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Abstract—To study data dependencies over heterogeneous data
in dataspaces, we define a general dependency form, namely
comparable dependencies (CDs), which specifies constraints on
comparable attributes. It covers the semantics of a broad class
of dependencies in databases, including functional dependencies
(FDs), metric functional dependencies (MFDs), and matching de-
pendencies (MDs). As we illustrated, comparable dependencies
are useful in real practice of dataspaces, e.g., semantic query
optimization. Due to the heterogeneous data in dataspaces, the
first question, known as the validation problem, is to determine
whether a dependency (almost) holds in a data instance. Unfor-
tunately, as we proved, the validation problem with certain error
or confidence guarantee is generally hard. In fact, the confidence
validation problem is also NP-hard to approximate to within
any constant factor. Nevertheless, we develop several approaches
for efficient approximation computation, including greedy and
randomized approaches with an approximation bound on the
maximum number of violations that an object may introduce.
Finally, through an extensive experimental evaluation on real
data, we verify the superiority of our methods.

I. INTRODUCTION

The importance of dataspace systems has already been rec-

ognized and emphasized in handling heterogeneous data [1],

[2], [3], [4], [5]. Generally, dataspaces consider three levels

of elements, object, attribute, value, in the form of object :
{(attribute : value)}. We illustrate a sample dataspace of

several product objects with certain attribute value pairs in

Example I.1.

Example I.1. We consider a dataspace with 3 objects,

t1 : {(name : iPod), (color : red), (manu : Apple Inc.), (tel : 567),

(addr : InfiniteLoop,CA), (website : itunes.com)};

t2 : {(name : iPod), (color : cardinal), (prod : Apple), (tel : 123),

(post : InfiniteLoop,Cupert), (website : apple.com)};

t3 : {(name : iPad), (color : white), (manu : Apple Inc.),

(post : InfiniteLoop), (website : apple.com), (phn : 567)},

where manu denotes an attribute of manufacturer, prod is

producer, and addr denotes address.

The comparable correspondences between values (e.g.,

Apple vs. Apple Inc) on comparable attributes (e.g., manu

vs. prod) denote the synonym relationships between elements

from heterogeneous sources. They are often recognized incre-

mentally in a pay-as-you-go style [3], i.e., gradually identified

according to users’ feedback when necessary. For instance,

a comparison operator ‘manu ≈≤5 prod’ states that any two

respective values of manu and prod are said comparable,

e.g., Apple Inc and Apple, if their edit distance is ≤ 5.

Such comparable correspondence on metric distance of values

is often obtained by a metric operator [6]. Moreover, the

matching correspondence [3] can also be identified between

two elements which denote the same entity in real world, e.g.,

red and cardinal are said matched as comparable color. The

matching correspondence is usually confirmed by a matching

operator, e.g., via update with dynamic semantics [7] or users’

feedback [3].

Data dependencies have already shown their importance in

various data-oriented practice [8], such as optimizing query

evaluation [9], capturing data inconsistency [10], removing

data duplicates [7], etc. It is promising to study data de-

pendencies for the heterogeneous data in dataspaces as well.

Unfortunately, few works have been drawn to address such

data dependencies. Although, Wang et al., [11] extends func-

tional dependencies (FDs) with probability for data integration

systems, namely probabilistic functional dependencies (pFDs),

this extension of FDs is still declared based on the equality of

values and not directly applicable in dataspaces. As mentioned

before, data values in dataspaces are highly heterogeneous

with various comparable correspondences instead of precise

equality.

In this paper, to adapt data dependencies to dataspaces,

we introduce a general comparison function to specify the

comparable correspondences on attributes with respect to

various comparison operators.

Example: Intuitively, the comparable correspondence may

occur either between the same attribute (e.g., t1[manu] vs.

t3[manu]) or between comparable attributes (e.g., t1[manu]
vs. t2[prod]). A comparison function on two attributes

(manu, prod) w.r.t. metric operators in Example I.1 can be

θ(manu, prod) : [manu ≈≤5 manu,manu ≈≤5 prod, prod ≈≤5 prod].

Two objects are said comparable on (manu, prod) if at least

one of these three comparison operators in θ(manu, prod) is

evaluated to be true. For example, t1, t2 are comparable on

(manu, prod), since edit distance of (t1[manu], t2[prod]) is ≤
5. Similarly, t1, t3 are also comparable on (manu, prod), where

(t1[manu], t3[manu]) satisfy ‘manu ≈≤5 manu’. Let

θ(addr, post) : [addr ≈≤9 addr, addr ≈≤9 post, post ≈≤9 post]

be another comparison function. A general form of depen-

dencies is then defined on such comparison functions, namely
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comparable dependencies (CDs), e.g.,

ϕ1 : θ(manu, prod) → θ(addr, post).

It states that if the manu or prod values of two objects are com-

parable, then their corresponding addr or post values should

also be comparable. As data dependencies have been found

useful in various data-oriented applications [8], comparable

dependencies are also promising for dataspace applications.

Applications: In semantic query optimization [12], [9],

[13], a conjunctive query can be rewritten by using part

of predicates according to data dependencies. Such opti-

mization can also be introduced to queries in dataspaces

on comparable attributes. For example, we consider a query

object with (manu : Apple) and (post : InfiniteLoop,CA). The

query evaluation [14] searches not only in the manu, post
attributes specified in the query, but also in the comparable

attributes prod, addr according to the comparison functions

θ(manu, prod) and θ(addr, post), respectively. Recall the se-

mantics of the above dependency ϕ1. If (manu, prod) of the

query object and a data object are found comparable, then

the data object can be directly returned as answer without

evaluation on post, addr since their corresponding (post, addr)
values must be comparable as well. Consequently, the query

efficiency is improved.

