
Materialization and Decomposition of
Dataspaces for Efficient Search

Shaoxu Song, Student Member, IEEE, Lei Chen, Member, IEEE, and Mingxuan Yuan

Abstract—Dataspaces consist of large-scale heterogeneous data. The query interface of accessing tuples should be provided as a

fundamental facility by practical dataspace systems. Previously, an efficient index has been proposed for queries with keyword

neighborhood over dataspaces. In this paper, we study the materialization and decomposition of dataspaces, in order to improve the

query efficiency. First, we study the views of items, which are materialized in order to be reused by queries. When a set of views are

materialized, it leads to select some of them as the optimal plan with the minimum query cost. Efficient algorithms are developed for

query planning and view generation. Second, we study the partitions of tuples for answering top-k queries. Given a query, we can

evaluate the score bounds of the tuples in partitions and prune those partitions with bounds lower than the scores of top-k answers. We

also provide theoretical analysis of query cost and prove that the query efficiency cannot be improved by increasing the number of

partitions. Finally, we conduct an extensive experimental evaluation to illustrate the superior performance of proposed techniques.

Index Terms—Dataspaces, materialization, decomposition.

Ç

1 INTRODUCTION

DATASPACES are recently proposed [1], [2] to provide a

co-existing system of heterogeneous data. The impor-

tance of dataspace systems has already been recognized

and emphasized in handling heterogeneous data [3], [4],

[5], [6], [7]. In fact, examples of interesting dataspaces are

now prevalent, especially on the Web [3].
For example, Google Base1 is a very large, self-describing,

semistructured, heterogeneous database. We illustrate several

dataspace tuples with attribute values in Fig. 1 as follows:

each entry Ti consists of several attributes with correspond-

ing values and can be regarded as a tuple in dataspaces. Due

to the heterogeneity of data, which are contributed by users

around the world, the data set is extremely sparse.

According to our observations, there are total 5,858

attributes in 307,667 tuples (random samples), while most

of these tuples only have less than 30 attributes individually.
Another example of dataspaces is from Wikipedia,2

where each article usually has a tuple with some attributes

and values to describe the basic structured information of

the entry. For instance, a tuple describing the Nikon

Corporation may contain attributes like (founded:Tokyo

Japan 1917), (industry: imaging), (products: cameras) . . . }.

Such interesting tuples could not only be found in article

entries but also mined by advanced tools such as Yago [8] in

the DBPedia project.3 Again, the attributes of tuples in

different entries are various, while each tuple may only

contain a limited number of attributes. Thereby, all these

tuples from heterogeneous sources form a huge dataspace

in Wikipedia.
Due to the heterogeneous data, there exist matching

correspondences among attributes in dataspaces. For ex-

ample, the matching correspondence between attributes

manu and prod could be identified in Fig. 1, since both of

them specify similar information of manufacturer of

products. Such attribute correspondences are often recog-

nized by schema mapping techniques [9]. In dataspaces, a

pay-as-you-go style [5] is usually applied to gradually

identify these correspondences according to users’ feedback

when necessary.
Once the attribute correspondences are recognized, the

keywords in attributes with correspondences are said
neighbors in schema level. For example, keywords Apple in
attributes manu and prod are neighbor keywords, since
manu and prod have correspondence. Consequently, a
query with keyword neighborhood in schema level [10]
should not only search the keywords in the attributes
specified in the query, but also match the neighbor
keywords in the attributes with correspondences. For
example, a query predicate (manu : Apple) should search
keyword Apple in both the attributes manu and prod,
according to the correspondence between manu and prod.

To support efficient queries on dataspaces, Dong and

Halevy [10] utilize the encoding of attribute-keywords as

items and extend the inverted index to answer queries.

Specifically, each distinct attribute name and value pair is

encoded by a unique item. For instance, (manu : Apple) is

denoted by the item I1. Then, each tuple can be represented

by a set of items. Similarly, the query input can also be

encoded in the same way. Since the data are extremely

1872 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 12, DECEMBER 2011

. The authors are with the Department of Computer Science and
Engineering, The Hong Kong University of Science and Technology, Clear
Water Bay, Kowloon, Hong Kong.
E-mail: {sshaoxu, leichen, mingxuan}@cse.ust.hk.

Manuscript received 4 Dec. 2009; revised 20 Apr. 2010; accepted 11 June
2010; published online 26 Oct. 2010.
Recommended for acceptance by N. Bruno.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2009-12-0821.
Digital Object Identifier no. 10.1109/TKDE.2010.213.

1. http://base.google.com/.
2. http://www.wikipedia.org/.

3. http://dbpedia.org/.

1041-4347/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

sparse, the inverted index can be built on items to support
the efficient query answering.

In this paper, from a different aspect of query optimiza-
tion, we study the materialization and decomposition of
dataspaces. The idea of improving query efficiency with
keyword neighborhood in schema level follows two
intuitions: 1) the reuse of contents of a query, and 2) the
pruning of contents for a query.

Motivated by the neighbor keywords that are queried
together, we study the materialization of views of items in
order to reuse the computation. Intuitively, due to the
correspondence of attributes, keywords in neighborhood in
schema level are always searched together in a same
predicate query. For example, a query on (manu : Apple)
will always search (prod : Apple) as well. Therefore, we can
cache the search results of (manu : Apple) and (prod : Apple),
as a materialized view in dataspaces. Such view results could
be reused in different queries. When multiple views are
available, it leads us to the problem of selecting the optimal
query plans on materialized views.

To answer the top-k query, we study the pruning of
unqualified partitions of tuples. Specifically, tuples in
dataspaces are divided into a set of nonoverlapping groups,
namely, partitions. When a query comes, we develop the
score bounds of the tuples in partitions. After processing
the tuples in some partitions, if the current top-k answers
have higher scores than the bounds of remaining partitions,
then we can safely prune these remaining partitions
without evaluating their tuples.

1.1 Contribution

To our best knowledge, this is the first work on studying
materialization and decomposition of dataspaces for effi-
cient search. Following the previous work by Dong and
Halevy [10], the attribute-keyword model is also utilized in
this study. Although our techniques are motivated by
queries with keyword neighborhood in schema level in
dataspaces, the proposed idea of materialization and
decomposition is also generally applicable to attribute-
keyword search over structured and semi-structured data.
Our main contributions in this paper are summarized by:

1. We study the query planning on item views that are
materialized in dataspaces. The materialization
scheme in dataspaces is first introduced, based on
which we can select a plan with minimum cost for a
query. The optimal planning problem can be
formulated as an integer linear programming problem.
Thereby, we investigate greedy algorithms to select

the near optimal query plan, with relative error
bounds on the query cost.

2. We discuss the generation of item views to minimize
the query costs. Obviously, the more the materialized
views are, the better the query performance is.
However, real scenarios usually have a constraint on
the maximum available disk space for materialization.
Thereby, we also study greedy heuristics to generate
views that can possibly provide low cost query plans.

3. We propose the decomposition of dataspaces to
support efficient top-k queries. The decomposition
scheme in dataspaces is first introduced, where
tuples are divided into nonoverlapping partitions.
The score bounds for the tuples in a partition to the
query are theoretically proved. Safe pruning is then
developed based on these score bounds in parti-
tions. It is notable that we are not proposing a new
top-k ranking method. Instead, our partitioning
technique is regarded as a complementary work to
the previous merge operators. Thereby, advanced
merge methods, such as TA family methods [11],
[12], can be cooperated together with our ap-
proaches as presented in experiments.

4. We develop a theoretical analysis for the cost of
querying with partitions. We provide the analysis of
pruning rate and query cost by using the self-
similarity property, which is also verified by our
experimental observations. According to the cost
analysis, we cannot always improve the query
efficiency by increasing the number of partitions.
The generation of partitions is also discussed
according to the cost analysis.

5. We report an extensive experimental evaluation.
Both the materialization of item views and the
decomposition of tuple partitions are evaluated in
querying over real data sets. Especially, the decom-
position techniques can significantly improve the
query time performance. Moreover, the hybrid
approach which combines views and partitions
together can always achieve the best performance
and scales well under large data sizes. In addition,
the experimental results also verify our conclusions
of cost analysis, that is, we can improve the query
performance by increasing the number of views but
not that of partitions.

The remainder of this paper is organized as
follows: first, we introduce the preliminary of this
study in Section 2. Section 3 develops the planning of
queries with materialization on views of items. In
Section 4, we propose the pruning on partitions for
merging and answering top-k queries. Section 5
reports our extensive experimental evaluation. We
discuss the related work in Section 6. Finally, Section 7
concludes this paper.

2 PRELIMINARY

In this section, we introduce some preliminary settings of
existing work, including the query and index of datas-
paces. The notations frequently used in this paper are
listed in Table 1.

SONG ET AL.: MATERIALIZATION AND DECOMPOSITION OF DATASPACES FOR EFFICIENT SEARCH 1873

Fig. 1. Example of dataspaces.

2.1 Data

We first introduce the model to represent the data. As the
encoding system presented in [10], we can use pairs of
(attribute : keyword) to represent the content of a tuple. For
example, the attribute value (manu : Apple Inc.) can be
represented by {(manu : Apple), (manu : Inc.)}, if each word
is considered as a keyword. Let item I be a unique identifier
of a distinct pair. We can represent each tuple T as a set of
items, that is, T ¼ fI1; I2; . . . ; IjT jg.

Assume that I is the set of all the items in dataspaces.
We use the vector space model [13] to logically represent
the tuples.

Definition 2.1 (Tuple Vector). Given a tuple T , the
corresponding tuple vector t is given by

t ¼ ðt1; t2; . . . ; tjI jÞ; ð1Þ

where ti denotes the weight of item Ii in the tuple T , having
0 � ti � 1.

For example, the weight ti ¼ 1 of item Ii denotes Ii 2 T ;
otherwise 0 means Ii 62 T . Advanced weight schemes, such
as term frequency and inverse document frequency [13] in
information retrieval, can also be applied. Without loss of
generality, we adopt the tf*idf score in this work.

2.2 Attribute Correspondence

The correspondence between two attributes (e.g., manu
versus prod) is often recognized by schema mapping
techniques [9] in data integration. The main principles of
techniques include data instances matching, linguistic
matching of the schema element names, schema structural
similarities, and domain knowledge including user feed-
back (see [9] for a survey). In dataspaces, the matching
correspondence between attributes are often incrementally
recognized in a pay-as-you-go style [5], e.g., gradually
identified according to users’ feedback when necessary.

