
Data & Knowledge Engineering 87 (2013) 146–166

Contents lists available at ScienceDirect

Data & Knowledge Engineering

j ourna l homepage: www.e lsev ie r .com/ locate /datak
Editorial

Efficient discovery of similarity constraints for
matching dependencies

Shaoxu Song a,b,⁎, Lei Chen c

a Key Laboratory for Information System Security, MOE, School of Software, Tsinghua University, China
b TNList, School of Software, Tsinghua University, China
c Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong
a r t i c l e i n f o
⁎ Corresponding author at: TNList, School of Softwa
E-mail addresses: sxsong@tsinghua.edu.cn (S. Song

0169-023X/$ – see front matter © 2013 Elsevier B.V. A
http://dx.doi.org/10.1016/j.datak.2013.06.003
a b s t r a c t
Article history:
Received 15 December 2011
Received in revised form 12 June 2013
Accepted 12 June 2013
Available online 29 June 2013
The concept of matching dependencies (MDs) has recently been proposed for specifying
matching rules for object identification. Similar to the functional dependencies (with
conditions), MDs can also be applied to various data quality applications such as detecting
the violations of integrity constraints. In this paper, we study the problem of discovering
similarity constraints for matching dependencies from a given database instance. First, we
introduce the measures, support and confidence, for evaluating the utility of MDs in the given
data. Then, we study the discovery of MDs with certain utility requirements of support
and confidence. Exact algorithms are developed, together with pruning strategies to improve
the time performance. Since the exact algorithm has to traverse all the data during the
computation, we propose an approximate solution which only uses part of the data. A bound of
relative errors introduced by the approximation is also developed. Finally, our experimental
evaluation demonstrates the efficiency of the proposed methods.

© 2013 Elsevier B.V. All rights reserved.
Keywords:
Data dependencies
Matching dependencies
Management of integrity constraints
Database integration
1. Introduction

Recently, data quality has become a hot topic in the database community due to the huge amount of “dirty” data originated
from different resources (see [4] for a survey). These data often contain duplicates, inconsistencies and conflicts, due to various
errors introduced by human and machines [35]. In addition to the cost of dealing with the huge volume of data, manually
detecting and removing “dirty” data is definitely out of practice because human proposed cleaning methods may introduce
inconsistencies again. Therefore, data dependencies, which have been widely used in the relational database design to set up the
integrity constraints, have been revisited and revised to capture wider inconsistencies in the data [16,12,33,45]. For example,
consider a Contacts relation with the schema:
Contacts SIN;Name;CC; ZIP;City; Streetð Þ:
The following functional dependency fd specifies a constraint that for any two tuples in Contacts, if they have the same ZIP
code, then these two tuples have the same City as well. Recently, functional dependencies (FDs) have been extended to conditional
functional dependencies (CFDs) [8], i.e., FDs with conditions, which have more expressive power. The basic idea of these extensions
is making the FDs, that originally hold for the whole table, valid only for a set of tuples. For example, the following cfd specifies that
re, Tsinghua University, China. Tel.: +86 10 62795435.
), leichen@cse.ust.hk (L. Chen).

ll rights reserved.

http://dx.doi.org/10.1016/j.datak.2013.06.003
mailto:sxsong@tsinghua.edu.cn
mailto:leichen@cse.ust.hk
http://dx.doi.org/10.1016/j.datak.2013.06.003
http://www.sciencedirect.com/science/journal/0169023X

147S. Song, L. Chen / Data & Knowledge Engineering 87 (2013) 146–166
only in the condition of country code CC = 44, if two tuples have the same ZIP, then they must have the same Street as
well.
Table 1
Exampl

SIN

584
584
584
265
265
939
fd : ZIP½ �→ City½ �
cfd : ZIP;CC ¼ 44½ �→ Street½ � :
These dependency constraints can be used to detect data integrity violations [14]. For instance, we can use the above fd to
detect violations in an instance of Contacts in Table 1. The tuples t5 and t6 with the same values of ZIP = 021 have different values
of City. Thus, these tuples are detected as violations of the above fd.

Although functional dependencies (and their extension with conditions) are very useful in determining data inconsistency
and repairing the “dirty” data [14], they check the specified attribute value agreement based on the equality. For example, with
the above cfd, tuples that have CC = 44 and the same value on ZIP attribute will be checked to see whether they have exactly
equal values on Street. Obviously, this strict equality constraint limits the usage of FDs and CFDs, since real-world information often
has various representation formats. For instance, the tuples t2 and t3 in the Contacts table will be detected as “violations” of the
cfd, since they have “different” Street values but agree on ZIP and CC = 44. However, “No.2, Central Rd.” and “#2, Central Rd.” are
indeed the “same” street in the real-world with different representation formats.

To make dependencies adapt to this real-world scenario, i.e., to be tolerant of various representation formats, Fan [16]
proposed a new concept of data dependencies, calledmatching dependencies (MDs). Informally, a matching dependency targets on
the fuzzy values like text attributes. It specifies the dependency between two set of attributes according to their matching quality
measured by some similarity matching operators, such as Euclidean distance and cosine similarity (see [6] for a survey). Again, in
the Contacts example, we may have an MD as
md1 : Street½ �→ City½ �; b0:8; 0:7Nð Þ

states that for any two tuples from Contacts, if they agree on attribute Street (the matching similarity, e.g. cosine similarity,
which
on the attribute Street is greater than a threshold 0.8), then the corresponding City attribute should match as well (i.e. similarity
on City is greater than the corresponding threshold 0.7). Consequently, we can identify the violation between t5 and t6, since they
share the same Street, i.e., with cosine similarity 1.0 greater than 0.8, but have City value similarity 0.0 less than the threshold 0.7.

Similar to the FDs related techniques, MDs can be applied in many data quality tasks as well [16]. First, in data cleaning, we can also
use MDs to detect the inconsistent data, i.e., the data that do not follow the constraint (rule) specified byMDs. For example, according to
the above md1, for any two tuples ti and tj having similarity greater than 0.8 on Street, they should be matched on City as well
(similarity ≥ 0.7). If their City similarity is less than 0.7, then there must be something wrong in ti and tj, i.e., inconsistency. Such
inconsistency on text attributes cannot be detected by using FDs (and the extensions) based on the equality. In addition to locating the
inconsistent data, object identification, another important work for data cleaning, can also employ MDs as matching rules [19]. For
instance, according to
md2 : Name; Street½ �→ SIN½ �; b0:9; 0:9; 1:0Nð Þ

tuples have high similarities on Name and Street (both similarities are greater than 0.9), then these two tuples probably
if two
denote the same person in the real world, i.e., having the same SIN. Note that the tuple pair (t5,t6) is not a violation to md2, since
their similarity on attribute Name is 0.7 which is less than 0.9. The dependency md2 only evaluates the tuple pair which has high
similarities on Name and Street (i.e., both similarities are greater than 0.9).

1.1. Motivation

Matching dependencies have already been proved to be useful in applications [19,17]. In this paper, we focus on how to
discover such useful MDs. In fact, given a database instance, there are enormous MDs that can be discovered if we set different
similarity thresholds on attributes. Note that if all thresholds are set to 1.0, i.e., the equality case, MDs have the same semantics as
traditional FDs. In other words, traditional FDs are special cases of MDs. For instance, the above fd can be represented by an MD

([ZIP] → [City], b1.0, 1.0N). Clearly, not all the settings of thresholds for MDs are useful.
e of Contacts relation R.

Name CC ZIP City Street

Claire Green 44 606 Chicago No.2, Central Rd. t1
Claire Greem 44 606 Chicago No.2, Central Rd. t2
Claire Gree 44 606 Chicago #2, Central Rd. t3
Jason Smith 01 021 Boston No.3, Central Rd. t4
J. Smith 01 021 Boston #3, Central Rd. t5
W. J. Smith 01 021 Chicago #3, Central Rd. t6

148 S. Song, L. Chen / Data & Knowledge Engineering 87 (2013) 146–166
Following [11], we employ the confidence and support measures to evaluate the utility of MDs in the above applications.
Specifically, let's consider an MD of a relation R, denoted by φ(X → Y, λ), where X and Y are the attribute sets of R, λ is a pattern
specifying different similarity thresholds on each attribute in X and Y. Let λX and λY be the projections of thresholds in pattern λ
on the attributes X and Y respectively.

• The support of φ is the proportion of tuple pairs whose matching similarities are higher than the thresholds in φ on both
attributes of X and Y.

• The confidence is the ratio of tuple pairs whose matching similarities satisfy λX also satisfying λY.

In real applications inconsistency detection, in order to achieve high detection accuracy, we would like to use MDs with high
confidence. Otherwise, if users need high recall of object identification, then MDs with high support are preferred. Intuitively, it is
desirable to discover those MDs with high support and high confidence.

