately estimate the error
measure by

1

§=— Xi +
m

1<i<m

ey

|

Lemmal Letm = e% log ﬁ we have
Prig' <g<g +el=3,
where € is an additive error and § is a probability guarantee.

Proof Let g’ = E[X;]. According to Chernoff bound,

1 52
PrﬁZXizg’jLa] <e 2m

M1 52
Pr_n—12X,~§g/—a:|§e 2o%m

we have

1 02
Pr g’—agn—qz&fg’—i—a > 1 — e 2'm,

— €
Leta = 5
I i m

1 € _
Pr_g’s;inJrzggUre >1—2e" 7.

Since m = 6%loglzTaandgz%Z:Xi+§,wehave
Prig' <g<g' +e]>5,

which completes the proof. O

@ Springer

Now, the problem is to determine whether or not ; belongs
to minimum violation set V', that is, X; equals to 1 or 0. To
solve it efficiently, we consider distributed approaches that
can locally decide X; by using a subset of objects in a certain
radius with respect to violation relationships.

Note that, in a graph with degree of each vertex bounded
by A, an approximate minimum vertex cover with perfor-
mance ratio (2log A 4 1) can be achieved in log A rounds
[42]. In other words, only those objects with violation path
to #; in radius log A will be retrieved, and the output is guar-
anteed with g < g’ < (2log A + 1)g. The pseudo-code with
details for estimated error is given in Algorithm 3.

Algorithm 3 Randomized ERROR(¢, S, €, §)

Require: A dependency ¢ over a dataspace S, additive error €, and
probability guarantee &

Ensure: An estimated error measure g

1: X := SAMPLE(e, §, S)

2: 7 =comparable objects from S in radius log A w.r.t. each t; € X

V=0

D E=A{(ti,tj) € T | (t;, t;) X LHS(p), (ti,tj) % RHS(p)}

: U = objects in 7

:fori = 1tolog Ado

for each u € U such that [{w | w € U, (w, u) € E}| > A/2! do
V=V Ul{u}

9: U:=U— {u}

10: E:=E—{(w,u) e E|weU}

11: return |V N X|/|X|+¢€/2

® N v s W

The randomized Algorithm 3 returns an estimated error g.
Specifically, 7 denotes the objects from S that are connected
to m samples in X by comparison functions within radius
log A. Since the number of violations to an object is bounded
by A, it requires O (A°24m) operations to greedily remove
violations. Line 6-10 computes an approximate minimum
violation set V of objects in 7, in log A rounds, with relative
performance bounded by (21log A + 1) [42]. Together with
the probability guarantee on sampling in Lemma 1, Proposi-
tion 3 is concluded.

Proposition 3 The randomized Algorithm 3 outputs an esti-
mate g with the probability
Prig < g < (QlogA+ 1)g +¢€] >6.

The complexity is O(A°22m), where m = 6% log %

5.2.2 Estimated confidence

Similarly, we can have a randomized version for estimating
confidence. Let T’ be a (approximate) maximum keeping set,
having ¢’ = |T’|/|S|. Let ¥; be a random variable such that
Y; = 1 if object ; belongs to the maximum keeping set T”;
otherwise Y; = 0. The confidence is estimated by

é:lZYi—f.)

- 2
1<i<m

Comparable dependencies over heterogeneous data

265

Lemma 2 Letm = % log %, we have
€
Prl¢’ —e <é<(']1> 86,
where € is an additive error and § is a probability guarantee.

Proof LetY; = 1—X; and ¢’ = E[Y;]. According to Lemma
1, we have

1 €
Pr[l—c’fl—ZZYi—FESI—C/-I--f]

ezm

>1—2e 2.

With the same m = e%log%andéleYi—ﬁ

m
Pr[d —e<é=<c] =4,
the conclusion is proved. O

Now, we locally compute Y; with respect to 7”. It is known
that, in a A-degree-bounded graph, an approximate max-
imum independent set with performance ratio (A + 2)/3
can be found in min(A* logn, A!) rounds [24]. That is, we
have to traverse objects with violation path to #; in radius
min(A*logn, A!) such that the output is guaranteed with
3¢/(A+2) < ¢ < c. The pseudo-code with details for
estimated confidence is given in Algorithm 4.

Algorithm 4 Randomized CONFIDENCE(¢, S, €, §)

Require: A dependency ¢ over a dataspace S, additive error €, and
probability guarantee §

Ensure: An estimated confidence measure ¢

1: Y := SAMPLE(e, §, S)

2: 7 =comparable objects from S in radius min(A*logn, A!) w.r.t.
eacht; €Y

d(u)

3T :=0
4 E = {(t;,tj) € T | (t;,t;) < LHS(p), (4, t;) % RHS(p)}
5: U := objects in T
6: while U # ¢ do
7 f z(w.u)eE d(w)
: foreachu € U such thatd(u) < == =~—— do
8:

T :=TU{u}

9: U:=U-{wu}U{w|weU, (w,u) € E}
10: E:=E —{(w,u) € E}

11: return |T NY|/|Y]| —€/2

The randomized Algorithm 4 returns an estimated confi-
dence ¢. Similarly, line 6-10 greedily computes an approxi-
mate maximum keeping set 7' of objects in 7 corresponding
to m samples in Y. According to the greedy analysis in

[24], it is sufficient to move an object u to T if d(u) <

ek d ;
Z(w-t;_(ef)) The computation process can be completed

in min(A4 logn, A!) rounds [24]. Thereby, 7 includes the
objects from S within radius min(A*logn, A!) w.r.t. com-
parison functions to m samples in Y. Consequently, the algo-
rithm complexity is O (A™N(A*logn. 4%y Combining the
result in Lemma 2, we have

Proposition 4 The randomized Algorithm 4 outputs an esti-
mate ¢ with the probability

Pr[3c¢/(A+2)—e<¢<c]>8.