Let Ai;Bi be two attributes with matching correspon-
dence, denoted by Ai $ Bi. Any keywords wi appearing in
Ai;Bi are said neighbors. For instance, we consider a
matching correspondence of attributes manu$ prod. It

states that keywords wi appearing in manu and prod are
said neighbor keywords, e.g., (manu : Apple) and (prod :
Apple). Since the correspondence between the same
attribute is straightforward, a keyword can always be
regarded as a neighbor to itself, such as (prod : Apple) and
(prod : Apple).

2.3 Query

In this paper, we consider queries with a set of attribute
and keyword predicates, e.g., (manu : Apple) and (post :
Infinite). Thus, the query inputs can be represented in the
same way as tuples in dataspaces.

As discussed in [10], the query with keyword neighbor-
hood in schema level over dataspaces should not only
consider tuples with matched keywords on the attributes
specified in the query, but also extend to the attributes with
correspondence according to the keyword neighborhood.

For example, we consider a query

Q ¼ fðmanu : AppleÞ; ðpost : InfiniteÞg:

The query evaluation searches not only in the manu and
post attributes specified in the query, but also in the
attributes prod and addr according to the attribute corre-
spondences manu$ prod and addr$ post, respectively.

Definition 2.2. A disjunctive query with keyword neighbor-
hood in schema level, Q ¼ fðA1 : w1Þ; . . . ; ðAjQj : wjQjÞg,
specifies a set of attribute-keyword predicates. It is to return all
the tuples T in dataspaces with neighbor keywords to Q with
respect to attribute correspondence, i.e., for an attribute Ai of
Q, we can find a Bi of T , such that Ai $ Bi and
ðBi : wiÞ 2 T .

Obviously, there may exist multiple attributes Bi

associated to an attribute Ai according to Ai $ Bi. The
disjunctive query only needs that one of them is true, i.e.,
considering “OR” logical operator between different attri-
bute matching correspondences

_
ðBi:wiÞ2T

Ai $ Bi:

For instance, we consider the above Q ¼ fðmanu :
AppleÞ; ðpost : InfiniteÞg. According to the attribute match-
ing correspondences manu$ prod and addr$ post, a tuple
T is considered as a candidate answer, if T either contains
keyword Apple in manu or prod or contains Infinite in post
or addr. Therefore, we can evaluate the query by finding all
tuples T such that

ððmanu : AppleÞ 2 T _ ðprod : AppleÞ 2 T Þ_
ððpost : InfiniteÞ 2 T _ ðaddr : InfiniteÞ 2 T Þ:

Let Q̂ be the neighbor predicates of a query Q, i.e., a set of
items with keyword neighborhood in schema level to the
query Q,

Q̂ ¼ fðBi : wiÞjBi $ Ai; ðAi : wiÞ 2 Qg:

The disjunctive query returns tuples T that match at least
one predicate in Q̂. For example, we have neighbor
predicates Q̂ for the above query Q ¼ fðmanu : AppleÞ;
ðpost : InfiniteÞg as follows:

1874 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 12, DECEMBER 2011

TABLE 1
Notations

Q̂ ¼ fðmanu : AppleÞ; ðprod : AppleÞ; ðpost : InfiniteÞ;
ðaddr : InfiniteÞg:

Let q be the corresponding tuple vector of neighbor
predicates Q̂ of a query Q, where qi ¼ 1 for Ii 2 Q̂ and 0
otherwise. Then, the ranking score between any tuple T and
the query Q can be computed by score aggregation
functions on neighbor predicates. Without loss of general-
ity, we should support any scoring function that satisfies
monotonicity [11]. For example, we can consider the
intersection of vectors of the tuple T and neighbor
predicates Q̂, which is widely used in keyword search
studies [14]

scoreðQ̂; T Þ ¼ kq � tk ¼
XjI j
i¼1

qiti ¼
X
Ii2Q̂

ti: ð2Þ

Therefore, to evaluate the ranking score between Q and T ,
we are essentially required to compute

P
Ii2Q̂ ti with respect

to neighbor predicates Q̂.
It is notable that different attribute correspondences of

an attribute require an OR operator. This “OR” semantics
for the query with keyword neighborhood in schema level
is different from the CompleteSearch [15]. Specifically,
CompleteSearch indicates an “AND” operator of predi-
cates. For example, in CompleteSearch, the query (manu :
Apple), (prod : Apple) will return tuples containing both
(manu : Apple) and (prod : Apple). Those tuples, which
contain one of predicates or none of them, can be directly
ignored. Instead, in dataspace query with OR operator,
tuples having only part of the predicates will also be
considered and ranked as candidates. Such OR logical
semantics are necessary for querying with keyword
neighborhood on attributes with correspondence, since
more than one attribute may be associated to an attribute
according to attribute correspondence and the query only
needs that one of them is matched with respect to
neighbor keywords.

2.4 Index

Indexing of dataspaces has been studied by Dong and
Halevy [10], which extends inverted index for dataspaces.
The inverted index, also known as inverted files or inverted lists
[16], [17], [18], consists of a vocabulary of items I and a set
of inverted lists. Each item Ii corresponds to an inverted list
of tuple IDs, usually sorted in a certain order, where each ID

reports the item weight ti in that tuple.
In Fig. 2, we use an example to illustrate the index

framework. The data set consists of 10 tuples (denoted by 1-
10) with an item vocabularyI ¼ fðA : aÞ; ðB : aÞ; . . . ; ðL : gÞg,
having jI j ¼ 12. In the inverted lists, for each item (an
attribute and keyword pair such as (manu : Apple)), we have a
pointer referring to a specific list of tuple IDs, where the item
appears. For instance, Fig. 2b shows an example of the
inverted lists of item ðD : dÞ, which indicates that the
keyword d appears in the attribute D of tuples 2, 3, 5, 8, 10.
In the real implementation, each tuple ID in the list is
associated with a weight value ti.

Definition 2.3. Consider the neighbor predicates Q̂ of a query Q.
Let L be the set of lists corresponding to the items in neighbor
predicates Q̂, respectively. The merge operator � returns a

new list of tuples, by merging the lists in L, with scoreðQ̂; T Þ
on each tuple T .

For example, consider a query Q ¼ fðA : aÞ; ðC : cÞ;
ðD : dÞg. Suppose that there exists attribute correspondence
A$ B. Thereby, we have the neighbor predicates
Q̂ ¼ fðA : aÞ; ðB : aÞ; ðC : cÞ; ðD : dÞg. The merge operator
computes

P
Ii2Q̂ ti for each tuple T that appears in the lists

of items ðA : aÞ; ðB : aÞ; ðC : cÞ; ðD : dÞ.
Let ci ¼ OðsiÞ ¼ �si þ r, where � is a constant, si is the

size of the list of item Ii and r is a constant time of random
access. Then, the merging cost can be estimated by

P
Ii2Q̂ ci.

Advanced merge methods, such as threshold algorithm
(TA) [19], combined algorithm (CA) [11] or IO-Top-K [12], can
be applied to merge inverted lists. When such TA-family
methods are utilized, the above

P
Ii2Q̂ ci is then an upper

bound of estimated merge cost. In the following, instead of
proposing a new merge operator for inverted lists, we focus
on advanced techniques that are built upon the available
merge operators to further improve the query efficiency.

3 PLANNING WITH MATERIALIZATION

According to the attribute correspondence, e.g., addr$ post,
each query predicate on attribute addr has to conduct a search
on attribute post as well. In other words, those neighbor
keywords on addr, post are often searched together in
predicate queries with keyword neighborhood in schema
level. Intuitively, we would like to cache these query results
for reuse.

In relational databases, a view consists of the result set of
a query, which can be materialized to optimize queries.
Similarly, in this study, we introduce the view on a set of
items (query predicates) in dataspaces to speed up the
query processing. Specifically, the merge results of item sets
are materialized, and then queries can utilize these
materialized views. It raises two questions 1) how to select
the views of items to materialize, and 2) how to utilize the
materialized views to minimize the query cost.

Note that the techniques discussed as follows are also
applicable in attribute-keyword search over structured and
semi-structured data, since the data in dataspaces are
modeled by attribute-keyword as well. However, due to
the OR operator of predicates that should be considered for
queries with keyword neighborhood in schema level, our
current techniques can only support general attribute-
keyword queries with OR operator.

SONG ET AL.: MATERIALIZATION AND DECOMPOSITION OF DATASPACES FOR EFFICIENT SEARCH 1875

Fig. 2. Indexing dataspaces.

3.1 Materialization

We first introduce the concept of materialization. Let view V

be a set of items (attribute-keyword pairs). By applying the
merge operation �, we get a new list of tuples with
corresponding scoreðV ; T Þ. This list is stored in the disk as
the materialization of view V .

In Fig. 3, we show an example of materialized lists of item

views. For instance, we have neighbor keywords a in ðA : aÞ
and ðB : aÞ according to the attribute correspondenceA$ B.

The first view, denoted by V1 ¼ fðA : aÞ; ðB : aÞg, materi-

alizes the merge results of lists corresponding to items ðA : aÞ
and ðB : aÞ in the example of Fig. 2. Those items appearing

together frequently may also be materialized as well, e.g.,

V4 ¼ fðD : dÞ; ðE : eÞg where ðD : aÞ; ðE : eÞ may frequently

appear together in tuples or queries.

Let V denote the view scheme, i.e., the set of views that are

materialized. Since all the original items are already stored,

we can treat each item as a single size view, that is, I � V.

3.2 Standard Query Plan

Given a query Q, a query plan P of Q is a set of views,
having P � V, which can be used to evaluate scoreðQ̂; T Þ for
each possible tuple T . Since various views are available in a
view scheme V, it leads to study the selection of optimal
plan P with the minimum query cost.

3.2.1 Formalization

We first formalize the definition of query plan P. Let vij ¼ 1

denote that view Vj contains item Ii; otherwise, vij ¼ 0 means
not containing, having i ¼ 1; . . . ; jI j and j ¼ 1; . . . ; jVj. Let
qi ¼ 1 denote that item Ii is contained in the neighbor
predicates Q̂ of a query Q; otherwise, qi ¼ 0, having
i ¼ 1; . . . ; jIj.
Definition 3.1. Given a query Q, a feasible standard plan P is a

subset of all views, P � V, having

X
j

vijxj ¼ qi; i ¼ 1; . . . ; jI j;

xj ¼
1; if Vj 2 P;
0; if Vj 62 P;

�
j ¼ 1; . . . ; jVj:

During the query evaluation, lists corresponding to the
views in P are merged by using the merge operator � in
Definition 2.3. It is notable that a feasible plan requiresP

j vijxj ¼ qi as illustrated in Definition 3.1, i.e., no
duplicate items in P. As presented in the following, such
requirement is necessary for computing the ranking scores
of tuples. We first prove that the standard plan can evaluate
scoreðQ̂; T Þ for each possible tuple T .

