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Abstract—Existing solutions for probabilistic inference queries mainly focus on answering a single inference query, but seldom

address the issues of efficiently returning results for a sequence of frequent queries, which is more popular and practical in many real

applications. In this paper, we mainly study the computation caching and sharing among a sequence of inference queries in databases.

The clique tree propagation (CTP) algorithm is first introduced in databases for probabilistic inference queries. We use the materialized

views to cache the intermediate results of the previous inference queries, which might be shared with the following queries, and

consequently reduce the time cost. Moreover, we take the query workload into account to identify the frequently queried variables. To

optimize probabilistic inference queries with CTP, we cache these frequent query variables into the materialized views to maximize the

reuse. Due to the existence of different query plans, we present heuristics to estimate costs and select the optimal query plan. Finally,

we present the experimental evaluation in relational databases to illustrate the validity and superiority of our approaches in answering

frequent probabilistic inference queries.

Index Terms—Probabilistic inference, variable elimination, clique tree propagation.
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1 INTRODUCTION

RECENTLY, data uncertainty becomes a popular topic in
database and data mining communities due to the wide

existence of uncertainty in many real applications, such as
sensor network monitoring [1], object identification [2],
location-based services (LBS) [3], and moving object
tracking [4]. In these applications, databases are often
employed to describe the probability distribution of all
variables X in the system. Due to the intrinsic property of
uncertainty, many interesting queries have been raised for
different purposes. Among them, probabilistic inference
queries are frequently used, e.g., in decision support
systems [5]. Formally, an inference query is to compute
the marginal probability distribution P ðQÞ of a subset
variables Q � X from the probability distribution of all the
variables. For example, consider a database storing the
probability distribution of all sensors (variables) in a sensor
network. An inference query is to compute the marginal
probability distribution of some sensors A and B, i.e.,
P ðA;BÞ; or given the value of A ¼ a, to compute the
marginal probability of B, i.e., P ðBjA ¼ aÞ in order to know
the effect of A (e.g., humidity) on B (e.g., temperature). A
straightforward approach to evaluate an inference query is

conducting a relational query with group by operation.
However, this approach has to join all the jointable tables
together first, which is not efficient. To improve the
evaluation efficiency, a variable elimination algorithm in
Bayesian networks is implemented in relational databases [5].
In fact, the Bayesian network itself is widely used as a
compact representation of the probability distribution of all
the variables [6], [7] and it can be naturally represented and
stored in relational databases [8]. Therefore, in this paper,
we mainly focus on probabilistic inference problems over
the probability distribution of all the variables represented
by Bayesian networks in databases.

In practice, however, rather than a single probabilistic
inference query, users may frequently pose multiple
probabilistic interference queries to the system. For exam-
ple, again in the sensor networks, a sequence of inference
queries are often posed to continuously monitor data
distributions in different areas. Given another example of
decision support in enterprise’s supply chain database [5], a
manager of manufactures may frequently pose different
queries to databases to draw up a monthly production plan,
e.g., to query the probability of parts pa and pb being
ordered together in the last month, or the probability of
parts pb and pc together in August, or even the probability of
pa; pb, and pc together in every month of the last year.

The above discussion indicates that compared to single
probabilistic inference query, efficiently answering multiple
frequent inference queries is more practical and useful.
However, previous works on probabilistic inference in
databases seldom address the issues of optimizing the
computation sharing among different queries. Wong et al.
[8], [9] provide a framework of implementing probabilistic
inferences in relational databases, but their work do not
address the efficiency issue with respect to large-scale
databases. Bravo and Ramakrishnan [5] present a broad
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class of aggregate queries, called Marginalize a Product
Function (MPF), and implement the variable elimination (VE)
[10] algorithm in relational databases. Specifically, the VE

algorithm optimizes the inference query by pushing down
the aggregates in the joining tree of the whole inference
query (see Section 2.3). However, the VE algorithm has no
computation sharing among different queries. Even when a
similar inference query, e.g., P ðAÞ, arrives after another
query, e.g., P ðA;BÞ, in a sequence of inference queries, the
VE-based approach has to reconstruct the query for the new
P ðAÞ. To summarize, previous proposed work for answer-
ing a single probabilistic inference query in databases is not
efficient for a sequence of queries since it does not support
computation sharing among different queries.

In fact, when a sequence of inference queries are posed,
there exist two opportunities of computation sharing
among the evaluation of different queries. Recall that the
inference query is to compute the marginal probability of a
subset variables Q � X from the probability distribution of
all variables X, that is, to eliminate variables X�Q from X.
Thus, the first opportunity is that there may exist many
common variables needed to be eliminated during the
evaluation of different queries. The computation of elim-
inating these common variables (not included in the
queries) can be cached and shared among the queries. The
second opportunity refers to the variables appearing
frequently in the queries. We can cache the query computa-
tion spent on these frequent query variables for the possible
reusing by later queries.

Corresponding to the two opportunities, there exist two
challenges to answer frequent inference queries efficiently,
which are 1) how to detect and organize the elimination of
common variables with respect to X�Q in relational databases,
which enables reusing among different inference queries. 2) How
to optimize the inference queries by further reusing these
frequently queried variables in regards to Q.

Motivated by the challenges of sequences of probabilistic
inference queries, in this paper, we study the computation
caching and sharing among different inference queries in
relational databases. In order to share the computation of
eliminating common variables in X�Q of different queries,
we study the approach of treating inference as message
propagation [11], [12]. The clique tree propagation (CTP) [12],
also known as junction tree propagation [13], [14], is based on
the same principle as VE except with a sophisticated
caching strategy. We implement CTP in relational databases
as follows: The results of eliminating the common variables
in X�Q are cached as materialized views in relational
databases. When a similar query comes and requests the
elimination of the same variables, the inference query can
reuse these cached materialized views to avoid re-eliminat-
ing the common variables again.

Moreover, with respect to the frequent queried variables
in Q, we cache and reuse the intermediate computation
results with query variables that appear frequently in the
query workload. Those frequent variables in the workload
have a high probability of appearing again in the sub-
sequent queries according to workload statistics, and thus
can reuse the cached results. We also discuss the correctness
of a probabilistic inference on the probability distribution

with cached query variables. By analyzing the updating
operations of cached variables, we further reduce the times
of discarding the cached variables with high frequency. To
further reduce the query time cost in databases, we derive
the heuristics of evaluating the cost in advance, so we can
choose the query plan with the minimum estimated cost.

Our contributions in this paper are listed as follows:

. We transform the message propagation in probabil-
istic inferences to joining tree queries in databases
by using materialized views in relational databases.
To the best of our knowledge, this is the first paper
to evaluate the CTP as relational queries with
materialized views. This approach enables the
computation sharing for the current query Qkþ1

from the results of the previous query Qk.
1

. We explore the workload statistics to find the
frequent variable(s) among different queries, and
apply this workload information in the query
optimization. Our CTP caching approach optimizes
the message propagation by caching the frequent
query variables in the materialized views, and thus
maximize the computation reuse of the frequent
query variables in a sequence of inference queries.

. We study the estimation strategies of query plans,
and propose the minimum propagating join cost
estimation in relational databases.

The rest of the paper is organized as follows: In Section 2,
we introduce probabilistic inference queries in relational
databases which further motivates our work. Section 3
discusses the issues of implementing clique tree propaga-
tion in relational databases. Then, we present our frequent
variable caching optimization of CTP in relational databases
in Section 4, and discuss the query plan estimation
strategies in Section 5. Section 6 reports the experimental
results. We discuss the related work in Section 7 and
conclude in Section 8.

