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Differential Dependencies: Reasoning and Discovery

SHAOXU SONG and LEI CHEN, The Hong Kong University of Science and Technology

The importance of difference semantics (e.g., “similar” or “dissimilar”) has been recently recognized for declar-
ing dependencies among various types of data, such as numerical values or text values. We propose a novel
form of Differential Dependencies (DDs), which specifies constraints on difference, called differential func-
tions, instead of identification functions in traditional dependency notations like functional dependencies.
Informally, a differential dependency states that if two tuples have distances on attributes X agreeing with
a certain differential function, then their distances on attributes Y should also agree with the corresponding
differential function on Y . For example, [date(≤ 7)] → [price(< 100)] states that the price difference of any
two days within a week length should be no greater than 100 dollars. Such differential dependencies are
useful in various applications, for example, violation detection, data partition, query optimization, record
linkage, etc.

In this article, we first address several theoretical issues of differential dependencies, including formal
definitions of DDs and differential keys, subsumption order relation of differential functions, implication
of DDs, closure of a differential function, a sound and complete inference system, and minimal cover for
DDs. Then, we investigate a practical problem, that is, how to discover DDs and differential keys from a
given dataset. Due to the intrinsic hardness, we develop several pruning methods to improve the discovery
efficiency in practice. Finally, through an extensive experimental evaluation on real datasets, we demonstrate
the discovery performance and the effectiveness of DDs in several real applications.
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1. INTRODUCTION

Data dependencies, such as Functional Dependencies (FDs), are traditionally used for
schema design, integrity constraints, query optimization and so on, with respect to
schema quality in databases. Recently, data dependencies have been revisited for the
quality of data, such as capturing data inconsistency [Bohannon et al. 2007], repairing
inconsistent data [Cong et al. 2007], removing data duplicates [Fan et al. 2009b],
etc. Conventional dependencies, originally proposed for schema-oriented issues, are
defined based on equality function, that is, attribute values are compared according to
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equality. However, in the data-oriented practice, besides equality, difference semantics
(e.g., “similar” or “dissimilar”) are also very useful for declaring dependencies among
various types of data, such as numerical values or text values (see the following
examples). Therefore, in this study, we propose a novel type of dependencies, called
Differential Dependencies (DDs), which specify constraints on differences.

Given a relation R, a Differential Dependency (DD) has a form φL[X] → φR[Y ], where
φL[X] and φR[Y ] are differential functions specifying constraints on distances over
attributes X and Y of R, respectively. It states that for any two tuples from R, if their
value differences (measured by a certain distance metric) on attributes X agree the
differential function φL[X] (i.e., distance constraints on X), then their value differences
on Y should also agree with the differential function φR[Y ]. As illustrated in the
following examples, DDs are applicable in a broad class of data, such as categorized
data, text/strings, numerical values, etc.

1.1. Motivation Examples

A DD in a credit card transaction database can be

DD1 [cardno(= 0) ∧ position(≥ 60)] → [transtime(≥ 20)],

where cardno(= 0) states a constraint that two transactions have the same credit card
number (the distance on attribute cardno is 0), and position(≥ 60), transtime(≥ 20) are
differential functions specified on position, transtime attributes. It states that if the
distance of two transaction positions of a same cardno is greater than 60 km (e.g.,
two different cities), they are probably two transactions happening at different times,
that is, the difference between transtime should be larger than 20 mins. If two card
transactions do not satisfy this DD1, that is, agreeing with the left-hand side function
of DD1 but not the right-hand side, one of the transactions could be a fraud.

Given another example in decision support systems, a DD in a price database of a
flight

DD2 [date(≤ 7)] → [price(≤ 100)]

states that the price difference of any two days in a week length should be less than
100 $. Instead of a week length, another DD may specify the price difference constraint
of two days not within a week but within a month.

DD3 [date(> 7,≤ 30)] → [price(≥ 100,≤ 900)]

Both DD2 and DD3 specify constraints on the same set of attributes date → price but
with different semantics, that is, week and month.

As a special case, if all the differential constraints are (= 0), DDs express the equality
semantics, that is, DDs could subsume FDs. Two recent proposals, Matching Dependen-
cies (MDs) [Fan et al. 2009b] and Metric Functional Dependencies (MFDs) [Koudas et al.
2009], also address the semantics of “similar.” For example, MDs incorporate “similar”
semantics in the left-hand side for record matching purposes, while MFDs use similarity
metrics in the right-hand side which can be utilized in detecting violations. Compared
with conventional dependencies as well as MDs and MFDs, our DDs address more general
difference constraints with various semantics such as “similar” (e.g., DD2), “dissimilar”
(e.g., DD1), or even more complicated ones (e.g., DD3). In addition, DDs allow setting dif-
ference constraints on both determinant and dependent attributes, which makes DDs
applicable to more generic and fuzzy datasets. We will use several application examples
to demonstrate the wide application range of DDs.

We also note that constraints have been proposed in the literature to replace the
equality semantics, by involving orderings on attribute domains. For example, Order
Dependencies (ODs) proposed by Ginsburg and Hull [1983a, 1986] generalize FDs by
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comparing attributes for equality (=) as well as order (<,>,≤,≥), while Ng [1999,
2001] proposes Ordered Functional Dependencies (OFDs) to address more advanced se-
mantics of domain orderings, that is, pointwise orderings and lexicographical orderings.
Instead of order constraints between tuples, in this study, we focus on the constraints
of distances between tuples.

1.2. Applications

In the following, we briefly describe several DDs application scenarios. Please refer to
Section 7 for more details. (Specifically, the proposed DDs are compared with conven-
tional dependencies in these applications, and the superiority of our proposal is verified
by real dataset evaluation.)

Integrity Constraints. Similar to traditional FDs, DDs can also be utilized to detect
violations or inconsistencies. For instance, according to DD1, those tuples of a same
cardno in a transaction database, which have position distance ≥ 60 km but transtime
distance < 20 mins, are detected as violations to the constraint. Previous dependencies
with semantics of “similar” or equality (such as FDs, MDs, or MFDs) cannot address such
violations.

Query Optimization. Semantic query optimization [Chakravarthy et al. 1990; Levy
and Sagiv 1995] utilizes integrity constraints (e.g., FDs) to optimize the evaluation
of queries. We can also utilize DDs to rewrite queries, for example, on text/numerical
attributes, where traditional FDs based on equality function are not applicable. For
instance, suppose that a query selects tuples in a price database whose date distance
is ≤ 7 and price difference is ≤ 100. According to DD2, we can equivalently rewrite the
query by only using one constraint, that is, date(≤ 7).

Data Partition. A typical data partition operator (e.g., group-by) divides a large re-
lation instance into manageable partitions, where tuples in a partition satisfy certain
constraints. For example, a partition scheme may require that the distances on all at-
tributes of tuples in a partition should be less than 5. Suppose that a DD indicates that
if the distance on some attributes is less than 5, that is, a differential key, then all the
other attributes must have distance less than 5 as well. Therefore, we can equivalently
use the smaller set of attributes to partition the data, which is obviously more efficient.

Record Linkage. Dependencies can be utilized in record linkage [Chaudhuri et al.
2007; Fan et al. 2009b]. For example, [name(≤ 7) ∧ address(≤ 2)] → [ssn(�)] repre-
sents a typical matching rule and can be used in a rule-based record linkage method
[Hernández and Stolfo 1995]. It identifies those duplicate tuples which denote the
same entity (i.e., identified � on Y ) according to certain φL[X]. Different from Match-
ing Dependencies (MDs) [Fan et al. 2009b] with only one distance constraint on each
attribute, we can have various differential functions (distance constraints) for one at-
tribute. Therefore, more than one reasonable matching rules can be declared on the
same attributes (see Section 7 for details).

1.3. Contributions

In this article, we address a series of fundamental and practical issues for differential
dependencies. Our main contributions in this work are listed as follows.

Foundation. We propose a novel form of differential dependencies and differential
keys. To our best knowledge, this is the first work on addressing differential dependen-
cies between attributes upon difference semantics, with both theoretical and practical
consideration. Formal definitions, syntax, and properties for differential dependencies
are carefully presented.
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Consistency. We study the consistency problem of DDs. Given a set � of DDs over
relation R, it is to decide whether there exists a nonempty instance I of relation R, such
that � holds in I , written by I � �. As we proved, the consistency problem in general
is NP-complete. Thus, we identify several special cases. In the nondisjoint complement
case, where the intersection of complements of differential functions are not infeasible,
� is always consistent. In the unary LHS case, where the left-hand side differential
function of each DD in � specifies a constraint on only one attribute, the consistency
problem becomes tractable. Finally, we study the problem of finding maximum subset
of DDs that are consistent.

Implication. We present a careful study of implication for DDs. It starts from a sub-
sumption order relation of differential functions, which raises the logical implication
of DDs. Given a set � of DDs, to imply a DD is essentially to compute the corresponding
closure with respect to �. An inference system is then presented and proved sound and
complete. Due to the implication, there may exist redundancy in an arbitrary set of
DDs, that is, some DDs can imply others. Consequently, it leads us to find a concise set
of DDs, that is, minimal cover for a DDs set.

Validation. We study the validation problem of DDs in a relation instance. Given a DD

φL[X] → φR[Y ] and an instance I over relation R, it is to determine whether φL[X] →
φR[Y ] holds in I , that is, I � φL[X] → φR[Y ]. Unlike checking the traditional functional
dependencies with equality function in O(|I | log |I |) time [Kivinen and Mannila 1995],
by sorting I with respect to X values, the validation problem for DDs processes in O(|I |2)
time for a predefined R. Thereby, we identify a special case where metrics in 1D space
is adopted for each attribute. The validation cost then becomes O(|I | logm |I |), where m
is the number of attributes in a DD in standard form.

Discovery. We study the discovery of DDs and differential keys from a given sample
data. Unfortunately, even a minimal cover of discovered DDs can be exponentially large
in size with respect to the number of attributes of relation schema. Recognizing such
intrinsic hardness, thereby, we focus on pruning techniques by utilizing the unique
properties such as the subsumption order relation, which do not appear in previous
dependency discovery scenarios. We conduct an extensive experimental evaluation on
real datasets. The performance evaluation illustrates the efficiency of advanced dis-
covery algorithms, which achieve several orders of magnitude improvement compared
with a brute-force one.

Application. Finally, we illustrate the details for several applications of differential
dependencies and differential keys, including the application details of violation de-
tection, data partition, and record linkage. The effectiveness evaluation on real data
demonstrates the superiority and usefulness of our DDs in various applications.

1.4. Organization

The remainder of this article is organized as follows. First, we introduce some related
work in Section 2. Section 3 introduces the preliminaries of definition and syntax. We
study the consistency problem in Section 4 and present two special cases of nondisjoint
complement and unary LHS. Section 5 reports the implication analysis, which raises
the problem of finding minimal cover. Section 6 presents the discovery of differential
dependencies from data, as well as the exact validation of DDs. The details and real
data evaluation of several application of DDs are also studied in Section 7. Finally,
we conclude this article and outline the future work in Section 8. Table I lists the
frequently used notations in this work.
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Table I. Notations

Symbol Description
R relation schema, with |R| attributes
I instance of relation R, with |I | tuples

φ[X] differential function
φ1[X] ∧ φ2[Y ] intersection of differential functions
φ1[X] � φ2[X] subsumption of differential functions

φ[X] complement of differential function
φL[X] → φR[Y ] differential dependency

� differential dependencies set, DDs set
�c minimal cover for a DDs set

2. RELATED WORK

Conventional dependencies, originally proposed for schema issues, are often defined
based on equality functions, that is, attribute values are compared with respect to
equality. However, in the data-oriented practice, besides equality, difference semantics
(e.g., similar or dissimilar) are also very useful for declaring dependencies among
various types of data, such as numerical values or text values. In the following, we
briefly review (recent) work on data dependencies under various types of data.

2.1. Identical Data

Recently, data dependencies traditionally used for schema design [Abiteboul et al. 1995]
are revisited and extended for new applications like improving the quality of data. For
example, Conditional Functional Dependencies (CFDs) are first proposed in Bohannon
et al. [2007] for data cleaning. Cong et al. [2007] study the detecting and repairing
methods of violation by CFDs. Fan et al. [2008b] investigate the propagation of CFDs
for data integration. Bravo et al. [2008] propose an extension of CFDs by employing
disjunction and negation. Golab et al. [2008] define a range tableau for CFDs, where
each value is a range. In addition, Bravo et al. [2007] propose Conditional Inclusion
Dependencies (CINDs), which are useful not only in data cleaning, but also in contextual
schema matching. Ilyas et al. [2004] study a novel soft FD, where the value of X deter-
mines the value of Y not with certainty, but merely with high probability. Instead of
considering difference semantics as studied in our work, all these extensions are based
on the equality function. We study several typical works as follows.

Conditional Functional Dependencies. The Conditional Functional Dependencies
(CFDs), as an extension of traditional FDs with conditions, are first proposed in Bohan-
non et al. [2007] for data cleaning. The basic idea of CFDs is making the FDs, originally
holding for the whole table, valid only for a set of tuples specified by the conditions. A
Conditional Functional Dependency (CFD) ϕ over R is a pair (X → A, tp) where: (i) X is
a set of attributes in R and A is a single attribute in R; (ii) X → A is a standard FD,
embedded in ϕ; and (iii) tp is a pattern tuple with attributes in X and A, where for each
B ∈ X ∪ {A}, tp[B] is either a constant “a” in dom(B), or an unnamed variable “ ” that
draws values from dom(B).

Successful studies are developed based on the notation of functional dependencies
with conditions. Cong et al. [2007] study the detecting and repairing methods of vio-
lation by CFDs. Two strategies are investigated to improve the consistency of the data:
(i) directly computing a repair that satisfies a given set of CFDs, (ii) incrementally find-
ing a repair with updates to a clean database. Due to the hardness of repair problems,
heuristic algorithms are developed as well. Fan et al. [2008b] investigate the propaga-
tion problem of CFDs. Given a set of CFDs on a data source, it is to determine whether
or not such CFDs are still valid on the views (mapping) of the given data source. Such
propagation is useful for data integration, data exchange, and data cleaning. Several
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algorithms are developed for computing the cover of CFDs that are propagated from
original source to the views.

Further extensions on conditional functional dependencies have been drawn as well.
Bravo et al. [2008] propose an extension of CFDs by employing disjunction and inequal-
ity, known as extended Conditional Functional Dependencies (eCFDs). Golab et al. [2008]
define a range tableau for CFDs, where each value is a range.

Soft Functional Dependencies. Ilyas et al. [2004] study a novel soft FD, where the
values of an attribute are well predicted by the values of another attribute. It is also
a generalization of the classical notion of a hard FD where the value of X completely
determines the value of Y . In a soft FD, the value of X determines the value of Y not
with certainty, but merely with high probability. For example, in a database of cars,
a soft dependency could be: model → make. Given that model = 323, we know that
make = Mazda with high probability, but there is also a small chance that make = BMW.
Such soft FDs are useful in improving selectivity estimation during query optimization
[Ilyas et al. 2004] and recommending secondary indices [Kimura et al. 2009].