Lemma 1. Let P be a feasible query plan for a query Q. For any

tuple T , we have scoreðQ̂; T Þ ¼
P

V 2P scoreðV ; T Þ.

Proof. According to the score function in (2), we have

X
V 2P

scoreðV ; T Þ ¼
X
j

xjscoreðVj; T Þ

¼
X
j

xj
X
i

vijti

¼
X
i

X
j

xjvijti

¼
X
i

qiti ¼ scoreðQ̂; T Þ;

where i ¼ 1; . . . ; jIj and j ¼ 1; . . . ; jVj. tu
For example, we consider a query Q ¼ fðA : aÞ; ðC : cÞ;

ðD : dÞg in Fig. 4. According to the attribute correspondence,
A$ B, we have

Q̂ ¼ fðA : aÞ; ðB : aÞ; ðC : cÞ; ðD : dÞg:

Suppose that the view V1 ¼ fðA : aÞ; ðB : aÞg is materialized.
A feasible standard plan can be P ¼ fV1; ðC : cÞ; ðD : dÞg.
The formula

P
j vijxj ¼ qi semantically denotes that the

union of views Vj 2 P is exactly the neighbor predicates Q̂
of query Q, i.e.,

S
Vj2P Vj ¼ Q̂. In fact, we can further

develop the following properties of feasible plans.

Lemma 2. For any view V in a feasible standard plan P, we have

V � Q̂.

Proof. Assume that there exists an item Ii having Ii 2 V but
Ii 62 Q̂. Thus, we have

P
j vijxj � 1 > qi ¼ 0, which

contradicts the definition of feasible P. tu
Lemma 3. For any two views V1 and V2 in a feasible standard

plan P, we have V1 \ V2 ¼ ;.
Proof. Assume that there exists an item Ii having
Ii 2 V1 \ V2. Thus, we have

P
j vijxj � 2 > 1 � qi, which

contradicts the definition of feasible P. tu

3.2.2 Optimal Plan

First, recall that all the original items are already
materialized, i.e., I � V. Therefore, given any query Q, a
feasible plan always exists, that is, P ¼ Q̂. Next, we study

1876 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 12, DECEMBER 2011

Fig. 3. Materialization on views of items.

Fig. 4. Plan selection.

the selection of query plans with the minimum cost. Let cj
be the cost of retrieving the materialized list of view Vj as
defined in Section 2. Then, the cost of plan P can be
estimated by

P
j cjxj.

Definition 3.2. The problem of selecting the optimal standard
query plan is to determine the x for P, having

minimize
X
j

cjxj

subject to
X
j

vijxj ¼ qi; i ¼ 1; . . . ; jI j;

xj 2 f0; 1g; j ¼ 1; . . . ; jVj;

which is a 0-1 integer programming or binary integer
programming problem.

Unfortunately, the 0-1 integer programming problem with
nonnegative data is equivalent to the set cover problem,
which is NP-complete [20]. Therefore, we explore the
approximate solutions by greedy algorithm.4

3.2.3 Greedy Algorithm

Intuitively, in each step of adding a view into P, we can
greedily select the view Vj with the minimum cost of each
item unit, i.e., the minimum ratio

cj
jVjj , where cj denotes the

cost of Vj and jVjj means the size of view Vj, such as
jVjj ¼

P
Ii2Vj si.

According to Lemma 2, not all the views Vj 2 V should
be considered for a specific Q. Instead, as presented in line 3
of Algorithm 1, we only need to evaluate the views that are
contained by neighbor predicates Q̂, i.e., Vj � Q̂. Moreover,
since any two views in a feasible plan are nonoverlapping
(Lemma 3), we can remove the items of the currently
selected view Vk from Q̂ in each step and stop till Q̂ ¼ ;.

Algorithm 1. Standard Planning SP(Q)

1: P :¼ ;
2: Q̂ :¼ neighbor predicates of Q according attribute

correspondence
3: while Q̂ 6¼ ; do

4: k :¼ arg minj
cj
jVjj ; Vj � Q̂

5: P :¼ P [Vk
6: Q̂ :¼ Q̂ n Vk
7: return P

Let d be the size of the largest view Vj � Q̂ and Hd be the
dth harmonic number, having Hd ¼

Pd
k¼1

1
k . Then, the relative

error of greedy approximation is bounded as follows:

Corollary 1. [22] The cost of the plan returned by the greedy
algorithm SP is at most Hd times the cost of the optimal plan.

3.3 General Query Plan

Note that the standard plan only contains views that are
subsets of the neighbor predicates Q̂ of a query Q. However,
the views with items not in Q̂ can be used in the query
evaluation as well. For example, in Fig. 4, we can also utilize
the view V2 by removing the item ðE : eÞ (not requested by Q̂)
from V2. Moreover, if both V2 and V4 are considered, then the

item ðD : dÞwill be counted twice in the score function which

contradicts to the correctness in Lemma 1. Therefore, we

need to deduct the items such as nonrequested ðE : eÞ or

duplicate ðD : dÞ. The operator of removing corresponding

lists is defined as follows, namely, the negative merge operator.

Definition 3.3. Consider a set of items, e.g., V . Let L be the set of

lists corresponding to the items in V , respectively. The

negative merge operator � returns a new list of tuples, by

merging the lists in L, with negative-scoreðV ; T Þ on each

tuple T .

It is notable that the negative merge employs negative

score values, which still satisfy the monotonicity of score

functions. Therefore, TA family methods [11] can still

be utilized for negative merge. As illustrated in the

following, lists with both positive scores and negative

scores in a general query plan are merged together by

using a TA-style algorithm.
We define the general query plan with both the merge

operator � and the negative merge operator �. Let vij and

qi have the same semantics as the standard plan in

Definition 3.1.

Definition 3.4. Given a query Q, a general plan P consists of

two subsets of all views, P� � V and P� � V, having

X
j

vijðxþj � x�j Þ ¼ qi; i ¼ 1; . . . ; jIj;

xþj ¼
1; if Vj 2 P�;
0; otherwise;

�
j ¼ 1; . . . ; jVj;

x�j ¼
1; if Vj 2 P�;
0; otherwise:

�
j ¼ 1; . . . ; jVj;

Similar to Lemma 1, we can also prove that scoreðQ̂; T Þ ¼P
V 2P scoreðV ; T Þ for the general plan P. During the query

evaluation, the merge operator � and negative merge

operator � are then conducted on P� and P�, respectively.

For example, a general plan for the query Q can be

P ¼ fV �2 ; ðC : cÞ�; ðE : eÞ�g. The above definition specifies

a constraint that the union of view in P� minus the union of

views in P� is exactly Q̂ of the query Q, i.e.,

ð
S
Vj2P� VjÞ n ð

S
Vj2P� VjÞ ¼ Q̂. In fact, the standard plan is a

special case of the general plan, where P� ¼ ;.

3.3.1 Optimal Plan

We then introduce the problem of selecting the optimal

general plan with the minimum cost. The only difference

between two kinds of merge operators is their outputs of

scores, while the cost of the negative merge operator is

actually the same as the merge operator. Thereby, we can

estimate the cost of a general plan P by
P

j cjx
þ
j þ cjx�j .

Definition 3.5. The problem of selecting the optimal general

query plan is to determine the xþ for P� and the x� for P�,

having

SONG ET AL.: MATERIALIZATION AND DECOMPOSITION OF DATASPACES FOR EFFICIENT SEARCH 1877

4. Advanced approximation approaches on solving the binary integer
programming problem can also be adopted [21], which is not the focus of
this paper.

minimize
X
j

cjx
þ
j þ cjx�j

subject to
X
j

vijx
þ
j � vijx�j ¼ qi; i ¼ 1; . . . ; jI j;

xþj 2 f0; 1g; j ¼ 1; . . . ; jVj;
x�j 2 f0; 1g; j ¼ 1; . . . ; jVj;

which is exactly the 0-1 integer programming problem.
However, the coefficients of variables x�j are negative.

Lemma 4. For an optimal general plan P, we have P� \ P� ¼ ;.
Proof. Assume that there exists a view Vj 2 P� \ P�. Then,

we can build another feasible general plan P1, P�1 ¼
P� n Vj and P�1 ¼ P� n Vj, whose cost is less than P. tu

As proved in by Dobson [23], when there are negative
entries, it is unlikely that we can guarantee the existence of
a polynomial approximation scheme with relative error
bounds. Therefore, we study the greedy heuristics.

3.3.2 Heuristics

First, we introduce a virtual (empty) view V0 with cost
c0 ¼ 0. Then each Vj � Q̂ can be represented by fV �j ; V �0 g.
Next, we consider possible pairs of fV �j ; V �l g that can be
used by the query Vj n Vl � Q̂, where j ¼ 1; . . . ; jVj and
l ¼ 0; . . . ; j� 1; jþ 1; . . . ; jVj, having l 6¼ j according to
Lemma 4. Let the ratio be

cjþcl
jVjnVl j , which denotes the average

cost of retrieving each unit of items. As presented in
Algorithm 2, similar to the SP algorithm, we can greedily
select the view pair fVk1

; Vk2
g with the minimum ratio in

each step. The view Vk1
is considered to be in P�, while Vk2

is added into P�.

Algorithm 2. General Planning GP(Q)

1: P� :¼ P� :¼ ;
2: Q̂ :¼ neighbor predicates of Q according attribute

correspondence

3: while Q̂ 6¼ ; do

4: ðk1; k2Þ :¼ arg minj;l
cjþcl
jVjnVlj ; Vj n Vl � Q̂

5: P� :¼ P� [Vk1

6: P� :¼ P� [Vk2

7: Q̂ :¼ ðQ̂ [Vk2
Þ n Vk1

8: return P�;P�

Corollary 2. The cost of the general plan returned by GP

algorithm is at least no greater (worse) than the cost of the
standard plan returned by SP algorithm.