In this work, we study the problem of discovering proper settings of similarity thresholds for MDs, which can satisfy users'
utility requirements of support and confidence. It is worth noting that similarity constraints are not an issue in the previous
research on the discovery of FDs [28,22,48], where the equality constraint is already implied in each attribute. Although we use the
same names, the concepts of support and confidence for matching dependencies have no relation to the support and confidence
for association rules [2]. The measures for association rules are defined on the number of occurrences of item sets in transactions,
while the measures for data dependencies [11] consider the number of tuple pairs, in particular, with respect to similarity metrics
in MDs. Indeed, association rules specify constraints at instance level (item) with respect to one record (transaction). Matching
dependencies [16] consider constraints between two records (tuples) where no instance values are specified.

1.2. Contributions

In this paper, given a relation instance and X → Y, we study the issues of discovering similarity constraints for matching
dependencies on the given X → Y. Our main contributions are summarized as follows:

• First, we introduce the utility evaluation for MDs. Specifically, the confidence and support measures of matching dependencies
are formally defined, together with the computation of measures in the given relation instance.

• Second, we study exact algorithms for discovering MDs. The MDs discovery problem is to find settings of similarity thresholds on
attributes for MDs that can satisfy the required confidence and support. We first present an exact solution and then study
pruning strategies by the minimum requirements of support and confidence.

• Third, we study approximation algorithms for discovering MDs. Since the exact algorithm has to traverse all the data during the
computation, we propose an approximate solution which only uses some of the data. A bound of relative errors introduced by
the approximation is developed. Moreover, we also develop a strategy of early termination.

• Finally, we report an extensive experimental evaluation. The proposed algorithms on discovering MDs are studied. The
experimental results demonstrate that our pruning strategies can significantly improve the discovery efficiency.

The remainder of this paper is organized as follows. First, Section 3 presents the utility measures for MDs, including support and
confidence. In Section 4, we develop the exact algorithm for discovering MDs and study the corresponding pruning strategies. In
Section 5, we present the approximation algorithm with bounded relative errors. Then, Section 6 reports our extensive
experimental evaluation. Finally, we introduce some related work in Section 2, and conclude this paper in Section 7. Table 2 lists
the frequently used notations in this paper. An earlier and shorter conference version of this paper appears in [43].

2. Related work

Recently, traditional data dependencies, such as functional dependencies (FDs) and inclusion dependencies (INDs) for the
schema design [1], are revisited for new applications like improving the quality of data [16] or privacy-preserving [47]. The
Table 2
Notations.

Symbol Description

φ Matching dependency, MD

λ Threshold pattern, of similarity
Ct Candidate set of threshold patterns
c Ctj j, number of threshold patterns in Ct
ηs Minimum requirement, of support
ηc Minimum requirement, of confidence
R Original relation of data tuples
t Original data tuple
N Number of data tuples in original relation
D Statisical distribution of statistical tuples
s Statistical tuples for matching quality
n Number of statistical tuples in D

149S. Song, L. Chen / Data & Knowledge Engineering 87 (2013) 146–166
conditional functional dependencies (CFDs), as an extension of traditional FDs with conditions, are first proposed in [8] for data
cleaning. The basic idea of CFDs is making the FDs, originally hold for the whole table, valid only for a set of tuples specified by the
conditions. Cong et al. [14] study the detecting and repairing methods of violations to CFDs. Fan et al. [21] investigate the
propagation of CFDs for data integration. Bravo et al. [9] propose an extension of CFDs by employing disjunction and negation. Golab
et al. [26] define a range tableau for CFDs, where each value is a range. In addition, Bravo et al. [10] propose conditional inclusion
dependency (CINDs), which are useful not only in data cleaning, but are also in contextual schemamatching. Ilyas et al. [30] study a
novel soft FD, which is also a generalization of the classical notion of a hard FD where the value of X completely determines the
value of Y. In a soft FD, the value of X determines the value of Y not with certainty, but merely with high probability. All the above
extensions of dependencies are still based on the equality function, while our work studies the matching dependencies by
incorporating similarity metrics.

2.1. Dependencies with metrics

Matching dependencies (MDs) are first proposed in [16] for specifying matching rules for the object identification (a.k.a. record
matching or entity resolution, see [15] for a survey). The MDs can be regarded as a generalization of FDs, which are based on the
equality of values (i.e., having matching similarity equal to 1.0 exactly). Thus, FDs can be represented by the syntax of MDs as well.
Reasoning mechanism for deducing MDs from a set of given MDs is studied in [19]. A sound and complete inference system is also
presented in [17] for the deduction analysis of MDs. Matching dependencies and matching keys together with the reasoning
techniques can improve the quality of record matching methods. ul Hassan et al. [46] utilize matching dependencies for
improving the quality of consolidation in linked dataspaces. Data repairing and consistent query answering with matching
dependencies are also studied [23,5]. Moreover, Fan et al. [20] study the repairing with the cooperation of both conditional
functional dependencies and matching dependencies. Motivated by the usefulness of MDs, in this paper, we study the problem of
discovering similarity constraints for matching dependencies from data.

Besides matching dependencies, in recent work, the importance of introducing similarity metrics in dependencies has been
commonly recognized. Koudas et al. [33] study the dependencies with similarity metrics on attributes Y when given the equal
values on X. In addition, Song and Chen [44] apply distance/similarity metrics on both sides of X and Y attributes, known as
differential dependencies. Bassée and Wijsen [3] propose neighborhood dependencies (NDs) for predication purpose. Intuitively,
NDs express the constraint that if two tuples are close with respect to the predictor variables, then these two tuples should have
similar values for the target variable. Their extensions of dependencies with similarity metrics have been found useful.
Unfortunately, the discovery of similarity thresholds in such dependencies is not studied in previous work.

In addition to the metric distance/similarity of values, Golab et al. [25] propose sequential dependencies, which targets on
ordered data. A sequential dependency, in the form of X → g Y, states that when tuples are sorted on X, the distance between the
Y-values of any two consecutive tuples are within interval g. The matching dependencies considered in our work do not require
the data that can be ordered.

2.2. Discovery of dependencies

The discovery of dependencies from a given relation instance is widely studied [7,36,37,42,34,31]. In discovering FDs, previous
work targeted on generating a canonical cover of all FDs.

Due to the inherent hardness of the discovery problem, i.e., the size of results could be exponential [1], a series of strategies have
been proposed to improve the efficiency of discovery. Huhtala et al. [28,29] propose a level-wise algorithm, namely TANE, together
with efficient pruning techniques for searching in the lattice of attributes. Remarkably, TANE algorithm also supports the discovery of
approximate FDs, where the efficient pruning technique can still be applied. Instead of the level-wise searching,Wyss et al. [48] study
depth-first, heuristic-driven algorithm, namely FastFDs, which is (almost) linear to the size of FDs cover. Rather than pruning the valid
non-minimal dependencies, Flach and Savnik [22] discover FDs in a bottom-up style, which considers the maximal invalid
dependencies first.When searching in a hypotheses space, themaximum invalid dependencies are used for pruning the search space.
The above three strategies are also adapted to improve the efficiency of discovering CFDs, by Fan et al. [18].

Unfortunately, the problem of discovering similarity thresholds for MDs studied in this paper, is not considered in the existing
techniques on discovering FDs. Once the attributes X and Y in the dependencies are determined. It already implies the equality
constraint on each attribute. Therefore, the existing techniques are not applicable to improve the efficiency of discovering the
similarity thresholds for MDs.

2.3. Measures for dependencies

A dependency can be measured in various ways. In measures of approximate FDs, since a FD may “almost” hold on a relation
instance, g3 measure [32] is widely used to evaluate these approximate FDs [28,29,26], that is, the minimum number of tuples that
have to be removed from the relation instance for the FD to hold. Pfahringer and Kramer [40,34] propose a measure based on the
minimum description length principal. An encoding length of a table T is defined based on X → Y to compress T. Giannella and
Robertson [24] develop an approximationmeasure of FDs based on the intuition: the degree to which X → Y is approximate in a table
T is the degree to which T determines a function from ∏ X(T) to ∏ Y(T). In addition, Chiang and Miller [12] also study some other
measures such as conviction and χ2-test for evaluating dependency rules. Most of the previous measures are defined on the equality

150 S. Song, L. Chen / Data & Knowledge Engineering 87 (2013) 146–166
function for FDs,which are not directly applicable to MDswith similaritymetrics. For example, the g3measure is computed by grouping
tuples with equal values, while the similarity metrics are associated with respect to tuple pairs without groups.