To give another example, data dependencies are often em-

ployed to handle violations in data, i.e., those objects not

satisfying data dependencies. Methods are proposed to remove

such violations by repairing [8]. Similarly, we can also utilize

the comparable dependencies to detect and handle violations

in dataspaces. For instance, one may detect a minimum set

of tuples as violations which do not satisfy the given CDs.

Moreover, dataspaces often collect data from various sources

without permission to write (repair). Thus, it is particularly

important to study consistent query answering [15], which can

return objects that have no violations without updating original

data in dataspaces.

Challenges: To our best knowledge, this is the first work

on adapting data dependencies to the heterogeneous data in

dataspaces. Unfortunately, it is highly non-trivial to study

data dependencies in dataspaces, with the consideration of

comparable correspondence. Due to the extremely high het-

erogeneity, data dependencies may “almost/approximately”

hold in dataspaces. As illustrated below, it is already hard

to determine whether a dependency approximately hold in a

dataspace, i.e., the validation problem. Moreover, since com-

parable correspondences are often identified in an incremental

style, namely pay-as-you-go, an incremental discovery of data

dependencies is urgent and more challenging, which is not

considered in the previous dependency discovery problem.

Contributions: Our main contributions in this paper are

summarized as follows.

i) We formalize the notations of data dependencies in datas-

paces. Our comparable dependencies (CDs) on comparison

functions cover the semantics of a broad class of well known

dependencies in databases, such as functional dependencies,

metric functional dependencies [16] and matching dependen-

cies [8]. We introduce the widely used error and confidence

measures to evaluate how a dependency approximately holds

in a dataspace.

ii) We characterize the validation problem of dependencies

in dataspaces. As we prove, the computation of confidence

or error measures for approximate dependencies with general

comparison functions is NP-hard. The corresponding decision

version, i.e., the validation problem, is NP-complete. In fact,

even the special case of aligned attributes, i.e., with θ(Ai, Ai)
only, is still NP-complete.

iii) We develop novel approximation methods to compute

confidence and error measures. According to our theoretical

analysis, the error measure computation can be approximated

in polynomial time with a constant factor, while the confidence

has no constant-factor approximation solution unless P=NP.

We develop the greedy approaches with an approximation

ratio on the bound of violations that an object may introduce.

Moreover, the randomized approaches are further developed to

improve the efficiency, where the approximation bound with

an additive error is obtained with a high probability.

iv) We introduce a pay-as-you-go approach for discovering

dependencies in a given dataspace. Note that comparable

correspondences are often identified in an incremental style,

namely pay-as-you-go. Thereby, we investigate a framework

which incrementally discovers data dependencies with respect

to the newly identified comparison function.

v) Finally, we report an extensive experimental evaluation

of the proposed approaches on real data sets. Both the effec-

tiveness and efficiency of the proposed approximation compu-

tation techniques are illustrated. The discovery performance is

also evaluated on real data sets.

The remainder of this paper is organized as follows. First,

we discuss the related work in Section II. Then, in Section

III, we study the foundations of comparable dependencies in

dataspaces. Section IV introduces the validation problem of

approximate dependencies. In Section V, we develop efficient

approaches for computing error and confidence measures.

Section VI studies the pay-as-you-go discovery of comparable

dependencies in dataspaces. In Section VII, we report our

extensive experimental results. Finally, Section VIII concludes

this paper.

II. RELATED WORK

Although data dependencies have been well studied in

databases, few works are drawn over heterogeneous data,

especially in dataspaces with comparable correspondences.

Table I lists the most typical related works, compared with

our CDs.

Due to the data heterogeneity, data dependencies might not

exactly hold in the entire database of all tuples. Therefore,

conditional functional dependencies (CFDs), as an extension

of traditional FDs with conditions, are first proposed in [10]

for data cleaning. The basic idea of CFDs is making the FDs,

originally hold for the whole table, valid only for a set of tuples

specified by the conditions. However, the equality function is
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TABLE I
RELATED WORK

Dependencies Operators Comparable correspondences Measures Validation

pFDs [11] Equality operator Cannot address Probability PTIME

CFDs [10] Equality operator Cannot address Confidence and condition support PTIME

MFDs [16] Equality and metric operators Cannot address Not studied Not studied

MDs [8] Metric and matching operators Cannot address Not studied Not studied

Our CDs All the above operators Address Error or confidence NP-complete

still considered in CFDs, which cannot address the various

information formats of data from different sources, especially

in dataspaces. Note that the error (confidence) measure is also

used in evaluating and discovering CFDs [17], [18]. Moreover,

since CFDs are declared over a subset of tuples specified by

conditions, a support measure is further introduced to report

the number of tuples agreeing the given condition.

Wang et al., [11] extends functional dependencies with

probability for data integration systems, namely probabilis-

tic functional dependencies (pFDs), which is similar to the

concepts of approximate FDs [19] and soft FDs [20]. Given

a mediated schema and mappings from each source to the

mediated schema, the probability of an FD in each data

source is merged together as a global measure. However, this

extension of traditional FDs is still on equal values and not

directly applicable to dataspaces, where data values are highly

heterogeneous with various comparable correspondences in-

stead of precise equality. In particular, dataspace systems often

provide services without investigating a mediated schema as

traditional data integration systems. Thus, data dependencies

incorporating with comparison functions are necessary in

dataspaces.

Koudas et al. [16] study metric functional dependencies

(MFDs) with metric operator on attribute A when given the

equality on X , where X and A are attributes in relation

schema R. An MFD has the form X → λA, where λ ≥ 0 is a

threshold of metric distance on A. For example, an MFD can be

name →9 addr. In our work, we adapt such dependencies with

metrics to dataspaces by introducing comparison functions.