2 PROBABILISTIC INFERENCE QUERY

This section discusses a framework of probabilistic in-
ference queries in relational databases. We start with
relational tables storing the Bayesian networks [6], [7], which
are widely used as a compact representation of the
probability distribution of all the variables.

2.1 Probabilistic Inference

Consider a set of discrete random variables X ¼ fX1; . . . ;
Xng. A Bayesian network [6], [7] is a compact graphical
representation for the joint distribution of all the variables.
Specifically, a Bayesian network is a directed acyclic graph
(DAG), where each node represents a random variable and is
associated with a tableau of the conditional probabilities
given its parents, called a factor. By conducting the product
join [8] of all the factors in a Bayesian network, we get the joint
probability distribution P ðX1; . . . ; XnÞ over all the variables.

We show an example of Bayesian network in Fig. 1.
Consider binary random variables B;E;A; J;M. Each node
(a factor) is associated with a tableau in the figure, for
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1. Here, Qk is a query in the query workload, and Qkþ1 is the next query
after Qk in the workload.



example, the tableau tA corresponding to node A repre-

sents the conditional probabilities P ðAjB;EÞ of A given

variables B;E. The product join of all the factors is the joint

distribution, i.e.,

P ðB;E;A; J;MÞ ¼ P ðBÞP ðEÞP ðAjB;EÞP ðJ jAÞP ðMjAÞ:
ð1Þ

Therefore, the Bayesian network is a compact representa-

tion of the joint distribution. In fact, the joint probability

distribution in this example can be in the size of 25 tuples,

while the Bayesian network representation needs only

20 tuples in all the factors. For the detailed knowledge of

Bayesian networks, please refer to [6], [7].
In this paper, we study probabilistic inference queries in

Bayesian networks within relational database environ-
ments. A probabilistic inference is a process of computing
marginal probability P ðQÞ to an inference query Q � X

based on the joint distribution. For example, calculate
marginal probability P ðB;MÞ from the joint distribution:

P ðB;MÞ ¼
X

E;A;J

P ðB;E;A; J;MÞ:

The general form of posterior query is P ðQjE ¼ eÞ, where Q

denotes the query variables and E represents the evidence

variables with observed values e correspondingly. For

instance, an inference with evidence can be P ðBjM ¼ 1Þ.

2.2 Inference as Relational Query

The Bayesian networks can be naturally represented and

stored in relational databases [8]. Specifically, we transform

each factor to a relational table. Other than variable attributes

in a factor (relation), we introduce an extra attribute p to

represent the probability value. For example, the corre-

sponding relation of factor P ðAjB;EÞ is tA (A,B,E,p),

where p denotes the probability of P ðAjB;EÞ. According to

properties of Bayesian networks, the joint distribution is

specified by joining all the relations of factors, and can be

represented by a relational database view. For example,

P ðB;E;A; J;MÞ in (1) corresponds to the view:

CREATE VIEW joint AS (

SELECT B, E, A, J, M,

tB.p * tE.p * tA.p * tJ.p * tM.p AS p

FROM tB, tE, tA, tJ, tM

WHERE tB.B=tA.B AND tE.E=tA.E

AND tM.A=tA.A AND tJ.A=tA.A )

Consequently, the marginal probability of an inference

query, P ðQÞ, can be computed by aggregating the joint

distribution to eliminate all the other variables not in Q, i.e.,

SELECT Q, SUM(P) FROM joint GROUP BY Q.

Note that the posterior probabilistic inference is a special

case of a general inference query; it can be handled by

adding an extra WHERE constraint to the above aggregate

query. For example, the inference query P ðBjM ¼ 1Þ can be

conducted by the query

SELECT B, SUM(p)/q FROM joint

WHERE M=1 GROUP BY B

where q is P ðM ¼ 1Þ that can be computed by the previous

query of marginal probability. Thus, this predicate com-

putes the marginal probability distribution of variable B

when M ¼ 1 is observed, i.e., P ðBjM ¼ 1Þ.

2.3 Query Optimization with VE

A naı̈ve implementation of an inference query is to

materialize a joint view by joining all the tables together,

and then, perform GROUP BY (GB) operation to aggregate

and eliminate the variables not in the query. For example, in

Fig. 2a, we show the joining tree for computing the

materialized view of the joint distribution. Then, GB

operation aggregates the results to generate marginal

probability of the query.
In the database literature, techniques have been pro-

posed to optimize the aggregation queries on joining trees.

Chaudhuri and Shim [15], [16] present transformations to

push GROUP BY operation down into the joining tree. Since

GROUP BY operation reduces the cardinality of a subquery

result, an early conduction of GROUP BY can potentially save

the cost of subsequent joins. Interestingly, there is a similar

strategy in the literature of probabilistic inference in

Bayesian networks, called the variable elimination [10]

algorithm, which also studies the aggregation of variables

one by one on the factors rather than the joint distribution.

This is not surprising due to the similarity and correspon-

dence between Bayesian networks and relational databases

[17]. Bravo and Ramakrishnan [5] implement the VE

algorithm in relational databases, and study a cost-based

ordering heuristic for variable elimination. We introduce

the VE algorithm briefly as follows:
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Fig. 1. Bayesian networks as relational databases.

Fig. 2. Query optimization in the joining tree.



2.3.1 Variable Elimination

We first consider the elimination of one variable from the
joint distribution. Let P ðX1; X2; . . . ; XmÞ be a joint distribu-
tion. Eliminating X1 from P is to compute

P ðX2; . . . ; XmÞ ¼
X

X1

P ðX1; X2; . . . ; XmÞ:

Since the joint distribution is represented by a set of factors in
Bayesian networks, we only need to multiply all the factors
containing X1 and aggregate the results to eliminate X1.

In terms of relational databases, all the tables that include
X1 are product-joined, and the results are aggregated and
grouped by the variables that have not been eliminated so
far. For example, to eliminate variable E, we first join all the
tables containing E together, i.e., tA ffl tE (note that tA

corresponding to the conditional probabilities P ðAjB;EÞ of
A given variables B;E) and then group and aggregate the
results by the remaining variables A;B.

Given an ordering of variables for elimination, we can
build the joining tree of the inference query. For instance,
consider the ordering <E; J;A> for query P ðBjM ¼ 1Þ. As
shown in Fig. 2b, the first variable E is eliminated by joining
all the relations with E, i.e., tE ffl tA, and conducting
GROUP BY with the remaining variables A;B. As a second
step, variable J is eliminated. Finally, we eliminate A and
GROUP BY B with a further WHERE M ¼ 1 condition to generate
the results. Note that the evidence condition M ¼ 1 can be
pushed down in the joining tree in order to reduce the
intermediate results.

So far, we have introduced the techniques for a single
inference query. In the rest of this paper, we consider a
sequence of inference queries Q1; Q2; . . . ; Qk�1; Qk;Qkþ1; . . . ,
and study the techniques for computation sharing among
these queries and the corresponding optimization issues.

3 CTP IN DATABASE

In this section, we study the inference queryQkþ1 by reusing
the computation results in the previous queryQk. Recall that
the variable elimination answers one query at a time, and
has no computation sharing among different queries.
However, some of the subquery results in the joining tree
could be reused among different queries. For example, the
computation of elimination variable E in Fig. 2b is exactly
the same for the inference query P ðB;MÞ and P ðB;AÞ; thus,
the elimination results can be shared and reused between
these two queries.

In order to cache these intermediate query results, we
employ the clique tree propagation [12] to compute marginal
probability, which enables the computation sharing among
different inference queries. In addition to following the

similar principle of VE, the clique tree propagation utilizes a
smart caching strategy. Intuitively, we use the clique tree to
cache the intermediate results (named messages) of eliminat-
ing some variables in the VE algorithm. When a new query
arrives, it is possible to reuse the messages cached in the
clique tree to avoid recomputation. Consequently, the
inference is conducted as message propagation in the clique
tree. The detailed definitions of clique tree and message
propagation for sharing the intermediate results are given
as follows.