Conditional Inclusion Dependencies. In addition, Bravo et al. [2007] propose Condi-
tional Inclusion Dependency (CINDs), which are useful not only in data cleaning, but
are also in contextual schema matching. For example, a CIND in a bank database could
be: accountB(name, type = ‘saving’) ⊆ saving(name, branch = ‘B’). It states that for each
tuple t1 in the accountB relation (of branch B), if the type of t1 is saving, then there must
exist a tuple t2 in saving such that t1[name] = t2[name] and t2[branch] = B. In other
words, instead of the entire account relation, this constraint is an inclusion dependency
that holds only on the subset of account tuples such that type = ‘saving’.

2.2. Fuzzy Data

In recent work, the importance of introducing similarity metrics in dependencies has
been commonly recognized. Attempts on replacing the equality function of conventional
dependencies have also been made. Matching Dependencies (MDs) are first proposed
in Fan [2008] for specifying matching rules for record matching. Rather than equality,
MDs accept X values with distance less than certain thresholds and assert the matching
of Y . A reasoning mechanism for deducing MDs from a set of given MDs is studied in Fan
et al. [2009b]. Moreover, Koudas et al. [2009] also study the dependencies with distance
metrics on attributes Y when given the equality on X. Korn et al. [2003] study Proba-
bilistic Approximate Constraints (PACs) for network traffic databases. Specifically, PACs
introduce tolerance and confidence parameters into integrity constraints. An aggregate
f over a set of values in attributes X can specify constraints on differences between
values within a single tuple. All these proposals consider the semantics of “similar,”
while our DDs address a more general case having arbitrary differential functions on
both sides X and Y with “similar,” “dissimilar,” or even more complicated difference
semantics.

Metric Functional Dependencies. Koudas et al. [2009] study the dependencies with
similarity metrics on attributes Y when given the exactly matched values on X. A
Metric Functional Dependency (MFD) over R has the form X → δ A where X is a set of
attributes in R and A is a single attribute in R, and δ ≥ 0 is a threshold of metric
distance on attribute A. We say that a relation instance r over schema R satisfies
the MFD, if any two tuples t1, t2 ∈ r having t1[X] = t2[X] must have distance ≤ δ on
attribute A.

Matching Dependencies. Matching Dependencies (MDs) are first proposed in Fan
[2008] for specifying matching rules for the object identification (see Elmagarmid et al.
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[2007] for a survey). Consider a relation schema R, where each attribute A has a set of
domain instances, denoted by dom(A).

A similarity operator ≈ on an attribute A is defined on the domain instances of
A, ≈: dom(A) × dom(A) → {true, false}, which satisfies reflexivity, that is, a ≈ a, and
symmetry, that is, if a ≈ b then b ≈ a, where a, b ∈ dom(A). It indicates true if two
values are similar. This operator can be domain-specific or any similarity metrics,
such as edit distance and cosine similarity, with a predefined threshold. For a set X of
attributes, the similarity operator ≈ indicates true, iff the similarity operators on all
A ∈ X indicate true. A matching operator � on an attribute A is also defined on the
instances of A. It indicates true if two values are identical.

A Matching Dependency (MD) has a form [X ≈] → [Y �], where X ⊆ R, Y ⊆ R,
and ≈,� denotes the corresponding similarity/matching operators on attributes of X
and Y , respectively. It states that for any two tuples from an instance of relation R, if
they are similar on attributes X, then their Y values should be identical.

A reasoning mechanism for deducing MDs from a set of given MDs is studied in Fan
et al. [2009b]. The MDs and their reasoning techniques can improve both the quality
and efficiency of various record matching methods.

2.3. Ordered Data

Datasets with an ordered domain, such as numerical values, are prevalent, for example,
time stamps, sequence numbers, sales, temperature, stock prices, and so on. It is also
promising to address data dependencies on such ordered data. In the following, we
introduce several typical works on such ordered data, where each attribute A has a
partial ordering ≤A on dom(A). Note that, instead of order constraints between tuples,
in this study we focus on the constraints of distances between tuples.

Order Dependencies. Order Dependencies have been widely studied [Dong and Hull
1982; Ginsburg and Hull 1983a, 1983b, 1986]. Let A be an attribute. Then the asso-
ciated domain dom(A) is ordered by a fixed partial ordering ≤A. Order dependencies
consider this order to be either total or empty. Specifically, an attribute A has total
order if, for each a, a′ in dom(A), either a ≤A a′ or a′ ≤A a. For each attribute A, the
marked attributes of A are the formal symbols A, A<, A≤, A>, A≥, and so on. For any
two tuples t1, t2, we write t1[A ≤]t2 if t1(A) ≤ t2(A).

An Order Dependency (OD) over R is an expression of the form M → N, where M and
N are marked attributes. We say that a relation instance r over schema R satisfies the
OD, if any two tuples t1, t2 ∈ r , t1[M]t2 implies t1[N]t2.

Moreover, Wijsen [1998, 2001] extends order dependencies with a time dimension
for temporal databases. Let I = {I1, I2, I3, . . . } be a temporal relation, which can be
viewed as a time series of conventional “snapshot” relations, all over the same set of
attributes. A Trend Dependency (TD) allows attributes with linearly ordered domains
to be compared over time by using any operator of {<,=,>,≤,≥, �=}. For example,
a TD may state that (SSN,=) →Next (Sal,≤), where Next means that the constraint
is specified over (Ii, Ii+1) in I. For each time point i, it requires comparing employee
records at time i with records at the next time i + 1, such that salaries of employees
should never decrease.

Ordered Functional Dependencies. Instead of the total or empty order considered in
order dependencies, Ng [1999, 2001] considers Ordered Functional Dependencies (OFDs)
with the semantics of two advanced domain orderings, that is, pointwise orderings and
lexicographical orderings. Intuitively, pointwise orderings require each component of a
data value to be greater than its predecessors and lexicographical orderings resemble
the way in which words are arranged in a dictionary. For example, a tuple t1 is less
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than another tuple t2 according to a pointwise ordering ≤P , if, for all 1 ≤ i ≤ |R|,
t1[Ai] ≤ t2[Aj]. The tuple t1 is less than another tuple t2 according to a lexicographical
ordering ≤L, if there is an index j ≥ 1 such that t1[Aj] < t2[Aj] and, for each i < j,
t1[Ai] = t2[Ai].

Sequential Dependencies. Golab et al. [2009] propose sequential dependencies, which
generalize ODs and can express other interesting relationships between ordered at-
tributes. A Sequential Dependency (SD) is in the form of X →g Y, where X ⊆ R are
ordered attributes, Y ⊆ R can be measured by certain distance metrics, and g is an
interval. It states that when tuples are sorted on X, the distance between the Y -values
of any two consecutive tuples are within interval g.

In order to make SDs valid in a subset tuples, SDs with conditions are studied as well.
A Conditional Sequential Dependency (CSD) is a pair (X →g Y, tr), where X →g Y is an
embedded SD, and tr is a range pattern tuple. Each range pattern tr specifies a range of
values of X that identify a subset of tuples over R (subsequence on X).

3. FOUNDATIONS

In this section, we formalize the definitions and properties of Differential Dependencies
(DDs) in Section 3.1, and introduce a series of reasoning problems of DDs in Section 3.2.

3.1. Definitions and Properties

3.1.1. Differential Function. Instead of the equality function in traditional dependencies
such as FDs, we introduce differential function with constraint on difference measured
by distance metric.

Let B be an attribute in relation R and dom(B) is the domain of B. For each attribute
B, we consider one distance metric on the domain of B, that is, dB : dom(B)×dom(B) →
D, where D denotes all values of metric distances. It satisfies nonnegativity, dB(a, b) ≥ 0;
identity of indiscernibles, dB(a, b) = 0 iff a = b; symmetry, dB(a, b) = dB(b, a); where
a, b ∈ dom(B).

For example, the distance metric on a numerical attribute can be the absolute value
of difference, that is, dB(a, b) = |a−b|. For a text attribute, the distance metric can adopt
various similarity/distance operators (see Elmagarmid et al. [2007] for a survey), for
example, edit distance [Navarro 2001] .

Definition 3.1. A differential function φ[B] on attribute B specifies a constraint of
difference over B, that is, a constraint on distance values D measured by distance metric
dB over B. For any tuple t1, t2 in an instance I of relation R, differential function φ[B]
indicates true, if the difference of t1 and t2 on attribute B agrees with the constraint
specified by φ[B], denoted by (t1, t2) 
 φ[B].

The constraints of distance thresholds are specified by operators {=,<,>,≤,≥}.
For example, given a differential function φ[name] = [name(≤ 6)], if the differ-
ence (e.g., measured by edit distance) between two tuples on the name attribute is
dname(t1[name], t2[name]) = 5, which agrees ≤ 6, then we say that these two tuples
agree the differential function φ[name], denoted as (t1, t2) 
 [name(≤ 6)].

Note that we consider a finite domain for each attribute B of a relation schema R.
Thereby, we have a finite set D of distance values for each attribute B. Consequently,
there may exist a finite set of differential functions that can be associated to an attribute
B with respect to distance values D.
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A differential function φ[Z] on a set of attributes Z ⊆ R is a set of metric distance
constraints on all attributes Bi ∈ Z, respectively.

φ[Z] =
∧

Bi∈Z

φ[Bi]

For any two tuples t1 and t2 in I , the differential function φ[Z] indicates true, if the met-
ric distances on all attributes Z agree the corresponding distance constraints specified
by φ[Z], denoted by (t1, t2) 
 φ[Z]. For example, a differential function on name and age
attributes, [name(≤ 6)∧age(≥ 7)], indicates true, if two tuples have name distance ≤ 6
and age distance ≥ 7.

The cardinality of a differential function φ[Z] is the number of attributes specified
in φ[Z]. Differential constraints are unlimited on the other attributes R \ Z unspecified
in φ[Z]. That is, any pair of tuples can always agree on this unlimited differential
constraint.

We denote φ1[Z] a projection of φ1[X] on attributes Z, where Z ⊆ X. Let φ2[Z] be a
project of another differential function φ2[Y ], Z ⊆ Y . Then, φ1[Z] = φ2[Z] denotes that
φ1 has the same distance constraints as φ2 on Z. Since there is a single distance metric
associated to each attribute, we can study the overlapping of differential functions on
the same attributes.

The intersection of two differential functions φ1[Z] and φ2[Z] on the same attributes
Z is also a differential function, denoted by φ3[Z] = φ1[Z] ∧ φ2[Z], which satisfies the
following.

—For any tuple pair (t1, t2) 
 φ1[Z] and (t1, t2) 
 φ2[Z], it always agrees with φ3[Z] as
well, that is, (t1, t2) 
 φ3[Z].

—For any tuple pair (t1, t2) �
 φ1[Z] or (t1, t2) �
 φ2[Z], it should not agree with φ3[Z]
either, that is, (t1, t2) �
 φ3[Z].

For example, we have [name(≤ 9)] ∧ [name(≤ 7)] = [name(≤ 7)]. Moreover, it is natural
to apply the intersection between two differential functions φ1[X] and φ2[Y ] on different
attributes X and Y as well. Let Z = X ∩ Y . It follows that

φ1[X] ∧ φ2[Y ] = (φ1[X \ Z] ∧ φ1[Z]) ∧ (φ2[Z] ∧ φ2[Y \ Z])
= φ1[X \ Z] ∧ (φ1[Z] ∧ φ2[Z]) ∧ φ2[Y \ Z].

For example, we have [name(≤ 5) ∧ address(≤ 12)] ∧ [address(≤ 10)] = [name(≤ 5) ∧
address(≤ 10)].

3.1.2. Differential Dependencies. Now, with the preliminaries of distance metrics and
differential functions, we are ready to define differential dependencies.

Definition 3.2. A Differential Dependency (DD) over relation R has the form

φL[X] → φR[Y ],

where X ⊆ R, Y ⊆ R, and φL[X] and φR[Y ] are two differential functions on attributes
X and Y , respectively.

It states that for any two tuples, if their differences on attributes X agree with the
constraints specified by differential function φL[X], then their differences on attributes
Y should also agree with the constraints specified by φR[Y ].

An instance I of relation R satisfies a DD, denoted by I � φL[X] → φR[Y ], if any two
tuples t1 and t2 in I having metric distances (t1, t2) 
 φL[X] must agree (t1, t2) 
 φR[Y ].
For a set � of DDs, I satisfies �, denoted by I � �, if I � φL[X] → φR[Y ] for each
φL[X] → φR[Y ] ∈ �.
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According to the preceding definitions, we have the following properties of differential
dependencies. That is, any instance I , which satisfies the former DDs, will always satisfy
the latter one.

PROPOSITION 3.3. If φL[X] → φ1[Z] and φL[X] → φ2[Y ], then φL[X] → φ1[Z] ∧ φ2[Y ].

PROPOSITION 3.4. If φL[X] → φ1[Z] and φ1[Z] → φR[Y ], then φL[X] → φR[Y ].

3.1.3. Subsumption Order Relation. Intuitively, any two values that are “identical” (with
distance = 0) can always be interpreted as “similar” (e.g., with distance ≤ 9). In other
words, the semantics of “similar” subsume equality. Thereby, we study a general order
relation � between differential functions, namely subsumption.

Definition 3.5. Let φ1[Z] and φ2[Z] be two differential functions on attributes Z,
respectively. If any tuple pair (t1, t2) 
 φ2[Z] always agree (t1, t2) 
 φ1[Z], we say that
φ1[Z] subsumes φ2[Z], written φ1[Z] � φ2[Z].

It is notable that the subsumption order relation is independent of any particular
distance metric used in each attribute. That is, no matter what domain-specific distance
metric is used for an attribute, we can always investigate the subsumption order
relation among differential functions on this same metric of an attribute. Essentially,
subsumption tells a general order relation of constraints on distance values D, given
any distance metric.

For example, φ1[name] = [name(≤ 9)] subsumes φ2[name] = [name(≤ 7)], denoted
by [name(≤ 9)] � [name(≤ 7)]. That is, given any metric, a distance value of name
that agrees ≤ 7 will always agree ≤ 9. Given another example, a differential function
[date(≤ 30)] specifying date difference in a month length always subsumes [date(> 7,
≤ 30)] which denotes the date difference in a month length but larger than a week
length.

Based on the subsumption and intersection semantics of differential functions, we
have the following propositions.

PROPOSITION 3.6. We have φ1[Z] � φ2[Z], iff φ1[Bi] � φ2[Bi],∀Bi ∈ Z.

PROPOSITION 3.7. If φ1[Z] � φ2[Z] and φ2[Z] � φ3[Z], then φ1[Z] � φ3[Z].

PROPOSITION 3.8. Given two differential functions φ1[X] and φ2[Y ]. Let φ3[W] =
φ1[X] ∧ φ2[Y ]. Then, we have W = X ∪ Y , X ⊆ W, φ1[X] � φ3[X], Y ⊆ W and φ2[Y ] �
φ3[Y ].