Note that techniques in [16] only verify whether or not an

MFD exactly holds, i.e., exact MFDs, while the validation

problem is not studied to determine whether a dependency

almost/approximately holds with certain error/confidence guar-

antee, i.e., approximate MFDs. As we investigated in special

cases (Section IV), the validation problem of approximate

MFDs in databases is NP-complete, which is not addressed

in previous works.

Fan [8] proposes matching dependencies (MDs) for speci-

fying matching rules for object identification. An MD across

two relations has a form
∧

[Ai ≈i Bi] → [Y1 
 Y2], where

Ai and Y1 are attributes in relation schema R1, Bi and Y2

are attributes in R2, and ≈i,
 denote the corresponding met-

ric/matching operators on attributes of (Ai, Bi) and (Y1, Y2),
respectively. It states that for any two tuples from the instance

of relations R1 and R2, respectively, if they are similar (≈)

on attributes in the left-hand-side, then their right-hand-side

Y1, Y2 values should be matched (
). Reasoning mechanism

for deducing MDs from a set of given MDs is studied in [7].

The MDs and their reasoning techniques can improve both

the quality and efficiency of object identification methods. As

one type of dependencies we considered in dataspaces, MDs

are naturally applicable to identify duplicates in dataspaces as

well. Again, the validation problem of MDs is not considered

in previous works.

III. FOUNDATIONS

In this section, we address the fundamental issues of adapt-

ing data dependencies to the heterogeneous data in dataspaces.

Table II lists the frequently used notations.

TABLE II
NOTATIONS

Symbol Description

S a dataspace

Ai ↔ij Aj a comparison operator of attribute Ai, Aj

θ(Ai, Aj) a general comparison function on attribute Ai, Aj

ϕ a dependency with general comparison functions

g error measure of a dependency

c confidence measure of a dependency

η requirement of a measure

ρ approximation ratio

δ approximation probability guarantee

ε approximation additive error

∆ a bound of violations of an object

A. Comparable Dependencies

Let ↔ij denote a comparison operator between two at-

tributes Ai, Aj in a dataspace S , which is a generic operator

that can have either one of the following semantics.

• ↔ij can be an equality operator Ai = Aj , which is con-

sidered in traditional functional dependencies. Let ai, aj
be the values of Ai, Aj , respectively. The comparison

operator = evaluates to true if ai = aj , i.e., identical.

• ↔ij can also be a metric operator Ai ≈λ Aj , which

is raised in metric functional dependencies [16]. Let dij
be a distance metric1 defined on the domains of two

comparable attributes Ai, Aj . The metric operator ≈λ

1For example, the absolute value of difference on numerical values, or edit
distance on string values (see [6] for a survey).
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evaluates to true if dij(ai, aj) ≤ λ, i.e., the metric

distance is less than a threshold λ.

• ↔ij could be a matching operator as well, Ai 
 Aj ,
which is studied in matching dependencies [8]. The

matching operator 
 evaluates to true if ai and aj
are identified as matched, i.e., make them identical via

dynamic semantics [8] or by users’ feedback [3].

The comparison operator ↔ij can have any one of the

above listed semantics. For each pair of attributes Ai, Aj in

S , we consider one comparison operator on them. There may

also have a comparison operator associated between the same

attribute Ai, i.e., ↔ii.

Comparison Function: A general comparison function

θ(Ai, Aj) : [Ai ↔ii Ai, Ai ↔ij Aj , Aj ↔jj Aj ]

specifies a constraint on comparable correspondence of two

values from attribute Ai or Aj , according to their correspond-

ing comparison operators ↔ii,↔ij or ↔jj .

Definition III.1. Given any two objects t1, t2 in the dataspace,

we say that t1, t2 agree on a comparison function, denoted by

(t1, t2) � θ(Ai, Aj),

if at least one pair of (t1[Ai], t2[Ai]), (t1[Ai], t2[Aj ]),
(t1[Aj ], t2[Ai]) or (t1[Aj ], t2[Aj ]) agrees on the correspond-

ing comparison operator specified by θ(Ai, Aj), i.e.,

(t1[Ai] ↔ii t2[Ai]) ∨ (t1[Ai] ↔ij t2[Aj ])∨
(t2[Ai] ↔ij t1[Aj ]) ∨ (t1[Aj ] ↔jj t2[Aj ]) = true;

otherwise, disagree, denoted by (t1, t2) 6� θ(Ai, Aj)

For instance, we have (t1, t2) � θ(manu, prod) in Example

I.1, since the edit distance between t1[manu] and t2[prod] is

≤ 5. In a special case, a comparison function with aligned

attributes Ai is θ(Ai, Ai) : [Ai ↔ii Ai].

It is worth noting that a sophisticated comparison operator

may interact with more than two attributes, e.g., among

(addr, street, city). Since the comparison operator is not the

focus of this study, we will leave such comparison operators

as our future work.

Comparable Dependency: A comparable dependency (CD)

ϕ with general comparison functions over a dataspace S is in

the form2 of

ϕ :
∧

θ(Ai, Aj) → θ(B1, B2),

where θ(Ai, Aj) and θ(B1, B2) are comparison functions in

the dataspace S . We denote
∧

θ(Ai, Aj) and θ(B1, B2) by the

LHS and RHS of ϕ, respectively.

Definition III.2. Given any two objects t1, t2 in the dataspace

S , we say that t1, t2 satisfy a dependency ϕ, denoted by

(t1, t2) � ϕ, if (t1, t2) � LHS(ϕ) implies (t1, t2) � θ(B1, B2).