The confidence and support measures, which are defined based on tuple pairs, are also used in discovering approximate
functional dependencies [11]. The confidence can be interpreted as an estimate of the probability that a randomly drawn pair of
tuples agreeing on X also agree on Y. As mentioned in the Introduction, the support and confidence measures [41] for finding
association rules [2] are different from the measures used for evaluating data dependencies [11]. In short, the measures for
association rules are defined on the number of occurrences of item sets in transactions, while the measures for data
dependencies consider the number of tuple pairs with respect to distance metrics. Following [11], in our study, we also utilize
support and confidence to evaluate MDs.

3. Utility measures

In this section, we formally introduce the definitions of MDs. Then, we investigate utility measures for evaluating MDs over a
given database instance.

3.1. Matching dependencies

Traditional functional dependencies (FDs and their extensions) rely on the equality operator = to identify dependency
relationships. However, in some real world application, it is not possible to use the equality operator = to identify matching over
fuzzy data values such as text values. For instance, Jason Smith and J.Smith in the Name attribute may refer to the same real world
entity. Therefore,matching dependencies (MDs) [16] are proposed based on the matching quality. Instead of the equality constraint
in FDs, the MDs declare similarity constraints through the similarity matching operators, denoted by ≈, such as edit distance [39],
cosine similarity with word tokens [13] or q-grams [27] for text values.

Consider a relation r with schema R A1;…;Amð Þ . Following similar syntax of FDs, we define MDs as following.1 A matching
dependency (MD) φ has the form (X → Y, λ), where X R;Y R are two sets of attributes, and λ is a threshold pattern of similarity
thresholds on attributes in X ∪ Y, e.g., λ[A] denotes the similarity threshold on attribute A ∈ X ∪ Y.

Definition 1. AMatching Dependency (MD) φ specifies a constraint that, for any two tuples t1 and t2 in a relation r with schemaR,
if ΛAi∈Xt1 Ai½ �≈λ Ai½ � t2 Ai½ �, then ΛA j∈Y t1 Aj

� �
≈λ A j½ �t2 Aj

� �
, where λ[Ai] and λ[Aj] are the similarity thresholds on the attributes of Ai and

Aj respectively. For each attribute Ai ∈ X ∪ Y, the similarity matching operator ≈ returns true, if the similarity between t1[Ai] and
t2[Ai] satisfies the corresponding threshold λ[Ai].

For example, an MD φ([Street] → [City], b0.8, 0.7N) in the Contacts relation denotes that if two tuples have similar Street (with
matching similarity greater than 0.8) then their City values are probably similar as well (with similarity at least 0.7).

3.2. Measures

Following [11], we adopt the support and confidencemeasures to evaluate thematching dependencies over a relation instance. It is
worth noting that the measures for FDs, e.g., g3 measure [32], can be directly computed on the data tuples, based on the equality of
tuple values. However, for the above similarity constraints of MDs, we need to consider the matching quality (e.g., cosine similarity or
edit distance) of all the pairs of tuples t1 and t2 forR. When evaluating themeasures of different MDs, instead of on-line computing the
matching quality, we can pre-compute the pair-wised tuple matching off-line, and store the results for reuse among MDs.

Therefore, we introduce a statistical distribution (denoted byD) for the matching quality of pair-wised tuple matching forR. The
statistical distribution has a schemaD A1;…;Am; Pð Þ, where each attributeAi inDrecords similarities between values on the attributeAi
in R, and P is the statistical value. Let s be a statistical tuple in D, and s[Ai] be the projection on attribute Ai of s. Each s[Ai] denotes a
similarity value of two tuples on attribute Ai inR. The statistic s[P] denotes the probability that any two tuples t1 and t2 ofR have the
similarity values s[Ai], ∀Ai∈R. With a pair-wised evaluation of matching quality of all the N tuples forR, we can easily compute P by
count sð Þ

N∗ N−1ð Þ=2, where count(s) denotes the number of pairs of tuples having the similarity values in s. Different similarity matching operators
have various spaces of similarity values, such as cosine similarity in [0.0, 1.0] while edit distance having edit operations 1,2,.... In order
to evaluate in a consistent environment, wemap these similarity values s[A] to a unified space, say [0, d − 1], which is represented by
sim(A) with d elements.

Example 1. Table 3 shows an example of the statistical distributionD computed from Contacts in Table 1. First, cosine similarities
in the range of [0.0, 1.0] are mapped to elements in [0, d − 1] of sim(A) with d = 11, i.e., the cosine similarity value times d − 1.
For example, the cosine similarity between t1[Name] and t2[Name] in Table 1 is 0.7. This similarity value 0.7 in the range of [0.0,
1.0] is mapped to a unified space [0, 10], i.e., 0.7 ∗ (d − 1) = 7. By computing the similarities on all the attributes between t1 and
t2, we can obtain a similarity vector b10, 7, 10, 10, 10, 10N. It states that the similarities on attributes SIN, Name,…, Street between
t1 and t2 are 10, 7, …, 10, respectively. Considering all the 6 ∗ 5 = 30 distinct tuple pairs in Table 1, there is no other tuple pair
1 The MDs syntax is described with two relation schema R1, R2 for object identification in [16], which can also be represented in a single relation schema R as the
FDs.

Table 3
Example of statistical distribution D.

A1 A2 A3 A4 A5 A6 P

10 7 10 10 10 10 0.033 s1
10 8 10 10 10 8 0.033 s2
0 0 0 0 0 8 0.066 s3
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

151S. Song, L. Chen / Data & Knowledge Engineering 87 (2013) 146–166
having the same similarity vector. Consequently, the first tuple s1(10, 7,..., 10, 0.033) in Table 3 denotes that there are about 3.3%,
i.e., s1 P½ � ¼ 1

30, matching pairs in all pair-wised tuple matching, whose similarity values are 10, 7,…,10 on attributes SIN, Name,…,
Street (corresponding to A1, A2,..., A6), respectively.

Similarly, for the tuple pair (t1,t3), we compute a similarity vector b10, 8, 10, 10, 10, 8N, which yields a statistical tuple s2(10, 8,..., 8,
0.033). The next tuple s3(0, 0,..., 8, 0.066) is generated by the tuple pairs (t1,t4) and (t2,t4)with the same similarity vector b0, 0, 0, 0, 0, 8N.

Then,we canmeasure the support and confidence of MDs, with various attributesX and Y, based on the statistical distributionD. Let
λX and λY be the projections of similarity threshold pattern λ on the attributes of X and Y, respectively, in an MD φ. It is worth noting
that the similarity thresholds are also specified in terms of elements in sim(A) of each A ∈ X ∪ Y. Let Z be the set of attributes not
specified by φ, i.e.,R n X∪Yð Þ. The definitions of support and confidence for the MD φ(X → Y, λ) are presented as follows:
where
corres
values
calcul
attribu
support φð Þ ¼ P X⊨λX ;Y⊨λYð Þ ¼
X
Z

P X⊨λX ; Y⊨λY ; Zð Þ ð1Þ

confidence φð Þ ¼ P Y⊨λYð jX⊨λXÞ ¼
X

Z
P X⊨λX ; Y⊨λY ; Zð ÞX
Y;Z

P X⊨λX ;Y ; Zð Þ ð2Þ

⊨ denotes the satisfiability relationship, i.e., X ⊨ λX denotes that the similarity values on all attributes in X satisfy the
ponding thresholds listed in λX. For example, we say that a statistical tuple s inD satisfies λX, i.e., s[X] ⊨ λX, if s has similarity
higher than the corresponding minimum threshold, i.e., s[A] ≥ λ[A], for each attribute A in X. Consequently, we can

ate∑ZP(X ⊨ λX, Y ⊨ λY, Z) in formula (1) by∑si∈D;si X½ �⊨λX ;si Y½ �⊨λY
si P½ �, i.e., the proportion of tuple pairs whose similarities on

tes X and Y satisfy the corresponding thresholds λX and λY. Similarly, ∑Y,ZP(X ⊨ λX, Y, Z) in formula (2) can be computed

si∈D;si X½ �⊨λX
si P½ �.
by ∑

Consider any two tuples t1 and t2 from the original data relationR, the support(φ) estimates the probability that the matching
similarities of t1 and t2 on attributes X and Y satisfy the thresholds specified by λX and λY, respectively. Similarly, the
confidence(φ) computes the conditional probability that the matching similarities between t1 and t2 on Y satisfy the thresholds
specified by λY (i.e., Y ⊨ λY) given the condition that t1 and t2 are similar on attributes X (i.e., X ⊨ λX). Thus, high confidence(φ)
means few instances of matching pairs that are similar on attributes X (i.e., X ⊨ λX) but not similar on attributes Y (i.e., Y ⊭ λY),
where ⊭ denotes the unsatisfiability relationship.