Here, φ3[X] denotes a projection of φ3[W] on attributes X, X ⊆ W . Similarly, φ3[Y ]
is another projection of φ3[W] on Y . For example, consider two differential functions
φ1[X] = [name(≤ 5) ∧ address(≤ 12)] and φ2[Y ] = [address(≤ 10)]. Their intersection
can be φ3[W] = φ1[X] ∧ φ2[Y ] = [name(≤ 5) ∧ address(≤ 12)] ∧ [address(≤ 10)] =
[name(≤ 5) ∧ address(≤ 10)]. Obviously, we have φ1[X] � φ3[X] and φ2[Y ] � φ3[Y ].

PROPOSITION 3.9. For two differential functions φL[X] and φR[Y ], if Y ⊆ X and
φR[Y ] � φL[Y ], then φL[X] → φR[Y ].

It states a trivial DD, for example, we always have [name(≤ 5) ∧ address(≤ 10)] →
[address(≤ 12)].

3.1.4. Differential Key Dependencies. Traditionally, with equality functions we can iden-
tify all t1[R] = t2[R] according to t1[K] = t2[K] on a key K ⊆ R. Considering DDs with
differential function, say φ1[R] on all attributes of R, we want to find by what differ-
ential function (say differential key φ2[K]) we can identify all (t1, t2) 
 φ1[R], that is,
φ2[K] → φ1[R]. Formally, a differential key dependency is a special case of DDs defined
as follows. As mentioned, differential keys are important in real applications such as
data partition, query optimization, etc.
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A differential key φ2[K] relative to φ1[R] is a differential function that can determine
φ1[R], that is, a differential key dependency φ2[K] → φ1[R] with K ⊆ R and φ2[K] �
φ1[K].

For example, a differential function [position(≥ 20)] is a differential key relative to
[position(≥ 20) ∧ area(≥ 5)], according to the following differential key dependency.

[position(≥ 20)] → [position(≥ 20) ∧ area(≥ 5)]

A naı̈ve key relative to φ1[R] is φ1[R] itself, that is, a differential key always exists.
The cardinality of a differential key is the cardinality of the differential function.

A Candidate Differential Key (CDK) φc[K] is an irreducible differential key relative
to φ1[R], that is, there does not exist any φ2[L] such that L ⊆ K, φ2[L] � φc[L] and
φ2[L] → φ1[R].

A CDK not only has a minimal cardinality as traditional candidate keys on FDs, but
also should be the one subsuming all the other differential keys declared on the same
attributes. Suppose that the aforesaid φ2[L] exists. Since φc[K] � φ1[K], we have φc[L] �
φ1[L]. According to Proposition 3.7, it implies φ2[L] � φ1[L], that is, φ2[L] is a differential
key relative to φ1[R] as well, and φc[K] is not irreducible.

3.2. Reasoning

Implication analysis is essential in data dependency studies [Abiteboul et al. 1995].
Although the distance metric may be specific to the domain of an attribute, as we
presented, there does exist a general subsumption order relation among differential
functions of an attribute, given any particular distance metric. In the following, we
investigate the inference of DDs according to this general subsumption order relation,
which is independent of any particular distance metric used in each attribute. To for-
mally investigate the reasoning mechanism, let us first introduce some preliminaries.

Preliminary. The complement of a differential function φ[B], denoted by φ[B], specifies
constraints such that, any tuple pair not agreeing φ[B] will always agree φ[B] and any
tuple pair not agreeing φ[B] will always agree φ[B]. For example, we have price(≤ 5) =
price(> 5). Given a set � of DDs, we say that � is consistent, if there exists a nonempty
instance I of relation R such that I � �; otherwise, inconsistent. Moreover, consider a
differential function φ[Z]. We say that (�,φ[Z]) is consistent, if there exists a nonempty
instance I such that I � � and there exist tuples t1, t2 ∈ I such that (t1, t2) 
 φ[Z];
otherwise, inconsistent.

A differential function φ[B] is unlimited, if any instance I over relation R can always
satisfy φ[B]. For example, price(≥ 0) is unlimited, since any tuple pairs from R can
always have price difference ≥ 0. It is also noticeable that all the attributes not specified
by a φ[B] are also unlimited.

A differential function φ[B] is infeasible, if there does not exist a nonempty instance
I over relation R, such that I � φ[B]. For example, price(≥ 3,≤ 2) is infeasible, since
no tuple pairs can satisfy such constraints on difference. In the following, we mainly
consider DDs with differential functions that are not infeasible.

Two differential functions φ1[X] and φ2[Y ] are disjoint, if their intersection is infea-
sible, that is, φ1[X] ∧ φ2[Y ] = infeasible. For example, price(> 10) and price(< 7) are
disjoint, since there does not exist any pair of tuples that can satisfy both differential
functions. Obviously, a differential function and its complement are always disjoint,
that is, φ[X] ∧ φ[X] = infeasible.

Now, we introduce a series of reasoning problems for differential dependencies.

Consistency Problem. We study the consistency problem of DDs. Given a set � of DDs
over relation R, it is to decide whether there exists a nonempty instance I of relation
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Table II. Complexity of Problems

differential functions
nondisjoint complement unary LHS general

consistency problem always consistent PTIME NP-complete
consistent subset problem always consistent NP-complete NP-hard
implication problem PTIME PTIME co-NP-complete
minimal cover PTIME PTIME NP-hard

R, such that � holds in I , written by I � �. As we proved, the consistency problem
in general is NP-complete. Thus, we identify several special cases. In the nondisjoint
complement case, where the intersections of complements of differential functions
are not infeasible, � is always consistent. In unary LHS case, where the left-hand
side differential function of each DD in � specifies a constraint on only one attribute,
the consistency problem becomes tractable. Finally, we study the problem of finding
the maximum subset of DDs that are consistent.

Implication Problem. We study the implication problem of DDs. Given a set � of DDs and
another DD φL[X] → φR[Y ] over relation R, it is to decide whether � can imply this
DD, written by � � φL[X] → φR[Y ]. Again, the implication problem in the general case
is most likely intractable. However, both unary LHS and nondisjoint complement cases
are identified as tractable. We also study the problem of finding minimal cover of DDs.
Given a set � of DDs over relation R, a minimal cover �c of � is a minimal set of DDs
which are equivalent to �.

Complexity. In the following, we study the complexity of problems such as consistency,
implication, and computing minimal cover, which are all generally hard. First, we
study the consistency problem in Section 4 and present two special cases of nondisjoint
complement and unary LHS. Section 5 reports the implication analysis, which raises
the problem of finding minimal cover. Table II lists the main conclusions of complexity.

4. CONSISTENCY ANALYSIS

In traditional FDs, given a set of FDs, there always exists an instance which can satisfy
these FDs, that is, consistent [Abiteboul et al. 1995]. It is also interesting to study
whether such an instance exists for DDs, where difference semantics are introduced.
Obviously, not all DDs sets are consistent.

Example 4.1. We consider a set � with following DDs:

DD1 [date(≤ 5)] → [price(> 2,< 3)],
DD2 [date(≤ 5)] → [price(> 4,< 5)],
DD3 [date(> 5)] → [price(> 6,< 7)],
DD4 [date(> 5)] → [price(> 8,< 9)].

It is impossible to construct a nonempty instance I such that I � {DD1, DD2, DD3, DD4}.
That is, the distance of any two tuples t1, t2 ∈ I on price satisfy (> 2,< 3) and (> 4,< 5)
at the same time, when they agree on [date(≤ 5)]. Similarly, it is impossible to find a
nonempty instance where each tuple pair agrees [date(> 5)] and has price(> 6,< 7)
and (> 8,< 9) at the same time. In other words, there is no relation instance that can
satisfy all the preceding DDs.

4.1. Consistency Problem

Given a set � of DDs over relation R, the consistency problem is to decide whether there
exists a nonempty instance I of relation R, such that � holds in I , written by I � �.
We say the set � of DDs consistent if such nonempty relation instance exists.
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Recall that we say two differential functions are nondisjoint, if there exist some tuple
pairs that agree both of them, that is, φ1[X] ∧ φ2[Y ] �= infeasible.

As illustrated in Example 4.1, inconsistency may be introduced if the intersection of
RHS differential functions of two DDs is infeasible, that is, no tuple pairs can be found
which satisfy both DDs. Intuitively, to determine the consistency, we are essentially
required to study the intersection of differential functions.

PROPOSITION 4.2. For any set � of DDs, if the right-hand side differential functions of
any two DDs in � are nondisjoint, then � is consistent.

In other words, if ∀φ3[U ] → φ1[X], φ4[V ] → φ2[Y ] ∈ � having φ1[X] ∧ φ2[Y ] �=
infeasible, then � is consistent. That is, a nonempty instance I always exists having
I 
 (φ1[X] ∧ φ2[Y ]) when given φ3[U ] and φ4[V ].

4.1.1. Nondisjoint Complement Case. We say that a set of differential functions
{φ1[Z1], . . . , φk[Zk]} is nondisjoint complement, if φ1[Z1] ∧ · · · ∧ φk[Zk] �= infeasible. In
other words, there exist some relation instances I that can satisfy I 
 φ1[Z1] ∧ · · · ∧
φk[Zk].

Intuitively, we consider a set � of DDs, whose differential functions are nondisjoint
complement. In other words, there always exists a nonempty instance I that does not
agree on all the differential functions, including the left-hand side differential functions
of any DDs in �. That is, such instance I satisfies �.

THEOREM 4.3. For any set � of DDs, if the differential functions of DDs in � are
nondisjoint complement, then � is always consistent.

PROOF. Let {φ1[Z1], . . . , φk[Zk]} be the set of all differential functions in �. According
to nondisjoint complement, there exist some relation instances I 
 φ1[Z1]∧· · ·∧φk[Zk].
Such instances always have I � �, that is, � is always consistent.

4.1.2. General Case. We now consider the general DDs with arbitrary differential func-
tions defined on each attribute of R. Given a set � of DDs, there are finitely many
differential functions that can be derived from �. Thereby, it is not surprising that the
implication problem is intrinsically hard.

THEOREM 4.4. The consistency problem of DDs in general case is NP-complete.

PROOF. The problem is clearly in NP. Given any relation instance I , we can verify
whether I � � in O(|I |2|�| · |R|) time.

To prove the problem is NP-hard, we show a reduction from the nontautology prob-
lem which is proved NP-complete [Garey and Johnson 1979]. Given a set of variables
v1, . . . , vm, the nontautology problem is a decision problem, whose instance is a Boolean
formula with the form E = (x1 ∧ y1 ∧ z1) ∨ · · · ∨ (xn ∧ yn ∧ zn), where xi, yi, zi, 1 ≤ i ≤ n
are either v j or v j , 1 ≤ j ≤ m. It is to decide whether there exists an assignment of
true and false values to the variables that will make the Boolean formula false, that
is, nontautology. In the reduction, we build a relation R = (A1, . . . , Am, T ) where each
attribute Aj corresponds to the variable v j . For each (xi ∧ yi ∧zi), we define a differential
function φ[Wi]. If a variable v j appears in (xi ∧ yi ∧ zi), then φ[Wi] = φ[Wi] ∧ φ[Aj]; if v j

appears, then φ[Wi] = φ[Wi] ∧ φ[Aj]. We add two DDs into � for each (xi ∧ yi ∧ zi), that
is, φ[Wi] → φ[T ] and φ[Wi] → φ[T ]. Note that no instance I can be found which both
agrees φ[Wi] and satisfies these two DDs. This reduction can be conducted in polynomial
time.

To find an assignment of all variables v j is equivalent to find an instance I which
agrees the corresponding differential functions (either φ[Aj] or φ[Aj]) on all the
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attributes Aj . Any instance I that can satisfy the set � of DDs, that is, consistency,
will not agree all the φ[Wi] and consequently make all (xi ∧ yi ∧ zi) false, that is,
nontautology.

4.1.3. Unary Case. In the following, we study a special case where the implication
problem becomes tractable. A set � of DDs is unary LHS, if all the DDs have differential
functions specified only in one attribute in the left-hand side. Unary constraints with
prime (single) attributes are not only theoretically interesting but also practically
useful, for example, for decomposition in schema design [Mannila and Räihä 1989].

We now consider those DDs which may introduce inconsistency. Let Ai and Aj be
prime attributes and

φ[W] =
∧

{φ[Ai] ∧ φ[Aj] | φ[Ai] → φ[X], φ[Aj] → φ[Y ] ∈ �,

φ[X] ∧ φ[Y ] = infeasible}, (1)

where φ[Ai] ∧ φ[Aj] denotes the complement of a differential function on two attributes,
having φ[Ai] ∧ φ[Aj] = φ[Ai] ∨ φ[Aj]. If there does not exist any nonempty I 
 φ[W],
that is, φ[W] = infeasible, then we cannot build any instance I such that I � �, that
is, inconsistent.

It is notable that a unary differential function specifies a difference range in a metric
space. Thereby, we have the following claim.

CLAIM 4.1. For any φ1[A], φ2[A], φ3[A] on the same attribute A, if φ1[A] ∧ φ2[A] �=
inf easible, φ1[A] ∧ φ3[A] �= inf easible and φ2[A] ∧ φ3[A] �= inf easible, then φ1[A] ∧
φ2[A] ∧ φ3[A] �= inf easible.

To solve the problem of determining whether there exists I 
 φ[W], we investigate
an encoding to the 2-satisfiability problem, which can be solved in polynomial time
[Aspvall et al. 1979].

THEOREM 4.5. For any set � of DDs with unary LHS, the consistency problem can be
solved in O(|�|2|R|) time.

PROOF. First, each φ[Ai] ∧ φ[Aj] in formula 1 corresponds to a clause (φ[Ai] ∨ φ[Aj])
in 2-satisfiability problem. The set of all clauses is in size O(|�|2) and can be found
in O(|�|2|R|) time. For those differential functions having φ1[Ai] ∧ φ2[Ai] �= infeasible
on the same attribute Ai, Claim 4.1 assures that a nonempty instance I can be built.
Next, for any φ1[Ai] ∧ φ2[Ai] = infeasible on the same attribute Ai, we add a clause
(φ1[Ai] ∨ φ2[Ai]). It ensures that no relation instance I can be built which agrees with
both φ1[Ai] and φ2[Ai]. In other words, the “variables” φ1[Ai] and φ2[Ai] cannot be
assigned true at the same time in the 2-satisfiability assignment. The total number
of clauses is O(|�|2|R|). It is known that 2-satisfiability problem is bounded in linear
time. The conclusion is proved.

4.2. Consistent Subset

Given a set � of DDs, the maximum consistent subset problem is a typical optimization
problem, that is, to find a maximum number of DDs from � that are consistent.

THEOREM 4.6. For any set � of DDs with unary LHS, the consistent subset problem is
NP-complete.