2In this study, we focus on dependencies in the standard form with only
one function in the right-hand-side. Dependencies with multiple comparison
functions in RHS can be naturally inferred according to the reflexivity and
augmentation rules.

That is, if t1, t2 agree on all the comparison functions

θ(Ai, Aj) in the left-hand-side of the dependency ϕ, then they

must also agree on the right-hand-side comparison function

θ(B1, B2).

Definition III.3. Given a dataspace S and a dependency ϕ,

we say that the dataspace S satisfies ϕ or the dependency ϕ
holds in S , denoted by S � ϕ, if any two objects t1, t2 from

S always have (t1, t2) � ϕ, i.e., any two objects in S satisfy

ϕ.

Example III.1. Consider the dataspace S as illustrated in

Example I.1. A comparable dependency can be

ϕ2 : [name = name] → θ(manu, prod),

which states that if two products have the same name, then

their (manu, prod) should be comparable.

To give another example, we consider

θ(website,website) : [website 
 website].

The following comparable dependency

ϕ3 : θ(manu, prod) ∧ θ(addr, post) → θ(website,website),

states that if two product objects have comparable

(manu, prod) and comparable (addr, post), then their website

should be matched, e.g., itunes.com and apple.com are

matched URLs of the same web site.

It is notable that comparable dependencies are different from

the concept of tail in dataspaces [5], [21]. A tail is denoted as

QL[.CL] → QR[.CR], which means that the query on the

left QL[.CL] includes the query on the right QR[.CR]. In

other words, whenever we query for QL[.CL] we should also

query for QR[.CR]. Thereby, it can naturally be extended to

a bidirectional trail such as QL[.CL] ↔ QR[.CR]. Instead

of the comparison relationship between query components

QL[.CL] and QR[.CR], we study the dependencies upon

different comparison relationships.

B. Approximate Dependencies

Due to the extremely high heterogeneity, data dependencies

might not exactly hold in a given dataspace, i.e., the dataspace

approximately satisfies the dependencies. Given a pair of

objects t1, t2 from dataspace S , we say that (t1, t2) violates a

dependency ϕ, denoted by (t1, t2) 6� ϕ, if (t1, t2) � LHS(ϕ)
but (t1, t2) 6� RHS(ϕ).

For instance, let

θ(tel, phn) : [tel = tel, tel = phn, phn = phn]

be a comparison function in Example I.1. We consider a

dependency

ϕ4 : θ(manu, prod) → θ(tel, phn).

We have (t1, t3) � ϕ4 but (t1, t2) 6� ϕ4, since t1, t2 agree

on the left-hand-side θ(manu, prod) of ϕ4 but have different

tel. Such data dependencies that “almost” or “approximately”

hold in the data with some violations are called approximate

dependencies [19], [22].
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Error Measure: To evaluate how a dependency al-

most/approximately holds in a data instance, g3 error measure

[19] is widely used [22], [23]. We can also adopt this measure

to evaluate a dependency ϕ over a dataspace S .

Definition III.4. The g3 measure evaluates the minimum

number of objects that have to be removed from dataspace

S for the dependency ϕ to hold, i.e.,

g3(ϕ,S) =
|S| −max{|T | | T ⊆ S,T � ϕ}

|S| ,

where T is a subset of objects in S that do not violate ϕ.

We call V = S \ T a candidate violation set such that all

the objects in T satisfy the given dependency ϕ.

For example, {t2} in Example I.1 is a minimum violation

set w.r.t. the above ϕ4, such that all the remaining objects

{t1, t3} satisfy ϕ4. Thereby, we have g3 = 1/3.

Confidence Measure: Instead of measuring violations, a

confidence [17], [24] defines the proportion of tuples after

removing minimum tuples (objects in dataspace) of violations

w.r.t. ϕ.

Definition III.5. The confidence measure evaluates the maxi-

mum number of objects T from the dataspace S such that the

dependency ϕ holds in T ,

conf(ϕ,S) = max{|T | | T ⊆ S,T � ϕ}
|S| ,

where T is a subset of objects in S that do not violate ϕ.

As claimed in [11], this confidence measure is close to the

concept of probability of FDs, which also considers the max-

imum number of tuples (objects) that follow the dependency.

We call the above T a candidate keeping set such that all the

objects in T ⊆ S satisfy the given dependency ϕ, i.e., non-

violation.

For instance, {t1, t3} in Example I.1 is a maximum keeping

set w.r.t. the above ϕ4, having conf = 2/3.

Note that the g3 measure denotes the minimum number of

objects removed, while the confidence measure reports the

maximum number of objects reserved, which are essentially

equivalent. When g3 = 0 or equivalently conf = 1, it is the

case of exact dependency.

IV. VALIDATION PROBLEM

Given a dataspace and a dependency, the validation problem

is to determine whether or not the dependency (approximately)

holds in the dataspace. Recall that confidence and error mea-

sures tell how a dependency approximately holds in a data set.

Thereby, we can formalize the validation problem as follows.

Problem IV.1. Given a dataspace S with n objects, the valida-

tion problem is to decide whether or not the error/confidence

measure of a dependency ϕ over S satisfies the measure

requirement η. Specifically, the error validation problem is

to determine whether g3(ϕ,S) ≤ ηe, and the confidence

validation problem is to determine whether conf(ϕ,S) ≥ ηc.

The Hardness: Essentially, given a dataspace and a depen-

dency, we are required to compute the error and confidence of

the dependency in the dataspace. For FDs and their extensions

in traditional databases, polynomial time algorithms can be

developed to efficiently compute these measures [23], [24].