In real applications inconsistency detection, in order to achieve high detection accuracy, we would like to use MDs with high
confidence. On the other hand, if users need high recall of detection, then MDs with high support are preferred. Intuitively, we
would like to discover those MDs with high support and high confidence. Therefore, in the rest of this paper, we study the problem
of discovering similarity constraints for MDs that can satisfy users' minimum utility requirements of support ηs and confidence ηc.

4. Exact algorithms

We now study the determination of similarity threshold pattern for MDs based on the statistical distribution. Recognize that
the problem of determining similarity constraints is new and different from the previous FDs discovery [28,22,48]. Indeed, once
the X → Y is given for a FD, it already implies the similarity threshold to be 1.0, that is, (X → Y, b1.0, 1.0N) using the MD syntax.
Unlike FDs, we have various settings of matching similarity thresholds for MDs. Therefore, given the statistical distribution
processed from a relation, we discover the proper similarity thresholds for MDs such that the required support and confidence are
satisfied.

4.1. Problem statement

In order to discover an MD φ with the minimum requirements of support ηs and confidence ηc, the following preliminary
should be given first: (I) what is Y? and (II) what is matching quality requirement λY. These two preliminary questions are usually
addressed by specific applications. For example, if we would like to use the discovered MDs to guide object identification in the
Contacts table, then Y = SIN. The λY is often set to high similarity thresholds by applications to ensure high matching quality on Y
attributes. For example, λY is set to 1.0 for Y = SIN in the object identification application. Note that without the preliminary λY,
the discovered MDs will be meaningless. For example, an MD with λY = 0 can always satisfy any requirement of ηc. Since all the

152 S. Song, L. Chen / Data & Knowledge Engineering 87 (2013) 146–166
statistical tuples can satisfy the thresholds λY = 0, the corresponding confidence will always be equal to 1.0. Obviously, such MD

with λY = 0 is useless and cannot detect any violation or identify objects correctly.
Formally, consider a statistical distribution D. The threshold determination problem of MDs is:

Problem 1. Given the attributes X and Y, the minimum requirements of support and confidence ηs, ηc, and the similarity
threshold pattern λY, to find all the MDs φ(X → Y, λ) with threshold pattern λX on attributes X having confidence(φ) ≥ ηc and
support(φ) ≥ ηs, if exist; otherwise return infeasible.

The attributes X can be initially assigned to R \ Y if no suggestion is provided by specific applications, since our discovery
process can automatically remove those attributes that are not required in X for an MD φ. Specifically, when a possible discovered
threshold λ[A] on attribute A is 0 ∈ sim(A), it means that any similarity value of the attribute A ∈ X can satisfy the threshold 0
and will not affect the MD φ at all. In other words, the attribute A can be removed from X in the MD φ, if λ[A] is 0.

4.2. Exact algorithm

We now present an algorithm to compute the similarity thresholds on attributes X for MDs having support and confidence
greater than ηs and ηc, respectively. LetA1;…;AmX be themX attributes in X, which can be simply assigned toR \ Y as aforesaid. For
simplicity, we use λ to denote the threshold pattern projection λX with λ A1½ �;…;λ AmX½ � on all themX attributes of X. Since we only
use the values from sim(Ai) as possible thresholds λ[Ai] on attribute Ai, i.e., λ[Ai] ∈ sim(Ai), we can investigate all the possible
candidates of threshold pattern λ. Let Ct be the set of all the possible threshold pattern candidates, having
Ct ¼ sim A1ð Þ � ⋯� sim AmX

� �
¼ sim Xð Þ:
Given a fixed scheme R, the total number of candidates is c ¼ Ctj j ¼ sim Xð Þj j ¼ dm, where d is the size of sim(Ai).
Let n be the number of statistical tuples in the input statistical distribution D. We consider two statistical values Pi

j
(X, Y) and

Pi
j
(X), which record P(X ⊨ λX, Y ⊨ λY) and P(X ⊨ λX) respectively for the candidate λ j∈ Ct based on the information of the first i

tuples in D , initially having P0
j
(X, Y) = P0

j
(X) = 0. The recursion is defined as follows, with i increasing from 1 to n and j

increasing from 1 to c.
P j
i X;Yð Þ ¼ P j

i−1 X; Yð Þ þ si P½ �; if si X½ �⊨λ j; si Y½ �⊨ λY

P j
i−1 X; Yð Þ; otherwise

(

P j
i Xð Þ ¼ P j

i−1 Xð Þ þ si P½ �; if si X½ �⊨ λ j

P j
i−1 Xð Þ; otherwise

:

(

Finally, those λj can be returned if support(λj) = Pn
j
(X, Y) ≥ ηs and confidence λ j

� � ¼ P j
n X; Yð Þ
P j
n Xð Þ ≥ ηc.

Algorithm 1. Exact Algorithm

EA D; Ct ;λYð Þ

We can implement the exact algorithm (namely EA) by considering all the statistical tuples si in Dwith i from 1 to n, with the
complexity O ncð Þ.

4.3. Pruning strategies

The original exact algorithm needs to traverse all the n statistical tuples inD and c candidate threshold patterns in Ct, which is
very costly. Indeed, with the given ηs and ηc, we can investigate the relationship between similarity thresholds and avoid checking

153S. Song, L. Chen / Data & Knowledge Engineering 87 (2013) 146–166
all candidate threshold patterns in Ct and all statistical tuples inD. Therefore, in the following, we present two pruning techniques
based on the given support and confidence, respectively.

4.3.1. Pruning by support
We first study the relationships among different threshold patterns, based on which we then propose rules to filter out

candidates that have supports lower than ηs.

Definition 2. Given two similarity threshold patterns λ1 and λ2, if λ1[A] ≤ λ2[A] holds for all the attributes, ∀ A ∈ X, then λ1

dominates λ2, denoted as λ1 ⋖ λ2.

Based on the dominant definition, the following Lemma describes the relationships of supports between similarity threshold
patterns.

Lemma 1. Given two MDs, φ1 = (X → Y, λ1) and φ2 = (X → Y, λ2) over the same relation instance ofR, if λ1 dominates λ2, λ1 ⋖ λ2,
then we have
support φ1ð Þ ≥ support φ2ð Þ:
Proof. Let cover(λ1) and cover(λ2) denote the set of statistical tuples that satisfy the threshold λ1 and λ2 respectively, e.g.,
cover λ2ð Þ ¼ sjs X½ �⊨λ2; s∈Df g:
According to the minimum similarity thresholds, for each attribute A, we have λ2[A] ≤ s[A]. In addition, since λ1 ⋖ λ2, for any
tuple s ∈ cover(λ2), we also have λ1[A] ≤ λ2[A] ≤ s[A] on all the attributes A. In other words, the set of statistical tuples covered
by λ2 also satisfy the threshold of λ1, i.e.,
cover λ2ð Þp cover λ1ð Þ:
Referring to the definition of support, we have
support φ1ð Þ ≥ support φ2ð Þ:
The conclusion is proved. □

According to Lemma 1, given a candidate similarity threshold pattern λj having lower support than the user specified
requirement ηs, i.e., Pnj(X, Y) b ηs, all the candidates that are dominated by λj should also have support lower than ηs and can be
safely pruned without computing their associated support and confidence.

We present the implementation of pruning by support (namely EPS) in Algorithm 2. As illustrated, the approach extends
Algorithm 1 by introducing the pruning step in Lines 6–8. If the current λj is not valid, then all the remaining candidate λ′ that are
dominated by λj can be safely pruned in Line 7.

In order to maximize the pruning, we can heuristically select an ordering of candidates in Ct that for any j1 b j2 havingλ j1 ⋖ λ j2.
That is, we always first process the candidates that dominate others. In fact, we can use a directed acyclic graph to represent
candidate similarity patterns as vertices and dominant relationships among the similarity patterns as edges. Therefore, the
dominant order of candidate patterns can be obtained by a BFS traversal upon the graph.

Algorithm 2. Pruning by Support
EPS D; Ct ;λYð Þ
4.3.2. Pruning by confidence
Other than pruning by support, we can also utilize the given confidence requirement to avoid further examining the statistical

tuples that have no improvement of confidence, when the confidence is already lower than ηc for a candidate λj.

154 S. Song, L. Chen / Data & Knowledge Engineering 87 (2013) 146–166
First, we divide the statistical tuples inD into two parts based on the preliminary λY as follows. Let v be a pivot between 1 and
n. For the first v tuples, we have
while

for an
si Y½ �⊨ λY ;1 ≤ i ≤ v;

all the remaining n–v tuples have

si Y½ �⊭ λY ; vþ 1 ≤ i ≤ n:
This partitioning of statistical tuples in D can be done in linear time.