PROOF. Clearly, the problem is in NP, that is, according to Theorem 4.5, we can always
verify a subset of DDs whether consistent or not with size at least k in polynomial time.
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To prove the problem is NP-hard, we present a reduction from the vertex cover problem
which is one of Karp’s 21 NP-complete problems [Karp 1972]. Let G be a simple graph
where each vertex vi corresponds to a DD in �. For each pair of vertices (vi, v j) in G,
let φ[A] → φ[X], φ[B] → φ[Y ] be the DDs corresponding to vi, v j respectively. We add
two sets of new attributes Uij and Vij relative to vi, v j only. If there is an edge between
vi and v j , then we append the following differential functions to corresponding DDs,
φ[X] = φ[X]∧φ[Uij], φ[Y ] = φ[Y ]∧φ[Vij], φ[Uij]∧φ[Vij] = infeasible and φ[A] ∧ φ[B] =
infeasible. That is, we make these two DDs inconsistent, namely, there is no instance
I that can satisfy these two DDs at the same time. On the other hand, if there is
no edge between (vi, v j), we append differential functions such that φ[Aij] ∧ φ[Bij] �=
infeasible, that is, make corresponding DDs always consistent. The reduction can be
done in polynomial time.

To find a minimum vertex cover is equivalent to find a minimum set of vertices (DDs)
that cover all the edges (inconsistency), while all the remaining DDs are consistent.

Similar to the factor-2 approximation for finding minimum vertex cover, one can also
repeatedly remove both DDs from � when φ[W] = infeasible in formula (1) to find an
approximate minimum set of DDs, by removing which we can make the remaining DDs
consistent.

Finally, from Theorem 4.6, we can immediately obtain the next corollary.

COROLLARY 4.7. The consistent subset problem of DDs in the general case is NP-hard.

5. IMPLICATION ANALYSIS

In this section, we study the classical implication analysis for differential dependencies.
To give the formal specification, we first illustrate the following example on logical
implication of DDs.

Example 5.1. Consider two DDs

DD1 [name(≤ 7)] → [address(≤ 1)],
DD2 [address(≤ 5)] → [salary(≤ 50)].

For any two tuples t1 and t2 having name distance ≤ 7, according to DD1, their distance
on address should be ≤ 1, that is, (t1, t2) agree address(≤ 5) as well. Consequently, the
salary distance of t1 and t2 should be ≤ 50 according to DD2. Therefore, we can imply
another DD

DD3 [name(≤ 7)] → [salary(≤ 50)].

Let �1 and �2 be two sets of DDs. We say that �1 logically implies �2, denoted by
�1 � �2, if for all relation instance I , I � �1 implies I � �2. Two sets �1 and �2 are
equivalent, denoted by �1 ≡ �2, if �1 � �2 and �2 � �1.

5.1. Implication Problem

Given a consistent set � of DDs and another DD φL[X] → φR[Y ] over relation R, the
implication problem is to decide whether � can imply this DD, written by � � φL[X] →
φR[Y ].

THEOREM 5.2. The implication problem of DDs in general case is co-NP-complete.

PROOF. We study the complement of implication problem, that is, to determine
whether exists an relation instance I such that I � � but not satisfying φL[X] → φR[Y ],
denoted by I �� φL[X] → φR[Y ].

We show that the complement of implication problem is NP-complete. Note that to
find an relation instance I that does not satisfy φL[X] → φR[Y ] is equivalent to find an
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I ′ such that I ′ � φL[X] → φR[Y ]. Consequently, the problem transforms to determine
whether there exists a nonempty relation instance satisfying � ∪ {φL[X] → φR[Y ]},
which is exactly the consistency problem and proved to be NP-complete in Theo-
rem 4.4.

Definition 5.3 (Closure). The closure of a differential function φL[X] under �, de-
noted by (φL[X])+, is also a differential function, which computes the intersection of the
set of differential functions that can be determined by φL[X] according to DDs in �.

(φL[X])+ =
∧

{φR[Y ] | � � φL[X] → φR[Y ]}
For the DDs in Example 5.1, the closure of [name(≤ 7)] under {DD1, DD2} is [name(≤

7)∧address(≤ 1)∧salary(≤ 50)]. According to Proposition 3.3, it is natural that φL[X] →
(φL[X])+. The implication problem is then solved by computing the closure (φL[X])+.

LEMMA 5.4. Let � be a set of DDs and φ1[Z] = (φL[X])+ be the closure of φL[X]
with respect to �. Consider a DD φL[X] → φR[Y ], � � φL[X] → φR[Y ] iff Y ⊆ Z and
φR[Y ] � φ1[Y ].

PROOF. First, if Y ⊆ Z and φR[Y ] � φ1[Y ], according to Proposition 3.9, we have
φ1[Z] → φR[Y ]. Since φL[X] → (φL[X])+, the DD φL[X] → φR[Y ] can be implied based on
the transitivity in Proposition 3.4.

Moreover, if � � φL[X] → φR[Y ], then φR[Y ] must be included in φ1[Z] = (φL[X])+ by ∧
intersection referring to the definition of closure. That is, we have φ1[Z]∧φR[Y ] = φ1[Z]
as well. According to Proposition 3.8, it is sufficient to show Y ⊆ Z and φR[Y ] �
φ1[Y ].

In other words, to imply a DD is essentially to compute the corresponding closure of
φL[X]. Since [salary(≤ 50)] subsumes the projection on salary of the closure of [name(≤
7)], it implies DD3.

5.1.1. Unary Case. For the special case of unary LHS, the implication problem becomes
tractable, whose complement, consistency problem, can be solved in polynomial time
according to Theorem 4.5.

COROLLARY 5.5. For any set � of DDs with unary LHS, the implication problem can be
solved in O(|�|2|R|) time.

5.1.2. Nondisjoint Complement Case. The implication problem also becomes tractable if
the differential functions in � are nondisjoint complement. Intuitively, we are inter-
ested in all the RHS differential functions that can be determined by the given φ[X] with
respect to �.

In the following, we show that the closure can be computed in polynomial time in the
nondisjoint complement case. Thereby, the implication problem changes to be tractable.

THEOREM 5.6. For any set � of DDs with nondisjoint complement differential func-
tions, the implication problem can be solved in O(|�| · |R|) time.

PROOF. Given a consistent set � of DDs, the closure of a differential function can be
computed in O(|�| · |R|) time. Let φC[U ] denote the intermedia result of closure for
φL[X] in each step. Initially, we have φC[U ] = φL[X]. In each step, for any φ[W] → φ[Z]
such that W ⊆ U and φ[W] � φC[W], we compute φC[U ] = φC[U ] ∧ φ[Z]. The process
repeats and does not terminate until no further change on φC[U ].

Now, we prove that φC[U ] = φ[X]+. First, since each computing step follows Proposi-
tions 3.3 and 3.4, it is sufficient to show that φC[U ] � φ[X]+.
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Next, we present the opposite direction, that is, to prove φ[X]+ � φC[U ]. It is to show
that for any φ[V ] such that V �⊆ U or V ⊆ U but φ[V ] �� φC[V ] we have � �� φC[U ] →
φ[V ]. Let � � φC[U ] ∧ φ[Zi] → φ[V ], 1 ≤ i ≤ k, be the set of all DDs that can be implied
by � such that Zi �⊆ U or Zi ⊆ U but φ[Zi] �� φC[Zi]. According to the nondisjoint
complement, there must exist some relation instances I 
 φ[Z1] ∧ · · · ∧ φ[Zk] ∧ φ[V ].
Since neither φ[Zi] nor φ[V ] subsumes φC[U ], we can build a relation instance having
I 
 φC[U ] at the same time. That is, there exists a relation instance I � � such that
I �� φC[U ] → φ[V ]. Consequently, � �� φC[U ] → φ[V ] is proved.

5.2. Inference System

Recall that the subsumption order relation is generally defined, given any distance
metric for an attribute. We now introduce an inference system for DDs which incorpo-
rates such a general subsumption order relation. It is notable that Propositions 3.3,
3.4, and 3.9 can be treated as inference axioms for implication analysis. Consequently,
a complete and sound set of inference rules for DDs can be introduced analogous to
Armstrong’s axioms [Armstrong 1974].

Definition 5.7. Let � be a set of DDs over relation R. We define a set I of inference
rules for DDs as follows.

(A1) If Y ⊆ X and φL[Y ] = φR[Y ], then � �I φL[X] → φR[Y ].
(A2) If � �I φL[X] → φR[Y ], then � �I φL[X] ∧ φ1[Z] → φR[Y ] ∧ φ1[Z].
(A3) If � �I φL[X] → φ1[Z], φ1[Z] � φ2[Z] and � �I φ2[Z] → φR[Y ], then � �I φL[X] →

φR[Y ].
(A4) If � �I φL[X]∧φi[B] → φR[Y ], 1 ≤ i ≤ k, and (�,φ1[B]∧· · ·∧φk[B]) is inconsistent,

then � �I φL[X] → φR[Y ].

We say that a DD is provable from � using I, denoted by � �I φL[X] → φR[Y ], if it
is a member of � or is the result of one or more applications of the inference rules I.
For example, by using the transitivity A3 rules of I, we can imply DD3 by using DD1 and
DD2 in Example 5.1, denoted by {DD1, DD2} �I DD3. Moreover, DDs can also be inferred by
applying a sequence of inference rules.

Example 5.8. We consider a set � of DDs as follows.

DD1 [d(≥ 1,≤ 7) ∧ p(< 10)] → [a(≤ 150)]
DD2 [p(≥ 10)] → [a(≤ 100)]

Let DD3 be another DD

DD3 [d(≥ 1,≤ 7)] → [a(≤ 150)].

We show that � �I DD3 can be proved by the following steps.

1. [d(≥ 1,≤ 7) ∧ p(≥ 10)] → [d(≥ 1,≤ 7) ∧ a(≤ 100)] by A2
2. [d(≥ 1,≤ 7) ∧ a(≤ 150)] → [a(≤ 150)] by A1
3. [d(≥ 1,≤ 7) ∧ p(≥ 10)] → [a(≤ 150)] by A3
4. [d(≥ 1,≤ 7)] → [a(≤ 150)] by A4

As illustrated, the first three rules A1–A3 are analogous to Armstrong’s axioms for
conventional FDs, while A4 is specific for DDs. For instance, in step 1 of Example 5.8, we
apply the augmentation rule A2 on DD2. Step 2 uses the reflexivity rule A1. The tran-
sitivity rule A3 incorporates the subsumption order relation of differential functions,
for example, we have a(≤ 100) � a(≤ 150) from step 1 and 2 to step 3. Intuitively, the
result of step 3 together with DD1 states that no matter what the distance value is on
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attribute p, it always has [d(≥ 1,≤ 7)] → [a(≤ 150)]. Such an inference rule A4 is not
considered in the traditional functional dependencies scenario. Formally, considering
the result of step 3 and DD1, we have p(< 10) ∧ p(≥ 10) = p(≥ 10) ∧ p(< 10). Obviously,
there are no tuples that can agree both these differential functions on attribute p. That
is, (�, p(< 10) ∧ p(≥ 10)) is inconsistent as introduced in the preliminary, and A4 can
be applied.

THEOREM 5.9. The set I of inference rules is

—(sound), if � �I φL[X] → φR[Y ] then � � φL[X] → φR[Y ],
—(complete), if � � φL[X] → φR[Y ] then � �I φL[X] → φR[Y ],

for logical implication of DDs.

PROOF.
To show the soundness, we illustrate the semantics of four inference rules as follows.
A1 is modified according to the reflexivity rule in Armstrong’s axioms for FDs. The

soundness of A1 is self-explanatory, that is, φL[X] = φL[X \ Y ] ∧ φL[Y ] = φL[X \ Y ] ∧
φR[Y ] → φR[Y ].

A2 is modified according to the augmentation rule in Armstrong’s axioms for FDs.
To illustrate the soundness of A2, we need to show that for any instance I of R, if
I � φL[X] → φR[Y ], then I � φL[X] ∧ φ1[Z] → φR[Y ] ∧ φ1[Z]. Specifically, let t1, t2 ∈ I be
any two tuples in I . If (t1, t2) 
 φL[X]∧φ1[Z], that is, we have (t1, t2) 
 φL[X] and (t1, t2) 

∧φ1[Z] at the same time, it implies (t1, t2) 
 φR[Y ] according to I � φL[X] → φR[Y ].
Thus, it follows (t1, t2) 
 φR[Y ] ∧ φ1[Z] as well and I � φL[X] ∧ φ1[Z] → φR[Y ] ∧ φ1[Z] is
desired.

A3 extends the transitivity rule in Armstrong’s axioms for FDs, by incorporating the
subsumption order relation � of differential functions. Let � = {φL[X] → φ1[Z], φ2[Z] →
φR[Y ]} such that φ1[Z] � φ2[Z]. To illustrate the soundness of A3, we have to show that
for any instance I of R, if I � �, then I � φL[X] → φR[Y ]. Let t1, t2 ∈ I be any two tuples
in I . If (t1, t2) 
 φL[X], we have (t1, t2) 
 φ1[Z] according to φL[X] → φ1[Z]. It follows
(t1, t2) 
 φ2[Z] since φ1[Z] � φ2[Z]. Consequently, we can imply (t1, t2) 
 φR[Y ] based on
φ2[Z] → φR[Y ] and I � φL[X] → φR[Y ] is proved.

A4 is different from Armstrong’s axioms and specific to differential functions. Con-
sider � �I {φL[X] ∧ φi[B] → φR[Y ] | i ∈ [1, k]} such that (�,φ1[B] ∧ · · · ∧ φk[B]) is
inconsistent. To illustrate the soundness of A4, we have to show that for any instance
I of R, if I � �, then I � φL[X] → φR[Y ]. Since (�,φ1[B] ∧ · · · ∧ φk[B]) is inconsistent,
for all relation instance I � �, there do not exist any two tuples t1, t2 ∈ I such that
(t1, t2) 
 φ1[B]∧· · ·∧φk[B]. Or equivalently, ∀t1, t2 ∈ I , we have (t1, t2) 
 φ1[B]∨· · ·∨φk[B].
Let t1, t2 ∈ I be any two tuples in I . There must at least exist one φ j[B], j ∈ [1, k], hav-
ing (t1, t2) 
 φ j[B]. If (t1, t2) 
 φL[X], according to φL[X] ∧ φ j[B] → φR[Y ], it follows
(t1, t2) 
 φR[Y ] as well. That is, we have I � φL[X] → φR[Y ] for all the instance I � �.

To prove the completeness, that is, � � φL[X] → φR[Y ] implies � �I φL[X] → φR[Y ],
we consider two different cases, C1 and C2, respectively.

Recall that by computing the closure (φL[X])+ of φL[X] under �, it naturally has
φL[X] → (φL[X])+. Let φz[Z] = (φL[X])+. According to Lemma 5.4, we have � � φL[X] →
φR[Y ] iff Y ⊆ Z and φR[Y ] � φz[Y ].