Proof. The worst case is P� ¼ ;, i.e., x�j ¼ 0 for all j, which
is exactly the solution of the SP algorithm. tu

3.4 Generating Views

Now we present how to generate the view scheme V.
Obviously, the larger the number of views in V is, the better
the query performance will be. Let S be the space of all
possible views on the item set I . The ideal scenario is to
materialize all the possible views, i.e., V ¼ S, when the
space of materialization is not limited. However, real
applications usually have a constraint on the maximum
available disk space, say M, for materialization. The
problem we address is to determine a V � S with disk
space less than M.

When there is no query log available in the beginning,
we can randomly generate views as V. Let xj ¼ 1 denotes
that the view Vj 2 S is selected to materialize in the view
scheme V; otherwise xj ¼ 0. Then the disk space cost can be
sizeðVÞ ¼

P
j sjxj. The random generation of view stops

when the space cost sizeðVÞ exceeds the limitation M.
After processing a batch of queries, we can rely on the

query log to select views for materialization. Let Q be a set
of query tuples, i.e., the query log. The straightforward
strategy is to materialize the views of item sets Vj that
appear most frequently in the query log Q. This interesting
intuition leads us to the famous frequent itemset mining
algorithms [24], [25]. Each query log can be treated as a
transaction with a set of items. Then, we can select the
frequent k-itemsets as materialized views. Existing efficient
algorithms can be utilized, such as Apriori [24] or FP-
growth [25], which are not the focuses of this paper.
However, this frequency-based strategy fails to offer
optimal views due to the favor of views with smaller sizes,
e.g., the frequency of fðC : cÞ; ðD : dÞg is always not less
than fðC : cÞ; ðD : dÞ; ðE : eÞg.

3.4.1 Cost-Based Generation

We seek the view scheme that can minimize the cost of the
query log. Let qik ¼ 1 denote that the item Ii is contained in
the neighbor predicates Q̂k of a query Qk; otherwise, not
containing. Let yjk ¼ 1 denote that the view Vj 2 S is
expected to be used in the query tuple Qk, no matter Vj is
selected in V (xj ¼ 1) or not.

Definition 3.6. The problem of generating the optimal view
scheme V is to determine a feasible x having,

minimize
X
j;k

cjxjyjk

subject to
X
j

vijxjyjk ¼ qik; i ¼ 1; . . . ; jI j; k ¼ 1; . . . ; jQj
X
j

sjxj �M

xj 2 f0; 1g; j ¼ 1; . . . ; jSj;
yjk 2 f0; 1g; j ¼ 1; . . . ; jSj; k ¼ 1; . . . ; jQj:

Then, V ¼ fVj j xj ¼ 1; Vj 2 Sg.

Similar to the query planning, we also study greedy
heuristics to solve this problem. Let fj ¼

P
k yjk be the

frequency of Vj in the neighbor predicates of query log Q.
Similarly, we can develop the greedy heuristic by the ratio

cj
jVjj

P
k yjk

¼ cj
jVjjfj

:

In each greedy step, we select the view Vj to V which has the
minimum ratio, or equivalently, the Vj that can cover
maximum number of items (jVjjfj) by each unit of cost 1

cj
.

The cost-based view generation algorithm is developed as
follows: for the initialization from lines 2-5 in Algorithm 3,
we assume that each view Vj � Q̂k can possibly be used, i.e.,
assigning yjk ¼ 1. Therefore, we have fj þþ in line 5 when
Vj � Q̂k. During each greedy step in lines 6-12, once we
decide to select a view (say Vl) into V, then all the other views
Vj (having Vj � Q̂k and Vj \ Vl 6¼ ; according to Lemmas 2

1878 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 12, DECEMBER 2011

and 3) are impossible to be used, i.e., assigning yjk ¼ 0. In
other words, we should remove such yjk ¼ 1 from fj by fj �
� in line 12. The program terminates whenQ ¼ ; or the disk
space sizeðVÞ exceeds the limitation M.

Algorithm 3. View Generation VG(Q)

1: fj :¼ 0

2: for j : 1! jSj do

3: for k : 1! jQj do

4: if Vj � Q̂k then

5: fj þþ
6: while Q 6¼ ; and sizeðVÞ �M do

7: l :¼ arg minj
cj
jVjjfj

8: V :¼ V [Vl
9: for k : 1! jQj do

10: if Vl � Q̂k then

11: Q̂k :¼ Q̂k n Vl
12: fj �� for Vj that Vj \ Vl 6¼ ;
13: return V

Corollary 3. For any V generated by the VG algorithm, the total
cost of the queries in Q by using the optimal standard plan for
each query tuple is no worse than the cost of

P
j;k cjxjyjk.

According to the greedy strategy of selecting views, the
first chosen ones can have more effectiveness in reuse,
while those views ranked lower in the generation may
benefit the queries less. Note that some of the views have
extremely low frequency when considering the entire view
scheme space. Although the view generation is offline
processing, we can select a candidate subset of views from
the entire space as S, e.g., with frequency greater than a
threshold in the query log.

3.4.2 Updates

We mainly have two aspects of updates in dataspaces, i.e.,
updates of tuples and updates of attribute correspondences.
For the updates of tuples, we consider the inserting and
deleting tuples. During the updating, inverted lists of both
original items and their corresponding materialized views
should be addressed. Efficient approaches have already
been developed for updating inverted lists [26], which can
be applied as well.

It is notable that the attribute correspondences between
attributes in dataspaces are often incrementally recognized
in a pay-as-you-go style [5]. The neighbor predicates with
respect to neighbor keywords of query workload evolve as
well. Consequently, it leads to the updates of views in V.
For the frequency-based view scheme, it is easy to update
the frequency statistics, remove low frequency item
patterns in updated query predicates and add high
frequency item patterns to V. Those views whose frequen-
cies decrease may be replaced by new frequent views. For
the cost-based view scheme, however, we can only rely on
batch updates, due to the maintenance of yjk in fj for each
specific view Vj. Note that if the updates have to be
conducted online, the cost of updating should be consid-
ered as well. Consequently, there will be a trade-off
between the view update cost and the query cost with
respect to workload. As presented, the generation of views
has already been shown hard. Therefore, it is highly

nontrivial to find optimal updates of views with respect
to the balance of update cost and query cost.

4 MERGING WITH DECOMPOSITION

Instead of searching data in the entire space, we often
decompose the data into partitions for efficient top-k queries.
During the query processing, those partitions of tuples with
low scores to the query are then pruned directly without
evaluation. In this section, we also study the decomposition
of dataspaces for efficient query. Again, we have to address
two questions: 1) how to prune the partitions of tuples on
top-k answers, and 2) how to generate the partitions of tuples
which will have less query cost.

Recall that during the evaluation of a query, we rely on
the merge operator to merge the lists referred by the query
plan. That is, given a set of lists,5 we study the techniques
for efficiently merging the lists to return top-k answers.
Since all the tuples are decomposed into a set of partitions,
and the merge operator is then applied on each partition of
tuples, respectively. Given a query, we can develop the
bound of scores of the tuples in each partition. Therefore,
those partitions whose score bounds are lower than the
top-k answers can be pruned.

It is notable that we utilize the previous merge operators
such as TA family methods [11] to rank the answers in each
partition. Instead of proposing a new top-k ranking method,
our partitioning technique is regarded as a complementary
work to the previous merge operators. Thereby, advanced
merge methods, such as IO-top-k [12], can be cooperated
together with our decomposition.

4.1 Decomposition

Let H denotes a partition scheme, i.e., a set of
m nonoverlapping partitions of all the tuples. In other
words, each tuple T is assigned to one and only one
partition Hi 2 H; i ¼ 1; . . . ;m.

Thereby, each list can be decomposed to a set of
nonoverlapping sublists of tuples according to the partitions
of tuples. For example, as illustrated in Fig. 5, each list can
be decomposed into at most m ¼ 4 partitions. Some
partitions might be empty in a specific list. For instance,
the list of item ðA : aÞ say I1 in Fig. 2b is decomposed into
three partitions, H1; H3, and H4, while H2 is empty. It states
that the item I1 does not appear in any tuple in partition H2.

In order to compute the score bounds of the tuples in each
partition, we introduce a head structure for each list. The
head stores the following information: 1) partition ID, 2) the
bound of item weights in the partition, and 3) the pointer of
start and offset of the partition in the list. Both the head and

SONG ET AL.: MATERIALIZATION AND DECOMPOSITION OF DATASPACES FOR EFFICIENT SEARCH 1879

Fig. 5. Decomposition on partitions of tuples.

5. Corresponding to either original items or views. For simplicity, in the
remainder of this section, we use the example of original items, which is the
same for views.

the lists of tuple partitions of an item are stored in
continuous disk blocks and can be retrieved in one random
access as the original lists.

4.1.1 Updating

During the updating (insertion or deletion of tuples), both
the lists and the head information should be updated,
including the bound of weight and also the pointers to
the partitions.

4.2 Pruning Top-k Answers

4.2.1 Bound

In order to evaluate the score bounds of the tuples in a
partition, we first introduce the formal representation of
partitions. Note that each partition also describes a set of
items, which appear in the tuples of this partition. There-
fore, similar to the tuple vector, each partition can be
logically represented by a partition vector of items.

Definition 4.1 (Partition Vector). Let H be a partition in H.
The corresponding partition vector is defined by,

h ¼ ðh1; h2; . . . ; hjI jÞ; ð3Þ

where hi is the bound of weight of the item Ii in the partition
H. Specifically, let T be any tuple in the partition H. We have

hi ¼ max
T2H
ðtiÞ; ð4Þ

where ti is the weight of item Ii in the tuple T .

Given a query Q, we can compute an intersection score
between any partitionH and the neighbor predicates Q̂ ofQ,

scoreðQ̂;HÞ ¼ kq � hk ¼
X
Ii2Q̂

hi:

As presented in the following, this scoreðQ̂;HÞ is exactly the
upper bound of scores of the tuples in the partition H.

Lemma 5. Let T be any tuple in a partition H, we have

scoreðQ̂;HÞ � scoreðQ̂; T Þ; ð5Þ

where Q is the query.