The algorithm complexity is O(Amin(A4 l"g"’AA)m), where
2 2

5.2.3 Randomized versus distributed

Recall that dataspaces may collect heterogeneous data in var-
ious sources. It is often unlike to store all the data in a cen-
tralized environment. The greedy algorithm may require high
communication cost to exchange the violation results, while
the randomized algorithm can naturally be deployed in the
distributed environment. We can randomly sample objects
from different sources, locally compute X; or Y; for each
object #; in its corresponding source, and finally aggregate
them together as a global estimation according to formula
(1) or (2). Thereby, there is no exchange of violation data
occurred between distributed nodes, and the cost of aggre-
gation of measure results is low.

6 Pay-as-you-go discovery

Once the validation of dependencies is carefully investigated,
anatural extension is to find all such valid dependencies in da-
taspaces, which meet desired error/confidence requirements.
It is known as the discovery problem of data dependencies
over static data. As the first step, in this paper, we also focus
on the discovery in a given data set. In dataspace scenario,
the major difference is that comparable correspondences are
not fully identified in dataspaces. Instead, comparable cor-
respondences are practically identified in a pay-as-you-go
style [29]. Therefore, the discovery of dependencies should
be conducted in an incremental way with respect to new
identified comparison functions. Intuitively, given a set X
of currently discovered dependencies and a newly identi-
fied comparison functions 6(A;, A;), we can generate new
dependencies w.r.t. 0(A;, Aj).

In the following, we first give an overview of pay-as-you-
go discovery. The approximate implication of CDs is then
introduced, in order to avoid redundancy during the discovery.
Finally, we present the incremental discovery algorithm.

6.1 Overview

When a comparison function 6(A;, A;) is identified, the
way of their values to be compared is recognized, for exam-
ple, based on equality [53] or metric distance less than cer-
tain threshold [17]. Mechanisms have been well studied in
schema matching [44] and reference reconciliation [14] for
identifying comparable attributes and values, respectively.

@ Springer

266

S. Song et al.

Since it is not the focus of our study, we consider the com-
parison function 6(A;, A;) as the input of our discovery
algorithm.

The traditional dependency discovery problem is to find
a canonical cover of all dependencies that hold in a given
relation instance. Several algorithms have been proposed for
FDs, such as TANE [26,27] and FastFDs [54]. However, it
is known that an output canonical cover of all FDs may have
exponential size with respect to the number of attributes, no
matter what discovery algorithm is used [38,40]. As men-
tioned in Sect. 4, FD is one of the special cases of our com-
parable dependencies. Such exponential complexity carries
over to the dependencies in dataspaces. Due to the extremely
high dimensionality (e.g., thousands of attributes and com-
parison functions), it is highly non-trivial (if not impossible)
to discover a canonical cover of all dependencies in a given
dataspace.

Motivated by the idea of mining k-length itemsets in
association rules, we study the k-length dependencies, which
contain k comparison functions. Instead of targeting on
all dependencies with arbitrary length, we can practically
discover a subset of dependencies, which contain k or
less comparison functions and satisfy a requirement 1 of
error/confidence’ measure.

The incremental process of discovery is described as:
given a set X' of dependencies on the current function set
® in S and a new function 6 introduced to the dataspace, to
discover those dependencies with respect to 6 and add them
to X'. The update of k-length dependencies addresses two
aspects: first, finding dependencies with the new function as
RHS; second, augmenting dependencies with length less than
k. The search space of dependencies with respect to the new
function 6 is the combination of k — 1 functions from @&, with
complexity O(|@[¥~1). A naive approach is to evaluate all
these candidates in S and return those dependencies, which
can satisfy the measure requirement #. Intuitively, some of
these dependencies may imply others as illustrated below,
that is, redundant dependencies may exist in the returned
answers.

6.2 Approximate implication

Approximate inference of functional dependencies has been
considered with respect to error measure [33]. It turns out that
the error of a dependency obtained by applying an inference
rule should be no larger than the premise dependencies. In
the following, we investigate that such bounds of error and

3 Itis notable that the concept of confidence is different between depen-
dencies and association rules. The confidence of association rule is
defined with respect to the frequency of itemsets, while the confidence
of dependency is with respect to non-violations of objects, analogous
to transactions in association rule mining.

@ Springer

confidence can also be obtained when inferring dependen-
cies on comparison functions in dataspaces, for example, by
augmentation.

Proposition 5 Consider a dependency @1 over S. Let
@2 LHS(p1) AO(A;, Aj) — RHS(¢1).

It always has g3(¢1,S) > g3(¢2, S) and conf(p;,S) <
conf(g, S).

Proof Let T}* be a maximum keeping set with respect to ¢;

in S, that is, conf(p;, S) = % First, for any two objects
li,tj € Tl*, we have (t;,t;) F ¢ according to the defini-
tion of keeping set. It follows (#;, t;) F ¢, referring to the
augmentation rule. Thereby, a keeping set 7> could be as
large as T}", T» = T}*. On the other hand, for any object
ti € S\ Ty, there must exist an object t; € S such that
(#;, ;) < LHS(¢1) and (#;,t;) % RHS(¢1). Suppose that we
have (1;,t;) % 0(A;, Aj). Since (1, t;) do not agree on the
left-hand-side of ¢», they do not violate ¢, either. If #; does
not violate ¢> with any other objects, it could appear in a
keeping set 7 but not in T, that is, 7> O T}*. To sum up,
we have T;° O T;* and the conclusion is proved according to
error/confidence definition. O

6.3 Redundancy

By applying the implication properties, we can infer depen-
dencies from others. Therefore, there exist redundancies
among all the k-length dependencies. During the discovery,
we would like to eliminate these redundant dependencies
in X.

Let 1 be adependency in X, i.e, g3(p1, S) < n.Let ¢ be
an argumentation with respect to the new function 6 (A;, A;),

@2 LHS(@1) AO(A;, Aj) — RHS(p)).

We always have g3(¢2,S) < n as well. This conclusion
is natural according to Proposition 5 having g3(¢2, S) <
g3(p1,S) < n. In other words, those dependencies, which
are already discovered satisfying the measure requirement,
could be ignored in the augmentation.

Moreover, this conclusion also enables the level-wise
search, which is often used in data mining and discovering
FDs [26,27]. Specifically, each level / denotes all the candi-
dates of function subsets from & with size /, having [< k.
Once a candidate in current level [is valid and add in X, then
all the candidates expending it in following levels [+1, ..., k
must also be valid and can be ignored in X' as redundancy.