Now, we illustrate that such implication process can be conducted by using the
inference system I. First, we show that � �I φL[X] → (φL[X])+ by an induction. Let
(φL[X])+i be the result of computing closure (φL[X])+ in the i-th step. Initially, we have
(φL[X])+0 = φL[X] and φL[X] → (φL[X])+0 according to A1. Suppose inductively that
φL[X] → (φL[X])+j , j = 0 . . . i, have been proved with respect to I. Let φw[W] → φv[V ] ∈
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� be the DD selected in (i+1)-th step and let φz[Zi] = (φL[X])+i . We consider the following
possible cases.

(C1) If we have W ⊆ Zi and φw[W] � φz[W], then it computes the next (φL[X])+i+1 =
(φL[X])+i ∧ φv[V ]. The following steps show the proof of φL[X] → (φL[X])+i+1.

(1.) φw[W] → φv[V ] in �

(2.) (φL[X])+i → φw[W] by A1, A3

(3.) (φL[X])+i → φv[V ] by A3

(4.) (φL[X])+i → (φL[X])+i+1 by A2

(5.) φL[X] → (φL[X])+i+1 by A3

(C2) Otherwise, we do not have W ⊆ Zi and φw[W] � φz[W]. Let φi[Ui] = φw[Ui] such
that Ui ⊆ W and for each B ∈ Ui either B �∈ Zi or φw[B] �� φz[B]. Following similar steps
in C1, we now have (φL[X])+i ∧ φi[Ui] → φv[V ], that is, φL[X] ∧ φi[Ui] → φv[V ] as well.
We consider all the k DDs that can be computed with the form � �I φL[X] ∧ φ j[U j] →
φv[V ], 1 ≤ j ≤ k. There are two subcases.

(C2.1) If (�,φ1[U1] ∧ · · · ∧ φk[Uk]) is consistent, there always exists a nonempty
instance I of relation R such that I � � and there have tuples t1, t2 ∈ I such that (t1, t2) 

φ1[U1] ∨ · · · ∨ φk[Uk]. Since (t1, t2) do not agree the left-hand side of any φL[X]∧φ j[U j] →
φv[V ], they are not required to agree φv[V ] either. It is sufficient to construct a relation
instance with two tuples such that {t1, t2} � �, (t1, t2) 
 φL[X] but (t1, t2) �
 φv[V ]. In
other words, we do not have I � φL[X] → φv[V ] for all the relation instances I , that is,
� �� φL[X] → φv[V ]. We can safely ignore this case.

(C2.2) If (�,φ1[U1] ∧ · · · ∧ φk[Uk]) is inconsistent, by applying A4, we have φL[X] →
φv[V ]. Following similar steps in C1, we compute (φL[X])+i+1 = (φL[X])+i ∧ φv[V ]. It also
derives φL[X] → (φL[X])+i+1.

To sum up all the cases, according to the induction, it is sufficient to prove that
� �I φL[X] → (φL[X])+.

Next, we show that � �I φL[X] → φR[Y ] when φz[Z] = (φL[X])+, Y ⊆ Z and φR[Y ] �
φz[Y ] as Lemma 5.4. In particular, we have (φL[X])+ → φR[Y ] based on A1, A3 in I.
Since we have already shown φL[X] → (φL[X])+, φL[X] → φR[Y ] is concluded by the
transitivity rule A3, that is, � �I φL[X] → φR[Y ].

To conclude, the set I of inference rules is sound and complete for logical implication
of DDs.

Besides, some other inference rules can be further extended.

(A5) If � �I φL[X] → φR[Y ], Z ⊇ X and φ1[X] � φL[X], then � �I φ1[Z] → φR[Y ].
(A6) If � �I φL[X] → φR[Y ], Y ⊇ Z and φR[Z] � φ1[Z], then � �I φL[X] → φ1[Z].
(A7) If � �I φL[X] → φR[Y ] and � �I φL[X] → φ1[Z], then � �I φL[X] → φR[Y ]∧φ1[Z].
(A8) If � �I φL[X] → φR[Y ]∧φ1[Z], then � �I φL[X] → φR[Y ] and � �I φL[X] → φ1[Z].
(A9) If � �I φL[X] → φR[Y ] and � �I φR[Y ] ∧ φ1[Z] → φ2[W], then � �I φL[X] ∧

φ1[Z] → φ2[W].

Note that the last three rules A7–A9 are modified according to the union, decompo-
sition, and pseudo-transitivity rules for FDs [Levene and Loizou 1999]. The semantics
of A5 and A6 are based on the subsumption order relation specific to DDs, as illustrated
in Figure 1. Given a DD φL[X] → φR[Y ], according to A5, a φ1[X] which is subsumed
by the left-hand side φL[X] can determine the corresponding right-hand side φR[Y ] as
well. That is, φ1[Z] → φR[Y ], Z ⊇ X, can be implied. On the other hand, A6 states
that any φ1[Z] subsuming φR[Z], Z ⊆ Y, can also be determined by φL[X] according
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Fig. 1. Inference rules on subsumption.

to φL[X] → φR[Y ]. In fact, A5 and A6 can be proved according to A1, A2, and A3.
Therefore, these secondary inference rules are derived to be sound as well.

5.2.1. Nondisjoint Complement Case. Based on the proof of C2.1 in Theorem 5.9, it is
sufficient to conclude that the first three axioms in I are complete in the nondisjoint
complement case.

COROLLARY 5.10. The set of inference rules {A1, A2, A3} is complete and sound for
logical implication of DDs in the nondisjoint complement case.

5.3. Minimal Cover

According to the implication, given an arbitrary set of DDs, one may imply another which
indicates the existence of redundancy. It is promising to find an equivalent concise set
with less such redundancy, but without losing dependency information [Abiteboul et al.
1995].

Consider a set � of DDs. A cover �1 of � is also a set of DDs, such that they are
equivalent �1 ≡ �.

Definition 5.11. A minimal cover �c for � is a set of DDs such that �c is logically
equivalent to �, that is, �c ≡ �, and is minimal according to the following properties.

(C1) (left-reduced), for any φL[X] → φR[Y ] ∈ �c, there does not exist any φ1[W] such
that W ⊆ X, φ1[W] � φL[W] and �c � φ1[W] → φR[Y ].

(C2) (right-subsumed), for any φL[X] → φR[Y ] ∈ �c, there does not exist any φ1[W]
such that Y ⊆ W , φ1[Y ] � φR[Y ] and �c � φL[X] → φ1[W].

(C3) (nonredundant), there does not exist a cover �′ of � such that �′ ⊂ �c.

Intuitively, these three conditions ensure that no redundancies exist in the dependen-
cies. C3 tells that there are no redundant DDs, while C1, and C2 ensure no redundancy
with respect to differential functions in left-hand side and right-hand side, respectively.

The intuition of the left-reduced property C1 is described as follows. Suppose that
such φ1[W] exists, as illustrated in Figure 2(a). According to the reflexivity rule A1,
we have φL[X] → φL[W]. Since φ1[W] � φL[W] and �c � φ1[W] → φR[Y ], we can imply
φL[X] → φR[Y ] by using the transitivity rule A3. In other words, DD φL[X] → φR[Y ]
can be logically implied from φ1[W] → φR[Y ], and thus can be removed from �c as
redundancy.

Similarly, the right-subsumed property C2 is developed as follows. Again suppose
such φ1[W] exists as illustrated in Figure 2(b), having �c � φL[X] → φ1[W], Y ⊆ W and
φ1[Y ] � φR[Y ]. According to the transitivity rule A3, we can directly imply φL[X] →
φR[Y ], and thus it can be removed from �c as redundancy.

For example, a minimal cover for the set � = {DD1, DD2, DD3} in Example 5.1 can be
�c = {DD1, DD2}. That is, �c can imply DD3. By removing DD1 or DD2 from �c, it is no
longer a cover of �. Given another example of � = {DD1, DD2, DD3} in Example 5.8, a
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Fig. 2. Minimal cover.

minimal cover for � can be �c = {DD2, DD3}. However, �′ = {DD1, DD2} is not a minimal
cover, since DD1 is not left-reduced and can be implied by DD3 by augmentation rule A2.

Due to the hardness of the implication problem in the general case, it is sufficient to
illustrate the hardness of finding minimal cover.

COROLLARY 5.12. The problem of finding minimal cover for DDs in the general case is
in the NP-hard.

5.3.1. Unary Case. For the special case of unary LHS, the minimal cover can be found
in polynomial time.

THEOREM 5.13. For any set � of DDs with unary LHS, a minimal cover �c can be found
in O(|�|4|R|) time.

PROOF. Initially, we assign �c = �. In the first step of reduce, for each φL[A] →
φR[Y ] ∈ �c, let φ1[A] be any differential function on the same attribute A appearing
in �c such that φ1[A] � φL[A]. If �c � φ1[A] → φR[Y ], then we replace φL[A] → φR[Y ]
by φ1[A] → φR[Y ] in �c. This reduce step ensures that each DD in �c is left-reduced
and can be done in O(|�|4|R|) time, according to the implication cost O(|�|2|R|) in
Corollary 5.5.

Next, the second step addresses the right-subsumed requirement. That is, for any
pair of DDs φL[A] → φ1[X], φL[A] → φ2[Y ] ∈ �c, if φ1[X]∧φ2[Y ] �= infeasible, we replace
φL[A] → φ1[X], φL[A] → φ2[Y ] by φL[A] → φ1[X] ∧ φ2[Y ] in �c.

Finally, we remove those redundant DDs from �c, that is, all φL[X] → φR[Y ] such that

� \ {φL[X] → φR[Y ]} � φL[X] → φR[Y ].

This removing step can be done in O(|�|3|R|) time.

5.3.2. Nondisjoint Complement Case. Again, if the differential functions are nondisjoint
complement, we can find a minimal cover in polynomial time. Note that instead of
three properties in the definition of minimal cover, it is sufficient to be minimal if a set
� is right-subsumed and nonredundant.

LEMMA 5.14. For any set � of DDs, if � is right-subsumed and nonredundant, then
it must be left-reduced as well, that is, minimal.

PROOF. According to the definition of closure, if � is right-subsumed, then each DD

in � has the form φL[X] → (φL[X])+. Suppose that a DD is not left-reduced having
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φ1[Z] → (φ[X])+, φ1[Z] � φL[Z], Z ⊆ X. Then, the set � is not nonredundant, that is,
contradictory.

Therefore, a minimal cover can be found by computing the closure of each left-hand
side differential function in � and removing all the redundant DDs. Recall that Corollary
5.10 states that the inference rule set {A1, A2, A3} is already complete and sound for
logical implication of DDs in the special case of nondisjoint complement. The closure of
a differential function can be computed in O(|�| · |R|) time and the implication cost in
the nondisjoint complement case is O(|�| · |R|) according to Theorem 5.6.

THEOREM 5.15. For any set � of DDs with nondisjoint complement differential func-
tions, a minimal cover �c can be found in O(|�|2 · |R|) time.

PROOF. According to Lemma 5.14, we have two steps to compute a minimal cover,
the right-subsumed step with cost O(|�|2 · |R|) and the nonredundant step, that is, all
φL[X] → φR[Y ] such that � \ {φL[X] → φR[Y ]} � φL[X] → φR[Y ], with cost O(|�|2 ·
|R|).
6. DISCOVERY FROM DATA

As shown in the foundations, a practical question is how to find such useful DDs, that
is, the discovery problem. The discovery of data dependencies from a given relation
instance has mainly two aspects of work, that is, the validation problem and discovery
problem [Bitton et al. 1989; Mannila and Räihä 1992, 1994; Schlimmer 1993; Kramer
and Pfahringer 1996]. The validation problem tells whether a dependency holds in a
data instance, while the discovery problem returns a cover of dependencies that hold
in the given data instance. In this section, given a sample relation instance I , we study
the discovery of candidate differential keys and a minimal cover for all differential
dependencies that hold in the given instance. Unfortunately, the discovery problem
is highly nontrivial. It is known that even a minimal cover of discovered FDs can
be exponentially large in size [Mannila and Räihä 1987]. Similar to CFDs discovery
subsuming FDs discovery [Fan et al. 2009a], DDs discovery inherits this exponential
complexity as well. In the following, we first discuss the hardness of DDs discovery and
propose several pruning techniques that may improve the discovery performance in
practice.

6.1. Exact Validation Problem

In this section, we study the validation problem for DDs. Given a DD φL[X] → φR[Y ]
and an instance I over relation R, the validation problem is to determine whether
φL[X] → φR[Y ] holds in I , that is, I � φL[X] → φR[Y ].

Note that to validate φL[X] → φR[Y ] with multiple attributes in Y is essentially to
validate each φR[B], B ∈ Y individually. Thus, we consider the DDs in standard form
φL[X] → φR[B] with prime attribute in the right-hand side.

A straight-forward approach is to conduct a pair-wised comparison of all tuples in I .
If ∀t1, t2 ∈ I having (t1, t2) � φL[X] → φR[B], then we say I � φL[X] → φR[B]. Let n be
the number of tuples in I and m be the number of attributes in XB. The validation can
be done in O(n2m) time.

Metrics in 1D Space. Next, we investigate a special case of metrics in 1D space, for
example, the metric of a numerical attribute on the absolute value of difference, that
is, d(a, b) = |a − b|. For each A ∈ XB, the metrics in 1D space are adopted.

THEOREM 6.1. The validation problem of DDs in the form of φL[X] → φR[B], where the
metrics in 1D space are adopted for each attribute in XB, can be solved in O(n logm n)
time.
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PROOF. Since metrics in 1D space are adopted in attributes XB, we can build a
range tree [de Berg et al. 2008] for the tuples over XB. The validation problem is then
transformed to answering range (windowing) queries as follows.

Let t be any tuple in I . The validation problem is to answer whether ∀t′ ∈ I
having (t, t′) � φL[X] → φR[B], or equivalently whether not ∃t′ ∈ I such that
(t, t′) � φL[X] ∧ φR[B]. Recall that each differential function φ[A] specifies a range
of distance on attribute A, say A(> a1,< a2). Given a t[A] = a, it is to answer whether
there exists a t′[A] having a − a2 < t′[A] < a − a1 or a + a1 < t′[A] < a + a2, that is,
(t, t′) � A(> a1,< a2). We consider mattributes in XB, i.e., m-dimensional range queries.
If for all t ∈ I , there does not exist a t′ such that (t, t′) � φL[X] ∧ φR[B], then we say
I � φL[X] → φR[B].

It is known that a range query can be answered by range tree in O(logm n + k) time
[de Berg et al. 2008], where k is the number of tuples retrieved for a given query. We
only need to find existence of t′ instead of all k answers, thus it is sufficient for each
query to be processed in O(logm n) time. Since each t[A] corresponds to two ranges,
there are 2m queries for each t ∈ I . The total cost of validation is O(n logm n).