3.1 CTP Preliminary

We consider a more complicated Bayesian network in Fig. 3
to illustrate the CTP. The clique tree of this Bayesian
network is given in Fig. 4 with the corresponding messages.

Definition 1 (Clique tree). A clique tree is an undirected tree,
where each node represents a set of variables, i.e., a clique.

Cliques in a clique tree should be variable connected,2

which indicates that the subgraph of cliques containing a
given variable should be connected. Specifically, if a
variable appears in two cliques, then it must appear in all
the cliques on the path between those two cliques. For
example, consider variable L in the clique tree in Fig. 4. Let
(AT), (TLR),. . . denote all the clique nodes in the tree. All
the cliques with variable L (TLR), (RLB), and (LSB) should
be a connected subgraph of the clique tree. Note that the
variable-connected property is ensured in the clique tree
construction algorithm, which has been studied in the CTP

literature [12]. During the clique tree construction, each
factor in the Bayesian network is assigned to a clique node
which contains corresponding variables. Therefore, both the
clique nodes and the messages in the clique tree consist of
functions of variables. The messages with functions propa-
gated between cliques are defined as follow:

Definition 2 (Message propagation). Given a set of query
variables Q, the message passed from the clique C to C0

aggregates all the variables in C but not in C0 and Q:

f
�
C \ ðC0 [QÞ

�
¼

X

CnðC0[QÞ

Y

i

fi
Y

j

gj; ð2Þ

where fi denotes all functions sent by the messages toward C
but not from C0, and gi represents all the functions attached to
the clique C.

We discuss the features of messages in the clique tree
during the inference query processing. According to Defini-
tion 2, there are some messages that do not contain any
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Fig. 3. Bayesian network.

Fig. 4. Clique tree propagation.

2. Also known as running intersection property.



query variable. For example, given a query Qk ¼ fLg in
Fig. 4, message f2 passed from clique (RX) to (TLR) is f2ðRÞ
without the query variable L. On the other hand, for the
same query Qk ¼ fLg, message f9 passed from clique (TLR)
to (RX) should be f9ðR;LÞwhich contains the query variable
L. Therefore, we mainly have two kinds of messages in the
clique tree after Qk, with or without query variables. If the
new query Qkþ1 has the same variable setting as Qk in a
specific message fi, then this message can be reused directly
in Qkþ1. Otherwise, we have to discard the old one and
rebuild the message for the new query Qkþ1. For example,
message f9 for Qkþ1 ¼ fTg should be f9ðR; T Þ and cannot
reuse the cached message f9ðR;LÞ of the previous query Qk.

A pivot is a clique node selected in the clique tree which
usually contains some or all of the variables of query Q.
During the inference query processing, we consider all the
messages that are passed toward the pivot. For example, let
the query variable be Q ¼ fLg. We select a clique CQ that
contains Q, for instance node (TLR), and use it as a pivot in
the inference P ðLÞ. Then, the messages propagated from
leaves to the pivot (TLR) are computed by

f1ðT Þ ¼
X

A

P ðAÞP ðT jAÞ;

f2ðRÞ ¼
X

X

P ðXjRÞ;

f3ðL;BÞ ¼
X

S

P ðSÞP ðLjSÞP ðBjSÞ;

f4ðR;BÞ ¼
X

D

P ðDjR;BÞ;

f6ðL;RÞ ¼
X

B

f3ðL;BÞf4ðR;BÞ:

Note that the function attached in the clique (RLB) is an
identity function, that is 1. Thus, message f6 collects the
functions of f3, f4, and 1.

Finally, we compute the inference query results, by
collecting the functions in the pivot clique and the messages
sent to the pivot directly. Let fiðQ;XÞ be all the functions sent
to CQ by the messages, and gjðQ;XÞ be all the functions
attached in pivot CQ. Then, the marginal probability of Q is

P ðQÞ ¼
X

X

Y

i

fiðQ;XÞ
Y

j

gjðQ;XÞ: ð3Þ

For example, the function collection of pivot (TLR) for
query Q ¼ fLg consists of

P ðLÞ ¼
X

T;R

f1ðT Þf2ðRÞf6ðL;RÞP ðRjT; LÞ: ð4Þ

For other forms of inference queries, such as the posterior
query P ðQjE ¼ eÞ, we only need to add further constraints
of the evidence E ¼ e which is similar to VE.

Instead of discarding all the intermediate results in VE,
all the clique nodes and messages fi in the clique tree are
cached after processing the current query. If the variables of
a following query is a subset of variables contained in a
clique node, e.g., a query with variable A belongs to clique
(AT) in Fig. 4, then we can directly compute the inference
results from this clique. Otherwise, the messages have to be
propagated in order to collect all the query variables, e.g., a

query with variables S;D which cannot be covered by a
single clique. When the following queries request the same
cached message fi again, we can reuse the cached message
result and stop propagation in the corresponding subtree.

3.2 Relational Framework for CTP

We now present the framework for clique tree propagation
in relational databases, which is also discussed in [8].
Essentially, the computation of the messages in (2) is
transformed to the relational queries in databases. Thereby,
the whole process of computing all the messages propa-
gated toward the pivot clique corresponds to a joining tree
with relational tables. For example, consider the joining tree
for inference query Qk ¼ fLg, e.g., P ðLÞ. Again, let node
(TLR) be the pivot in the clique tree. As shown in Fig. 5,
where ffl denotes join operation and GB is group by
operation in databases, message fi passed toward the pivot
can be computed step by step in the joining tree.
Specifically, we first compute messages f1ðT Þ; f2ðRÞ that
eliminate variable A;X, respectively, and then messages
f3ðL;BÞ; f4ðR;BÞ that eliminate S;D, respectively. Accord-
ing to the clique tree structure, message f6ðL;RÞ is
computed by collecting the results of f3ðL;BÞ; f4ðR;BÞ,
which eliminates variable B. The formulas for computing
all these messages fi have been given in Section 3.1, and
their corresponding SQL implementations in databases are
also introduced in Section 3.3. Finally, marginal probability
P ðLÞ is calculated by collecting the functions in message
f1ðtÞ; f2ðRÞ; f6ðL;RÞ passed to the pivot and the function
P ðRjT; LÞ in the pivot clique (TLR), i.e., (4). Note that this is
exactly the joining tree of VE algorithm with the same
ordering <A;X; S;D;B; T ;R>.

Then, we consider the next query Qkþ1 ¼ fA;Rg such as
P ðA;RÞ. In the case of the VE algorithm, we have to
reconstruct another joining tree (in Fig. 6) without any
computation reuse for the new query P ðA;RÞ. With the
clique tree propagation, rather than entirely rebuilding the
joining, we only need to modify parts of the messages with
changes in query variables, and reuse all the remaining
unchanged messages.