6.4 Algorithm

The pseudo-code for incremental discovery is given in Algo-
rithm 5, with time complexity O(|®[F~1V) where O (V) is

Comparable dependencies over heterogeneous data

267

the validation cost of each dependency. Specifically, the dis-
covery algorithm returns a new set of dependencies by con-
sidering a new function 6, based on the previous set X' of
dependencies on functions ® over a dataspace S. By call-
ing LEVEL- WISE(®, k — 1), it returns a sequence of function
subsets (with length < k — 1) from @ in a level-wise order,
that is, a set always comes before all of its supersets. Possible
redundancies are pruned in line 5, 10, 13, according to the
augmentation property in Proposition 5.

Algorithm 5 Incremental DISCOVERY(X, 1, 0)

Require: A set X' of dependencies on functions ® over dataspace S,
a measure requirement 7, and a new function 6

Ensure: A new set X of k-length dependencies

1: L := LEVEL- WISE(®, k — 1)

2: for each function set LHS in L do

3: if g3(LHS — 6, S) < n then

4: Y = Y U{LHS — 6}

5: remove all the function sets in L that are superset of LHS

6: for each function RHS in ® do

7: L := LEVEL- WISE(®, k — 2)

8: for each function set LHS in L do

9: if LHS — RHS € X' then

10: remove all the function sets in L that are superset of LHS
11: else if g3(LHS A 0 — RHS, S) < 1 then

12: Y ;= X U{LHS A 6§ — RHS}

13: remove all the function sets in L that are superset of LHS
14: return ¥

For example, let us consider the current function set
® = {#(manu, prod), 6 (website, website)} and ¥ = @.
For the new function 6 (addr, post), we consider the incre-
mental discovery in two aspects. First, following Lines
1-5 in Algorithm 5, 6(addr, post) is used in RHS in the
dependency. Supposing k = 3, the LEVEL- WISE(®, k —
1) function in Line 1 will return a L = {f#(manu,
prod), 6 (website, website), (manu, prod) A 6 (website,
website)} of all function subsets (w.r.t. @) with length < 2.
Consequently, the dependency

@1 : 6(manu, prod) — 6(addr, post)

in the introduction could be generated. Second, Lines
6-13 will consider the new 6(addr, post) in LHS of a
dependency. The corresponding L = {6(manu, prod),
0 (website, website)} is with function subset length < 1.
As the currently computed results have 6 (manu, prod) —
0 (website, website) ¢ X yet, the dependency

@3 : 6(manu, prod) A6 (addr, post) — 6 (website, website)

in Example 2 could be added into X' as well by Line 12.

7 Semantic query optimization

In this section, we study the query optimization by the pro-
posed comparable dependencies in dataspaces, know as the
semantic query optimization problem. To perform the optimi-
zation, we also introduce the inference rules for implicating
CDs.

7.1 Preliminary

Integrity constraints (e.g., FDs) can be utilized to rewrite
a query in order to optimize the query evaluation. It is
known as the semantic query optimization problem [36].
In the dataspaces scenario, the major difference is about
comparison functions. A query over dataspaces not only con-
siders the attributes specified in the query but also expands
to other attributes according to comparison correspondences
[13].

We consider a dataspace S with a set © of all comparison
functions. A query object,

q = {(A1 :v1),..., (A9 : voP},

specifies predicates on a set of attributes Q ={A¢, ..., A|g|}.
It is to return all the objects 7 in S with comparable attribute
values to ¢, that is, foreach A; € Q of g, we can find a B; of ¢,
such that (¢g[A;], t[B;]) < 6(A;, B;), where 0(A;, B;) € ©.
Obviously, there may exist multiple 0 (A;, B;) associated to
an attribute A;. The query needs that at least one of them is
true. In other words, we want to find all the objects ¢ such
that

@n= A (V6 B)).04 B) €6,
A;eQ Bjoft

Let @(A;) = {0(A;, Bi) € ©® | B; € attr(S5)} be the
set of all comparison functions in ® that are associated on
attribute A;. Let

P[O]=0O(A)) x--- x O(Ag))

where each element ¢[Q] € @[Q] is a pattern of comparison
functions w.r.t. attributes in Q, such as

#[Q] = 0(A1, Bi) A--- NO(Ajg), Big)) € P[Q]
where 6(A;, B;) € ©(A;). The query requires that at least
one ¢[Q] is true and can be equivalently represented by
\/ ¢lol
¢[Qle®[Q]

Example 4 Given a dataspace S in Example 1, let

(q,1) <

® = {#(manu, prod), 6 (post, addr), (post, post), ...}

be the set of comparison functions. We consider a query
object

q : {(manu : Apple), (post : InfiniteLoop, CA)}.

@ Springer

268

S. Song et al.

According to the dataspace query processing, we need to
consider all the attributes that are comparable to the query
attributes, having

® (manu) = {#(manu, manu), 6 (manu, prod)},
O (post) = {A(post, post), O (post, addr)}.

Consequently, the query returns the objects that agree on at
least one of the following conditions in @[Q],

¢1[01 = 8(manu, manu) A 6(post, post),
¢2[Q] = 6(manu, manu) A 6(post, addr),
¢3[Q] = 8(manu, prod) A 6(post, post),
]

[
[
[
¢4[Q] = 6(manu, prod) A 6(post, addr),

thatis, (g, 1) < ¢1[Q]V - -V ¢4[Q]. It will find all the three
objects in S, since they are comparable with the query object

g on (manu, prod) and (addr, post), respectively.
7.2 Implication rules

In order to optimize the queries by data dependencies, we
need to study the implication of CDs. The following infer-
ence rules are presented for exact dependencies. As we will
see soon at the end of this section, the query optimization
ensures the completeness of the answer set, that is, without
losing any query result, even when approximate dependen-
cies are applied.

To investigate the implication of dependencies in data-
spaces, we first adapt Armstrong’s inference rules [2] with
comparison functions to dataspaces as follows. Specifically,
given any dataspace S and a dependency ¢, we always have:

Al. (reflexivity) S F LHS(p) A 0(A;, Aj) — 0(A;, Aj).