When a predefined (fixed) relation schema R is given, that is, m is a constant, the
validation problem is solved efficiently. It is notable that fractional cascading [Chazelle
and Guibas 1986a; 1986b] can speed up the range query to O(logm−1 n+ k) time, where
k is the number of retrieved points. Consequently, a layered range tree [de Berg et al.
2008] can also be constructed for our validation problem, which yields O(n logm−1 n)
validation time cost.

For the general case of multidimensional spaces in an attribute, for example, text
attributes with cosine similarity or edit distance [Navarro 2001], the efficient validation
problem is still open.

6.2. Reduction Problem

Various differential functions in attributes are the major challenge in DDs discovery,
which are not considered in previous work. Given a relation instance I , for each at-
tribute Bi, we study a finite set of differential functions defined on it, denoted by
�(Bi). For example, the search space of differential functions based on intervals of
edit distance in an attribute Bi could be �(Bi) = {Bi(≥ u,≤ v) | 0 ≤ u, u ≤ v, v ≤ D},
where D is the maximum edit distance value. It can also be attribute specific, such
as �(date) = {date(≤ 7), date(≤ 30), date(> 7,≤ 30), . . . }, which denote constraints of
date differences in a week length, in a month length, in a month length but not a week,
respectively. Consequently, the search space of all mattributes in a set X = {B1, . . . , Bm}
is �(X) = �(B1) × · · · × �(Bm), Bi ∈ X.

According to the left-reduced condition in the definition of minimal covers and the
definition of Candidate Differential Keys (CDKs), we are essentially required to find
reductions as irreducible left-hand side of DDs. By solving ths reduction problem from
data, we can directly discover DDs and CDKs.

PROBLEM 6.1 (REDUCTION IN DATA). Given any relation instance I and a differential
function φR[Y ], the problem of reduction with respect to data I is to find all φL[X] such
that: (i) I � φL[X] → φR[Y ], (ii) there does not exist any φ1[W] having W ⊆ X, φ1[W] �
φL[W] and I � φ1[W] → φR[Y ].

6.2.1. The Hardness. Obviously, there may exist more than one φL[X] that can satisfy
the preceding conditions, that is, reduction is not unique. The reduction problem is to
find all such φL[X]. Unfortunately, the size of all reductions for a φR[Y ] in an instance I
of relation R can be exponentially large in the number of attributes in R. It is already
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Fig. 3. Negative pivot.

known that a minimal cover of all reductions for FDs can be exponentially large in the
number of attributes [Mannila and Räihä 1987]. Since FDs are considered as special
cases of DDs where all the differential constraints are set to = 0, it is not surprising
that such exponential size also carries over to DDs. Due to this intrinsic hardness, in
the following, we focus on pruning techniques that may behave well in practice.

6.2.2. Brute Force. Consider a set X of m attributes. The straight-forward approach
is to evaluate all possible φL[X] → φR[Y ],∀φL[X] ∈ �(X), in order to find a set � of
DDs that hold in instance I . Then, we remove the DDs from � which are reducible and
redundant.

Let s be the maximum size of the set of differential functions defined on each at-
tribute, s = max |�(Bi)|. Then, the search space complexity of differential functions
on m attributes is O(sm). The cost of evaluating one DD is O(n2), where n is the size of
instance I . It is a costly operation especially when the instance size is large. The time
complexity of brute-force approach is O(n2sm).

6.2.3. Negative Pruning. Instead of evaluating all possible differential functions of �(X)
in brute-force way, we can explore the subsumption order relation for pruning in the
search space �(X).

LEMMA 6.2. For any φ1[V ], φ2[Z] having V ⊆ Z, φ1[V ] � φ2[V ], if I �� φ2[Z] → φR[Y ],
then I �� φ1[V ] → φR[Y ] either.

For example, suppose that φ2[Z] = [name(≤ 5) ∧ address(≤ 10)] and φ2[Z] → φR[Y ]
does not hold in I . Then, we can directly infer that φ1[V ] → φR[Y ], for example, [name
(≤ 7)] → φR[Y ], should not hold in I either without evaluating it in I . A similar negative
pruning technique is also developed for discovering FDs in a bottom-up search strategy
[Flach and Savnik 1999]. Algorithm 1 implements this negative pruning specific to DDs
in Lemma 6.2.

We develop a bottom-up search according to the negative pruning in Lemma 6.2.
Specifically, let φp[Z] ∈ �(X) be the current evaluation as illustrated in Figure 3. It
divides the remaining �(X) into two subsets, that is, differential functions φv[V ] in
�3(X) having V ⊆ Z and φv[V ] � φp[V ]; otherwise in �4(X). If φp[Z] → φR[Y ] does
not hold in I according to the evaluation, then we can pruning all the remaining
φv[V ] ∈ �3(X) according to the negative pruning in Lemma 6.2. We name φp[Z] a
negative pivot. Finally, the results are combined together by the � operator, which
removes those reducible DDs.

This negative pruning approach favors certain processing order of differential func-
tions in �(X). For any two differential functions φv[V ], φw[W] having V ⊆ W and
φv[V ] � φw[V ], the subsumed one, that is, φw[W] → φR[Y ], is preferred to be evaluated
first, in order to utilize potential pruning opportunity on φv[V ]. In the following, we
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assume that differential functions in �(X) have already been arranged by subsumption
order. That is, for any i-th differential function φv[V ] ∈ �(X) and j-th differential func-
tion φw[W] ∈ �(X), i < j, we have V ⊆ W and φv[V ] � φw[V ]. The search algorithm
starts from the end of �(X), namely bottom-up search.

ALGORITHM 1: Bottom-Up REDUCE(I ,�(X), φR[Y ])

Input: An instance I , a search space �(X) of φL[X] and a target φR[Y ]
Output: A minimal set � for all DDs determining φR[Y ] under I
1: � := ∅
2: φp[Z] := the last element removed from �(X)
3: �3(X) := {φv[V ] ∈ �(X) | V ⊆ Z, φv[V ] � φp[V ]}
4: �4(X) := �(X) \ �3(X)
5: if I �� φp[Z] → φR[Y ] then
6: � := � � REDUCE(I , �4(X), φR[Y ])
7: else
8: � := � � {φp[Z] → φR[Y ]}
9: � := � � REDUCE(I , �3(X), φR[Y ])
10: � := � � REDUCE(I , �4(X), φR[Y ])
11: end if
12: return�

The bottom-up search procedure with negative pivot is given in Algorithm 1. This
negative pruning performs well when most DDs do not hold in I . Let r be the probability
that an arbitrary DD holds in I , 0 < r < 1. The algorithm runs in O(n2smlog2(1+r)) time.
In the worst case, that is, all the candidates hold in the given instance I having r ≈ 1,
the time complexity is O(n2sm).

6.2.4. Positive Pruning. Recall that according to the inference rules, certain DDs may
imply others for any relation instance. Intuitively, we can investigate a positive pruning
based on the DDs that hold in the given relation instance I .

LEMMA 6.3. For any φ1[V ], φ2[W] having W ⊆ V, φ2[W] � φ1[W], if I � φ2[W] →
φR[Y ], then I � φ1[V ] → φR[Y ] too.

Suppose that a DD φ2[W] → φR[Y ] holds in I , for example, I � [name(≤ 9)] → φR[Y ].
According to Lemma 6.3, we can prune φ1[V ] = name(≤ 7) subsumed by φ2[W], that
is, [name(≤ 7)] → φR[Y ] must hold in I as well and can be safely pruned since it
is not left-reduced. Similar positive pruning techniques are also used in a top-down
search strategy for discovering FDs (TANE) [Huhtala et al. 1998] and CFDs [Chiang and
Miller 2008; Fan et al. 2009a]. The implementation of positive pruning specific to DDs
in Lemma 6.3 is also introduced.

Intuitively, the positive pruning based on Lemma 6.3 favors the processing of candi-
dates that subsume others. That is, we start from the beginning of �(X) in a top-down
strategy. In each step, we consider the next irreducible differential function, say φp[W],
as illustrated in Figure 4. It introduces another division of �(X), that is, �1(X) records
all the remaining φv[V ] such that W ⊆ V and φp[W] � φv[W]; otherwise, in �2(X).
Once we find that I � φp[W] → φR[Y ], according to Lemma 6.3, all the remaining
candidates subsumed by φp[W] in �1(X) can be safely pruned. We name such φp[W] a
positive pivot.

The positive pruning favors the case that most DDs hold in I , that is, the irreducible
DDs can be found early and prune the remaining ones. Let r be the probability that
a DD holds in I , the same as negative pruning. The top-down search algorithm with
positive pivot runs in O(n2smlog2(2−r)) time. In the worst case, that is, all the candidates
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Fig. 4. Positive pivot.

do not hold in the given instance I having r ≈ 0, the algorithm has to process the entire
search space with cost O(n2sm). In practice, as illustrated in experiments in Section 6.4,
the appearance of worst cases of positive pruning is much less than that of negative
pruning. Thereby, the positive pruning approach outperforms the negative one in most
cases.

6.2.5. Hybrid Pruning. It is notable that the worst case of negative pruning is that all
the candidates from �(X) hold in the given instance, while the worst case of positive
pruning is that most candidates do not hold. Nevertheless, to avoid worst cases for
negative and positive pruning, we can develop a hybrid approach with both positive
and negative pruning, which are used by turns. Specifically, in each step, we first
evaluate candidates according to positive pruning. If the positive pruning is not valid,
then the negative one is applied. As presented in experimental evaluation in Section
6.4, the hybrid approach can successfully avoid the worst cases of negative and positive
pruning and keep low cost.

6.2.6. Instance Exclusion. The aforesaid approaches have to evaluate the entire I for
each DD. However, according to the subsumption order relation, if one differential
function subsumes another, it denotes that the set of tuples agreeing on the former one
should be a superset of the latter one. Recognizing this relationship on instances, we
now present an approach by avoiding evaluating the entire I .

Given a relation instance I , we define a distance instance D(I ) with respect to I ,
which considers all the pairs of tuples in I .

D(I ) = {(ti, tj) | ∀ti, tj ∈ I }.
Given any DD φL[X] → φR[Y ], we define D(I , φL[X],¬φR[Y ]) =

{(ti, tj) ∈ D(I ) | (ti, tj) 
 φL[X], (ti, tj) �
 φR[Y ]},
that is, the tuple pairs agreeing φL[X] but not agreeing φR[Y ].

LEMMA 6.4. An instance I satisfies a DD, I � φL[X] → φR[Y ], iff D(I , φL[X],¬φR[Y ]) =
∅.

In other words, we want to discover a reduction φL[X] such that D(I , φL[X],¬φR[Y ]) =
∅. Now, we formalize the relationship of different DDs with respect to tuple pairs in
distance instance.

LEMMA 6.5. For any φ1[V ], φ2[W] having W ⊆ V, φ2[W] � φ1[W], we have
D(I , φ1[V ],¬φR[Y ]) ⊆ D(I , φ2[W],¬φR[Y ]).

Therefore, instead of considering the entire D(I ), we can use D(I , φ2[W],¬φR[Y ])
to compute D(I , φ1[V ],¬φR[Y ]). Specifically, we can always first process the one
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subsuming others, that is, φ2[W]. If D(I , φ2[W],¬φR[Y ]) �= ∅, in the following step
of computing D(I , φ1[V ],¬φR[Y ]), we can directly utilize the distance instance with
respect to φ2[W]. If D(I , φ1[V ],¬φR[Y ]) = ∅, then we return it as a reduction according
to Lemma 6.4.

Similar instance exclusion techniques are also used in a depth-first search strategy
for discovering FDs (FastFD) [Wyss et al. 2001] and CFDs (FastCFD) [Fan et al. 2009a].
Algorithm 2 implements the instance exclusion specific to DDs, where the subsumption
order relation of differential functions is not considered in previous work.

Algorithm 2 presents the instance exclusion in the top-down search with positive
pivot. Let D denote the distance instance of tuple pairs with respect to relation instance
I . We call the function EXCLUDE(D, φp[W] → φR[Y ]) to compute D(I , φp[W],¬φR[Y ]),
say D1, from the previous D, according to Lemma 6.5. If D1 = ∅, then we have I �
φp[W] → φR[Y ] according to Lemma 6.4.

ALGORITHM 2: Instance-exclusion REDUCE(D,�(X), φR[Y ])
Input: A distance instance D , a search space �(X), and a target φR[Y ]
Output: A minimal set � for all DDs determining φR[Y ] under I
1: � := ∅
2: φp[W ] := the first element removed from �(X)
3: D1 := EXCLUDE(D, φp[W ] → φR[Y ])
4: �1(X) := {φv[V ] ∈ �(X) | W ⊆ V, φp[W ] � φv[W ]}
5: �2(X) := �(X) \ �1(X)
6: if D1 �= ∅ then
7: � := � � REDUCE(D1, �1(X), φR[Y ])
8: else
9: � := � � {φp[W ] → φR[Y ]}
10: end if
11: � := � � REDUCE(D, �2(X), φR[Y ])
12: return�

Let l be the exclusion rate on average, 0 < l < 1, that is, l|D | tuple pairs remain
after an exclusion on D in each step. Then, the algorithm runs in O(n2smlog2 l(2−r)) time.
Besides positive pruning, the instance exclusion can also cooperate with the hybrid
pruning approach and keep low cost in all cases as presented in the experiments in
Section 6.4.

6.3. Implementation Issues

During the implementation of the preceding REDUCE algorithms, we need to maintain
the following two types of data objects.

—�(X), set of differential functions. Recall that set �(X) denotes the search space of
the left-hand side differential functions in the reduction. To implement the positive
and negative pruning, we need to support the split of set �(X) in two ways: (a)
given a positive pivot φp[W], to split the set �(X) into �1(X) and �2(X) such that
for each φv[V ] in �1(X), φp[W] subsumes the projection of φv[V ] on W ; (b) given a
negative pivot φp[Z], to split the set �(X) into �3(X) and �4(X) such that each φv[V ]
in �3(X) subsumes the projection of φp[Z] on V . As illustrated in Figure 4, the split
on positive pivot is used in the positive pruning, which can also cooperate with the
instance exclusion in line 4 in Algorithm 2. Moreover, as shown in Figure 3, the
negative split is used for the negative pruning in line 3 in Algorithm 1.

—D , set of tuple pairs with distances. Recall that set D is a distance instance of tuple
pairs in the relation instance I . To support the instance exclusion, we have to enable
a filtering of tuple pairs in the set D . Specifically, given any φp[W] → φR[Y ], the

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 16, Publication date: August 2011.



16:28 S. Song and L. Chen

filtering removes those tuple pairs in the set D whose distance values agree φp[W]
but do not agree φR[Y ]. The filtering can be implemented by a single pass through
the elements in set D . As illustrated in Algorithm 2, different versions of distance
instance D are maintained by the filtering operation EXCLUDE(D, φp[W] → φR[Y ]).

6.3.1. Discovering DDs. We are now ready to introduce the discovery of DDs embedded
in a given sample data, that is, given an instance I of relation R, to find a minimal
cover �c for all DDs that hold in I .