For query P ðA;RÞ, we can use node (AT) in Fig. 4 as the
pivot, which contains one of the query variables A.
According to the principle of message propagation, the
messages should be passed toward the pivot. Therefore, in
the clique in Fig. 4, the message should be passed from the
(TLR) to (AT), i.e., f10 rather than f1. The remaining
messages f2; f3; f4, and f6 are passed toward the pivot
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Fig. 5. Joining tree of Qk ¼ fLg.



without any change, and can be shared and reused in the
current query. As shown in Fig. 6, we can reuse part of
results in the previous query (in rectangles with dotted
line), and only need to compute the new message f10 passed
from (TLR) to (AT):

f10ðR; T Þ ¼
X

L

f2ðRÞf6ðL;RÞP ðRjT; LÞ:

Note that the original message f10 cannot be used directly

which eliminates R, since R is the query variable. Instead,

we update message f10 which eliminates L and reserves R

for the new query.
Therefore, by using the CTP, rather than reconstructing

the joining tree entirely for each query, we enable the

computation caching and sharing of joining trees among

different queries. Similar to VE, the posterior inference with

evidence E ¼ e, for example, P ðAjR ¼ 1Þ, can be naturally

implemented by simply putting an additional WHERE E ¼ e

condition in the SQL statement, which is also evaluated in

our experiments.

3.3 Transforming CTP to Relational Query

We consider the implementation issues of the message

caching and propagation in relation databases. Recall that

the factors are stored as relational tables in databases.

Similarly, in order to cache and reuse the intermediate

results among different queries, we utilize the materialized

views in databases for the clique tree propagation. Specifi-

cally, we store the cliques and messages fi as materialized

views to enable the computation caching and sharing. Given

a query Q, we implement the message propagation in the

clique tree as the joining tree with materialized views.

3.3.1 Materialize the Clique

The clique is the minimum unit in the clique tree, and also in

the reuse of joining trees among queries. During the inference

query processing, we always use the product function of all

the functions attached in the clique, i.e.,
Q

j gj in (2). Thus, this

product function can be precomputed and cached in a

materialized view for the computation sharing. For example,

consider the clique (LSB) in Fig. 4. In the query, we always use

the product function P ðSÞP ðBjSÞP ðLjSÞ in that clique.

Therefore, we can store the product function as a materialized
view for the clique, i.e., vLSB P ðSÞ ffl P ðBjSÞ ffl P ðLjSÞ.

CREATE MATERIALIZED VIEW vLSB AS (

SELECT L, S, B, tL.p * tS.p * tB.p AS p

FROM tL, tS, tB

WHERE tL.S=tS.S AND tB.S=tS.S )

By applying similar strategies, each clique can be
materialized by a view. Then, the message propagation is
conducted on these materialized (clique) views, rather than
the original tables of factors.

3.3.2 Materialize the Message

We can also use the materialized views to represent the
messages. Recall that each message fi is also a function of
variables given by (2). The computation of the message can
be implemented by relational queries, and we want to share
the message query results among different inference
queries. Thereby, we use the materialized views to store
the query results of the messages, i.e., the materialized
(message) views. Again, in the example in Fig. 4, we
consider message f5 passed from clique (TLR) to (RLB).
Given a query Q, message f5 collects all the functions
attached in the clique view vTLR and the functions sent to
the clique (TLR), that is, f1 and f2.

CREATE MATERIALIZED VIEW vf5 AS (

SELECT L, R, Q, vTLR.p * vf1.p * vf2.p AS p

FROM vTLR, vf1, vf2

WHERE vTLR.T=vf1.T AND vTLR.L=vf2.R

GROUP BY L, R, Q)

According to (2), all the variables in C but not in C0 and Q
should be eliminated and aggregated. In this example, only
those variables in (RLB) andQ, i.e.,C \ ðC0 [QÞ ¼ fL;R;Qg,
will be reserved in message f5. Note that evidence conditions
like L ¼ 1 can also be represented in the materialized view,
e.g., by WHERE L ¼ 1. In other words, the same as the VE

algorithm, we can also push down the WHERE L ¼ 1 condition
in the joining tree of CTP in query optimization settings.

3.3.3 Sharing among Queries

Now, we consider the next query Qkþ1 by sharing with the
previous query Qk. The messages are passed from the leaf
cliques toward the new pivot with Qkþ1.

First, all the materialized views of cliques in Qk can be
reused directly, for example the clique (AT) with P ðAÞ ffl
P ðT jAÞ in both the queries of Figs. 5 and 6.

Moreover, message fi that have the same variable
settings in both query Qk and Qkþ1 can be reused as well.
That is, fiðC \ ðC0 [QkÞÞ ¼ fiðC \ ðC0 [Qkþ1ÞÞ, for example
message f2; f3; f4, and f6 in Figs. 5 and 6. Otherwise, we
need to recompute message fi for the new query Qkþ1.

Therefore, rather than rebuilding the entire joining tree
for query Qkþ1, we construct the joining tree on the
materialized views of the previous query Qk. The joining
tree with reused materialized views will be small in size. For
example, in Fig. 7, we show the joining tree with caching and
sharing views for the query in Fig. 6. All the requested clique
node functions are reused from the materialized views, such
as vAT and vTLR. Moreover, the same setting messages
f2; f3; f4, and f6 can also be reused. Since messages f3; f4 are
contained in message f6, we can directly use the materialized
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view vf6 of message f6. In other words, we only need to
compute the new messages passed to the current pivot clique
with the variables of Qkþ1, that is f10 instead of f1 in Fig. 4.

3.3.4 Transformation Algorithm

Consider message f passed from the clique C to C0. Let f:Vp
be the set of variables passed from C to C0, that is C \ ðC0 [
QÞ as shown in Definition 2, and let f:Ve be the set of
variables eliminated in the previous steps before C. In terms
of relational databases, f:Vp is the set of variables in GROUP

BY operation of f , while f:Ve are all the other variables in
the joining tree T f rooted in f . For example, in Fig. 5, f6:Vp
is fL;Rg, and f6:Ve is fB;D; Sg.

We present Algorithm 1 for transforming the clique tree
propagation to the relational query plan. Rather than
recomputing all the messages and reconstructing the
joining tree, we only need to update the messages in some
paths to propagate query variables. That is, message fi with
fi:Ve \Q 6¼ ;. Specifically, if query Q requests the variables
in the eliminated variable set of message fi, i.e.,
fi:Ve \Q 6¼ ;, then the message needs to be recomputed to
include the requested query variables. Otherwise, fi can be
reused and attached to the joining tree directly, e.g.,
message f6 in Fig. 7, and it is not necessary to recompute
the subtree under fi. The joining tree for the CTP algorithm
can be generated recursively.

Algorithm 1. Joining Tree for CTP original

1: procedure GJOININGTREE(C;C0; f)

2: let C1; C2; . . . ; Ck be the neighbors of C except C0

3: let f1; f2; . . . ; fk be the corresponding messages

4: f:addchildðCÞ
5: for i 1; k do . k ¼ 0 if C is a leaf node

6: if fi:Ve \Q 6¼ ; then

7: GJOININGTREE(Ci; C; fi)
8: f:addchildðfiÞ

To summarize, we have presented the inference techni-
ques by using the cached views in the current state clique
tree after query Qk. Note that message f in the current state
is cached in a previous query Qx; x ¼ k; k� 1; k� 2; . . .
where message f is most recently updated. Therefore, in the
original clique tree propagation, the caching strategy is most
recently used (MRU).

4 CTP OPTIMIZATION

In this section, we optimize the clique tree propagation by
considering the most frequently queried variables in a
sequence of inference queries Qk; ;Qk�1; Qk�2; . . . . From the

discussion in the previous section, we know that the original
CTP caches the most recently updated messages in the
materialized views. However, there might be some fre-
quently queried variables in a sequence of inference queries.
Heuristically, we would like to cache these frequent query
variables in order to maximize the reuse of cached messages,
i.e., the most frequently used (MFU) caching strategy.

Specifically, in Section 4.1, we first explore the workload
to find out those variables appearing frequently in queries.
The associations among the query variables from the
workload statistics [18] can be used to find the most
frequent variables. Then, in Section 4.2, we study the
strategies for caching the frequent variables in both the
messages and the pivots in the clique tree. We further
analyze the message updating strategies to reduce the times
of recomputing the messages. Finally, we present the query
processing of CTP with caching frequent variables in the
clique tree in Section 4.3. Table 1 lists the frequently used
notations in this section.