A2. (augmentation) If S F ¢, that is, S F LHS(¢) —
RHS(p), then S F LHS(¢) A 0(A;, Aj) — RHS(p) A
0(A;, Aj).

A3. (transitivity) If S F ¢ and S F RHS(¢) — 0(A;, Aj),
then S = RHS(p) — 6(A;, A)).

As these rules are adapted from the Armstrong axioms,
the semantics and soundness self-explained. For instance,
the reflexivity rule Al states that any two objects agreeing
LHS(p) A O(A;, Aj) will always agree 0(A;, Aj).

Besides the above three rules, we may also investigate
the implication particular to comparable dependencies, for
example, with respect to comparison function as follows:

A4. (containment) S F 0(A;, A;) — 0(A;, Aj).

The soundness of A4 is justified as follows. Recall that
0(A;, Aj) requires at least one of the comparison opera-
tors to be true, A; <>i; A;, A; <>ij Aj or Aj < jj Aj.

@ Springer

For the comparison function 0(A;, A;) with aligned attri-
butes, it already implies A; <>;; A; to be true. Therefore, two
objects agreeing 0 (A;, A;) should always agree 0(A;, A ;) as
well.

The aforesaid four rules might not be a complete and sound
inference system for implying comparable dependencies. As
discussed at the end of Sect. 9, relationships among com-
parison operators may also be employed in the implication.
Indeed, it is highly non-trivial to study inference systems
when metric operator exists [48]. We focus on part of the
inference rules applicable to the semantic query optimiza-
tion below and leave the attempt of developing a sound and
complete set of inference rules in the future work.

7.3 Predicate elimination

Predicate elimination is a typical technique in query rewrit-
ing with data dependencies. The basic idea is: if a predicate
is known to be always true, then it can be eliminated from
query. Since the rewritten query has less predicates to evalu-
ate, query performance can be improved. Following the same
line, we mainly study two opportunities for eliminating pred-
icates in dataspace queries.

First, suppose that there is a dependency ¢;[Q] — ¢;[Q]
where ¢;[Q], ¢;[Q] are two patterns in @[Q]. Then, the
query can be rewritten by

(q,0) = V

#LQ1eP[QN\{p:[Q1}

PLQ]. 3

That is, we eliminate ¢;[Q] from the query condition @[Q].
According to the dependency, any objects agreeing ¢;[Q]
should also agree ¢;[Q]. Consequently, the set of answers
having (g, 1) < ¢;[Q] should be a subset of the answers
(q,1) < ¢;[Q]. Referring to the OR relationship between
patterns, it is safe to rewrite the query by removing ¢;[Q]
from @[Q].

Second, suppose that there is a dependency ¢[X] — ¢[Y]
where ¢[X], ¢[Y] are projections of ¢[O] on attributes X <
0,Y C Q. According to the semantics of dependencies, the
query can be rewritten by:

\/ el \Yl)
¢lQ]eP[0]

(g,1) <

In other words, ¢[Y] is eliminated from the query predicates.
Again, as analyzed before, the answer set having (g,) <
¢[X] should be a subset of (¢, 1) < ¢[Y]. Thereby, the con-
dition ¢[X] A ¢[Y] is essentially equivalent to ¢[X]. We can
safely eliminate ¢[Y] from the predicates too.

Since less comparison functions need to be considered,
the query efficiency is improved by applying the aforesaid
two eliminations.

Comparable dependencies over heterogeneous data

269

Example 5 We use the query in Example 4 to illustrate the
predicate elimination.

First, let’s consider the elimination among ¢;[Q] in @[Q].
According to the containment rule A4, we have the following
dependency

0 (post, post) — 6(post, addr).

By applying the augmentation rule A2, we can further expend
the rule as

6 (manu, manu) A 0 (post, post)
— 6(manu, manu) A 6(post, addr),

that is, ¢1[Q] — ¢2[Q]. Referring to the first elimination
type in formula (3), we can safely ignore ¢1[Q] in the query.
Similarly, ¢»[O] and ¢3[Q] can also be eliminated according
to ¢2[Q] — ¢4[Q] and ¢3[Q] — ¢4[O], respectively. The
query is eventually rewritten as (g, t) < ¢4[Q] after these
safe predicate elimination steps.

Next, we further investigate the elimination inside a pat-
tern ¢[Q1. Suppose that we have a dependency

6 (manu, prod) — 6 (post, addr).

According to the second type of elimination in formula (4),
the query evaluation with respect to ¢4[Q], that is, (¢, 1) =<
6(manu, prod) A0 (post, addr), can be rewritten by (g, t) =<
6 (manu, prod).

It is notable that the query is equivalently rewritten if
exact dependencies (with 0.0 error or 1.0 confidence) are
applied. Query answers are exactly the same as those with-
out using such dependencies. When approximate dependen-
cies are adopted, the returned answers will always be a super
set of exact ones since we rewrite the query by eliminating
part of the original query conditions. In other words, apply-
ing approximate dependencies will never lose answers. Such
conclusion is also observed in our experiments where the
recall accuracy of the query answers is always equal to 1.0.
Therefore, in the experiments in Sect. 8.3, we mainly observe
the precision accuracy of returned results. The experimental
results also verify that the predicate elimination can signifi-
cantly reduce the query time cost.

8 Experiments

In this section, we report an extensive experimental evalua-
tion of proposed mechanisms on two real data sets, Base and
Wiki. Google Base* is a very large, self-describing, semi-
structured, heterogeneous data collection. Each entry con-
sists of several attributes with corresponding values and can
be regarded as an object in dataspaces. Due to heterogeneity

4 http://base.google.com/.

Table 3 Example of dependencies

Dependency Conf ¢
0] 6(mpn, upc) — 6(id, id) 0.99
w2 6(mpn, mpn) — 6(id, id) 1.00
03 : 6(mpn, mpn) — #(imagelink, imagelink) 0.96

of data, which are contributed by users around the world, the
data set is extremely sparse. According to our observation,
there are total 129 attributes in 10,000 objects, while most of
these objects only have less than 10 attributes individually.