Unfortunately, in the scenario of dataspaces with general com-

parison functions, the problem of computing error/confidence

is highly non-trivial. Intuitively, the transitivity is no longer

valid on a general comparison function, i.e., from (t1, t2) �
θ(Ai, Aj) and (t2, t3) � θ(Ai, Aj), it does not necessarily

follow that (t1, t3) � θ(Ai, Aj). See the following Example

IV.1 for instance. The efficient validation computation based

on disjoint grouping [23] cannot be applied to this case with

general functions. In fact, we can prove the hardness of

validation problem.

Theorem IV.1. Both the error and confidence validation

problems with general comparison functions are NP-complete.

Proof sketch: We show that the VERTEX COVER problem,

which is one of Karp’s 21 NP-complete problems [25], is re-

ducible to the error validation problem. Moreover, the CLIQUE

problem is reducible to the confidence validation problem.

The above conclusion is not only valid for CDs in dataspaces

but also valid for MDs in databases. Intuitively, the transitivity

is not valid either on the metric operators used in MDs. In

fact, our proof of Theorem IV.1 is sufficient to show that the

validation of MDs is also NP-complete.

Special Case of Aligned Attributes: An interesting special

case is to consider comparison functions on aligned attributes,

i.e., θ(Ai, Ai). In other words, it is a case without comparable

attribute pairs, which is similar to the traditional database

scenario. Unfortunately, we cannot assume the transitivity on

such case either.

Example IV.1. We consider a function on aligned attributes

θ(A1, A1) : [A1 ≈≤1 A1] with edit distance as metric d. Let

t1 :{(A1 : abc), . . . };
t2 :{(A1 : abcd), . . . };
t3 :{(A1 : abcde), . . . }.

We have edit distance

d(t1[A1], t2[A1]) = 1 ≤ 1, and

d(t2[A1], t3[A1]) = 1 ≤ 1, but

d(t1[A1], t3[A1]) = 2 > 1,

that is, (t1, t2) � θ(A1, A1), (t2, t3) � θ(A1, A1) but

(t1, t3) 6� θ(A1, A1).

Therefore, it is not surprising that the validation problem is

still hard.

Theorem IV.2. The error/confidence validation problem with

aligned attributes in general comparison functions is still NP-

complete.
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Proof sketch: Similar to the proof of Theorem IV.1,

a reduction from VERTEX COVER/CLIQUE problem can be

constructed. In particular, to prove that the confidence vali-

dation problem with aligned attributes is NP-hard, we build

a polynomial-time reduction from the CLIQUE problem. The

proof of error validation problem follows a similar reduction

from the VERTEX COVER problem as shown in the proof of

Theorem IV.1.

Moreover, our proof of Theorem IV.2 is also sufficient to

find that the error/confidence validation problem for MFDs

in databases is also NP-complete. As a special case, our

approximation computation techniques proposed below can be

naturally applied to computing error/confidence of MFDs in

databases as well.

Tractable Special Case: Finally, another special case with

both aligned attributes and equality function, i.e., [Ai = Ai], is

exactly the case of FDs with equality in traditional databases.

As mentioned, such a special case has been well investigated

with efficient algorithms [23].

V. APPROXIMATION COMPUTATION

Motivated by the above hardness analysis of the validation

problem, in this section, we study efficient approaches to

approximately compute error and confidence measures.

Problem V.1. Given a dataspace S and a dependency ϕ, the

measure estimation problem is to compute an approximate er-

ror/confidence measure of ϕ over S such that the approximate

measure has a relative performance guarantee compared with

exact measure, e.g., ĝ/g ≤ ρ where ĝ is an estimation of exact

error measure g and ρ is approximation ratio.

An even more relaxed version is to get the approximate

measure with a high probability, e.g., Pr[ĝ ≤ ρg + ε] ≥ δ,

where ε is an additive error and δ is a probability guarantee.

In Section V-A, we give greedy algorithms for computing

approximate error and confidence with a relative performance

guarantee ρ. Since greedy algorithms still have to consider

all the objects in a dataspace, we also develop randomized

algorithms in Section V-B, which estimate error and confi-

dence measures upon only a small subset of objects, and are

still guaranteed by certain approximation bound with a high

probability δ.

A. Greedy Approach

Preliminary: Given a comparison function θ(Ai, Aj), we

can obtain a set of object pairs which agree on the function,

i.e., {(ti, tj) ∈ S | (ti, tj) � θ(Ai, Aj)}. By an intersection

of the sets of object pairs corresponding to the functions in

LHS(ϕ), we obtain those object pairs agreeing on LHS(ϕ), say

L. Similarly, let H be object pairs agreeing on both LHS(ϕ)
and RHS(ϕ). Then, we have the set of object pairs which

violates ϕ, i.e., L\H . Based on these object pairs of violations,

the error and confidence measures can be computed.

Approximate Error: We first present the approximation

computation of g3 error. According to the proof of Theorem

IV.1, computing a minimum vertex cover of a graph, which

corresponds to objects in dataspace S w.r.t. violations of a

dependency ϕ, will yield a minimum violation set for g3
measure computation. Although the problem is NP-hard, an

efficient greedy algorithm with factor-2 approximation bound

is known for the MINIMUM VERTEX COVER problem [26].

Specifically, we greedily count both objects when a violation

to the dependency occurs, and move them to the violation

set. The procedure terminates if no violation exists in the

dataspace, and we report the proportion of objects in violation

set as the estimated error measure. The pseudo-code of greedy

computation is given in Algorithm 1. Let n be the number

of objects in S . Algorithm 1 returns an approximate error ĝ
with relative performance bounded by factor-2 as it is used for

MINIMUM VERTEX COVER [26]. It is implemented in linear

time w.r.t. the number of objects pairs that are associated by

comparison functions. Considering possible object pairs in a

dataspace S with n objects, we have the algorithm complexity

O(n2).