4.1 Exploring Workload

We first study the variables appearing frequently in the
workload, i.e., the most frequently used variables. Specifi-
cally, we explore and learn the associations of variables
from the workload. Let Q ¼ fQ1; Q2; . . .g be a sequence of
queries, where each query Qk consists of several query
variables. We can explore the query workload as follows:

Definition 3 (Occurrence frequency). Let A be a query
variable. Occurrence(A) describes the frequency or probability
of variable A appearing in a query in a workload.

Those variables with high occurrence frequency in the
workload are important in the computation sharing. More-
over, we can also cache some variables that appear together
frequently, which might be queried again and thus reused
according to the workload statistics.

Definition 4 (Co-occurrence association). Let A, B be two
query variables. Co-occurrence(A, B) describes the frequency
or probability of two variables appearing together in the same
query.

These two statistics can be computed by applying the
algorithm of pairwise association rules [19]. Specifically, in
the real implementation, we scan the workload data to
compute the occurrence and co-occurrence of variables,
respectively. In fact, the occurrence frequency and co-occur-
rence association correspond to the frequent 1-item sets and
the frequent 2-item sets mining, respectively.

Definition 5 (Variable association). Let A;B be two query
variables. The variable association of A;B is
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�ðA;BÞ ¼ fðA;BÞ
N

; ð5Þ

where N denotes the total number of queries in the workload,
and f(A, B) means the frequency of A, B appearing together in
the same queries, i.e., co-occurrence(A, B).

Here, to be consistent, we also define the association of a
variable with itself to be �ðA;AÞ ¼ fðA;AÞ

N ¼ fðAÞ
N , i.e.,

occurrenceðAÞ.
In the inference query processing, the query variables are

propagated in the messages toward the pivot. It is desired
that the variables with high associations should have short
distance of propagating them toward the pivot. The
distance equal to zero means that two variables appear in
the same clique in the clique tree. Thus, the variable
associations can be utilized in the optimization of both
caching query variables and pivot selection.

4.2 Caching Frequent Variables

In the original clique tree propagation, the cached messages
with different query variable settings to the current query
have to be discarded, even though the messages contain the
frequent query variables. In order to reserve the frequent
query variables, we intend to avoid discarding the messages
with unused frequent variables. To illustrate the frequent
variable caching strategies in the messages, we first
introduce the message updating operations of variables.

4.2.1 Message Updating

Given a query Q, some of the messages need to be updated
to propagate the query variables toward the pivot. Rather
than the original variables passed from one clique to
another in the initialization, some new variables requested
by the query are also propagated in the message. Therefore,
we study the following property of variables that are
actually propagated in a query.

Theorem 1. Let f be the message passed from C to C0, and let
f:Vr be the actual variables propagated from C to C0 that are
requested by a query Q. Then, we have

f:Vp � f:Vr � ðf:Vp [ f:VeÞ: ð6Þ

Proof. Here, f:Ve denotes all the variables eliminated in the
previous steps before C. Therefore, if the variables in f:Ve
are requested by query Q, then we should not eliminate
these variables in current and previous message propa-
gation steps. The actual set of variables propagated in
message f should be f:Vr ¼ f:Vp [ ðf:Ve \QÞ. Thus, the
minimum set of f:Vr is f:Vp (i.e., no variables are
requested by query Q), while the maximum set is f:Vp [
f:Ve (i.e., all the variables eliminated in the previous
steps are requested by the query). In other words (in
relational terms), it is allowed for some query variables
in the joining tree T f to appear in the message of f . The
maximum set of variables in f should be all the variables
appearing in T f . And, those variables not in T f will
never appear in message f . tu

Now, we consider a sequence of queries. The variables
actually propagated in a message change among different
queries. The caching messages with requested query

variables in a certain state of the clique tree may contain
the variables in many other queries, probably with high
frequency in the workload. Thus, we can cache these
frequently requested query variables in the messages, and
reuse these caching messages in the following queries. For
example, in Fig. 4, suppose that variable A appears
frequently with L;R in the queries in workload. In other
words, message f1 with query variable A is requested
frequently. Therefore, rather than caching message f1ðT Þ,
we can further cache the frequently query variable A into
the message, i.e., f1ðT;AÞ.

Thus, we have two operations to add or remove variables
in the messages: the message merge operation and the message
purge operation. 1) If the cached variables f:Vc do not contain
all the variables requested by the query, i.e., f:Vc 6� f:Vr, then
the message merge operation recomputes the message views
to include all the new requested query variables. 2) If the
cached variables f:Vc contain all the variable requested by
the query, i.e., f:Vc � f:Vr, then the message purge operation
aggregates the message views to eliminate all the cached
variables that are not requested by the query.

4.2.2 Reserving Frequent Variables

Since we cache the frequent query variables in messages,
some of the frequent variables may not be requested by the
current query. According to the original CTP, we have to
discard the message and recompute a message by collecting
all the propagated functions. We now discuss the correct-
ness of propagation directly on these messages with these
extra unused frequent query variables, to avoid discarding
cached messages.

We consider the message whose cached variables are the
superset of the variables requested by the current query,
i.e., f:Vc � f:Vr. In terms of inference techniques, we need to
identify and eliminate these irrelevant variables by using
message purge operation. Fortunately, with features of
GROUP BY operator, we do not need to take extra
consideration to aggregate these variables. GROUP BY

operation generates the messages with requested variables
f:Vr, and aggregates all the other variables automatically.
Therefore, although variables in different queries coexist in
the messages of a certain clique tree status, these variable
variances will not affect the query results. To summarize,
when the message purge operation is needed in the
updating, it is not necessary to discard and recompute the
message. Instead, we can reserve and directly use the
messages with extra unused frequent variables.

4.2.3 Caching in Pivot

As shown in (3), all the messages passed toward the pivot
are collected by a product operation. To reuse this
computation step, we can further cache query variables in
the pivot. Specifically, the probability functions of frequent
queried variables are stored in the pivot according to the
workload statistics. When another query is conducted on
this pivot, if the requested query variables are already
cached in the pivot, the results can be returned directly
without gathering all the propagated messages again.

Let P:Vc be the set of variables cached in pivot P, and Q
be the set of query variables in a query. If Q � P:Vc, then the
results can be computed directly by eliminating (aggregat-
ing) variables P:Vc �Q in P. As discussed above, this
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aggregation can be performed efficiently by facilitating
GROUP BY operator in relational databases.

4.3 Optimizing CTP Query

We now discuss the inference query processing of message
propagation, with the consideration of optimization by
caching frequent query variables into both messages and
pivots. We also study strategies of managing the cached
variables incrementally according to variable associations
from the workload statistics.

4.3.1 Incremental Updating

According to natural features of GROUP BY operator, the
message purge operation is already included in message
propagating steps. Now, we discuss the message merge in the
message updating. As mentioned above, the message will
be recomputed to include all the variables requested with
query f:Vr. Then, the problem is whether or not we should
replace the cached variables by new set f:Vr in message f .
Intuitively, those variables that are queried frequently in the
workload should be cached in the message.

To measure the priority of caching in the message, we
define the association of two variable sets according to the
variable association in the workload statistics. Consider two
sets of variables V1 and V2. The association of V1 and V2 is
given by

�ðV1; V2Þ ¼
X

A2V1;B2V2

�ðA;BÞ; ð7Þ

where �ðA;BÞ is the association of variables A and B
studied in the query workload statistics. Then, the associa-
tion score of the current cached variables to the passed
variables is �ðf:Vc; f:VpÞ, which is preferred to be high.