Another real data set of dataspaces is from Wikipedia,’
where each article usually has an object with some attributes
and values to describe the basic structured information of the
entry. The attributes of objects in different entries are various
(e.g., 251 attributes in 10k objects), while each object may
only contain a limited number of attributes (less than 10).
Again, all these objects from heterogeneous sources form a
huge spare dataspace in Wikipedia.

Table 3 illustrates examples of comparable dependencies
in the Base data set. The attributes mpn and upc denote a pair
of comparable attributes in the heterogeneous data, that is,
the manufacture product number and unified product code,
respectively. The dependency ¢ in Table 3 states that if two
products have comparable mpn or upc, then their ids should
be comparable as well (e.g., denote the same product). Such
dependencies are also the examples of results discovered by
Algorithm 5.

Given certain dependencies,” our experiments in Sect. 8.1
evaluate both the effectiveness and efficiency of various
computation algorithms for error and confidence measures.
Moreover, in Sect. 8.2, we present the performance of pay-
as-you-go discovery. Finally, Sect. 8.3 reports the effective-
ness of applying data dependencies in query optimization.
We adopt the widely used cosine similarity with g-grams
[41] as the comparison operator. Similar results in the sec-
ondary Wiki data set may be omitted. All algorithms are
implemented by Java. Experiments run on a machine with
Intel Core 2 CPU (2.13 GHz) and 2 GB of memory.

6

8.1 Validation evaluation

To evaluate the approximation computation of error and
confidence, we mainly observe the relative performance of
exact/approximate measures and the corresponding compu-
tation time cost.

As illustrated in Figs. 1a and 2a, the relative performance
of error (¢/g) is not as stable as that of confidence (c¢/¢). The
underlining reason is that we consider dependencies which

3 http://www.wikipedia.org/.
6 ¢.g., in Table 3 discovered by our Algorithm 5.

@ Springer

http://base.google.com/
http://www.wikipedia.org/

270

S. Song et al.

Fig. 1 Performance (g/g,

(Q) relative performance §/g

(b) time performance

time) of error approximation 25 . : : : : 10000 : : . . :
o) Greedy —+—
2 % 1000 [Randomized ---x--- A
s, —_ Exact -~
5 a 2 o0k]
s / S 10f]
o oq5f, \ 1 ©
N o .
g X 2 1L]
kS / = X
s .1 o/ i o1k E
o kS IR
Greedy —+— 0.01 F * L
Randomized ---x--- s I, S
05 1 1 1 1 1 0001 == 1 1 1 1 1
300 350 400 450 500 550 600 300 350 400 450 500 550 600
Objects # Objects
Fig. 2 Performance (¢/¢, time) (a) relative performance c/c (b) time performance
of confidence approximation 1.2 T T T T T 10000 T T T T T
) Greedy —+— 1000 F Greedy —+—— A
2 Randomized ---x--- Randomized ---x---
g 11F b % 10 Exact ------ x4
S B 1oL ’]
S L e 8
o > 1L]
o
2 S «
T ool 1 F 01F E
[9)
o 0.01
0.8 . L . L . 0.001 *=
300 350 400 450 500 550 600 300
Objects # Objects
Fig. 3 Scalability of error base wiki
approximation 2.5 T T T T T 1.4 T T T T T
Greedy —+— 1ok Greedy —+—

o | Randomized ---x---

Randomized ---x---

0 O R
B 1 Bos .
23 0.
S 3
<4 o 0.6]
£ 71 E
= 04 g
i 0.2 .
0 0 1 1 1 1 1
8k 10k 12k 14k 16k 18k 20k 8k 10k 12k 14k 16k 18k 20k
Objects # Objects

almost hold, with low error/high confidence. For example,
the confidence of ¢3 in Table 3 is about 0.96. A slight differ-
ence between ¢ and ¢ (e.g., 0.97 and 0.96) will not affect the
relative performance (c¢/¢) largely, while such small absolute
difference appears significant in the relative performance of
error measure, for example, between 0.04 and 0.03 of g and
g. For the randomized approach, we have requirements of
additive ¢ = 0.2 and probability 6 = 0.8. Although, the
approximation performance might not be exactly bounded,
for example, under 350 objects in Fig. 1a, it is bounded with
high probability (guaranteed by § = 0.8).

Obviously, exact computation of validation does not scale
well. As presented in Figs. 1b and 2b, the exact computa-
tion increases exponentially, which is not surprising accord-
ing to our previous analysis of hardness in computing error

@ Springer

and confidence. Meanwhile, the approximation computation
keeps significantly lower time cost. To demonstrate the scala-
bility of approximation computation, Figs. 3 and 4 report the
validation cost under various sizes of objects in dataspaces,
in both Base and Wiki data sets.

Nevertheless, we also evaluate the randomized com-
putation when different additive € and probability § are
required. Figure 5 reports the sampling sizes under various
requirements, and the corresponding effects on time costs.
Generally, the larger the additive € is allowed, the less the
number of samples are required. On the other hand, to achieve
higher probability § guarantee, we need to draw more sam-
ples. Intuitively, using more samples will increase the com-
putation costs, thereby the time costs of error and confidence
in Fig. 5b, ¢ are roughly affected by the size of samples.

Comparable dependencies over heterogeneous data 271
Fig. 4 Scalability of base wiki
confidence approximation 2.5 T T T T T 14 T T T T T
Greedy —— 12}k Greedy —— A
2 |- Randomized ---x--- E Randomized ---x--- g
= s 1t]
3 1 8osf .
Q B
5 2 06 =
o £ o 06 T E
E - £ o
= = 04} orecel 4
i %
02§ 1
O 1 1 1 1 1 o 1 1 1 1 1
8k 10k 12k 14k 16k 18k 20k 8k 10k 12k 14k 16k 18k 20k
Objects # Objects
Fig. 5 Sampling size apd time (a) sampling size
performance of randomized e
algorithm with various additive
€ and probability § 600
(%]
9]
‘a 400
§
o 200
H* P 0.9
0 P08
0.1 06 probabilty 3
: = 0. ili
0.3 0.4 5 0.5 P y
additive € ’
(b) computing error (c¢) computing conf
_. 03 .
L C)
% 02 k7
o o)
O O
o 01 ©
£ 0.9 e 0.9
E o 08 = 8
0.1
0.5 0.5
e 04 o5 e 04 o5

8.2 Discovery evaluation

In this experiment set, we evaluate the pay-as-you-go discov-
ery of dependencies by calling Algorithm 5 incrementally,
that is, X :=DISCOVERY(X, n, 0). The discovery experi-
ments also use 10k objects in the data set. Given a fixed
k, the result sizes are very close with a small variance under
different numbers of objects. When k = 4, there are about
232653 cDs returned. It reduce to 26517 when k = 3. There
is only 3639 for k = 2. We mainly observe the time cost
under these various settings in the following.