Proof. According to the definition of partition vector in (4),
for any item Ii, we have hi � ti. Therefore,

scoreðQ̂;HÞ ¼
X
Ii2Q̂

hi �
X
Ii2Q̂

ti ¼ scoreðQ̂; T Þ:

In other words, scoreðQ̂;HÞ is the bound of scores of
tuples T 2 H to the query Q. tu
When a list of item Ii is manipulated by the negative

merge operator, e.g., in a general query plan, we can assign
hi ¼ 0 for each partition H. For the tuple T 2 H containing
item Ii, we have ti > 0, i.e., �ti < 0 in negative merge.
Moreover, for the tuple T 0 2 H that does not contain the item
Ii, we have ti ¼ �ti ¼ 0. Therefore, we can assign hi ¼ 0 for
this item Ii for simplicity.

4.2.2 Pruning

Next, we can order the partitions in decreasing order of
their upper score bounds to the query. After processing the

first g partitions with the highest bounds, we obtain a
current top-k answer, say K. The following theorem
specifies the condition of pruning the next gþ 1 partition.

Theorem 1. Let Kk be the kth tuple with the minimum score in
the top-k answers in the previous g steps. For the next
gþ 1 partition, if we have

scoreðQ̂;KkÞ � scoreðQ̂;Hgþ1Þ; ð6Þ

then the partition Hgþ1 can be safely pruned.

Proof. According to Lemma 5, for any tuple T in the
partition Hgþ1, we have scoreðQ̂;KkÞ � scoreðQ̂;Hgþ1Þ �
scoreðQ̂; T Þ. Since Kk is the tuple in the current top-k
results with the minimum ranking score, in other words,
the tuples in partition Hgþ1 will never be ranked higher
than Kk and can be pruned safely without further
evaluation. tu

For the remaining partitions Hgþ2; Hgþ3; . . . , since the
partitions are in the decreasing order of score bounds, we
have

scoreðQ̂;KkÞ > scoreðQ̂;Hgþ1Þ > scoreðQ̂;HgþxÞ;

where x ¼ 2; 3; Therefore, we can prune all the
remaining partitions, starting from Hgþ1.

For example, we consider the query Q with neighbor
predicates Q̂ ¼ fI1; I2; I3; I4g in Fig. 5. Suppose that the
partitions are ordered by the bounds as follows, H1;
H3; H4; H2. After processing the first partition H1, if the
current kth answer Kk has a score higher than the bound of
next the partition H3, then we can prune all the remaining
partitions H3; H4, and H2 without evaluating their lists of
tuples.

4.2.3 Algorithm

Given a query Q and an integer k, the query algorithm is
described in the following Algorithm 4. During the
initialization, the PARTITIONS(Q̂) function returns a set of
partitions H ranked in descending order of score bounds to
the query Q. Recall that the bound hi of item Ii of each
partition H is recorded in the head structure as illustrated
in Fig. 5. Thus, the bound of scores of each partition can be
efficiently computed by merging the heads of all the items
referred in the neighbor predicates Q̂ of Q.

Algorithm 4. Merge Top-k MT(Q; k)

1: Q̂ :¼ neighbor predicates of Q according attribute
correspondence

2: H :¼ PARTITIONSðQ̂Þ
3: K :¼ ;
4: for j : 1!H:size do

5: if scoreðQ̂;KkÞ � scoreðQ̂;HjÞ then

6: break

7: else

8: K0 :¼ MERGEðHj:listsÞ
9: K :¼ RANKðK;K0Þ

10: return K

Let scoreðQ̂;KkÞ be the kth largest score in the current
top-k answers K. For the partition Hj, if the scoreðQ̂;KkÞ is
larger than the bound of the tuple scores of partition

1880 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 12, DECEMBER 2011

scoreðQ̂;HjÞ, then the partition Hj and all the remaining
partitions can be pruned. Otherwise, we merge and rank all
the tuples in the partition Hj. The MERGE(�) function is the
implementation of the merge operator introduced in
Definition 2.3 or Definition 3.3.

4.3 Cost Analysis

Suppose that we have m ¼ jHj partitions on the n tuples
in the dataspaces. We analyze the cost of disk space and
query time.

4.3.1 Space Cost

Let OðnÞ be the space cost of the original inverted lists of all
the n tuples. We have n

m tuples in each partition on average.
Thus, the space cost introduced by the partition information
can be estimated by m

n OðnÞ. The total space cost with
partitions is ð1þ m

nÞOðnÞ. Since the number of partitions is
always less than tuples, m � n, the space cost is at most
twice the cost of original inverted lists.

4.3.2 Time Cost

Again, let OðnÞ be the time cost of merging on the entire
space of n tuples. Suppose that the pruning is conducted
after processing the first g partitions. Then, we can estimate
the time cost of the query with pruning as follows:

Lemma 6. The cost of processing first g partitions can be
estimated by

m

n
þ g

m

� �
OðnÞ:

Proof. The merge cost with pruning partitions consists of
two aspects, from the merge of partitions and tuples
respectively. First, m

n OðnÞ denotes the merge of parti-
tions, in order to calculate the bounds of all the
m partitions. Moreover, according to the pruning, all
the remaining m� g partitions can be ignored without
evaluation. That is, the merge cost of tuples would be g

m

of the original cost without partition pruning OðnÞ. tu

Now, we study the estimation of the number of
partitions that are processed before pruning, i.e., the g
value. Intuitively, we want to estimate the probability g

m

that a partition is processed in a query, i.e., the probability
of a partition having bound greater than the top-k answers.
Therefore, we introduce the concept of correlation integral
[27] Cð�Þ which denotes the mean probability that two
objects from two sets, respectively, are similar (with
similarity greater than �). Let jXj be the size of object set
X and xi be an object in X. Let jY j be the size of object set Y
and yi be an object in Y . Then, for a specific similarity value
�, the correlation integral Cð�Þ can be approximated by the
correlation sum

Cð�Þ ¼ 1

jXj � jY j
XjXj
i¼1

XjY j
j¼1

�ðkxi � yjk � �Þ; ð7Þ

where �ð�Þ is the heaviside function, �ðxÞ ¼ 1 for x � 0 and 0
otherwise, and k � k is the intersection similarity.

Let X be the set of query tuples and Y be the set of data
tuples in dataspaces. Then, the correlation integral is the

probability that the similarity between a query and a tuple T
is greater than �, denoted byCtð�Þ. Moreover, if we define the
set Y to be the set of partition vectors in dataspaces, then the
correlation integral, say Chð�Þ, means the probability that a
query has high similarity (greater than �) to the bound of a
partition H. During the computation, if a query workload is
provided, then we can directly use query tuples as X.
However, if query workload is not available, then we can
only rely on the data itself, i.e., using data tuples asX as well.

According to the fractal and self-similarity features,
which have been observed in various applications including
the high dimension spaces [28], [29], [30], there exists a
constant, known as correlation dimension [27] D,

D ¼ @ logCð�Þ
@ log �

: ð8Þ

We observe the Dt corresponding to Ctð�Þ of tuples and
Dh corresponding to Chð�Þ of partitions in real data sets of
dataspaces. As presented in Figs. 9, 10, and 11, a straight
line can be fit in each plot, respectively, whose slope is
exactly the constant D according to the above definition.

According to the constant D in (8), we can represent the
relationship among �;D and Cð�Þ as follows:

Cð�Þ / �D; ð9Þ

where / stands for proportional, i.e., follows the power law.
Let Cð�Þ ¼ ð��ÞD, where � is a constant and can be observed
together with slope D in Figs. 9, 10, and 11.

Lemma 7. The number of processed partitions g can be
estimated by

g 	 m �h
�t

� �Dh k

n

� �Dh
Dt

:

Proof. Recall that Cð�Þ denotes the mean probability that the
similarity is greater than �. Let �t be the minimum
similarity of the top-k answers. Then, we have
k
n ¼ Ctð�Þ ¼ ð�t�tÞ

Dt . Moreover, let �h be the bound of
similarity scores of the gth partition. Thus, we also have
g
m ¼ Chð�Þ ¼ ð�h�hÞ

Dh .
According to the pruning condition of partitions, we

have the similarity score �t 	 �h, that is,

1

�t

k

n

� � 1
Dt

	 1

�h

g

m

� � 1
Dh :

In other words, we have

g 	 m �h
�t

� �Dh k

n

� �Dh
Dt

:

The lemma is proved. tu
Combining Lemmas 6 and 7, we have the following

conclusion. Let � be

� ¼ �h
�t

� �Dh k

n

� �Dh
Dt

: ð10Þ

Corollary 4. The cost of merging with pruning on partitions can
be estimated by

SONG ET AL.: MATERIALIZATION AND DECOMPOSITION OF DATASPACES FOR EFFICIENT SEARCH 1881

�m
n
þ �
�
OðnÞ: ð11Þ

Given a data set, the values of Dt and �t are then fixed
according to their definitions. For example, as we observed
in Fig. 9, we can find an ideal line Ctð�Þ ¼ ð�t�tÞDt having
Dt ¼ �3:4 and �t ¼ 0:12, which can approximately fit the
observed Base data set. Recall that the slope Dh and the
corresponding �h in (10) of � can also be observed as
constants on a large enough partition scheme. For
example, in Fig. 10, we can observe Chð�Þ ¼ ð�h�hÞDh

having Dh ¼ �2:5 and �t ¼ 0:15, which fits the Base data
set with random partitions. In other words, � will be a
constant which is independent with respect to the
processed number of partitions g and total number of
partitions m. Therefore, according to Corollary 4, we
cannot further improve the query efficiency by increasing
the number of partitions m. Our experimental evaluation
also verifies this conclusion.

4.4 Generating Partitions

Now, we discuss the generation of tuple partitions. The
partition scheme is preferred which has lower query cost
according to the above theoretical analysis.

4.4.1 Random Partition

The straightforward partition scheme is to assign a tuple to
a partition at random. The distribution of tuples in different
partitions tends to be the same. In other words, each
partition shows a similar partition vector. Therefore, the
prune power is low by conjecture.

Recall that the correlation dimension has Dh < 0.
According to Lemma 7, the smaller the �h is, the larger
the number of processed partitions g would be. In fact, as
we observed in Table 2, the random partition scheme shows
a small �h, e.g., �h 	 0:3 in the Wiki data set. Thus,
theoretically, the query efficiency based on random parti-
tions is low. Our experimental evaluation also verifies the
unsuitability of the random partition scheme.

4.4.2 Feature-Based Partition

The feature-based partitioning is developed by the intuition
that the tuples in the same partition share similar contents
of items (features). There are various algorithms to partition
tuples according to their similarities [31], which is not the
focus of this paper. For example, we can employ a classifier
to make decisions based on item features of partitions. Or
we can use the clustering algorithms to group the tuples
into m clusters without a supervised classifier.