We have studied the reduction in data for the left-reduced property. In the follow-
ing, we focus on the other conditions of minimal cover, that is, right-subsumed and
nonredundant. Intuitively, we can first discover a set � of all left-reduced DDs whose
right-hand sides φ[Y ] are differential functions on single attribute Y . Then, we remove
redundant DDs in �.

ALGORITHM 3: Minimal COVER(R, I )
Input: A relation schema R, and an instance I of R.
Output: A minimal cover � for all DDs under I .
1: � := ∅
2: for each attribute Y ∈ R do
3: X := R \ {Y }
4: for each φR[Y ] ∈ �(Y ) do
5: � := � ∪ REDUCE(I , �(X), φR[Y ]) {reduce step}
6: end for
7: end for
8: repeat
9: if exist φL[X] → φR[Y ], φw[W ] → φv[V ] ∈ � such that X ⊆ W , φL[X] � φw[X], V ⊆ Y and

φv[V ] � φR[V ] then
10: remove φw[W ] → φv[V ] from �
11: end if
12: until no changes on �
12: return�

Algorithm 3 presents the discovery procedure. Note that the complexity of redundant
removing step (lines 6–9) depends on the number of DDs in � returned in the reduce
step. Here, the search space of φ[Y ] is in size of s|R|. The complexity of minimal COVER

algorithm is O(n2|R|s|R|). The intrinsical hardness comes from the size of minimal
cover, which can be exponentially large. In practice, we can apply our advanced REDUCE

algorithms for discovering minimal cover. For example, as presented in Section 6.4, the
instance-exclusion REDUCE can achieve several orders of magnitude improvement than
the brute-force one.

6.3.2. Discovering CDKs. We study the discovery of candidate differential keys from a
relation instance, that is, given an instance I of relation R and a differential function
φ1[R], to find a set of all CDKs relative to φ1[R] under I . Recall that a CDK is a differential
key that is irreducible in the key dependency, we transform the CDKs discovery to the
preceding reduction problem as well, that is, reductions of φ1[R]. Specifically, for those
irreducible DDs returned by the REDUCE algorithm, φL[X] → φ1[R], whose left-hand side
φL[X] � φ1[X], their φL[X] are reported as CDKs.

6.4. Discovery Experiments

In this section, we report the experimental results on testing the efficiency of our
methods in discovering DDs. In each experiment of discovery, we use an instance as
input, and observe the results of CDKs and DDs that hold in the given instance. Edit
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Table III. Examples of DDs in CiteSeer (10000)

DD1 [subject(≤ 1)] → [title(≤ 2)]
DD2 [subject(= 0)] → [title(≤ 1)]
DD3 [address(≤ 3) ∧ subject(= 0)] → [title(= 0) ∧ author(= 0)]
DD4 [affiliation(≤ 3) ∧ subject(= 0)] → [author(= 0)]
DD5 [affiliation(≤ 1) ∧ subject(≤ 1)] → [author(= 0)]
DD6 [address(≤ 3) ∧ affiliation(≤ 3) ∧ subject(≤ 1)] → [author(= 0)]
DD7 [title(≤ 3) ∧ author(≤ 3) ∧ affiliation(≤ 3)] → [subject(≤ 3)]
DD8 [title(≤ 3) ∧ author(≤ 3) ∧ address(≤ 3)] → [subject(≤ 3)]
DD9 [title(≤ 3) ∧ author(≤ 1)] → [subject(≤ 3)]
DD10 [title(≤ 3) ∧ author(≤ 3) ∧ affiliation(≤ 1)] → [subject(≤ 2)]
DD11 [title(≤ 2) ∧ affiliation(≤ 2)] → [subject(≤ 2)]
DD12 [title(≤ 1) ∧ affiliation(≤ 3)] → [subject(≤ 2)]
DD13 [title(≤ 2) ∧ address(≤ 3)] → [subject(≤ 2)]
DD14 [title(≤ 2) ∧ author(≤ 3)] → [subject(≤ 2)]
DD15 [title(≤ 1) ∧ author(≤ 3) ∧ affiliation(≤ 3)] → [subject(≤ 1)]
DD16 [title(≤ 1) ∧ author(≤ 3) ∧ address(≤ 3)] → [subject(≤ 1)]
DD17 [title(= 0) ∧ author(≤ 3)] → [subject(≤ 1)]
DD18 [title(= 0) ∧ author(≤ 3) ∧ address(≤ 3)] → [subject(= 0)]

distance with q-grams [Gravano et al. 2001] is adopted as the distance metric. All the
algorithms are implemented by Java. The experiments run on a machine with Intel
Core 2 CPU (2.13 GHz) and 2GB of memory.

Real datasets are adopted in the experiments. For example, the CiteSeer1 dataset
collects records of scientific research papers including the following attributes
(title, author, address, affiliation, subject, description, id). A projection of the first m at-
tributes is conducted on the original scheme to generate the scheme with m attributes.
For each attribute, we associate with 5 differential functions. It is notable that the
discovered dependencies are valid with respect to the domain of the given dataset.
Therefore, we also employ a secondary dataset DBLP2 which consists of conference
proceedings with schema (conference, title, booktitle, series, volume, publisher, year, id).
The discovery results could be different in CiteSeer and DBLP, since they are different
collections of research publications.

6.4.1. Discovery Results. In the first set of experiments, we observe the results of dis-
covered dependencies. To evaluate the quality of discovered dependencies, we compare
the results under different data sizes through a cross validation.

Table III presents all the DDs in the minimal cover discovered from a given relation
instance with 10000 tuples. It is worth noting that these 18 DDs do not denote all the
DDs that hold in the given instance. Instead, they indicate a minimal cover which can
imply all the other DDs holding in the instance. For example, the DD2 in Table III states
that for any two tuples in the instance, if they have exactly the same subject (with
distance = 0), then these two tuples have similar title (with distance ≤ 1). Since the
discovered results are a minimal cover of all dependencies, any other DDs implied by
Table III also hold in the instance. For instance, [subject(= 0)] → [title(≤ 2)], which
can be implied by DD2, will also be valid. Moreover, according to the reduction, it also
implies that the DDs are left-reduced. That is, there does not exist any other φL[X] such
as [subject(≤ 1)] � [subject(= 0)] that can also imply [title(≤ 1)].

Note that when more tuples are available in the given instance, the discovered
results may change. For example, Table IV presents the minimal cover discovered from
20000 tuples. Note that many authors may share similar names in CiteSeer, and the
ability of disambiguation by the author attribute might not be significant in large data

1http://citeseer.ist.psu.edu/
2http://www.informatik.uni-trier.de/∼ley/db/
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Table IV. Examples of DDs in CiteSeer (20000)

DD1 [address(≤ 3) ∧ subject(≤ 1)] → [title(≤ 3)]
DD2 [subject(= 0)] → [title(≤ 1)]
DD3 [address(≤ 3) ∧ subject(= 0)] → [title(= 0) ∧ author(= 0)]
DD4 [affiliation(≤ 3) ∧ subject(= 0)] → [author(= 0)]
DD5 [title(≤ 2) ∧ address(≤ 3) ∧ affiliation(≤ 1)] → [subject(≤ 3)]
DD6 [title(≤ 2) ∧ address(≤ 2) ∧ affiliation(≤ 2)] → [subject(≤ 3)]
DD7 [title(≤ 3) ∧ author(≤ 3) ∧ address(≤ 3) ∧ affiliation(≤ 2)] → [subject(≤ 3)]
DD8 [title(≤ 1) ∧ affiliation(≤ 2)] → [subject(≤ 3)]
DD9 [title(≤ 2) ∧ address(≤ 1)] → [subject(≤ 3)]
DD10 [title(≤ 3) ∧ author(= 0) ∧ address(≤ 3)] → [subject(≤ 3)]
DD11 [title(≤ 2) ∧ address(≤ 1) ∧ affiliation(≤ 1)] → [subject(≤ 2)]
DD12 [title(≤ 1) ∧ affiliation(≤ 1)] → [subject(≤ 2)]
DD13 [title(≤ 1) ∧ address(≤ 3) ∧ affiliation(≤ 3)] → [subject(≤ 2)]
DD14 [title(≤ 2) ∧ author(≤ 3) ∧ affiliation(≤ 3)] → [subject(≤ 2)]
DD15 [title(≤ 1) ∧ address(≤ 1)] → [subject(≤ 2)]
DD16 [title(= 0) ∧ address(≤ 2)] → [subject(≤ 2)]
DD17 [title(≤ 2) ∧ author(≤ 3) ∧ address(≤ 3)] → [subject(≤ 2)]

Table V. Cross Validation

Data size n Result size Exact to hold �E Max change to hold �M Total change to hold �T
2000 (10%) 18 1 (0.055%) 6 51
6000 (30%) 20 1 (0.050%) 7 37
10000 (50%) 18 3 (0.166%) 2 18
14000 (70%) 16 6 (0.375%) 1 10
18000 (90%) 17 15 (0.882%) 1 2
20000 (100%) 17 – – –

sizes. Therefore, the constraints on author appear less in DDs in Table IV. Intuitively,
we would like to evaluate how different the results are compared with those of 10000
tuples in Table III. Unfortunately, few works have been proposed to evaluate the quality
of minimal cover of dependencies. Since the discovery result is a minimal cover, it is
unlikely to enumerate all the DDs that can be implied by the minimal cover.

Nevertheless, we conduct a cross validation among the results of different data sizes,
which roughly reflects the quality of minimal cover. Specifically, we consider 20000
tuples in total. For each result of n tuples, �n, n < 20000, we study whether or how
it holds in the remaining 20000 − n tuples. Since the discovered �n is already known
to hold in the first n tuples, it is equivalent to evaluate whether �n holds in all 20000
tuples, that is, the difference between �n and �20000. Three criteria are employed to
evaluate the difference between the results of n tuples and 20000 tuples.

—�E, Exact to hold. Some DDs in �n, for example, DD2 in Table III, can be directly
implied by the results of �20000. We denote �E(�n, �20000) the number of DDs in the
minimal cover �n that exactly hold in �20000 without any change. For example, as
illustrated in Table V, there are 3 DDs in �10000 that exactly hold in �20000.

—�M, Max change to hold. Although a DD in the minimal cover �n might not exactly
hold in �20000, it does not indicate that other DDs implied by using this DD will not
hold in �20000 either. For example, DD12 in �10000, that is, [title(≤ 1)∧affiliation(≤ 3)] →
[subject(≤ 2)] in Table III, does not hold in �20000. If we change the distance constraint
affiliation(≤ 3) in DD12 to affiliation(≤ 1) as a new DD′

12, which can be implied by DD12,
then we can find that this DD′

12 does hold in 20000 tuples, that is, can be implied by
�20000. Therefore, the quality of DDs appearing in the minimal cover cannot denote
the quality of all the DDs that can be implied by the minimal cover. The implied DDs
with a small change on distance constraint could hold in the 20000 tuples. We say
the change of distance is 2, from affiliation(≤ 3) to affiliation(≤ 1). Consequently, for
each DDi in �n, we can find a minimum change of distance �C(DDi, �20000) such that
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the changed DDi can be implied (hold) with respect to �20000. If a DDi exactly holds
without any change, then its �C(DDi, �20000) = 0. We may concern the maximum of
change for a DDi in �n, that is,

�M(�n, �20000) = max
DDi∈�n

�C(DDi, �20000).

For example, �M = 2 for 10000 tuples in Table V indicates that, for any DDi in �10000,
we only need a change of distance at most 2 in order to make it hold in 20000 tuples.

—�T , Total change to hold. Finally, we report the total changes of distance for all DDs
in �n in order to make them hold in 20000 tuples.

�T (�n, �20000) =
∑

DDi∈�n

�C(DDi, �20000)

The total change of distance �T roughly denotes the difference between two minimal
covers �n and �20000. For example, �T = 18 for 10000 tuples in Table V denotes that
with a total change of distance 18 on DDs in �10000, we can ensure that the changed
�10000 hold in the remaining (20000–10000) tuples.

Obviously, the lager �E is preferred. However, the number �E of DDs in the minimal
cover does not denote the number of all the DDs that can be implied by the minimal
cover and also hold in 20000 tuples. Intuitively, given more tuples in the instance,
the discovered results are refined, for example, from affiliation(≤ 3) of DD12 in �10000
to affiliation(≤ 1) of DD12 in �20000. Given affiliation(≤ 3) it is sufficient to imply DD12
in 10000 tuples, while it requires restricting affiliation(≤ 1) for 20000 tuples. Indeed,
smaller �M and �T of changes on distances roughly denote higher quality of �n with
respect to �20000.

As the cross validation illustrated in Table V, the result sizes of discovered minimal
covers are similar and not large under various data sizes. When the given instance
is small, for example, 2000 tuples (10%) of 20000 tuples, only one DD in the minimal
cover exactly holds without any change in the remaining 18000 tuples (90%). Again,
we want to emphasize that the percentage of DDs in the minimal cover does not denote
the proportion of all DDs implied by the minimal cover. Nevertheless, the changes of
distances �M and �T are large between �2000 and �20000, which roughly denotes that
a large number of DDs holding in 2000 tuples might not be valid in 20000 tuples. With
the increase of data sizes, more DDs in the discovered minimal cover (lager �E) can
exactly hold in 20000 tuples. Meanwhile, the changes of distances �M and �T become
smaller. For example, when given 18000 tuples, a small change of distance 1 on 2 DDs
in the discovered minimal cover will make all the implied DDs exactly hold in 20000
tuples.

6.4.2. Discovery Performance. We evaluate the cost of discovering CDKs and the minimal
cover of DDs when given various relation instances (having 2000–20000 tuples) with
different relation schemas R1–R6 (having 2–7 attributes). The relation instances select
the first n (n = 2000, . . . , 20000) tuples in the original order from the dataset. Different
REDUCE algorithms are adopted, including the Brute-Force (BF) approach, the Bottom-Up
search with Negative pruning (BU-Ne), Top-Down with Positive pruning (TD-Po), hybrid
pruning (Hybrid), the Instance-Exclusion approach with positive pruning (IE-TD-Po), and
hybrid pruning (IE-Hybrid).

Given various instance sizes |I |, Figures 5 and 6 report the time costs of discovering
all CDKs relative to a given φ1[R] and the minimal cover of all DDs that hold in the
instance, respectively. First, all the approaches scale well with the number of tuples.
Our techniques such as pruning can improve the performance and show slow time cost
increase. It is not surprising according to our complexity analysis for REDUCE algorithms
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Fig. 5. CDKs discovery performance on various instance I .
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Fig. 6. DDs discovery performance on various instance I .

in Section 6.2, that is, O(n2) in terms of tuples n = |I |. It is worth noting that the
pruning power may be affected by the features of data instances. For example, in the
4k of CiteSeer in Figure 5, BU-Ne shows better performance than TD-Po, while TD-Po
outperforms BU-Ne in the 6k case. Similar results are also observed between TD-Po and
Hybrid in DBLP in Figure 5. Moreover, due to the distinct features among different
instances of the same dataset, the pruning power of a same approach may vary in
different data sizes, for example, in 6k and 8k of the Hybrid approach in CiteSeer in
Figure 6.