Figure 6a illustrates the incremental discovery of depen-
dencies with the increase in functions. It is notable that the
y-axisis scaled logarithmically, that is, the time cost increases
heavily with the number of functions. In fact, the size k of
functions in a dependency also affects the discovery perfor-
mance largely. It is not surprising due to the intrinsic hard-
ness in discovering dependencies with respect to attributes
(and the corresponding comparison functions). Although
the measure requirement does not affect the performance

significantly, a loose requirement like larger error require-
ment enables more pruning opportunities in Proposition 5.
As presented in Fig. 6b with various error measure require-
ments 7, a larger error requirement 1 needs less time cost.

As shown in Fig. 7, the discovery algorithm scales well in
large size of objects, since greedy approximation is adopted
for validation. These results also verify the efficiency of
approximation computation proposed in Sect. 5 for validat-
ing dependencies.

8.3 Query optimization evaluation

This set of experiments evaluate the performance of query
optimization by comparable dependencies as illustrated in
Sect. 7. The query used in experiments has three predicates,
including attributes mpn, id and imagelink. We follow the
convention of evaluating semantic query optimization [7,25,
52] as discussed in Sect. 2, that is, to observe the query per-
formance with and without query rewriting by data depen-
dencies.

@ Springer

272

S. Song et al.

Fig. 6 Performance of

(a) incremental performance

(b) measure requirement
T T T

pay-as-you-go discovery 1000 LR T T T T T T T
k=3 400 —+——
100 | k=2
2 o <2 300t .
o 4L o 200+ 4
£ E
S [
01] 100 | k=4 4
S k=3 ---x---
k=2 ---%---
001 1 1 1 1 1 1 1 0 A N 3 N s
10 20 30 40 50 60 70 0.005 001 0015 002 0025 003 0.035
Functions Measure Requirement n
Fig. 7 Scalability of wiki
pay-as-you-go discovery 2500 150 T T T T T
k=4 ——
2000 120 | k=3 --x---]
= = k=2 -
7 1500 G 90 g
O (&)
® o C i
2 1000 g 6o
= =
500 30 g
0 0 Mezooooo S Wrrrivret SRTrPor ISPy
4 5k 6k 7k 8 9k 10k
Objects # Objects
Fig. 8 Performance of query (a) accuracy performance (b) time performance
optimization 04
T T T T T . T T T T T
1 ¢1,¢=0.99 ——
0al ©2e=100 e
: - > F ¢3,c=0.96 ---*-- E
< 098l o B e . T All deps & -
S R :]
(2]
S 0.2
3 096 19
o o1,c=0.99 —— £
094l #20=100 oo 1 F o
: 93,c=0.96 - ¥
All deps & g
092 1 1 1 1 1 O 1 1 1 1 1
4k 5k 6k 7k 8 9k 10k 4k 5k 6k 7k 8k 9k 10k

Objects

To demonstrate the query accuracy, we observe the pre-
cision of answers. As stated, the query with (approximate)
dependencies will never lose answers. That is, the recall of
query answers will always be 1.0, which is also observed
in our experiments and not reported. Figure 8 first illus-
trates the results by applying three different dependencies
in Table 3 individually, for example, ¢1, c = 0.99 denotes
the dependency ¢; with confidence 0.99. Moreover, results
with all three dependencies and with no dependencies are also
presented.

By applying exact data dependencies, the query answer is
equivalent to the one without applying dependencies. There-
fore, as presented in Fig. 8a, the precision of ¢, with con-
fidence ¢ = 1.00 is always 1. A dependency with lower
confidence may return more false answers, that is, lower
query precision by ¢3 with confidence ¢ = 0.96. When

@ Springer

Objects

several approximate dependencies are applied together, false
answers of each one appear together in the results and thus
the accuracy drops.

On the other hand, as shown in Fig. 8b, the query effi-
ciency is improved when dependencies are applied. It is natu-
ral that the more the dependencies could be applied, the lower
the query costs would be. By considering all dependencies,
the query efficiency is significantly improved compared
with the no dependency query. Meanwhile, there is no much
accuracy lost, with precision about 0.98 under most tests as
presented in Fig. 8a.

Finally, to observe the performance of applying low qual-
ity dependencies, we introduce an artificial CD ¢4 with low
confidence 0.41.

@4 2 0(id, id) — 6(imagelink, imagelink)

Comparable dependencies over heterogeneous data 273
Fig. 9 Performance of query (@) accuracy performance (b) time performance

optimization under low quality 1 ; ; . ; . ; ; 1.2 . T T T T T T—
dependencies 94, c=0.41 m— 111 ¢4,c=0.41 7
09k 4 1 No deps =3 N 4
s 209t 1
@ g 0.8 | 7
o £ L _

i 0.6
20 25 28 34 39 45 53 ' 20 25 28 34 39 45 53

Erroneous Answers

As shown in aforesaid results, there will be more erroneous
answers when applying such low confidence dependencies.
Therefore, Fig. 9 mainly reports the performance under var-
ious erroneous answers in different tests. As illustrated, the
erroneous answers increase from 20 to 53, in the 7 tests with
data sizes ranging from 4k to 10k. Although the precision
accuracy in Fig. 9a is low due to the weak confidence depen-
dency, the precision results are quite stable in various erro-
neous answer sizes. The results demonstrate the robustness
of applying CDs in query optimization. The time cost Fig. 9b
grows linearly again as it depends on the data sizes, which is
increasing linearly from 4k to 10k in this experiment.