Intuitively, in a feature-based partition scheme, the
tuples in the same partitions share similar item features,
while the tuples in different partitions often have various
item features. Consequently, the partition vectors of

different partitions are various as well. For a specific query,
the bounds of partition will be more distinguishable. In
other words, more irrelevant tuples in those partitions with
low bounds can be possibly pruned.

In fact, as we observe, the feature-based partition scheme
has a large �h value, such as �h 	 3 in the Wiki data set in
Table 2. Thus, given a specific k value, the feature-based
partition has a smaller constant � than the random approach
(see details in Section 5.2). According to Corollary 4, the time
cost of queries on feature-based partitions should be small
as well. Therefore, in our experiments, the feature-based
partition shows better query time performance.

5 EXPERIMENTS

This section reports the experimental evaluation of pro-
posed techniques. We evaluate the following approaches:
the baseline approach with extended inverted lists [10], the
planning with materialization of views, the merging with
decomposition of partitions, and the hybrid approach with
both views and partitions. In the implementation, we use
the Combined Algorithm [11] as the state-of-art merge
operator of inverted lists. Moreover, the successful idea of
inverted block-index in IO-Top-K [12] is also applied, i.e.,
divide each inverted list into blocks and use score-
descending order among blocks but keep the tuple entries
within each block in the order of tuple IDs. Such block idea
in CA is complementary to our proposed materialization
and decomposition techniques. The main evaluation criter-
ion is query time cost. We run the experiments in two real
data sets, Google Base (Base), and Wikipedia (Wiki). There
are 7,432,575 tuples crawled from Google Base web site, in
size of 3.06 GB after preprocessing. The data of Wikipedia
consists of 3,493,237 tuples, in size of 0.82 GB after
preprocessing. Items of attribute-keywords are associated
with tf*idf weight scores [13]. During the evaluation, we
randomly select 200 tuples from the data set as a synthetic
workload of queries.6 The average response time of these
queries are reported when different approaches are applied.
The experiment runs on a machine with Intel Core 2 CPU
(2.13 GHz) and 2 GB of memory.

5.1 Evaluating Materialization

In this experiment, we mainly test the performance of
different planning approaches under various disk space
limitations. Let �s be the average size of lists. Then, the
limitation of spaceM is actually the limitation of the number
of views, say M

�s . Since the lists of single-item views (i.e.,

1882 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 12, DECEMBER 2011

TABLE 2
Observations of �;D of Cð�Þ

6. We explore the correspondences of attributes in dataspaces by using
instance-level matching [9].

Fig. 6. Estimated cost of a query.

original items) are already stored by the index, we mainly
check the extra space cost introduced by materializing the
views with multiple items, i.e., m ¼ jVj � jIj. In the follow-
ing experiments, the number of views denotes m multiitem
views by default. When the view number m ¼ 0, it means
that no multiitem views are materialized, i.e., equivalent to
the baseline approach.

In Fig. 6, we present the estimated cost of query plan P,
i.e.,

P
j cjxj in Definition 3.1, when different total numbers

of views m are available. With the increase of materialized
views m, the query plan P can choose more effective views
with less estimated cost. Obviously, a randomly generated
view has rare chance to be effective for a specific query.
Thus, the query may have to retrieve the original items with
higher cost, since the randomly generated views could be
useless. The frequency-based view scheme materializes
those views with frequent items according to the historical
query log. Queries can reuse these views and consequently
have query plans with less estimated cost. Finally, we also
report the estimated cost of queries on cost-based view
scheme, which is smaller than the other ones.

Fig. 7 reports the corresponding query time cost of
various view schemes. As shown in figures, the time cost is
roughly proportional to the estimated cost of corresponding
query plans. The more materialized views m are, the better
the query time performance is. According to the above
observation of estimated cost, the frequency-based ap-
proach has more chance to utilize effective materialization
than the random one. Therefore, the time cost of queries on
frequency-based views is lower as well. However, the
frequency-based approach favors small views as we
mentioned in Section 3.4, while the cost-based scheme can
generate useful views according to the cost estimation.
Thus, queries on cost-based views have even lower time
cost. Note that if there is no proper views available in large
size, cost-based strategy will generate similar views as
frequency one. Consequently, the difference between these
two generation strategies may not be large, e.g., 10 views in
Fig. 7. Nevertheless, the cost-based approach will not
generate significantly worse views than frequency one.

According to our view selection strategies in query plan
and view generation, we always first choose those most
effective views that can contribute to the query at most.
Thereby, with the increase of views, e.g., from 150 to 200 in
Figs. 6 and 7, the achieved improvement may not as
significant as first chosen ones like 1-50.

In Fig. 8, we evaluate the standard and general query
planning. As we presented in Corollary 2, the worst case of
an optimal general plan is the corresponding optimal
standard plan without any negative merge operation.
Therefore, as presented in Fig. 8, in Wiki data set, the
performance of general plan is generally not worse than the
standard one. When proper negative merge is applicable,
e.g., in Base data set, the general plan can achieve better
performance.

5.2 Evaluating Decomposition

In this experiment, we first observe that the constant D in
(8) exists in real dataspace examples, since our cost
estimation is based on the assumption of the existence of
this D. Specifically, we collect the Cð�Þ values of tuples,
random partitions, and feature-based partitions, which are
reported in Figs. 9, 10, and 11, respectively. Each point
ð�; Cð�ÞÞ denotes the observation of probability Cð�Þ with
similarity score � in the corresponding data set. We also plot
an ideal Cð�Þ ¼ ð��ÞD in each data set that can fit our
observations. We can record the constants � and D of ideal
Cð�Þ ¼ ð��ÞD as the estimation of real observations, which
are presented in Table 2. For example, we have Dh ¼ �2:5

and �h ¼ 0:25 for feature-based partitions in Base data set,
according to the ideal Cð�Þ ¼ ð0:25�Þ�2:5 that fits the
observed data in Fig. 11. According to the definition of �
in (10), for the random partitions in Base, we have

SONG ET AL.: MATERIALIZATION AND DECOMPOSITION OF DATASPACES FOR EFFICIENT SEARCH 1883

Fig. 7. Time cost of a query.

Fig. 8. Time cost of a query by different plans.

Fig. 9. Cð�Þ Observation of tuples.

Fig. 10. Cð�Þ Observation of random partitions.

Fig. 11. Cð�Þ Observation of feature-based partitions.

�random ¼
�h
�t

� �Dh k

n

� �Dh
Dt

¼ 0:15

0:12

� ��2:5 k

n

� ��2:5
�3:4

¼ 0:572
k

n

� ��2:5
�3:4

:

For the feature-based scheme, we have

�feature ¼
0:25

0:12

� ��2:5 k

n

� ��2:5
�3:4

¼ 0:159
k

n

� ��2:5
�3:4

:

Obviously, the constant �feature is less than �random. Accord-
ing to Corollary 4, the queries on feature-based partitions
should have lower time cost than the random approach.

Similarly, we can also observe the constant � in Wiki

�random ¼
0:3

8

� ��1:5 k

n

� ��1:5
�1:5

¼ 137:706
k

n
;

�feature ¼
3

8

� ��1:5 k

n

� ��1:5
�1:5

¼ 4:354
k

n
:

That is, we have �feature < �random as well. So far, according to
the above observation and analysis on both data sets,
queries on feature-based partition should have better
performance than that of the random one. Next, we show
that this case holds for the real query evaluation.

Specifically, we observe the time performance of top-k7

queries under different number of partitions m. Note that
when the partition number m ¼ 1, it means that all the
tuples are in one partition, which is equivalent to the
baseline approach.

In Fig. 12, we study the number of retrieved partitions g
that have to be processed before the pruning can be applied.
First, compared with feature-based partition scheme, the
random approach has much more retrieved partitions g,
which also confirms our analysis of the random scheme in
Section 4.4. Moreover, as we analyzed, the constant �
approximately denotes the rate of processed partitions g

m . In
the above observation, we find that the �feature is much less
than �random in Wiki ð 4:354

137:706Þ, compared with those of Base
ð0:159

0:572Þ. Thus, in Fig. 12, the pruning power of featured-based
partitions on Wiki is stronger than that in Base.

Fig. 13 shows the time cost of queries with corresponding
partitions. When the number of partitions m is small, e.g.,
10 partitions in Fig. 13, the overlap of items (features)
among partitions might be large. That is, in terms of our
cost analysis, we cannot accurately observe the constant �
about D and �. Thus, the bounds of partitions are not
distinguishable for a specific query. Consequently, the
pruning is not ensured, and the cost will be high. With
the increase of m, e.g., from 10 to 100 partitions in Fig. 13,
the constant � can be observed. In other words, the bounds

of partitions can effectively identify and prune those low
score tuples, thereby the cost drops. Moreover, with the
further increase of partition numbers m, e.g., 1,000 parti-
tions in Fig. 13, the performance cannot be improved any
more, since the fractal property has already been clearly
observed with a constant �. Consequently, the time cost
increases with the number of partitions, which confirms our
conclusion in Corollary 4.

5.3 Scalability

Finally, we combine our proposed views and partitions
together, called hybrid approach with materialization+de-
composition. For the view materialization, we use the cost-
based view generation and the standard query plan. The
partition decomposition uses the feature-based partition
generation. The state-of-art CA method is utilized as baseline
approach where materialization and decomposition are not
applied. We mainly test the performance of approaches
under different data sizes, in order to evaluate scalability.

As presented in Fig. 14, the time cost of all the
approaches increases linearly as the data size. Both our
materialization and decomposition approaches can improve
the time performance in various data scale, compared with
the baseline approach. The hybrid one can always achieve
the best performance and scales well under large sizes.

6 RELATED WORK

The concept of dataspaces is proposed in [1] and [2], which
provides a coexisting system of heterogeneous data. Due to
the huge amount of increasing data especially from the
Web, the importance of dataspace systems has already been
recognized and emphasized [3], [4]. Recent work [5], [6], [7]
is mainly dedicated to offering best-effort answers in a pay-
as-you-go style in view of integration issues. In our study,
instead, we concern the efficiency issues on accessing
dataspaces, which also plays a fundamental role in practical
dataspace systems.