The intuition is that the cached variables are expected to
be reused as much as possible in the query workload. Those
cached query variables f:Vc should have a high probability
to appear together with the originally passed variables f:Vp
in the query workload, i.e., high association scores. Let f:Vr
be the requested query variables of the current query Q. If
�ðf:Vr; f:VpÞ > �ðf:Vc; f:VpÞ, then we will replace the
current cached variables f:Vc by the new requested
variables f:Vr, i.e., f:Vc ¼ f:Vr.

A natural extension is the incremental caching strategies
in the pivot. Let P:Vc be the variables cached in pivot P and
let Q be a query. If �ðQ;QÞ > �ðP:Vc;P:VcÞ, then the cached
variables will be replaced by the query, i.e., P:Vc ¼ Q.

4.3.2 Query Algorithm

We present Algorithm 2 of generating joining trees for
inference queries with our variable caching strategies in
cliques and messages. Traditionally, we should update all
the messages in the propagating path with different
variable settings to the current query, i.e., f:Vc 6¼ f:Vr. In
this study, we further prune the joining subtree where the
requested messages are already available, that is the
message purge operation where f:Vc � f:Vr. This property
yields an early termination strategies in the construction of
the joining tree. Consequently, we only need to generate the
joining tree for the message merge operation, i.e.,
fi:Vr 6� fi:Vc.

Algorithm 2. Joining Tree for CTP caching
1: procedure GJOININGTREE(C;C0; f)

2: let C1; C2; . . . ; Ck be the neighbors of C except C0

3: let f1; f2; . . . ; fk be the corresponding messages

4: f:addchildðCÞ
5: for i 1; k do . k ¼ 0 if C is a leaf node

6: fi:Vr  ðfi:Ve \QÞ [ fi:Vp
7: if fi:Vr 6� fi:Vc then

8: GJOININGTREE(Ci; C; fi)
9: if �ðfi:Vr; fi:VpÞ > �ðfi:Vc; fi:VpÞ then

10: fi:Vc  fi:Vr
11: f:child ¼ fi

The generated result is the minimum joining tree of
messages that are needed to be updated for the current query
Q. For example, we perform query Q2 ¼ fA;Rg with pivot
(AT). Assume that variable R is already cached in message
f10. Then, there is no need to update any message for the
query, whereas the traditional approach without query
variable caching has to recompute at least one message f10

to propagate the query variable R. Therefore, our frequent
variable caching strategy can maximize the computation
reuse among frequent queries and thus improve the query
performance.

5 COST ESTIMATION

So far, we have presented the clique tree propagation in
relational databases when a certain pivot is given. Now, we
discuss the pivot selection for inference queries. Rather than
the traditional pivot selection approaches, we introduce the
strategies to estimate the query plan cost in relational
database computation. To minimize the time cost, we study
the heuristics for selecting the pivot.

5.1 Pivot Selection

First, let us briefly review the problem of pivot selection. In
the inference propagation, all the messages are passed
toward the pivot. In order to reduce the propagation cost,
the selected pivot is expected to contain more query variables.
Note that there might not exist any clique that covers all the
query variables. Traditionally, in this case, we select the
clique node that has the most query variables as the pivot.

However, since we cache the frequent query variables in
the messages, the messages with some of the current query
variables might already be available in the clique tree.
Therefore, the number of query variables in a pivot clique
node is no longer a good criterion for estimating the query
plan cost. For instance, consider a queryQ ¼ fX;T; Lg in the
example in Fig. 4. Suppose that message f9 caches variables
T and L in the previous queries, while f2 does not containX.
According to the traditional criterion, node (TLR) contains
most query variables and can be selected as the pivot. Thus,
message f2 needs to be recomputed to propagate the query
variableX. However, since f9 contains the query variables T
and L, we can reuse f9 directly without updating the
message if the clique (RX) is selected as the pivot. In other
words, the time cost of the query plan also depends on the
number of query variables that are already cached in the
corresponding propagating path. The challenge now is how
to evaluate the reuse capability of selecting different pivots,
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in order to maximize the sharing among queries. Therefore,
we study the following query plan estimation strategies to
evaluate a query plan with a specific pivot.

5.2 Query Plan Estimation

We derive the heuristics of pivot selection step by step.
First, according to Algorithm 2, the CTP with caching
frequent variables has an early termination scheme if the
request query variables are already cached in the messages
and pivots. Consequently, the corresponding propagation
steps are reduced. Thus, the straightforward estimation of a
query plan is the total length of steps in the propagating
paths. In other words, one possible measure for the query
plan cost is Minimum Propagating Path.

5.2.1 Minimum Propagating Path

The minimum propagating path estimation returns a pivot
with the shortest propagating path for a certain query. To
compute Minimum Propagating Path of a query plan, let’s
first define propagation distance, which is closely related to
Minimum Propagating Path, for the clique tree propagation.

Definition 6 (Propagation distance). Given a pivot P,
distanceðA;PÞ denotes the minimum path length of propa-
gating variable A to pivot P.

The propagation distance is the minimum length of the
path between pivot P and the clique that contains variable
A, having possible distanceðA;PÞ ¼ f0; 1; 2; . . .g. Here,
distance ¼ 0 indicates that pivot P contains variable A
exactly. The following theorem ensures that distanceðA;PÞ
must exist between any variable A and pivot P with the
shortest path.

Theorem 2. Let CA be any clique that contains the variable of A.
Then, there must exist one and only one clique C0A, which
contains A as well, having the path length of ðC0A;PÞ equal to
distanceðA;PÞ.

Proof. First, according to the clique tree definition, the
clique nodes should be connected without cycles. Thus,
there must exist one and only one path ðCA;PÞ between
the clique CA and the pivot clique P. With the variable-
connected features, a pivot C0A can be found in the path
of ðCA;PÞ that all the clique nodes in ðCA;C0AÞ contain
variable A and no clique between ðC0A;PÞ will contain A
anymore. Refer to the definition of distance, the length of
path ðC0A;PÞ is exactly distanceðA;PÞ, i.e., the shortest
propagating path. tu

Consider a pivot P with a set of variables P:V attached.
For a query Q, all those variables not in the pivot, QnP:V ,
need to be propagated to the pivot. According to Theorem 2,
there must exist a shortest path for each requested variable to
pivot P. Thus, we estimate the corresponding query plan
cost on pivot P by the propagation distance

IP ¼
X

v2QnP:V
distanceðv;PÞ: ð8Þ

Finally, we choose the clique node as the query pivot,
whose query plan achieves the lowest estimating cost, i.e.,
min IP, the pivot with the Minimum Propagating Path.

The previous minimum propagating path estimation only
counts the number of propagating steps, while the real
computation cost depends on the propagated message size
in each step. Thus, another possible cost measure is
Minimum Propagating Size, which takes the number of
propagated variables into account.

5.2.2 Minimum Propagating Size

The minimum propagating path estimation returns a pivot
with the minimum number of propagated variables in a
query plan.

Consider any clique node C in the current state of clique
tree. Let f be the message passed fromC to the cliqueC0, and
letQ be the current query. For message f , the set of variables
f:Ve denotes all the variables eliminated in the joining tree of
f . If there are some variablesU ¼ Q \ f:Ve; U 6¼ ;, we need to
recompute message f to propagate the query variable U .
Therefore, in the pivot selection, it is desirable that the
propagating variables will be fewer in each step of message
updating. The recomputing cost is estimated by the size of
jUj and the variables passed in the original clique tree, i.e.,
the total number of propagated variables.