Algorithm 1 Greedy ERROR(ϕ,S)

Input: A dependency ϕ over a dataspace S
Output: An estimated error measure ĝ

1: V := ∅
2: L := {(ti, tj) ∈ S | (ti, tj) � LHS(ϕ)}
3: for each pair (ti, tj) ∈ L do

4: if (ti, tj) 6� RHS(ϕ) and ti 6∈ V and tj 6∈ V then

5: V := V ∪ {ti, tj}
6: return |V |/|S|

Proposition V.1. The greedy Algorithm 1 outputs an estimate

ĝ with a bound g ≤ ĝ ≤ 2g compared with the exact error

measure g. The complexity is O(n2).

Although slightly better yet more complicated approxima-

tions can be achieved, e.g., with an approximation factor of

2−Θ( 1√
logn

) in [27], we do not consider them here. In fact,

due to the hardness of approximating minimum vertex cover

problem [28], it is not surprising to have:

Theorem V.1. The g3 error is NP-hard to approximate to

within any factor 10
√
5− 21 ≈ 1.36067.

Proof sketch: We show that the reduction from the VER-

TEX COVER problem in the proof of Theorem IV.1 is a gap-

preserving reduction. Since MINIMUM VERTEX COVER cannot

be approximated within a factor of α = 10
√
5−21 ≈ 1.36067

unless P=NP [28], the conclusion is proved.

Approximate Confidence: Unfortunately, although com-

puting the g3 error is equivalent to finding the confidence,

these two problems are not equivalent in an approximation-

preserving way.

Theorem V.2. The confidence has no constant-factor approx-

imation unless P=NP.
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Proof sketch: To show the hardness of confidence

approximation, we give a gap-preserving reduction from the

CLIQUE problem. As studied in [29], the MAXIMUM CLIQUE

problem is NP-hard to approximate to within any constant

factor α.

Despite the hardness of approximation with respect to a

constant factor, a heuristic greedy algorithm is known for the

maximum independent set problem with performance ratio

on the maximum degree in a graph [30]. We thus greedily

compute approximate confidence as follows.

Specifically, we can iteratively select an object which has

the minimum violations with others, move it to a keeping set,

and delete all the objects having violations with this object.

The procedure terminates when no object is left and reports

the proportion of the number of objects in the keeping set

as the estimated confidence measure. The pseudo-code with

details is given in Algorithm 2. Let ∆ be the maximum number

of violations that an object may introduce in the dataspace.

That is, an object violates with no more than ∆ objects. It

is often the case according to our observation in Section VII

that the real data are extremely sparse. Algorithm 2 computes

an approximate confidence ĉ. The operator argmin in line 5

stands for the argument of the minimum, that is to say, the

objects u in U for which the given expression has the minimum

value. It can be done in constant time by amortizing objects

u ∈ U into an integer domain of [1,∆]. Considering possible

pairs of n objects in a dataspace S , we have the algorithm

complexity O(n2). Note that a clique in a graph equals to

an independent set in the corresponding graph’s complement.

Thus, the greedy algorithm gives a (∆ + 2)/3 approximation

ratio as it is used for MAXIMUM INDEPENDENT SET [30].

Algorithm 2 Greedy CONFIDENCE(ϕ,S)

Input: A dependency ϕ over a dataspace S
Output: An estimated confidence measure ĉ

1: T := ∅
2: E := {(ti, tj) ∈ S | (ti, tj) � LHS(ϕ), (ti, tj) 6�

RHS(ϕ)}
3: U := objects in S
4: while U 6= ∅ do

5: t := argminu∈U |{w | w ∈ U, (w, u) ∈ E}|
6: T := T ∪ {t}
7: U := U − {t} ∪ {w | w ∈ U, (w, t) ∈ E}
8: return |T |/|S|

Proposition V.2. The greedy Algorithm 2 outputs an estimate

ĉ with an approximation ratio (∆+2)/3, that is, 3c/(∆+2) ≤
ĉ ≤ c. The complexity is O(n2).

B. Randomized Approach

The reedy algorithm still has to consider all the objects in

a dataspace. It is desirable to evaluate only a small subset

of objects upon which the estimated measure is still guaran-

teed by certain approximation bound with a high probability.

Random sampling has been studied for estimating the error

measure of approximate functional dependencies [19] and the

confidence of approximate conditional functional dependen-

cies [24]. Similarly, motivated by the randomized algorithm

for the minimum vertex cover problem [31], we can also draw

a subset of objects from S to estimate the error and confidence

measures.

Preliminary: Due to the hardness in approximating error

and confidence measures, it is difficult to insist on the rel-

ative performance guarantee in the randomized computation.

Instead, we have an additive error ε, 0 ≤ ε ≤ 1, allowed upon

the approximation ratio. That is, the approximation ratio with

an additive error ε is guaranteed with a high probability at

least δ. In order to locally compute measures with respect to a

subset of objects in dataspaces, again, the number of violations

of each object should be bounded, i.e., ∆.

Estimated Error: Suppose that V ′ is a (approximate)

minimum violation set of objects in S with respect to ϕ,

having g′ = |V ′|/|S|. We uniformly and independently draw

m objects from S , where

m =
2

ε2
log

2

1− δ

is determined by certain ε and δ as discussed below. Let Xi

be a random variable with respect to object ti, 1 ≤ i ≤ m,
such that Xi = 1 if ti belongs to the minimum violation set

V ′; otherwise, Xi = 0. We approximately estimate the error

measure by

ĝ =
1

m

∑

1≤i≤m

Xi +
ε

2
. (1)

Lemma V.1. Let m = 2
ε2

log 2
1−δ

, we have

Pr[g′ ≤ ĝ ≤ g′ + ε] ≥ δ,

where ε is an additive error and δ is a probability guarantee.