9 Conclusions and discussions

In this paper, we introduce data dependencies to dataspac-
es, namely comparable dependencies (CDs), which turn out
practically useful in handling heterogeneous data. To our
best knowledge, this is the first work to adapt dependen-
cies to dataspaces with the consideration of comparable cor-
respondences. Unfortunately, due to heterogeneous data, as
we proved, it is already hard to tell whether a dependency
almost holds in the data. In fact, the confidence validation is
also proved hard to approximate to within any constant factor.
We propose several greedy and randomized approaches for
approximately solving the validation problem. The semantic
query optimization with comparable dependencies in data-
spaces is also illustrated, together with an extensive experi-
mental evaluation on real data sets.

We believe that interesting studies can be raised on the
proposed notations, some of which are still open. For exam-
ple, a fundamental attempt would be a sound and complete
set of inference rules for dependency implication in dataspac-
es, under certain premise of comparison functions. Besides
the implication rules introduced in Sect. 7.2, further infer-
ence rules can be introduced when the relationships among
comparison functions are identified. For example, an equal-
ity operator ‘=" can always be interpreted as a special case
of metric operator ‘~_q’, that is, with metric distance = 0.

Erroneous Answers

Moreover, if more than one comparison operators are asso-
ciated to an attribute pair, any two objects in a dataspace S
agreeing on a comparison function with equality must always
agree on the corresponding comparison function with metric
operator, for example, ‘~<7’. Consequently, more types of
inference rules can be introduced, which is out the scope of
this study. We leave the interesting topic as future work to
develop a sound and complete inference system under certain
premise of comparison functions.

Acknowledgments This work is supported in part by the Hong Kong
RGC GRF Project No.611411, National Grand Fundamental Research
973 Program of China under Grant 2012-CB316200, HP IRP Pro-
ject 2011, Microsoft Research Asia Grant, MRA11EGO0S5 and HKUST
RPC Grant RPC10EG13, and US NSF through grants I1S-0905215,1IS-
0914934, DBI-0960443, OISE-0968341, OIA-0963278.

References

1. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers
in inconsistent databases. In: PODS, pp. 68-79 (1999)

2. Armstrong, W.W.: Dependency structures of data base relation-
ships. In: IFIP Congress, pp. 580-583 (1974)

3. Bertossi, L.E., Bravo, L., Franconi, E., Lopatenko, A.: The
complexity and approximation of fixing numerical attributes in
databases under integrity constraints. Inf. Syst. 33(4-5), 407-
434 (2008)

4. Bitton, D., Millman, J., Torgersen, S.: A feasibility and perfor-
mance study of dependency inference. In: ICDE, pp. 635-641
(1989)

5. Bohannon, P., Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.:
Conditional functional dependencies for data cleaning. In: ICDE,
pp. 746-755 (2007)

6. Chakravarthy, U.S., Grant, J., Minker, J.: Logic-based approach to
semantic query optimization. ACM Trans. Database Syst. 15(2),
162-207 (1990)

7. Cheng, Q., Gryz, J., Koo, F., Leung, T.Y.C., Liu, L., Qian, X.,
Schiefer, K.B.: Implementation of two semantic query optimiza-
tion techniques in db2 universal database. In: VLDB, pp. 687-698
(1999)

8. Chiang, F., Miller, R.J.: Discovering data quality rules. PVLDB
1(1), 1166-1177 (2008)

9. Chomicki, J.: Semantic optimization techniques for preference
queries. Inf. Syst. 32(5), 670-684 (2007)

10. Chomicki, J., Marcinkowski, J.: Minimal-change integrity mainte-
nance using tuple deletions. Inf. Comput. 197(1-2), 90-121 (2005)

@ Springer

274

S. Song et al.

12.

13.

14.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

. Cormode, G., Golab, L., Korn, F., McGregor, A., Srivastava, D.,

Zhang, X.: Estimating the confidence of conditional functional
dependencies. In: SIGMOD Conference, pp. 469—482 (2009)
Dinur, I., Safra, S.: The importance of being biased. In: STOC,
pp- 3342 (2002)

Dong, X., Halevy, A.Y.: Indexing dataspaces. In: SIGMOD Con-
ference, pp. 43-54 (2007)

Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record
detection: a survey. IEEE Trans. Knowl. Data Eng. 19(1), 1-16
(2007)

. Fan, W.: Dependencies revisited for improving data quality. In:

PODS, pp. 159-170 (2008)

Fan, W., Geerts, F., Lakshmanan, L.V.S., Xiong, M.: Discover-
ing conditional functional dependencies. In: ICDE, pp. 1231-1234
(2009)

Fan, W., Li, J., Jia, X., Ma, S.: Reasoning about record matching
rules. In: PVLDB (2009)

Feige, U., Goldwasser, S., Lovdsz, L., Safra, S., Szegedy, M.:
Approximating clique is almost np-complete (preliminary version).
In: FOCS, pp. 2-12 (1991)

Flach, P.A., Savnik, I.: Database dependency discovery: a machine
learning approach. AI Commun. 12(3), 139-160 (1999)

Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, London
(1979)

Giannella, C., Robertson, E.L.: On approximation measures for
functional dependencies. Inf. Syst. 29(6), 483-507 (2004)

Golab, L., Karloff, H.J., Korn, F., Srivastava, D., Yu, B.: On gener-
ating near-optimal tableaux for conditional functional dependen-
cies. PVLDB 1(1), 376-390 (2008)

Halevy, A.Y., Franklin, M.J., Maier, D.: Principles of dataspace
systems. In: PODS, pp. 1-9 (2006)

Halldérsson, M.M., Radhakrishnan, J.: Greed is good: approxi-
mating independent sets in sparse and bounded-degree graphs. In:
STOC, pp. 439-448 (1994)

Hsu, C.N., Knoblock, C.A.: Semantic query optimization for query
plans of heterogeneous multidatabase systems. IEEE Trans. Knowl.
Data Eng. 12(6), 959-978 (2000)

Huhtala, Y., Kirkkdinen, J., Porkka, P., Toivonen, H.: Efficient dis-
covery of functional and approximate dependencies using parti-
tions. In: ICDE, pp. 392-401 (1998)