Lemma 2. Consider a pre-partitioned statistical distribution D. For any 1 ≤ i1 b i2 ≤ n, we always have
P j
i1
X; Yð Þ

P j
i1
Xð Þ

≥
P j
i2
X;Yð Þ

P j
i2
Xð Þ

:

Proof. Since the first v tuples have si[Y] ⊨ λY, according to the computation of P(X, Y) and P(X), we have
P j
i X;Yð Þ
P j
i Xð Þ

¼ 1:0; 1 ≤ i ≤ v:
Moreover, for the remaining n–v tuples with si[Y] ⊭ λY, the P(X, Y) value will not change any more, i.e.,
P j
i X;Yð Þ ¼ P j

v X;Yð Þ; vþ 1 ≤ i ≤ n:
Meanwhile, the corresponding P(X) is non-decreasing, that is,
P j
v Xð Þ ≤ P j

i1
Xð Þ ≤ P j

i2
Xð Þ

y v + 1 ≤ i1 b i2 ≤ n. Consequently, we have

P j
i1
X; Yð Þ

P j
i1
Xð Þ

≥
P j
i2
X;Yð Þ

P j
i2
Xð Þ

; vþ 1 ≤ i1 b i2 ≤ n:
Combining above two statements, we proved the lemma. □
Therefore, according to the formula of confidence, with the increase of i from 1 to n, the confidence of a specific candidate λj is

non-increasing. For a candidate λj, when processing the statistical tuple si, if the current confidence P j
i
X; Yð Þ

P j
i Xð Þ is lower than ηc, then we

can prune the candidate λj without considering the remaining statistical tuples from i + 1 to n in D.
Finally, both the pruning by support and the pruning by confidence are cooperated together into a single threshold determination

algorithm as shown in Algorithm 3 (namely EPSC). We demonstrate the performance of the hybrid pruning EPSC in Section 6.

Algorithm 3. Pruning by Support & Confidence
EPSC D; Ct ;λYð Þ

155S. Song, L. Chen / Data & Knowledge Engineering 87 (2013) 146–166
5. Approximation algorithms

Though we have proposed the pruning of candidate patterns for the exact method (Algorithm 3), the evaluation space of
each candidate is still all the n statistical tuples in statistical distribution D . Therefore, in this section, we present an
approximation algorithmwhich only traverses the first k (k = 1,…n) tuples inD, with bounded relative errors on support and
confidence of returned MDs.

5.1. Preliminary

Let Cn and Sn be the confidence and support computed in the exact solution with all n statistical tuples.We study the approximate
confidence and support, Ck and Sk, by ignoring the statistical tuples from sk + 1 to sn. The decision of k will be discussed soon below.

For any candidate threshold pattern λ j ∈ Ct , let
where
remai
range

then th

and th
β ¼ P j
k Xð Þ;

β ¼ P j
n Xð Þ−P j

k Xð Þ;

β denotes P(X ⊨ λX) for the candidate λj based on the first k tuples in D , and β is P(X ⊨ λX) based on the
ning n–k tuples. The following Lemma indicates the error bounds of Ck and Sk when β for a specific k is in a certain
.

Lemma 3. If we have
β ≤ min �ηs;
�ηsηc

1−�−ηc

� 	
;

e error of approximate confidence Ck compared to the exact confidence Cn is bounded by

−� ≤ Cn−Ck

Cn ≤ �;

e error of approximate support Sk compared to the exact Sn is bounded by

Sn−Sk

Sn
≤ �:
Proof. Let
α ¼ P j
k X;Yð Þ;

α ¼ P j
n X;Yð Þ−P j

k X;Yð Þ:
According to the computation of confidence, we have Ck ¼ α
β and Cn ¼ αþα

βþβ
. Let Z ¼ 1−Cn−Ck

Cn ¼ Ck

Cn, that is,
Z ¼ α β þ β
� �

β α þ αð Þ ≤ 1 þ β
β
:

First, we have
β ¼ α þ
Xk
i¼1

si P X ⊨ λ j; Y ⊭ λY

� �h i
≥ α:
Note that α is equal to the approximate support Sk of the MD φ with similarity threshold pattern λj on the attributes X.
According to the minimum support requirement, to discover a valid λj, we need the approximately computed support Sk

to be greater than the minimum support ηs, i.e., α = Sk ≥ ηs. Consequently, it follows β ≥ α ≥ ηs. Thereby, we
have
Z ≤ 1þ β
ηs

:

Moreover, according to the condition β≤min �ηs;
�ηsηc

1−�−ηc

� �
, that is β≤�ηs, we have
Z ≤ 1þ �:

156 S. Song, L. Chen / Data & Knowledge Engineering 87 (2013) 146–166
Second, similar to β ≥ α, we also have α≤β for the statistical tuples from k + 1 to n. Therefore,
Recall

that is
Z ≥ α β þ β
� �

β α þ β
� � ¼ β þ β

β þ ββ
α

:

According to the minimum confidence α
β ≥ ηc,
Z ≥ β þ β
β þ β

ηc

¼ 1−
β 1−ηc
� �
βηc þ β

: ð3Þ

that β ≥ ηs and the confidence should be lower than or equal to 1, i.e., ηc ≤ 1. Thus,

Z ≥ 1−β 1−ηc
� �
ηsηc þ β

¼ 1− 1−ηc
ηcηs
β
þ 1

:

Since we have the condition, it follows β ≤ �ηsηc
1−�−ηc

,

Z ≥ 1− 1−ηc
1−�−ηc

� þ 1
¼ 1−�:
Finally, based on the above two conditions, we conclude that
1þ � ≥ Z ¼ 1−Cn−Ck

Cn ¼ Ck

Cn ≥ 1−�;

−�≤ Cn−Ck

Cn ≤ �:
On the other hand, according to the computation of support, we have Sk = α and Sn ¼ α þ α. Therefore,
Sn−Sk

Sn
¼ 1

1þ α
α

:

Recall that we have α ≥ ηs and α ≤ β ≤ �ηs. It can be rewritten by
Sn−Sk

Sn
≤ 1

1þ 1
�

¼ �

1þ �
b �:
To sum up, the worst-case relative error is bounded by � for both the confidence and support. □

5.2. Approximation algorithm

Now, we consider the last n–k tuples in D. Let
B kð Þ ¼
Xn
i¼kþ1

si P½ �;

si[P] is the probability associated to each statistical tuple in D. Referring to the definition of β, for any λj, we always have� � � �
where

β ≤ B kð Þ. If there exists a k having B kð Þ ≤ min �ηs;
�ηsηc

1−�−ηc
, then β ≤ min �ηs;

�ηsηc
1−�−ηc

is satisfied for all the threshold candidates λj.

Since the B kð Þ decreases with the increase of k, to determine a minimum k is to find a corresponding maximum B kð Þ. Therefore,
according to Lemma 3, given an error bound �, 0 b � b 1 − ηc, we can compute a minimum position
k ¼ argmax
n

k¼1
B kð Þ; ð4Þ

, the k in the range of [1,n] such that B kð Þ attains the maximum value, having B kð Þ ≤ min �ηs;
�ηsηc

1−�−ηc

� �
.

157S. Song, L. Chen / Data & Knowledge Engineering 87 (2013) 146–166
Theorem 1. Given an error bound �, 0 b � b 1 − ηc, we can determine a minimum k, having
then th
B kð Þ ≤ min �ηs;
�ηsηc

1−�−ηc

� 	
;1 ≤ k ≤ n:
The approximation by considering the first k statistical tuples in D finds approximate MDs with the error bound � on both the
confidence and support compared with the exact one. The complexity is O kcð Þ.

We present the approximation implementation in Algorithm 4. Let B denote B kð Þ ¼ ∑n
i¼kþ1 si P½ � for the current k. With k

decreasing from n to 1, we can determine a minimum k where B ¼ B kð Þ ≤ min �ηs;
�ηsηc

1−�−ηc

� �
is still satisfied. After computing k, we

process the tuples si starting from i = 1.When the bound condition is first satisfied, i.e., i = kwithB ¼ B kð Þ ≤ min �ηs;
�ηsηc

1−�−ηc

� �
, the

processing terminates. Here, the error bound � is specified by user requirement with 0 b � b 1 − ηc.
Note that no particular ordering of statistical tuples in D is required in order to conduct the approximation in Algorithm 4.

Given an error bound �, the bound condition is then fixed. In order to minimize k, we expect that the P values of the tuples from
k + 1 to n in B kð Þ ¼ ∑n

j¼kþ1 s j P½ � are small. In other words, an instance of D with higher P in the tuples from 1 to k is preferred.
Therefore, we can heuristically reorganize the tuples inD in the decreasing order of P as the input of Algorithm 4. The ordering of
statistical tuples in D by the P values can be done in linear time by amortizing the P values into a constant domain.