In the CiteSeer dataset in Figure 6, the BU-Ne approach performs well, since most of
candidate DDs do not hold in the given data instances. In this case, the TD-Po approach
may fail, since it has to evaluate most of the candidates, that is, worst case. On the
other hand, for example in the DBLP dataset in Figure 6, most of the candidates hold
in the given instance, which favors by the TD-Po reduce. Therefore, the performance of
TD-Po is significantly better than that of BU-Ne. Nevertheless, the Hybrid approach can
achieve low cost in both cases. Moreover, when TD-Po is valid, our IE-TD-Po exclusion
can further improve the performance. Finally, as shown in Figures 5 and 6 IE-Hybrid
can achieve the best performance and show significantly lower time cost than BF.

Figures 7 and 8 present the performance of discovery under various scheme sizes
|R|. Unfortunately, the time costs of all the approaches increase exponentially with
the increase of attributes. The results verify our hardness analysis of DDs and CDKs
discovery in Section 6.2. As presented in Figures 7 and 8, although our pruning tech-
niques can significantly improve performance, we cannot avoid the high complexity of
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Fig. 7. CDKs discovery performance on various schema R.
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Fig. 8. DDs discovery performance on various schema R.

discovery. Nevertheless, the pruning techniques can achieve several orders of magni-
tude improvement compared with the BF approach. The instance-exclusion approaches,
IE-TD-Po and IE-Hybrid, scale well especially on larger sizes of schema R.

To sum up, due to the inherent hardness, the discovery costs of DDs and CDKs are
exponential in the number of attributes in relation |R|. Our advanced approaches such
as IE-Hybrid can achieve 2–3 orders of magnitude improvement in discovering DDs and
CDKs.

7. APPLICATIONS

In the following, we demonstrate several applications of DDs with real data evaluation.
Dependencies used in the evaluation are also discovered by the discovery approaches in
Section 6. Table VI lists the DDs in the Cora and Restaurant datasets that are discovered
and used in the following application evaluation. For example, the DD4 from Restaurant
states that for any two tuples in an instance I of Restaurant, if their name and address
values are similar, that is, with distances ≤ 4 and ≤ 5 respectively, then their id should
be identified (denote the same entity in the real world). Moreover, another DD3 indicates
that if the address values of two tuples are highly similar with distance ≤ 1, even their
name values are not so similar with distance ≤ 5, we can still imply the identification
on id. In order to demonstrate the utility of differential dependencies, we illustrate
several evaluations of applying these DDs in real applications.
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Table VI. Examples of DDs in Cora and Restaurant

Cora DD1 [name(≤ 2) ∧ title(≤ 3)] → [id(= 0)]
DD2 [institution(≤ 2)] → [title(= 0) ∧ venue(= 0)]

Rest DD3 [name(≤ 5) ∧ address(≤ 1)] → [id(= 0)]
DD4 [name(≤ 4) ∧ address(≤ 5)] → [id(= 0)]
DD5 [name(≤ 2) ∧ type(≤ 4)] → [address(≤ 6) ∧ city(≤ 5)]

Table VII. Example Instance of Empolyee

name institute title salary ssn
t1 John Depp Tech. Univ. Professor 60 111
t2 J. Depp Technical Univ. Professor 60.2 111
t3 J.C. Depp Tech. University Prof. 30 111
t4 R. Depp Western Univ. Lecturer 30 222

7.1. Violation Detection

One of the most important applications of traditional FDs is to specify constraints
of data. Those tuples that do not satisfy the given FDs are detected as violations to
the constraints. Similarly, as a novel class of integrity constraints, DDs are naturally
applicable for detecting violations.

7.1.1. Example. Consider the following DD in an Employee relation.

[title(≤ 6)] → [salary(≤ 20)]

It states that the salary difference should not be large (i.e., in a same level) for two
employees with similar title. Suppose that we have an instance of Employee relation,
as presented in Table VII. Those tuples that do not follow the preceding DD constraint
are detected as violations. Compared with traditional FDs based on equality function,
DDs with differential function are more expressive with respect to integrity constraints.
For example, t1 and t2 in Table VII are detected incorrectly as violations to a FD [title] →
[salary], since they are identical on title but have different salary values. However, 60
and 60.2 denote a same salary level with different granularity and can be accepted
by our DDs. On the other hand, t2 and t3 whose title edit distance is less than 6, have
salary difference larger than 20, that is, a violation to the given DD. However, such
violations are ignored by FDs which require equality on the left-hand side title. In fact,
such violations cannot be detected by the extensions of FDs such as MFDs either.

Formally, given a set � of DDs, the violation detection is to find a minimum set of
tuples that need to be removed from the relation instance I for � to hold in I . As
presented in the following real data evaluation, DDs have better detection effectiveness
than FDs.

Note that the FDs violation detection can be done efficiently in polynomial time, by
grouping the tuples according to identical values [Arenas et al. 1999]. Unfortunately,
the problem of detecting violations to DDs is hard. A reduction from the vertex cover
problem can be developed. One can find a factor-2 approximation [Papadimitriou and
Steiglitz 1982] by greedily removing both tuples of an instance of DDs violation. This
approach ensures that all the violations can be detected, but some tuples may also be
reported by approximation. The number of tuples reported which are not true violations
is bounded by factor-2.

7.1.2. Evaluation. In the evaluation of this application, we randomly insert violations
into the datasets. Both the values in the left-hand side and right-hand side attributes
of data dependencies could be randomly replaced as violations. Let truth denote the set
of tuples with inserted violations. Traditional FDs with equality function and our DDs
with differential function are then applied to detect these violations. Let found be the
set of detected violation tuples by FDs or DDs. We mainly study the detection accuracy,
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that is, detection precision = truth∩found
found and recall = truth∩found

truth . The detection precision
evaluates the portion of detected results that are the real violations we added, while
detection recall reports the portion of all added violations which are detected. It is
natural that higher detection precision and recall are preferred.

Figure 9 illustrates the detection precision by using dependencies with and without
differential function. Since our DDs introduce differential functions in the right-hand
side of dependencies in order to be tolerant to various information formats, the detection
precision is higher than FDs with identical functions on Y . Moreover, DDs also introduce
differential functions in the left-hand side, that is, we can address more tuples with
violations. Therefore, as presented in Figure 10, the detection recall by using DDs is
higher than FDs with equality function.

7.2. Data Partition

A typical partitioning task is to divide tuples in groups such that tuples in each group
are similar to each other, for example, to partition tuples in groups where edit distance
on each attribute is less than 10. We are not proposing a new partitioning method to
improve the effectiveness. Instead, given a partitioning scheme on all the attributes of
R, say φ1[R], we perform the partitioning by using a Candidate Differential Key (CDK)
φc[K] relative to φ1[R] to improve the search efficiency.

7.2.1. Example. Consider a partitioning scheme over Employee.

φ1[R] = [name(≤ 3) ∧ institute(≤ 5) ∧ title(≤ 6) ∧ salary(≤ 40)]
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That is, we have to divide the tuples into partitions, such that any two tuples in the
same partition having name distance ≤ 3, institute distance ≤ 5, title distance ≤ 6, and
salary distance ≤ 40. Suppose that we have a candidate differential key

φc[K] = [name(≤ 3) ∧ institute(≤ 5)]

having φc[K] → φ1[R] and φc[K] � φ1[K]. Instead of the long φ1[R], we can equivalently
use the short φc[K] as the partitioning scheme which has smaller cardinality with less
computation cost.

As discussed, besides φ1[R], a reduction can be found for an arbitrary differential
function φR[Y ], as a differential key. In order words, CDKs can also be applied in a
group-by query.

In fact, semantic query optimization, which refers to the process of using integrity
constraints (e.g., FDs) in order to optimize the evaluation of queries, has already been
studied [Chakravarthy et al. 1990; Levy and Sagiv 1995]. As a novel type of integrity
constraints, our DDs can naturally be applied in semantic query optimization as well.

For example, consider a group-by query on distance conditions.
SELECT * FROM Employee GROUP BY institute(≤ 5), title(≤ 6)

According to [institute(≤ 5)] → [institute(≤ 5) ∧ title(≤ 6)], we can rewrite the query by
using institute(≤ 5) only.
SELECT * FROM Employee GROUP BY institute(≤ 5)

7.2.2. Evaluation. In data partition evaluation, we mainly study the time performance
of partitioning with and without CDKs. Specifically, let φ1[R] be a partitioning scheme.
For example, a partitioning scheme in Restaurant is [name(≤ 2) ∧ address(≤ 6) ∧
city(≤ 5) ∧ type(≤ 4)]. By using DDs, we can find a left-reduced DDs which determines
this partition scheme, that is, a CDK φc[K] relative to φ1[R]. For example, a reduced
φc[K] = [name(≤ 2) ∧ type(≤ 4)] can be a CDK in Restaurant such that φc[K] → φ1[R]
and φc[K] � φ1[K]. We evaluate the partitioning by using the original φ1[R] and the
equivalent reduced φc[K].

Figure 11 illustrates the time cost of reduced CDKs compared with original partition-
ing schemes. In the x-axis, each element a/b corresponds to a pair of original differential
function for partitioning queries and its reduced CDK, where a denotes the cardinality
of CDK and b denotes the cardinality of the original partition scheme, respectively. It is
natural that the smaller the cardinality of a differential function, the lower the parti-
tion cost will be. Thereby, as presented in figures, the smaller the rate a/b, the more
the performance is improved by using CDKs.

7.3. Record Linkage

Fan et al. [2009b] have proved the effectiveness in detecting duplicates, by utilizing
Matching Dependencies (MDs) as matching rules. However, the original MDs associate
exactly one similarity/distance constraint (a differential function) to each attribute. We
argue that our DDs can address more matching rules by introducing different differen-
tial functions on one attribute.

7.3.1. Example. Consider a matching rule in Employee.

DD1 [name(≤ 5) ∧ institute(≤ 7)] → [ssn(�)]

It states that for two records, whose name distance is less than 5, and institute distance
is less than 7, they probably denote the same employee in the real world with identical3
ssn. For example, according to the preceding DD1, t1 and t2 in Table VII can be detected

3It could also be identified via update with dynamic semantics [Fan 2008; Fan et al. 2009b]. Without loss of
generality, “identical” in the following also interpret the dynamic semantics via update.
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Fig. 11. Data partition performance.

as duplicates based on their distances on name(≤ 5) and institute(≤ 7), which is also
the case in the real world, that is, having the identical ssn. It is notable that there is
only one MD that can be declared on attributes name, institute, ssn, since each attribute
has only one constraint.

By considering various differential functions, we may have another reasonable DD on
the same attributes,

DD2 [name(≤ 3) ∧ institute(≤ 15)] → [ssn(�)],

which is also a valid matching rule. According to DD2, t2 and t3 can be detected as
duplicates which are not detected by using DD1.

7.3.2. Evaluation. Restaurant and Cora are two datasets collected for record linkage
purposes, where two tuples with identical id denotes duplicates in the real world. A typ-
ical matching rule, for example [name(≤ 5) ∧ address(≤ 1)] → [id(= 0)] in Restaurant,
is used to identify those duplicate tuples according to the left-hand side attributes.
We mainly observe the accuracy of returned results, that is, precision and recall in
Figure 12 and 13 respectively, where truth is the set of tuple pairs in a given instance
that are true duplicates and found is the set of tuple pairs in the returned results.

Our DDs are compared with the previous MDs as matching rules. As illustrated in
Figure 12, DDs have comparable precision to MDs, since both MDs and DDs are valid
matching rules. On the other hand, instead of associating only one differential function
on each attribute in MDs, our DDs can specify various differential functions on the same
attribute for different matching rules. By addressing more matching rules, our DDs can
return more answers than MDs. Consequently, as illustrated in Figure 13, the recall of
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DDs is higher than that of MDs. Moreover, since the Restaurant dataset is cleaner, the
precision and recall of both DDs and MDs are higher than those in the Cora dataset.

8. CONCLUSIONS

In this article, we propose a novel form of Differential Dependencies (DDs), which
specify constraints on difference semantics. To our best knowledge, this is the first work
on addressing both the theoretical and practical issues of differential dependencies
between attributes. We give the definitions and properties of DDs and differential keys,
and investigate reasoning about DDs. A sound and complete inference system is also
presented for DDs, which raises the problem of finding the minimal cover for a DDs set.
Algorithms for discovering DDs and differential keys are then developed and evaluated
in real data experiments. Finally, we also illustrate the details and read data evaluation
of several applications of DDs.

Future Work. In real practice, it is often the case that data dependencies may “almost”
hold in a data instance, which are known as approximate dependencies, such as as ap-
proximate functional dependencies [Huhtala et al. 1998, 1999]. As a natural extension
in the future work, we can study approximate differential dependencies as well. The
error measure [Kivinen and Mannila 1995] can also be adopted to evaluate how a DD

“almost” holds in a data instance, that is, the minimum number of tuples that have to
be removed from the data instance for the given dependency to hold. Unfortunately, the
computation of error measure (as well as the validation problem of approximate DDs)
seems to be hard. The transitivity cannot be assumed, that is, from (t1, t2) 
 φ[X] and
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(t2, t3) 
 φ[X] it does not necessarily follow that (t1, t3) 
 φ[X]. The efficient validation
computation based on disjoint grouping [Huhtala et al. 1999] cannot be applied in this
case of differential functions on various attributes. Therefore, in the future work, effi-
cient (approximation) algorithms are planned to be developed for computing the error
measures of DDs. Besides the error measure, we may also define other measures of
dependencies, for example, on how many tuple pairs supporting a dependency. Instead
of finding a minimal cover of all the dependencies holding in a data instance, we may
return only a subset of dependencies with the highest (top-k) measures, that is, the
ranking problem of dependencies. In the current work, we mainly focus on the minimal
cover of all dependencies holding in a data instance, which could be considered as a set
of candidates for possible ranking.

We believe that various interesting applications may be developed upon the proposed
notation of differential dependencies. For example, successful conditioning of depen-
dencies [Bohannon et al. 2007; Fan et al. 2008a] may also be highlighted for DDs, that
is, to make it hold in a subset of tuples instead of the entire table. It is worth noting
that Conditional Functional Dependencies (CFDs) and Differential Dependencies (DDs)
are two different directions of extensions on FDs. In particular, CFDs employ conditions
in the dependency, while the equality function is still used. On the other hand, instead
of equality function, our DDs introduce the differential function in the dependency. Con-
sequently, as a future work, these two exertions may also cooperate together, that is,
extending DDs with conditions. Moreover, in the aspect of application, data repairing
with DDs is promising yet challenging, since it is already hard with dependencies on
equality [Chomicki and Marcinkowski 2005]. Furthermore, DDs can also be utilized as
integrity rules in dataspaces [Franklin et al. 2005], where data dependencies should
be tolerant to various information formats of heterogeneous data.
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