Huhtala, Y., Kidrkkiinen, J., Porkka, P., Toivonen, H.: Tane: an effi-
cient algorithm for discovering functional and approximate depen-
dencies. Comput. J. 42(2), 100-111 (1999)

Ilyas, L.E., Markl, V., Haas, P.J., Brown, P., Aboulnaga, A.: Cords:
automatic discovery of correlations and soft functional dependen-
cies. In: SIGMOD Conference, pp. 647-658 (2004)

Jeffery, S.R., Franklin, M.J., Halevy, A.Y.: Pay-as-you-go user
feedback for dataspace systems. In: SIGMOD Conference,
pp. 847-860 (2008)

Karakostas, G.: A better approximation ratio for the vertex cover
problem. ACM Trans. Algorithm. 5(4), 1-8 (2009). doi:10.1145/
1597036.1597045

Karp, R.M.: Reducibility among combinatorial problems. In:
Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Com-
putations, Plenum Press, Berlin, pp. 85-103 (1972)

King, R.S., Legendre, J.J.: Discovery of functional and approx-
imate functional dependencies in relational databases. JAM-
DS 7(1), 49-59 (2003)

@ Springer

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Kivinen, J., Mannila, H.: Approximate inference of func-
tional dependencies from relations. Theor. Comput. Sci. 149(1),
129-149 (1995)

Koudas, N., Saha, A., Srivastava, D., Venkatasubramanian, S.: Met-
ric functional dependencies. In: ICDE, pp. 1275-1278 (2009)
Kramer, S., Pfahringer, B.: Efficient search for strong partial deter-
minations. In: KDD, pp. 371-374 (1996)

Levy, A.Y., Sagiv, Y.: Semantic query optimization in datalog pro-
grams. In: PODS, pp. 163-173 (1995)

Madhavan, J., Cohen, S., Dong, X.L., Halevy, A.Y., Jeffery, S.R.,
Ko, D., Yu, C.: Web-scale data integration: you can afford to pay
as you go. In: CIDR, pp. 342-350 (2007)

Mannila, H., Réihd, K.J.: Dependency inference. In: VLDB,
pp. 155-158 (1987)

Mannila, H., Rdihd, K.J.: Design of Relational Databases. Addi-
son-Wesley, Boston (1992)

Mannila, H., Réihd, K.J.: Algorithms for inferring functional
dependencies from relations. Data Knowl. Eng. 12(1), 83—
99 (1994)

Navarro, G.: A guided tour to approximate string matching. ACM
Comput. Surv. 33(1), 31-88 (2001)

Parnas, M., Ron, D.: Approximating the minimum vertex cover in
sublinear time and a connection to distributed algorithms. Theor.
Comput. Sci. 381(1-3), 183-196 (2007)

Pfahringer, B., Kramer, S.: Compression-based evaluation of par-
tial determinations. In: KDD, pp. 234-239 (1995)

Rahm, E., Bernstein, P.A.: A survey of approaches to automatic
schema matching. VLDB J. 10(4), 334-350 (2001)

Salles, M.A.V., Dittrich, J., Blunschi, L.: Intensional associations
in dataspaces. In: ICDE (2010)

Salles, M.A.V., Dittrich, J.P., Karakashian, S.K., Girard, O.R.,
Blunschi, L.: Itrails: pay-as-you-go information integration in da-
taspaces. In: VLDB, pp. 663-674 (2007)

Sarma, A.D., Dong, X., Halevy, A.Y.: Bootstrapping pay-as-you-
go data integration systems. In: SIGMOD Conference, pp. 861-874
(2008)

Song, S., Chen, L.: Differential dependencies: reasoning and dis-
covery. ACM Trans. Database Syst. 36(3), 16 (2011)

Song, S., Chen, L., Cheng, H.: Parameter-free determination of dis-
tance thresholds for metric distance constraints. In: ICDE (2012,
to appear)

Song, S., Chen, L., Yu, P.S.: On data dependencies in dataspaces.
In: ICDE, pp. 470-481 (2011)

Song, S., Chen, L., Yuan, M.: Materialization and decomposition
of dataspaces for efficient search. IEEE Trans. Knowl. Data Eng.
23(12), 1872-1887 (2011)

Su, H., Rundensteiner, E.A., Mani, M.: Semantic query optimiza-
tion for xquery over xml streams. In: VLDB, pp. 277-288 (2005)
Wang, D.Z.,Dong, X.L., Sarma, A.D., Franklin, M.J., Halevy, A.Y.:
Functional dependency generation and applications in pay-as-you-
go data integration systems. In: WebDB (2009)

Wyss, C.M., Giannella, C., Robertson, E.L.: Fastfds: A heuristic-
driven, depth-first algorithm for mining functional dependencies
from relation instances-extended abstract. In: DaWakK, pp. 101-110
(2001)

http://dx.doi.org/10.1145/1597036.1597045
http://dx.doi.org/10.1145/1597036.1597045

	Comparable dependencies over heterogeneous data
	Abstract
	1 Introduction
	1.1 Motivation example
	1.2 Applications
	1.3 Challenges and contributions

	2 Related work
	3 Foundations
	3.1 Comparable dependencies
	3.1.1 Comparison function
	3.1.2 Comparable dependency

	3.2 Approximate dependencies
	3.2.1 Error measure
	3.2.2 Confidence measure

	4 Validation problem
	4.1 The hardness
	4.2 Special case of aligned attributes
	4.3 Tractable special case

	5 Approximation computation
	5.1 Greedy approach
	5.1.1 Approximate error
	5.1.2 Approximate confidence

	5.2 Randomized approach
	5.2.1 Estimated error
	5.2.2 Estimated confidence
	5.2.3 Randomized versus distributed

	6 Pay-as-you-go discovery
	6.1 Overview
	6.2 Approximate implication
	6.3 Redundancy
	6.4 Algorithm

	7 Semantic query optimization
	7.1 Preliminary
	7.2 Implication rules
	7.3 Predicate elimination

	8 Experiments
	8.1 Validation evaluation
	8.2 Discovery evaluation
	8.3 Query optimization evaluation

	9 Conclusions and discussions
	Acknowledgments
	References