5.3. Approximation Individual

Next, we study the approximation in each individual candidate λj with a more efficient bound condition respectively.
According to formula (3) in the proof of error bound, we find that for each specific candidate λj if

Algorithm 4. Approximation Algorithm

AP D; Ct ;λYð Þ

�βηc
� 	
β ≤ min �β;
1−�−ηc

; ð5Þ
e error bound is already satisfied and the processing canbe terminated for thisλj. Therefore, rather thanonefixedbound condition
the candidates, the bound of β can be determined dynamically for each candidate λj respectively during the processing.
for all

Algorithm 5 shows the implementation of approximation with dynamic bound condition on each candidate λj individually. In
particular, Lines 14–16 accomplish the possible early termination for each individual λj according to the condition discussed in
formula (5).

Corollary 1. The worst case complexity of the Approximation Individual is O kcð Þ.

Proof. Note that with the increase of i from 1 to k, for a specific λj, the value β increases and Bj decreases. For any i b k, if β b ηs,
i.e., λj is invalid currently, the bound condition cannot be satisfied having
min �β;
�βηc

1−�−ηc

� 	
bmin �ηs;

�ηsηc
1−�−ηc

� 	
b Bj:

2 http
3 http
4 http

158 S. Song, L. Chen / Data & Knowledge Engineering 87 (2013) 146–166
λj has β ≥ ηs as a valid threshold, the bound condition is relaxed frommin �ηs;
�ηsηc

1−�−ηc

� �
tomin �β; �βηc

1−�−ηc

� �
. Thereby, the bound
When

condition may be satisfied by a smaller i than k, i.e.,
min �ηs;
�ηsηc

1−�−ηc

� 	
b Bj ≤ min �β;

�βηc
1−�−ηc

� 	
:

The worst case is that all candidates do not achieve their bounds until processing the tuple sk, where
Bj ¼ B kð Þ ≤ min �ηs;
�ηsηc

1−�−ηc

� 	
≤ min �β;

�βηc
1−�−ηc

� 	

e satisfied. This is exactly the Algorithm 4 without individual approximation. □
must b

Finally, we cooperate the pruning of candidates by support together with the approximation (namely APS) and the approximation
individual (namely APSI) respectively. As we presented in the experimental evaluation, the approximation techniques can further
improve the discovering efficiency with an approximate solution very close to the exact one (bounded by �).

Algorithm 5. Approximation Individual
6. Experimental evaluation

Now, we report the experiment evaluation on the proposed methods. All the algorithms are implemented using Java. The
experiments run on a machine with Intel Core 2 CPU (2.13 GHz) and 2 GB of memory.
6.1. Experiment setting

We use three real data sets in the experimental evaluation. The Cora2 data set, prepared by McCallum et al. [38], consists
of 1296 records of scientific papers with attributes author, volume, title, institution, venue, etc. The Restaurant3 data set
consists of 865 restaurant records including attributes name, address, city and type. The CiteSeer4 data set selects 10,000
tuples with attributes title, author, address, affiliation, subject, description, etc. In the off-line pre-processing, we use the
cosine similarity to evaluate the matching quality of the tuples in the original data. By applying the sim(A) mapping in
Section 3, we can obtain statistical distributions with at most 186,031 statistical tuples in Cora, 140,781 statistical tuples in
Restaurant and 314,382 statistical tuples in CiteSeer. Consequently, in experimental evaluation, the inputs of algorithms are
://www.cs.umass.edu/mccallum/code-data.html.
://www.cs.utexas.edu/users/ml/riddle/data.html.
://citeseer.ist.psu.edu/.

http://www.cs.umass.edu/mccallum/code-data.html
http://www.cs.utexas.edu/users/ml/riddle/data.html
http://citeseer.ist.psu.edu/

159S. Song, L. Chen / Data & Knowledge Engineering 87 (2013) 146–166
the off-line pre-processed statistical distributions with various data sizes, i.e., having statistical tuples n from 10,000 to
150,000 respectively.

We mainly study the efficiency of the proposed algorithms. Since our main task is to discover MDs under the required ηs and ηc,
we study the runtime performance in various distributions with different ηs and ηc settings. The discovery algorithms determine
the similarity threshold settings of attributes for MDs. Suppose that users want to discover MDs on the following X → Y of three
data sets respectively: i) the dependencies on
with t

with t
Cora : author; volume; title→ venue

he preliminary requirement of minimum similarity 0.6 on venue; ii) the dependencies on

Restaurant : name; address; type→ city

he preliminary requirement of minimum similarity 0.5 on city; and iii) the dependencies on

CiteSeer : address; affiliation;description→ subject

reliminary minimum similarity 0.1 on subject, respectively.
with p
A returned result is either infeasible, or an MD with similarity threshold pattern on the given X → Y. For example, one of the

results returned by the experiments on Cora is:
φ author; volume; title→venue; b0:6;0:0;0:8;0:6Nð Þ

upport(φ) = 0.020 and confidence(φ) = 0.562 both greater than the specified requirements of ηs and ηc respectively.
with s
Remarkably, the similarity threshold of attribute volume is 0.0 in the result, which is exactly the case discussed in Section 4.1. It
states that the similarity of volume has no effect on venue and can be removed from the dependency. This result verifies that our
discovery process can automatically identify those attributes that are not required in X for an MD φ.

6.2. Exact approach evaluation

In the first experiment, we evaluate the performance of pruning by support (EPS) compared with the original exact algorithm
(EA). Figs. 1, 2 and 3 report the time cost over three data sets respectively, given different ηs and ηc requirements. As shown in the
0

2

4

6

8

10k 50k 100k 150k

T
im

e
co

st
 (

s)

Statistical Tuples, n

0

2

4

6

8

10k 50k 100k 150k

T
im

e
co

st
 (

s)

Statistical Tuples, n

EA
EPS

EA
EPS

(a) ηs = 0.04, ηc = 0.19

(b) ηs = 0.01, ηc = 0.19

Fig. 1. A pruning on CiteSeer.

0

2

4

6

8

10k 50k 100k 150k
T

im
e

co
st

 (
s)

Statistical Tuples, n

(a) ηs = 0.02, ηc = 0.15

EA
EPS

0

2

4

6

8

10k 50k 100k 150k

T
im

e
co

st
 (

s)

Statistical Tuples, n

EA
EPS

(b) ηs = 0.02, ηc = 0.40

Fig. 2. A pruning on Cora.

EA
EPS

EA
EPS

0

2

4

6

8

10k 50k 100k 150k

T
im

e
co

st
 (

s)

Statistical Tuples, n

0

2

4

6

8

10k 50k 100k 150k

T
im

e
co

st
 (

s)

Statistical Tuples, n

(a) ηs = 0.02, ηc = 0.15

(b) ηs = 0.02, ηc = 0.60

Fig. 3. A pruning on Restaurant.

160 S. Song, L. Chen / Data & Knowledge Engineering 87 (2013) 146–166

161S. Song, L. Chen / Data & Knowledge Engineering 87 (2013) 146–166
sub-figures (a) and (b), the EA method, which has to evaluate all the possible candidates, should have the same cost no matter
how ηs and ηc are set. Therefore, the time cost of EA in (a) is exactly the same as that in (b) in all three data sets.

Moreover, the EPS achieves significantly lower time cost in all the statistical distributions, which is only about 1/10 of that of
the EA. These results demonstrate that our EPS approach can prune most of the candidates without costly computation. Note that
the time costs of approaches increase linearly with the sizes of statistical distributions, which shows the scalability of discovering
MDs on large data.

To observe more accurately, we also plot the EPS time cost in Figs. 4, 5 and 6 with the same settings respectively. According to
the pruning strategy, the EPS performance is only affected by support requirement ηs. In other words, different ηc settings take no
effect on EPS. Thus, EPS has similar time costs in Fig. 5(a) and (b) with the same ηs but different ηc. Similar results can be observed
in Fig. 6 as well.

On the other hand, the EPS approach conducts the pruning based on the given requirement of support ηs. It is natural that a
higher ηs turns to the better pruning performance. Therefore, EPS with ηs = 0.04 in Fig. 4(a) shows lower time cost, e.g., about
0.4 s for 150 k, than that of ηs = 0.01 in (b), e.g., 0.6 s for the same 150 k. Similar results with different ηs are also observed and
omitted on Cora and Restaurant.
6.3. Advanced approach evaluation

Now, we report the performance of advanced pruning and approximation techniques in Figs. 4, 5 and 6, including the pruning
by both support and confidence (EPSC), the approximation together with pruning by support (APS), and the approximation
individual together with pruning by support (APSI).