Proof: Let g′ = E[Xi]. According to Chernoff bound,

Pr

[

1

m

∑

Xi ≥ g′ + α

]

≤ e−2α2m,

Pr

[

1

m

∑

Xi ≤ g′ − α

]

≤ e−2α2m,

we have

Pr

[

g′ − α ≤ 1

m

∑

Xi ≤ g′ + α

]

≥ 1− 2e−2α2m.

Let α = ε
2 .

Pr

[

g′ ≤ 1

m

∑

Xi +
ε

2
≤ g′ + ε

]

≥ 1− 2e−
ε2m
2 .

Since m = 2
ε2

log 2
1−δ

and ĝ = 1
m

∑

Xi +
ε
2 , we have

Pr [g′ ≤ ĝ ≤ g′ + ε] ≥ δ,

which completes the proof.

Now, the problem is to determine whether or not ti belongs

to minimum violation set V ′, i.e., Xi equals to 1 or 0. To

solve it efficiently, we consider distributed approaches that can
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locally decide Xi by using a subset of objects in a certain

radius with respect to violation relationships.

Note that, in a graph with degree of each vertex bounded by

∆, an approximate minimum vertex cover with performance

ratio (2 log∆ + 1) can be achieved in log∆ rounds [31]. In

other words, only those objects with violation path to ti in

radius log∆ will be retrieved, and the output is guaranteed

with g ≤ g′ ≤ (2 log∆ + 1)g. The pseudo-code with details

for estimated error is given in Algorithm 3.

Algorithm 3 Randomized ERROR(ϕ,S, ε, δ)

Input: A dependency ϕ over a dataspace S , additive error ε,
and probability guarantee δ

Output: An estimated error measure ĝ
1: X := SAMPLE(ε, δ,S)
2: T =comparable objects from S in radius log∆ w.r.t. each

ti ∈ X
3: V := ∅
4: E := {(ti, tj) ∈ T | (ti, tj) � LHS(ϕ), (ti, tj) 6�

RHS(ϕ)}
5: U := objects in T
6: for i = 1 to log∆ do

7: for each u ∈ U such that |{w | w ∈ U, (w, u) ∈ E}| ≥
∆/2i do

8: V := V ∪ {u}
9: U := U − {u}

10: E := E − {(w, u) ∈ E | w ∈ U}
11: return |V ∩X|/|X|+ ε/2

The randomized Algorithm 3 returns an estimated error ĝ.

Specifically, T denotes the objects from S that are connected

to m samples in X by comparison functions within radius

log∆. Since the number of violations to an object is bounded

by ∆, it requires O(∆log∆m) operations to greedily remove

violations. Line 6-10 computes an approximate minimum

violation set V of objects in T , in log∆ rounds, with relative

performance bounded by (2 log∆+1) [31]. Together with the

probability guarantee on sampling in Lemma V.1, Proposition

V.3 is concluded.

Proposition V.3. The randomized Algorithm 3 outputs an

estimate ĝ with the probability

Pr[g ≤ ĝ ≤ (2 log∆ + 1)g + ε] ≥ δ.

The complexity is O(∆log∆m), where m = 2
ε2

log 2
1−δ

.

Estimated Confidence: Similarly, we can have a random-

ized version for estimating confidence. Let T ′ be a (approxi-

mate) maximum keeping set, having c′ = |T ′|/|S|. Let Yi be

a random variable such that Yi = 1 if object ti belongs to the

maximum keeping set T ′; otherwise Yi = 0. The confidence

is estimated by

ĉ =
1

m

∑

1≤i≤m

Yi −
ε

2
. (2)

Lemma V.2. Let m = 2
ε2

log 2
1−δ

, we have

Pr[c′ − ε ≤ ĉ ≤ c′] ≥ δ,

where ε is an additive error and δ is a probability guarantee.

Proof: Let Yi = 1 − Xi and c′ = E[Yi]. According to

Lemma V.1, we have

Pr

[

1− c′ ≤ 1− 1

m

∑

Yi +
ε

2
≤ 1− c′ + ε

]

≥ 1−2e−
ε2m
2 .

With the same m = 2
ε2

log 2
1−δ

and ĉ = 1
m

∑

Yi − ε
2 ,

Pr [c′ − ε ≤ ĉ ≤ c′] ≥ δ,

the conclusion is proved.

Now, we locally compute Yi with respect to T ′. It is known

that, in a ∆-degree-bounded graph, an approximate maximum

independent set with performance ratio (∆+2)/3 can be found

in min(∆4 log n,∆!) rounds [30]. That is, we have to traverse

objects with violation path to ti in radius min(∆4 log n,∆!)
such that the output is guaranteed with 3c/(∆ + 2) ≤ c′ ≤ c.
The pseudo-code with details for estimated confidence is given

in Algorithm 4.