The problem of indexing dataspaces is first studied by
Dong and Halevy [10] to support efficient query. Based on
the encoding of attribute label and value as items, the

1884 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 12, DECEMBER 2011

Fig. 12. Retrieved partitions of a query. Fig. 13. Time cost of a query.

Fig. 14. Scalability.7. k ¼ 5; similar results are observed with k ¼ 1; 10, etc.

inverted index is extended to dataspaces, which is also
considered as the baseline approach in our work. In fact,
inverted index [16], [17] has been studied for decades as
efficient access to sparse data. Zobel and Moffat [18]
provide a comprehensive introduction of key techniques
in the text indexing literature. Li et al. [32] also study the
indexing for approximately retrieving the sparse data,
which extends inverted lists as well. The difference between
dataspaces and XML is also discussed by Dong and Halevy
[10]. Specifically, since XML techniques rely on encoding
the parent-child and ancestor-descendant relationships in
an XML tree, which do not fit in dataspaces, the query
processing of related items in XML [33] is not directly
applicable to the query processing with keyword neighbor-
hood in dataspaces [10]. Once the data are indexed, our
approaches introduce materialization in dataspaces and
provide (near) optimal query planning based on the
materialized data. For high dimensional data, Sarawagi
and Kirpal [34] propose the grouping of items to materialize
their corresponding inverted lists. However, the proposed
algorithm is developed for set similarity joins, and does not
address the generation of optimal query plans based on the
available materialized data.

Various strategies for storing sparse data are also
proposed. Chu et al. [35] use a big wide-table to store the
sparse data and extract the data incrementally [36]. Rather
than the predominant positional storage with a preallocated
amount of space for each attribute, the wide-table uses an
interpreted storage to avoid allocating spaces to those null
values in the sparse data. Agrawal et al. [37] study a vertical
format storage of the tuples. Specifically, a 3-ary vertical
scheme is developed with columns including tuple identi-
fier, attribute name, and attribute value. Beckmann et al.
[38] extend the RDBMS attributes to handle the sparse data
as interpreted fields. A prototype implementation in the
existing RDBMS is evaluated to illustrate the advanced
performance in dealing with sparse data. Abadi et al. [39],
[40] provide comprehensive studies of the column-based
store comparing with the row-based store. The column
store with vertical partitioning shows advanced perfor-
mance in many applications, such as the RDF data of the
Semantic Web [39] and the recent Star Schema Benchmark
of data warehousing [40]. Chaudhuri et al. [41] study a
similarity join operator (SSJoin [41], [42]) on text attributes,
which are also organized in a vertical style. Specifically,
each value of text attributes is converted to a set of tokens
(words or q-grams [43]), which are stored separately in
different tuples, respectively. Our work is independent with
the storage of dataspaces, instead we develop the materi-
alization and decomposition of dataspaces upon the
indexing framework.

For the merge operator, the inverted lists are usually
sorted by the tuple IDs, then efficient merging algorithm can
be applied [18]. When the inverted lists are sorted by the
weight of each tuple, the threshold algorithm [19] can
return the top-k answers efficiently. Advanced TA family
methods such as combined algorithm [11] can also be used
as merge operator of inverted lists. Moreover, inverted
block-index is also proposed in IO-Top-K [12], i.e., divide
each inverted list into blocks and use score-descending
order among blocks but keep the tuple entries with in each
block in tuple ID order. Arjen P. de Vries et al. [44] also

study the k-NN search by avoiding merging all the
dimensions referred by query items. In our study, we first
decompose the tuples into a set of partitions, then the above
merging techniques can be applied in each partition,
respectively. Thus, our focus is the pruning of partitions
rather than the merge operator.

Materialized views in relational databases are often
utilized to find equivalent view-based rewritings of rela-
tional queries [45], such as conjunctive queries or aggregate
queries in databases. Similar problem is also studied in
index selection [46]. Specifically, given a workload of SQL
statements and a user-specified storage constraint, it is to
recommend a set of indexes that have the maximum benefit
for the given workload. Greedy heuristics are often used in
such selection, e.g., in SQL Server [47] and DB2 [48].
Chirkova and Li [49] study the generation of a set of views
that can compute the answers to the queries, such that the
size of the view set is minimal. Heeren et al. [50] consider
the index selection with a bound of available space, upon
which the average query response time is minimized.
Instead of considering materialized views and index
separately, Aouiche and Darmont [51] take view-index
interactions into account and achieve efficient storage space
sharing. All these previous works focus on rewriting
relational queries based on materialized views in relational
databases. In our study, we extend the concept of materi-
alization to dataspaces and explore the corresponding
query optimization.

Partitioning-based approaches for efficient access are
studied as well. Lester et al. [52] propose the partitioning
index for efficient online index. To make documents
immediately accessible, the index is divided into a controlled
number of partitions. Nikos Mamoulis [53] studies the
efficient joins on set-valued attributes, by using inverted
index. Different from our large number of attributes, the join
predicates are evaluated between two attributes only.
Sarawagi and Kirpal [34] also propose an efficient algorithm
for indexing with a data partitioning strategy. All these
efficient techniques are dedicated to the single attribute
problem, while the dataspaces contain various attributes.
The idea of cracking databases into manageable pieces is
developed recently to organize data in the way users request
it. Rather than dataspaces, Idreos et al. [54], [55] mainly study
the cracking of relational databases. The cracking approach is
based on the hypothesis that index maintenance should be a
byproduct of query processing, not of updates.

7 CONCLUSIONS

In this paper, we study the materialization and decomposi-
tion of dataspaces in order to improve the efficiency of
queries with keyword neighborhood in schema level. Since
neighbor keywords are always queried together, we first
propose the materialization of neighbor keywords as views
of items. Then, the optimal query planning is studied on the
item views that are materialized in dataspaces. Due to the
NP-completeness of the problem, we study the greedy
approaches to generate query plans. Obviously, the more
materialized views there are, the better the query perfor-
mance is. The generation of views is then discussed with
limitation of materialization space. Moreover, we also study
the decomposition of dataspaces into partitions of tuples for
top-k queries. Efficient pruning of tuple partitions is

SONG ET AL.: MATERIALIZATION AND DECOMPOSITION OF DATASPACES FOR EFFICIENT SEARCH 1885

developed during the top-k query processing. We propose a
theoretical analysis for the cost of querying with partitions
and find that the pruning power cannot be improved by
increasing the number of partitions. The generation of
partitions is also discussed based on the cost analysis.

Finally, we report an extensive experiment to illustrate

the performance of proposed methods. In the method of

materialization, the general query plans show no worse

performance than the standard query plans. When proper

negative merge is applicable, the general plan can achieve

better performance. The hybrid approach with both views

and partitions can always achieve the best performance.

Furthermore, the experimental results also verify our

conclusions of cost analysis, that is, we can improve the

query performance by increasing the number of views but

not that of partitions.

ACKNOWLEDGMENTS

Funding for this work was provided by Hong Kong RGC

GRF 611608, NSFC Grant Nos. 60736013, 60970112, and

60803105, and Microsoft Research Asia Gift Grant,

MRA11EG05. The authors also thank the support from

HKUST RFID center.

REFERENCES

[1] M.J. Franklin, A.Y. Halevy, and D. Maier, “From Databases to
Dataspaces: A New Abstraction for Information Management,”
SIGMOD Record, vol. 34, no. 4, pp. 27-33, 2005.

[2] A.Y. Halevy, M.J. Franklin, and D. Maier, “Principles of Dataspace
Systems,” Proc. 25th ACM SIGMOD-SIGACT-SIGART Symp.
Principles of Database Systems (PODS ’06), pp. 1-9, 2006.

[3] M.J. Franklin, A.Y. Halevy, and D. Maier, “A First Tutorial on
Dataspaces,” Proc. VLDB Endowment, vol. 1, no. 2, pp. 1516-1517,
2008.

[4] J. Madhavan, S. Cohen, X.L. Dong, A.Y. Halevy, S.R. Jeffery, D.
Ko, and C. Yu, “Web-Scale Data Integration: You can Afford to
Pay as You Go,” Proc. Conf. Innovative Data Systems Research
(CIDR), pp. 342-350, 2007.

[5] S.R. Jeffery, M.J. Franklin, and A.Y. Halevy, “Pay-As-You-Go User
Feedback for Dataspace Systems,” Proc. ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD ’08), pp. 847-860, 2008.

[6] A.D. Sarma, X. Dong, and A.Y. Halevy, “Bootstrapping Pay-As-
You-Go Data Integration Systems,” Proc. ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD ’08), pp. 861-874, 2008.

[7] M.A.V. Salles, J.-P. Dittrich, S.K. Karakashian, O.R. Girard, and L.
Blunschi, “Itrails: Pay-As-You-Go Information Integration in
Dataspaces,” Proc. 33rd Int’l Conf. Very Large Data Bases (VLDB
’07), pp. 663-674, 2007.

[8] F.M. Suchanek, G. Kasneci, and G. Weikum, “Yago: A Core of
Semantic Knowledge,” Proc. 16th Int’l Conf. World Wide Web
(WWW ’07), pp. 697-706, 2007.

[9] E. Rahm and P.A. Bernstein, “A Survey of Approaches to
Automatic Schema Matching,” Int’l J. Very Large Data Bases,
vol. 10, no. 4, pp. 334-350, 2001.

[10] X. Dong and A.Y. Halevy, “Indexing Dataspaces,” Proc. ACM
SIGMOD Int’l Conf. Management of Data (SIGMOD ’07), pp. 43-54,
2007.

[11] R. Fagin, “Combining Fuzzy Information: An Overview,” SIG-
MOD Record, vol. 31, no. 2, pp. 109-118, 2002.

[12] H. Bast, D. Majumdar, R. Schenkel, M. Theobald, and G. Weikum,
“Io-Top-k: Index-Access Optimized Top-k Query Processing,”
Proc. 32nd Int’l Conf. Very Large Data Bases (VLDB ’06), pp. 475-486,
2006.

[13] G. Salton, Automatic Text Processing: The Transformation, Analysis,
and Retrieval of Information by Computer. Addison-Wesley, 1989.

[14] F. Liu, C.T. Yu, W. Meng, and A. Chowdhury, “Effective Keyword
Search in Relational Databases,” Proc. ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD ’06), pp. 563-574, 2006.

[15] H. Bast and I. Weber, “The Completesearch Engine: Interactive,
Efficient, and Towards IR& DB Integration,” Proc. Conf. Innovative
Data Systems Research (CIDR), pp. 88-95, 2007.