Definition 7 (Propagating size). Consider message f propa-
gated from the clique C to C0. Let f:Vp be the set of variables
passed from C to C0, and let f:Ve be the set of variables
eliminated in the previous steps before C. Then, for a query Q,
the propagating size of message f is given by

sizeðfÞ ¼ jf:Vpj þ jf:Ve \Qj: ð9Þ

Again, according to Theorem 2, only those messages in
the requested propagating paths of query variables are
needed to be updated. Thus, we consider all messages fi in
these propagating paths. The minimum propagating size
estimation computes IP ¼

P
i sizeðfiÞ for each pivot, and

returns the pivot with a minimum IP.

5.2.3 Minimum Propagating Join

The minimum propagating path estimation considers the
propagation distances, and the minimum propagating size
estimates the query plan cost by the propagating message
size. Now, we study the optimization issues in relational
databases. Note that a product operation of collecting all the
messages (2) is required in each propagating step, which is
implemented by a JOIN GROUP BY operator of all the
message views in RDBMS. The join operation cost is
important in relational query evaluation. Thus, instead of
considering the propagation distances or the propagating
message sizes only, we further estimate the join cost of
propagating the messages.

Definition 8 (Propagating join cost). Consider message f
passed from the clique C to C0. Let fj be the message
propagated toward C but not from C0, and let C:V be the set of
variables attached in the clique C. Then, for a query Q, the
propagating cost of message f is given by

joinðfÞ ¼ jC:V j �
Y

j

jfj:Vrj; ð10Þ

where fj:Vr is the set of requested variables in message fj.
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Recall that if there is no variable in fj requested by query
Q, then fj:Vr ¼ fj:Vp, i.e., passed variables; if the variables
requested by query Q are already cached in fj, then
fj:Vr � fj:Vc; otherwise, fj:Vr are returned by the previous
propagating steps of computing message fj. Finally, the
minimum propagating join estimation sums up all the
propagating steps in a query plan, IP ¼

P
i joinðfiÞ, and

chooses the pivot with the minimum query plan cost IP.
Therefore, according to our heuristic analysis advanced

step by step, the minimum propagating join estimation
would like to be the most reasonable one, which considers
join costs in relational databases. Our experimental evalua-
tion in Section 6.3 also verifies that the minimum propagat-
ing join estimation outperforms the other ones.

6 EXPERIMENTAL EVALUATION

This section reports the experimental evaluation of the
proposed approaches. A probabilistic inference query as
clique tree propagation is developed with the materialized
view provided by Oracle. The experiments run on a PC
with two cores 2.0 GHz CPU, and 2 GB memory.

We use the Bayesian network in Fig. 3 as database schema
with total eight relational tables. Rather than the binary
variables, we test various data sizes with the variables’
domain sizes up to 20 (that is, we have 25.6 billion tuples at
most in the joint probability distribution of all the variables).
In data set 1, we simulate probability distribution for each
relation following the normal distribution. For example,
consider uncertain data in tB in Fig. 1. Probability P ðBÞ is
populated under the normal distribution with the constraint
that

P
B P ðBÞ ¼ 1. Moreover, in the real world, not every

event has a probability to occur. Some events’ probability
value may equal to 0, e.g., P ðA ¼ 0; B ¼ 1Þ ¼ 0, which affects
the efficiency of database query evaluation. Therefore,
without loss of generality, in the data set 2, we randomly
select x percent of the events as 0 probability events, where
x percent ranges from 0 to 50 percent for different factors.

We also simulate the workload data of query inputs.
Query variables are populated with the appearance
frequency following the uniform and normal distribution.
Specifically, in the experiment, we simulate the query-set 1
with uniform distribution and query-set 2 in normal
distribution with variances of 1.0. The query-set 2 with a
variance of 1.0 in normal distribution means that there are
more frequent query variables in the workload. For each
query set, we have four groups of query workloads Q1, Q2,
Q3, and Q4 which contain 1, 2, 3, and 4 variable(s),
respectively, in a query. In fact, an inference query with
more variables (i.e., query the joint distribution with most

variables in databases) is unusual in practice. In each query
workload Qi, we have 100 queries and evaluate the average
time cost of these queries.

6.1 VE versus CTP

In the first experiment, we study the Variable Elimination
(VE) and the original Clique Tree Propagation (CTPo)
without caching optimization. As shown in Fig. 8, the VE

algorithm needs to join all the factors in the database, and
has more JOIN-GROUP BY steps than those of CTPo. When
there is only one query variable in query Q1, the CTPo can
always find a pivot with only one step of JOIN-GROUP BY

operation. With the increase of query variables from Q1 to
Q4, although the VE still needs to cover all the factors, the
number of eliminating variables decreases. Therefore, the VE

has fewer JOIN-GROUP BY operations when there are more
variables in query Q4. On the other hand, if more query
variables are requested in the CTPo, then more messages
with the requested variables are needed to be updated.
Thus, the JOIN-GROUP BY operations of CTPo increase in
query Q4 with more variables. In fact, the worst case is that
all the variables are requested by query, and entire message
sets are needed to be recomputed. Fortunately, in the real
application, it is unusual to query all the variables, i.e., the
joint distribution of the whole database. As presented in
Fig. 8, the original CTP requires significantly fewer steps of
JOIN-GROUP BY operations than the VE, when the number
of query variables is moderately large. Note that the
numbers of VE steps are quite similar in all the query-sets,
while the CTP algorithm has fewer steps in query-set 2
which has more frequent query variables. The difference
between data set 1 and data set 2 is the 0 probability event,
which does not affect the JOIN-GROUP BY steps. Therefore,
we only show the result of data set 1 in Fig. 8, which is the
same on data set 2.

Next, we present the time cost of VE and CTPo as well. As
shown in Fig. 9, the time cost of these two approaches is
quite similar to their corresponding JOIN-GROUP BY steps.
The original CTP approach achieves lower time cost than
the VE algorithm in all the four groups of queries. The
results implicate that the reuse of computation among
different queries by storing cliques and messages in the
materialized views works well in relational databases.
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Fig. 8. JOIN-GROUP BY steps.

Fig. 9. Time cost.



Furthermore, there are 0 probability events in the data set 2,
which are not needed to evaluate in the query processing.
Thus, the query shows low time cost in the data set 2.

We also observe the space cost of materialized data in the
CTP approaches. The materialized storage only depends on
the data set size, i.e., the domain size. Note that there is only
one version of materialized data maintained in the CTP.
Thus, different from the traditional query optimization with
materialized views, we have no choice of different materi-
alized data to achieve the best trade-off between space and
efficiency. Fig. 10 shows the storage of materialized data in
different data domain sizes. Similar to the probabilistic data
sets themselves in this experiment, the sizes of materialized
storage also increase in a nonlinear fashion with respect to
the domain sizes. For example, the data size of P ðABCÞwith
domain size 5 for each variable is 53, while it increases to 103

when domain size changes to 10. Consequently, as shown in
Fig. 10, we have similar space increases of materialized data
as the data set itself on various domain sizes. An interesting
result can be found that the query-set 2 shows lower space
cost. Recall that the query-set 2 has more frequent query
items, that is, there is a higher probability of reusing the
cached data. Those materialized data with low reusing rate
are then discarded; thus, the space cost is smaller.

6.2 CTP Optimization Evaluation

In this experiment, we apply our CTP caching optimization
strategies by storing the most frequently queried variables in
both cliques and messages, rather than the most recently
queried variables in the original CTP. The original CTP

(CTPo) and the CTP with caching optimization (CTPc) are
compared in Figs. 11 and 12. We also show the CTP with
minimum propagating join estimation (CTPe) in the same
figures which will be discussed specifically in Section 6.3.