First, we study the influence of ηc in different approaches. When the confidence requirement ηc is high, e.g., in Figs. 5(b) and
6(b), the EPSC can remove those low confidence candidates and show better time performance than other approaches. On the
other hand, when ηc is small, e.g., ηc = 0.15, we can have larger choices of � ∈ (0, 1 − ηc) such as � = 0.8 ∈ (0, 1 − 0.15) in
Figs. 5(a) and 6(a). Thus, the approximation approaches have lower time cost, especially the APSI. According to this analysis, we
can choose EPSC in practical cases if the requirement ηc is high; otherwise, the APSI is preferred in order to achieve lower time
costs.

According to the bound condition of approximation approaches in Theorem 1, not only �, but also the ηs affects the
performance. As presented in Fig. 4(a), a higher ηs contributes a larger bound condition, which means the early termination of
0

0.1

0.2

0.3

0.4

10k 50k 100k 150k

T
im

e
co

st
 (

s)

Statistical Tuples, n

EPS
EPSC

APS
APSI

0

0.1

0.2

0.3

0.4

0.5

0.6

10k 50k 100k 150k

T
im

e
co

st
 (

s)

Statistical Tuples, n

EPS
EPSC

APS
APSI

(a) ηs = 0.04, ηc = 0.19

(b) ηs = 0.01, ηc = 0.19

Fig. 4. Advanced approaches on CiteSeer.

0

0.1

0.2

0.3

10k 50k 100k 150k

T
im

e
co

st
 (

s)

Statistical Tuples, n

0

0.1

0.2

0.3

10k 50k 100k 150k

T
im

e
co

st
 (

s)

Statistical Tuples, n

EPS
EPSC

APS
APSI

EPS
EPSC

APS
APSI

(a) ηs = 0.02, ηc = 0.15

(b) ηs = 0.02, ηc = 0.60

Fig. 6. Advanced approaches on Restaurant.

0

0.1

0.2

0.3

0.4

0.5

10k 50k 100k 150k
T

im
e

co
st

 (
s)

Statistical Tuples, n

EPS
EPSC

APS
APSI

10k 50k 100k 150k

T
im

e
co

st
 (

s)

Statistical Tuples, n

EPS
EPSC

APS
APSI

(a) ηs = 0.02, ηc = 0.15

0

0.1

0.2

0.3

0.4

0.5

(b) ηs = 0.02, ηc = 0.40

Fig. 5. Advanced approaches on Cora.

162 S. Song, L. Chen / Data & Knowledge Engineering 87 (2013) 146–166

163S. Song, L. Chen / Data & Knowledge Engineering 87 (2013) 146–166
the program. Thus, approximation approaches show better performance in Fig. 4(a), having ηs = 0.04, compared with Fig. 4(b),
whose ηs = 0.01.

Note that the bound condition also depends on the distribution features. A preferred distribution with more tuples in β can
achieve the bound condition and terminate early, such as 50 k in Fig. 5(a) with low time cost.

Finally, we evaluate the approximate confidence and support of the returned MDs with � = 0.8 on all the data sets
in Figs. 7, 8 and 9. First, we can observe that the exact approaches EA, EPS and EPSC return the same measures. These
results verify the correctness of our exact computation methods. Moreover, according to Lemma 3, the error
introduced in approximation approaches is bounded by � on both confidence and support. Therefore, as illustrated in
Figs. 7, 8 and 9, the approximate confidence and support of APS and APSI are very close to those of exact algorithms. In
particular, the approximation methods show good approximation performance as well in larger data sizes, in all the
three data sets.

Consequently, the approximation algorithm can achieve low time cost (e.g., in Figs. 4(a), 5(a) and 6(a) with the same
setting of �) without introducing a large variation in the confidence and support measures compared with the exact
ones.
6.4. Summary

The experiment results demonstrate that our pruning and approximation techniques can significantly improve the efficiency
of discovering MDs.

• The time costs of approaches increase linearly with the sizes of statistical distributions, which shows the scalability of
discovering MDs on large data.

• The EPS approach can significantly reduce the time costs by pruning candidates, compared with the EA.
• If the minimum confidence requirement ηc is high, the pruning by confidence works well.
• Otherwise, we can employ the approximation approaches to achieve low time cost.
0

0.03

0.06

0.09

0.12

0.15

10k 50k 100k 150k

S
up

po
rt

Statistical Tuples, n

(a) Support

EA
EPS

EPSC
APS
APSI

0.4

0.44

0.48

0.52

0.56

0.6

10k 50k 100k 150k

C
on

fid
en

ce

Statistical Tuples, n

(b) Confidence

EA
EPS

EPSC
APS
APSI

Fig. 7. Relative error of approximate support and confidence on CiteSeer.

0

0.02

0.04

0.06

0.08

0.1

10k 50k 100k 150k

S
up

po
rt

Statistical Tuples, n

(a) Support

EA
EPS

EPSC
APS
APSI

0.32

0.36

0.4

0.44

0.48

0.52

10k 50k 100k 150k

C
on

fid
en

ce

Statistical Tuples, n

(b) Confidence

EA
EPS

EPSC
APS
APSI

Fig. 8. Relative error of approximate support and confidence on Cora.

164 S. Song, L. Chen / Data & Knowledge Engineering 87 (2013) 146–166
7. Conclusions

In this paper, we study the efficient discovery of matching dependencies. First, we introduce the utility evaluation of
matching dependencies by using support and confidence. Then, we formalize the problem of discovering MDs with the
minimum confidence and support requirements. Both pruning strategies and approximation of the exact algorithms are
studied. The pruning by support can filter out the candidate patterns with low supports. In addition, if the minimum
confidence requirement is high, the pruning by confidence works well; otherwise, we can employ the approximation
approaches to achieve low time cost. The experimental evaluation demonstrates the performance of the proposed
methods.

There are many aspects of work to develop in the future, for discovering matching dependencies. For example, although
the current approach can exclude the attributes that are not necessary to an MD, another issue is to minimize the number of
attributes in the MD. However, the problem of determining attributes for FDs is already hard [29], where the matching
similarity thresholds are not necessary to be considered. Moreover, two different MDs may cover different dependency
semantics, which leads us to the problem of generating MDs set. Rather than a single MD, the utility evaluation of an MDs set is
also interesting. Most importantly, more exciting applications of MDs are expected to be explored in the future work. Finally,
it is also interesting to introduce similarity constraints to Inclusion and Multivalued Dependencies. For instance, a novel
type of dependencies, say Metric Inclusion Dependencies, may specify the constraint that one relation must contain tuples
similar to the tuples in another relation. The discovery of similarity constraints for such novel dependencies is also
promising.
Acknowledgments

The work described in this paper was partially supported by China NSFC Project No. 61202008; Hong Kong RGC GRF Project
No. 611411; National Grand Fundamental Research 973 Program of China under Grant 2012CB316200; Microsoft Research Asia
Grant and Huawei Noahs ark lab grant HWLB06-15C03212/13PN.

0

0.02

0.04

0.06

0.08

0.1

10k 50k 100k 150k

S
up

po
rt

Statistical Tuples, n

(a) Support

EA
EPS

EPSC
APS
APSI

0.7

0.72

0.74

0.76

0.78

0.8

10k 50k 100k 150k

C
on

fid
en

ce

Statistical Tuples, n

(b) Confidence

EA
EPS

EPSC
APS
APSI

Fig. 9. Relative error of approximate support and confidence on Restaurant.

165S. Song, L. Chen / Data & Knowledge Engineering 87 (2013) 146–166
References

[1] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley, 1995.
[2] R. Agrawal, T. Imielinski, A.N. Swami, Mining association rules between sets of items in large databases, SIGMOD Conference, 1993, pp. 207–216.
[3] R. Bassée, J. Wijsen, Neighborhood dependencies for prediction, PAKDD, 2001, pp. 562–567.
[4] C. Batini, M. Scannapieco, Data quality: concepts, methodologies and techniques, Data-Centric Systems and Applications, Springer, 2006.
[5] L.E. Bertossi, S. Kolahi, L.V.S. Lakshmanan, Data cleaning and query answering with matching dependencies and matching functions, ICDT, 2011,

pp. 268–279.
[6] M. Bilenko, R.J. Mooney, W.W. Cohen, P. Ravikumar, S.E. Fienberg, Adaptive name matching in information integration, IEEE Intelligent Systems 18 (5)

(2003) 16–23.
[7] D. Bitton, J. Millman, S. Torgersen, A feasibility and performance study of dependency inference, ICDE, 1989, pp. 635–641.
[8] P. Bohannon, W. Fan, F. Geerts, X. Jia, A. Kementsietsidis, Conditional functional dependencies for data cleaning, ICDE, 2007, pp. 746–755.
[9] L. Bravo, W. Fan, F. Geerts, S. Ma, Increasing the expressivity of conditional functional dependencies without extra complexity, ICDE, 2008, pp. 516–525.