[16] R.A. Baeza-Yates and B.A. Ribeiro-Neto, Modern Information
Retrieval. ACM Press / Addison-Wesley, 1999.

[17] I.H. Witten, A. Moffat, and T.C. Bell, Managing Gigabytes:
Compressing and Indexing Documents and Images, second ed.
Morgan Kaufmann, 1999.

[18] J. Zobel and A. Moffat, “Inverted Files for Text Search Engines,”
ACM Computing Surveys, vol. 38, no. 2, pp. 1-55, 2006.

[19] R. Fagin, A. Lotem, and M. Naor, “Optimal Aggregation
Algorithms for Middleware,” Proc. 20th ACM SIGMOD-SI-
GACT-SIGART Symp. Principles of Database Systems (PODS ’01),
2001.

[20] D. Peleg, G. Schechtman, and A. Wool, “Approximating Bounded
0-1 Integer Linear Programs,” Proc. Second Israel Symp. Theory and
Computing Systems, pp. 69-77, 1993.

[21] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity. Prentice-Hall, Inc., 1982.

[22] V. Chvatal, “A Greedy Heuristic for the Set-Covering Problem,”
Math. Operations Research, vol. 4, no. 3, pp. 233-235, 1979.

[23] G. Dobson, “Worst Case Analysis of Greedy Heuristics for Integer
Programming with Non-Negative Data,” Math. Operations Re-
search, vol. 7, no. 4, pp. 515-531, 1982.

[24] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules in Large Databases,” Proc. 20th Int’l Conf. Very
Large Data Bases (VLDB ’94), pp. 487-499, 1994.

[25] J. Han, J. Pei, Y. Yin, and R. Mao, “Mining Frequent Patterns
without Candidate Generation: A Frequent-Pattern Tree Ap-
proach,” Data Mining and Knowledge Discovery, vol. 8, no. 1,
pp. 53-87, 2004.

[26] L. Lim, M. Wang, S. Padmanabhan, J.S. Vitter, and R.C.
Agarwal, “Efficient Update of Indexes for Dynamically Chan-
ging Web Documents,” J. World Wide Web, vol. 10, no. 1, pp. 37-
69, 2007.

[27] P. Grassberger and I. Procaccia, “Measuring the Strangeness of
Strange Attractors,” Physica D: Nonlinear Phenomena, vol. 9,
nos. 1/2, pp. 189-208, 1983.

[28] A. Belussi and C. Faloutsos, “Estimating the Selectivity of Spatial
Queries Using the “Correlation” Fractal Dimension,” Proc. 21th
Int’l Conf. Very Large Data Bases (VLDB ’95), pp. 299-310, 1995.

[29] B.-U. Pagel, F. Korn, and C. Faloutsos, “Deflating the Dimension-
ality Curse Using Multiple Fractal Dimensions,” Proc. 16th Int’l
Conf. Data Eng., pp. 589-598, 2000.

[30] F. Korn, B.-U. Pagel, and C. Faloutsos, “On the “Dimensionality
Curse” and the “Self-Similarity Blessing,”” IEEE Trans. Knowledge
and Data Eng., vol. 13, no. 1, pp. 96-111, Jan./Feb. 2001.

[31] J. Han and M. Kamber, Data Mining: Concepts and Techniques.
Morgan Kaufmann, 2000.

[32] B. Li, M. Hui, J. Li, and H. Gao, “Iva-File: Efficiently Indexing
Sparse Wide Tables in Community Systems,” Proc. IEEE Int’l Conf.
Data Eng. (ICDE ’09), pp. 210-221, 2009.

[33] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv, “Xsearch: A Semantic
Search Engine for Xml,” Proc. 29th Int’l Conf. Very Large Data Bases
(VLDB ’03), pp. 45-56, 2003.

[34] S. Sarawagi and A. Kirpal, “Efficient Set Joins on Similarity
Predicates,” Proc. ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD ’04), pp. 743-754, 2004.

[35] E. Chu, J.L. Beckmann, and J.F. Naughton, “The Case for a Wide-
Table Approach to Manage Sparse Relational Data Sets,” Proc.
ACM SIGMOD Int’l Conf. Management of Data (SIGMOD ’07),
pp. 821-832, 2007.

[36] E. Chu, A. Baid, T. Chen, A. Doan, and J.F. Naughton, “A
Relational Approach to Incrementally Extracting and Querying
Structure in Unstructured Data,” Proc. 33rd Int’l Conf. Very Large
Data Bases (VLDB ’07), pp. 1045-1056, 2007.

[37] R. Agrawal, A. Somani, and Y. Xu, “Storage and Querying of
e-Commerce Data,” Proc. 27th Int’l Conf. Very Large Data Bases
(VLDB ’01), pp. 149-158, 2001.

[38] J.L. Beckmann, A. Halverson, R. Krishnamurthy, and J.F.
Naughton, “Extending RDBMSs to Support Sparse Datasets Using
an Interpreted Attribute Storage Format,” Proc. 22nd Int’l Conf.
Data Eng. (ICDE ’06), p. 58, 2006.

[39] D.J. Abadi, A. Marcus, S. Madden, and K.J. Hollenbach, “Scalable
Semantic Web Data Management Using Vertical Partitioning,”
Proc. 33rd Int’l Conf. Very Large Data Bases (VLDB ’07), pp. 411-422,
2007.

1886 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 12, DECEMBER 2011

[40] D. Abadi, S. Madden, and N. Hachem, “Column-Stores Vs. Row-
Stores: How Different are They Really?” Proc. ACM SIGMOD Int’l
Conf. Management of Data (SIGMOD ’08), 2008.

[41] S. Chaudhuri, V. Ganti, and R. Kaushik, “A Primitive Operator for
Similarity Joins in Data Cleaning,” Proc. 22nd Int’l Conf. Data Eng.
(ICDE ’06), p. 5, 2006.

[42] A. Arasu, V. Ganti, and R. Kaushik, “Efficient Exact Set-Similarity
Joins,” Proc. 32nd Int’l Conf. Very Large Data Bases (VLDB ’06),
pp. 918-929, 2006.

[43] E. Ukkonen, “Approximate String Matching with q-Grams and
Maximal Matches,” Theoretical Computer Science—Selected Papers of
the Combinatorial Pattern Matching School, vol. 92, no. 1, pp. 191-
211, 1992.

[44] A.P. de Vries, N. Mamoulis, N. Nes, and M.L. Kersten, “Efficient
k-NN Search on Vertically Decomposed Data,” Proc. ACM
SIGMOD Int’l Conf. Management of Data (SIGMOD ’02), pp. 322-
333, 2002.

[45] G. Gou, M. Kormilitsin, and R. Chirkova, “Query Evaluation
Using Overlapping Views: Completeness and Efficiency,” Proc.
ACM SIGMOD Int’l Conf. Management of Data (SIGMOD), pp. 37-
48, 2006.

[46] S. Chaudhuri, M. Datar, and V.R. Narasayya, “Index Selection for
Databases: A Hardness Study and a Principled Heuristic
Solution,” IEEE Trans. Knowledge and Data Eng., vol. 16, no. 11,
pp. 1313-1323, Nov. 2004.

[47] S. Agrawal, S. Chaudhuri, and V.R. Narasayya, “Automated
Selection of Materialized Views and Indexes in Sql Databases,”
Proc. 26th Int’l Conf. Very Large Data Bases (VLDB ’00), pp. 496-505,
2000.

[48] G. Valentin, M. Zuliani, D.C. Zilio, G.M. Lohman, and A. Skelley,
“DB2 Advisor: An Optimizer Smart Enough to Recommend Its
Own Indexes,” Proc. 16th Int’l Conf. Data Eng., pp. 101-110, 2000.

[49] R. Chirkova and C. Li, “Materializing Views with Minimal Size to
Answer Queries,” Proc. 22nd ACM SIGMOD-SIGACT-SIGART
Symp. Principles of Database Systems (PODS ’03), pp. 38-48, 2003.

[50] C. Heeren, H.V. Jagadish, and L. Pitt, “Optimal Indexing Using
Near-Minimal Space,” Proc. 22nd ACM SIGMOD-SIGACT-SIGART
Symp. Principles of Database Systems (PODS ’03), pp. 244-251, 2003.

[51] K. Aouiche and J. Darmont, “Data Mining-Based Materialized
View and Index Selection in Data Warehouses,” J. Intelligent
Information Systems, vol. 33, no. 1, pp. 65-93, 2009.

[52] N. Lester, A. Moffat, and J. Zobel, “Fast On-Line Index
Construction by Geometric Partitioning,” Proc. 14th ACM Int’l
Conf. Information and Knowledge Management (CIKM ’05), pp. 776-
783, 2005.

[53] N. Mamoulis, “Efficient Processing of Joins on Set-Valued
Attributes,” Proc. ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD ’03), pp. 157-168, 2003.

[54] S. Idreos, M.L. Kersten, and S. Manegold, “Database Cracking,”
Proc. Conf. Innovative Data Systems Research (CIDR), pp. 68-78, 2007.

[55] S. Idreos, M.L. Kersten, and S. Manegold, “Updating a Cracked
Database,” Proc. ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD ’07), pp. 413-424, 2007.

Shaoxu Song is currently working toward the
PhD degree in the Department of Computer
Science and Engineering, The Hong Kong
University of Science and Technology, Hong
Kong. His research interests include data quality
and data dependency. He is a student member
of the IEEE.

Lei Chen received the BS degree in computer
science and engineering from Tianjin University,
China, in 1994, the MA degree from Asian
Institute of Technology, Thailand, in 1997, and
the PhD degree in computer science from
University of Waterloo, Canada, in 2005. He is
now an associate professor in the Department of
Computer Science and Engineering at Hong
Kong University of Science and Technology. His
research interests include uncertain databases,

graph databases, multimedia and time series databases, and sensor
and peer-to-peer databases. He is a member of the IEEE.

Mingxuan Yuan received the BSc degree in
2002 and MSc degree in 2006, both in computer
science and engineering, from Xi’an Jiaotong
University, China. He is currently working toward
the PhD degree in the Department of Computer
Science and Engineering at Hong Kong Uni-
versity of Science and Technology, China. His
research interests include privacy problems of
social networks.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SONG ET AL.: MATERIALIZATION AND DECOMPOSITION OF DATASPACES FOR EFFICIENT SEARCH 1887