Again, we only show the JOIN-GROUP BY steps of data
set 1 in Fig. 11, which are the same as the results on data
set 2. Since we cache the frequent variables in the cliques
and messages, the CTPc can reduce the JOIN-GROUP BY

steps largely comparing with the original CTPo. Note that,
in query-set 1, the JOIN-GROUP BY steps of CTPc in Q4 are

fewer than Q3. The reason is that the workload statistics of
Qi are different from each other, and the caching variables
are updated incrementally according to the workload
statistics. Those groups of queries with more frequent
variables can share more computation with fewer propa-
gating steps, in other words, fewer JOIN-GROUP BY steps.

Fig. 12 illustrates the efficiency of CTPc with caching
frequent variables, which achieves lower time cost than CTPo.
Similarly, the CTPo approach can also avoid the 0 probability
events and shows low time cost in data set 2. Although CTPc
has a small JOIN-GROUP BY steps in Q4 in query-set 1, the
corresponding time cost is still high. It is obvious that the time
cost of each JOIN-GROUP BY is various. A query plan with
shorter propagating steps might contain more query vari-
ables and require more JOIN-GROUP BY cost.

6.2.1 Scalability

Next, we study the scalability of our approach under
different data sizes. In this experiment, we conduct the
query (e.g., the query group 3) under four different domain
sizes of variables in databases. Since we have eight variables
in this database, the domain size with 5 means 58 (about
0.39 million) number of instances in the joint distribution
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Fig. 10. Space cost evaluation in data size.

Fig. 11. JOIN-GROUP BY steps.

Fig. 12. Time cost.

Fig. 13. Scalability in data size.



view, and 20 denotes 208 (25.6 billion) in size of the joint
distribution. As shown in Fig. 13, our CTP approaches
achieve lower time cost and scale well under different data
sizes. The CTPc with the variable caching strategy shows
better performance than the original CTP, and the CTPe with
cost estimation achieves the best performance.

6.3 Query Plan Estimation

In the last experiment, we evaluate the different strategies
of query plan estimation, including the minimum propagating
path (CTPe path), the minimum propagating size (CTPe size),
and the minimum propagating join (CTPe join). Before
performing a query, the query plan estimation for the pivot
selection is conducted first. In the experiments, we find that
the time cost of estimating processing is tiny comparing
with the relational query cost and can be ignored. Due to
the space limitation, we only present the results in query-
set 2 in Table 2.

The time cost of query results by the minimum
propagating join estimation (CTP min join) is the best in all
these four groups of queries. This result verifies our
analysis in Section 5. The reason is that the JOIN-GROUP

BY operator plays the most expensive role in the query
evaluation. Thus, the queries with CTP min join estimation
can achieve lower time cost.

Note that the CTP min path does not have the minimum
number of JOIN-GROUP BY steps in the results. The
underlying reason is that the caching variables are updated
incrementally, and the CTP min path estimation only
greedily chooses the minimum propagating path for the
current query. Consequently, after several queries with
different pivots in these estimation approaches, the cached
variables are various. Thus, the estimations for the next
query are different as well due to the different historical
caching data.

7 RELATED WORK

Promising applications motivate the marriage of database
and uncertainty community according to their similarity
and correspondence on the theoretical foundation [17]. On
the one hand, probabilistic models [20] are used to evaluate
the selectivity of queries in database [21]. On the other
hand, database techniques can also be utilized in the
problems in uncertainty community, e.g., conducting
probabilistic inference efficiently in database.

7.1 Probabilistic Inference as Propagation

Probabilistic inference queries can be directly answered in
original Bayesian networks [6], [7] by using algorithms such
as variable elimination (ve) [10], [22]. Shafer [11] describes a

scheme of probabilistic inference as message propagation,
i.e., the Shenoy-Shafer propagation architecture [23]. The
above direct inference computing techniques like VE can be
adopted to compute the messages in the Shenoy-Shafer
propagation architecture. Specifically, the clique tree pro-
pagation (CTP) [12] and lazy propagation [13] algorithms
combine the Shenoy-Shafer message propagation scheme
with VE for message computation, i.e., based on the same
principle as VE except with an advanced message caching
scheme. Note that the variables of an arbitrary inference
query may not be the subset of any clique in the
propagation tree. Thereby, messages are collected (and
multiplied) from a set of cliques whose union covers all the
query variables. Instead of propagating in the original
clique tree, Xu [24] builds new clique nodes which cover all
the query variables. Since the clique tree structure (as well
as the relational schema in database implementation)
changes frequently when processing different queries by
Xu’s approach, we implement the propagation scheme of
the original CTP [12]. Before the propagation computation
of messages starts, Butz et al. [25] identify those messages
that are not necessarily to be physically computed due to
the explored independence of corresponding variables. Our
approach in Section 4, however, identifies those messages
with common query variables between two different
queries in the workload. Moreover, Madsen [26] imple-
ments arc reversal (AR) [27] and symbolic probabilistic
inference (SPI) [28] algorithms for the propagation-based
inference in addition to the VE-based CTP. In our current
work, since the state-of-the-art work [5] of probabilistic
inference in databases uses VE instead of AR, in order to
conduct fair comparison with this previous work, we
choose to implement CTP, which is based on the same
principle as VE.

7.2 Probabilistic Inference in Relational Database

The connections between relational databases and Baye-
sian networks have already been noticed [29], [30]. Wong
et al. [17] present the correspondence between relational
databases and Bayesian networks. Specifically, a joint
distribution corresponds to a relation in databases. The
marginalization and multiplication operations correspond
to the projection and natural join operations in databases,
respectively. The probabilistic conditional independency
corresponds to embedded multivalued dependency in
databases [31]. In addition, Wong et al. [8] propose a
method for implementing a probabilistic inference by
transforming a Markov network into a relational database.
As a sequel work, Wong et al. [9] extend their work to
support probabilistic reasoning in Bayesian networks in
relational databases. Bravo and Ramakrishnan [5] present
a broad class of aggregate queries, Marginalize a Product
Function, and implement the VE algorithm in relational
databases with the consideration of query optimization
issues. The VE algorithm answers one query at a time
without computation sharing among different queries,
while in this study, we provide computation reuse among
a sequence of queries.

7.3 Optimizing Queries Using Materialized Views

Chaudhuri et al. [32] first study the incorporation of
materialized views within the query optimization, by using
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Query Plan Estimations



the cost-based dynamic programming. Goldstein and
Larson [33] also develop an approach to optimize the
queries with materialized views, where general queries
with selections, joins and group by are studied. Chirkova
and Li [34] find a set of views with minimum sizes, which
can compute the answers to the query. In this paper,
however, we only have one version of materialized data
determined by the CTP. Thus, we have no choice of different
versions of materialized views to trade off between the
space and time cost. Our pivot selection strategies choose
the best query plan on the available materialized data with
the minimum estimated cost.

8 CONCLUSIONS

In this paper, we study the frequent probability inference
queries in relational databases. Rather than reconstructing
the joining tree for each query, we focus on the approaches
that enable the caching and computation sharing among the
frequent queries in relational databases. First, we transform
the inference query of clique tree propagation (CTP) to the
relational query of joining tree. Moreover, to further
maximize the sharing among a sequence of queries, a
variable caching optimization scheme is also proposed to
cache those frequent query variables in both the cliques and
messages. Our CTP caching optimization approach not only
shares the messages when the query matches the cached
frequent variables, but also reduces the times of discarding
the messages with frequent variables during the message
updating. Finally, in order to select the pivot with the lowest
query cost, we study query plan estimation strategies. The
experimental results demonstrate the effectiveness of our
caching and sharing strategies among the frequent queries.
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