[10] L. Bravo, W. Fan, S. Ma, Extending dependencies with conditions, VLDB, 2007, pp. 243–254.
[11] T. Calders, R.T. Ng, J. Wijsen, Searching for dependencies at multiple abstraction levels, ACM Transactions on Database Systems 27 (3) (2002) 229–260.
[12] F. Chiang, R.J. Miller, Discovering data quality rules, PVLDB 1 (1) (2008) 1166–1177.
[13] W.W. Cohen, Integration of heterogeneous databases without common domains using queries based on textual similarity, SIGMOD Conference, 1998,

pp. 201–212.
[14] G. Cong, W. Fan, F. Geerts, X. Jia, S. Ma, Improving data quality: consistency and accuracy, VLDB, 2007, pp. 315–326.
[15] A.K. Elmagarmid, P.G. Ipeirotis, V.S. Verykios, Duplicate record detection: a survey, IEEE Transactions on Knowledge and Data Engineering 19 (1) (2007) 1–16.
[16] W. Fan, Dependencies revisited for improving data quality, PODS, 2008, pp. 159–170.
[17] W. Fan, H. Gao, X. Jia, J. Li, S. Ma, Dynamic constraints for record matching, The VLDB Journal (2010) 1–26.
[18] W. Fan, F. Geerts, L.V.S. Lakshmanan, M. Xiong, Discovering conditional functional dependencies, ICDE, 2009, pp. 1231–1234.
[19] W. Fan, J. Li, X. Jia, S. Ma, Reasoning about record matching rules, PVLDB, 2009.
[20] W. Fan, J. Li, S. Ma, N. Tang, W. Yu, Interaction between record matching and data repairing, SIGMOD Conference, 2011, pp. 469–480.
[21] W. Fan, S. Ma, Y. Hu, J. Liu, Y. Wu, Propagating functional dependencies with conditions, PVLDB 1 (1) (2008) 391–407.
[22] P.A. Flach, I. Savnik, Database dependency discovery: a machine learning approach, AI Communications 12 (3) (1999) 139–160.
[23] J. Gardezi, L.E. Bertossi, I. Kiringa, Matching dependencies with arbitrary attribute values: semantics, query answering and integrity constraints, LID, 2011,

pp. 23–30.
[24] C. Giannella, E.L. Robertson, On approximation measures for functional dependencies, Information Systems 29 (6) (2004) 483–507.
[25] L. Golab, H.J. Karloff, F. Korn, A. Saha, D. Srivastava, Sequential dependencies, PVLDB 2 (1) (2009) 574–585.
[26] L. Golab, H.J. Karloff, F. Korn, D. Srivastava, B. Yu, On generating near-optimal tableaux for conditional functional dependencies, PVLDB 1 (1) (2008) 376–390.
[27] L. Gravano, P.G. Ipeirotis, N. Koudas, D. Srivastava, Text joins in an rdbms for web data integration, WWW, 2003, pp. 90–101.
[28] Y. Huhtala, J. Kärkkäinen, P. Porkka, H. Toivonen, Efficient discovery of functional and approximate dependencies using partitions, ICDE, 1998,

pp. 392–401.
[29] Y. Huhtala, J. Kärkkäinen, P. Porkka, H. Toivonen, Tane: an efficient algorithm for discovering functional and approximate dependencies, The Computer

Journal 42 (2) (1999) 100–111.

http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0005
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0230
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0235
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0240
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0245
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0245
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0030
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0030
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0250
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0255
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0260
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0265
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0055
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0060
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0270
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0270
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0275
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0075
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0280
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0285
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0290
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0295
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0300
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0105
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0110
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0305
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0305
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0120
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0310
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0130
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0315
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0320
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0320
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0145
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0145

166 S. Song, L. Chen / Data & Knowledge Engineering 87 (2013) 146–166
[30] I.F. Ilyas, V. Markl, P.J. Haas, P. Brown, A. Aboulnaga, Cords: automatic discovery of correlations and soft functional dependencies, SIGMOD Conference, 2004,
pp. 647–658.

[31] R.S. King, J.J. Legendre, Discovery of functional and approximate functional dependencies in relational databases, JAMDS 7 (1) (2003) 49–59.
[32] J. Kivinen, H. Mannila, Approximate inference of functional dependencies from relations, Theoretical Computer Science 149 (1) (1995) 129–149.
[33] N. Koudas, A. Saha, D. Srivastava, S. Venkatasubramanian, Metric functional dependencies, ICDE, 2009, pp. 1275–1278.
[34] S. Kramer, B. Pfahringer, Efficient search for strong partial determinations, KDD, 1996, pp. 371–374.
[35] S.E. Madnick, H. Zhu, Improving data quality through effective use of data semantics, Data & Knowledge Engineering 59 (2) (2006) 460–475.
[36] H. Mannila, K.-J. Räihä, Design of Relational Databases, Addison-Wesley, 1992.
[37] H. Mannila, K.-J. Räihä, Algorithms for inferring functional dependencies from relations, Data & Knowledge Engineering 12 (1) (1994) 83–99.
[38] A. McCallum, K. Nigam, L.H. Ungar, Efficient clustering of high-dimensional data sets with application to reference matching, KDD, 2000, pp. 169–178.
[39] G. Navarro, A guided tour to approximate string matching, ACM Computing Surveys 33 (1) (2001) 31–88.
[40] B. Pfahringer, S. Kramer, Compression-based evaluation of partial determinations, KDD, 1995, pp. 234–239.
[41] T. Scheffer, Finding association rules that trade support optimally against confidence, Intelligent Data Analysis 9 (4) (2005) 381–395.
[42] J.C. Schlimmer, Efficiently inducing determinations: a complete and systematic search algorithm that uses optimal pruning, ICML, 1993, pp. 284–290.
[43] S. Song, L. Chen, Discovering matching dependencies, CIKM, 2009, pp. 1421–1424.
[44] S. Song, L. Chen, Differential dependencies: reasoning and discovery, ACM Transactions on Database Systems 36 (4) (2011).
[45] S. Song, L. Chen, P.S. Yu, On data dependencies in dataspaces, ICDE, 2011, pp. 470–481.
[46] U. ul Hassan, S. O'Riain, E. Curry, Leveraging matching dependencies for guided user feedback in linked data applications, Proceedings of the Ninth

International Workshop on Information Integration on the Web, IIWeb '12, ACM, New York, NY, USA, 2012, pp. 5:1–5:6.
[47] H. Wang, R. Liu, Privacy-preserving publishing microdata with full functional dependencies, Data & Knowledge Engineering 70 (3) (2011) 249–268.
[48] C.M. Wyss, C. Giannella, E.L. Robertson, Fastfds: a heuristic-driven, depth-first algorithm for mining functional dependencies from relation instances —

extended abstract, DaWaK, 2001, pp. 101–110.

Shaoxu Song is currently an assistant professor in the Tsinghua National Laboratory for Information Science and Technology; School
of Software, Tsinghua University, China. He received his PhD degree in computer science from the Hong Kong University of Science
and Technology. His research interests include data quality and data dependency.
Lei Chen is currently an associate professor in the Department of Computer Science and Engineering at the Hong Kong University of
Science and Technology. He received his BS degree in computer science and engineering from Tianjin University, China, in 1994, the
MA degree from Asian Institute of Technology, Thailand, in 1997, and the PhD degree in computer science from University of
Waterloo, Canada, in 2005. He served as an associate editor of the IEEE Transactions on Knowledge and Data Engineering. His research
interests include uncertain databases, graph databases, multimedia and time series databases, and sensor and peer-to-peer databases.

http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0325
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0325
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0155
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0160
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0330
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0335
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0175
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0180
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0185
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0340
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0195
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0345
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0205
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0350
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0355
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0360
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0365
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0370
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0370
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0225
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0375
http://refhub.elsevier.com/S0169-023X(13)00070-0/rf0375
Unlabelled image

	Efficient discovery of similarity constraints for �matching dependencies
	1. Introduction
	1.1. Motivation
	1.2. Contributions

	2. Related work
	2.1. Dependencies with metrics
	2.2. Discovery of dependencies
	2.3. Measures for dependencies

	3. Utility measures
	3.1. Matching dependencies
	3.2. Measures

	4. Exact algorithms
	4.1. Problem statement
	4.2. Exact algorithm
	4.3. Pruning strategies
	4.3.1. Pruning by support
	4.3.2. Pruning by confidence

	5. Approximation algorithms
	5.1. Preliminary
	5.2. Approximation algorithm
	5.3. Approximation Individual

	6. Experimental evaluation
	6.1. Experiment setting
	6.2. Exact approach evaluation
	6.3. Advanced approach evaluation
	6.4. Summary

	7. Conclusions
	Acknowledgments
	References