Algorithm 4 Randomized CONFIDENCE(ϕ,S, ε, δ)

Input: A dependency ϕ over a dataspace S , additive error ε,
and probability guarantee δ

Output: An estimated confidence measure ĉ
1: Y := SAMPLE(ε, δ,S)
2: T =comparable objects from S in radius

min(∆4 log n,∆!) w.r.t. each ti ∈ Y
3: T := ∅
4: E := {(ti, tj) ∈ T | (ti, tj) � LHS(ϕ), (ti, tj) 6�

RHS(ϕ)}
5: U := objects in T
6: while U 6= ∅ do

7: for each u ∈ U such that d(u) ≤
∑

(w,u)∈E
d(w)

d(u) do

8: T := T ∪ {u}
9: U := U − {u} ∪ {w | w ∈ U, (w, u) ∈ E}

10: E := E − {(w, u) ∈ E}
11: return |T ∩ Y |/|Y | − ε/2

The randomized Algorithm 4 returns an estimated confi-

dence ĉ. Similarly, line 6-10 greedily computes an approximate

maximum keeping set T of objects in T corresponding to m
samples in Y . According to the greedy analysis in [30], it is

sufficient to move an object u to T if d(u) ≤
∑

(w,u)∈E
d(w)

d(u) .

The computation can be done in min(∆4 log n,∆!) rounds

[30]. Thereby, T includes the objects from S within radius

min(∆4 log n,∆!) w.r.t. comparison functions to m samples in

Y . The algorithm complexity is thus O(∆min(∆4 log n,∆∆)m).
Combining the result in Lemma V.2, we have

Proposition V.4. The randomized Algorithm 4 outputs an

estimate ĉ with the probability

Pr[3c/(∆ + 2)− ε ≤ ĉ ≤ c] ≥ δ.
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The complexity is O(∆min(∆4 log n,∆∆)m), where m =
2
ε2

log 2
1−δ

.

Randomized vs. Distributed: Recall that dataspaces may

collect from various sources. The randomized algorithm can

naturally be deployed in a distributed environment. We ran-

domly sample objects from different sources, locally compute

Xi or Yi for each object ti in its corresponding source,

and finally aggregate them together as a global estimation

according to formula (1) or (2).

VI. PAY-AS-YOU-GO DISCOVERY

Once the validation of dependencies is carefully investi-

gated, a natural extension is to find all such valid dependencies

in dataspaces which meet desired error/confidence require-

ments. It is known as the discovery problem. Recall that,

comparable correspondences are practically identified in a pay-

as-you-go style [3]. Therefore, the discovery of dependencies

should be conducted in an incremental way as well. Intuitively,

given a set Σ of currently discovered dependencies and a newly

identified comparison functions θ(Ai, Aj), we can generate

new dependencies w.r.t. θ(Ai, Aj).

In the following, we first give an overview of pay-as-you-

go discovery. The approximate implication of CDs is then

introduced, in order to avoid redundancy during the discovery.

Finally, we present the incremental discovery algorithm.

Overview: When a comparison function θ(Ai, Aj) is iden-

tified, the way of their values to be compared is recognized,

e.g., based on equality [11] or metric distance less than certain

threshold [7]. Mechanisms have been well studied in schema

matching [32] and reference reconciliation [33] for identifying

comparable attributes and values, respectively. Since it is not

the focus of our study, we consider the comparison function

θ(Ai, Aj) as the input of our discovery algorithm.

The traditional dependency discovery problem is to find

a canonical cover of all dependencies that hold in a given

relation instance. Several algorithms have been proposed for

FDs, such as TANE [22], [23] and FastFDs [34]. However,

it is known that an output canonical cover of all FDs may

have exponential size with respect to the number of attributes,

no matter what discovery algorithm is used [35], [36]. As

mentioned in Section IV, FD is one of the special cases of

our comparable dependencies. Such exponential complexity

carries over to the dependencies in dataspaces. Due to the

extremely high dimensionality (e.g., thousands of attributes

and comparison functions), it is highly non-trivial (if not

impossible) to discover a canonical cover of all dependencies

in a given dataspace.

Motivated by the idea of mining k-length itemsets in as-

sociation rules, we study the k-length dependencies, which

contain k comparison functions. Instead of all dependencies

with arbitrary length, we can practically discover a subset of

dependencies, which contain k or less comparison functions

and satisfy a requirement η of error/confidence measure. It

is notable that the concept of confidence is different between

dependencies and association rules. The confidence of associ-

ation rule is defined with respect to the frequency of itemsets,

while the confidence of dependency is with respect to non-

violations of objects, analogous to transactions in association

rule mining.

The incremental process of discovery is described as: given

a set Σ of dependencies on the current function set Θ in S
and a new function θ introduced to the dataspace, to discover

those dependencies with respect to θ and add them to Σ.

The update of k-length dependencies addresses two aspects:

first, finding dependencies with the new function as RHS;

second, augmenting dependencies with length less than k.

The search space of dependencies with respect to the new

function θ is the combination of k−1 functions from Θ, with

complexity O(|Θ|k−1). A naive approach is to evaluate all

these candidates in S and return those dependencies which

can satisfy the measure requirement η. Intuitively, some of

these dependencies may imply others as illustrated below, i.e.,

redundant dependencies may exist in the returned answers.

Approximate Implication: Approximate inference of func-

tional dependencies has been considered with respect to error

measure [19]. It turns out that the error of a dependency

obtained by applying an inference rule should be no larger than

the premise dependencies. In the following, we investigate that

such bounds of error and confidence can also be obtained when

inferring dependencies on comparison functions in dataspaces,

e.g., by augmentation.

Proposition VI.1. Consider a dependency ϕ1 over S . Let

ϕ2 : LHS(ϕ1) ∧ θ(Ai, Aj) → RHS(ϕ1).

We have g3(ϕ1,S) ≥ g3(ϕ2,S) and conf(ϕ1,S) ≤
conf(ϕ2,S).

Proof: Let T ∗
1 be a maximum keeping set with respect

to ϕ1 in S , i.e., conf(ϕ1,S) =
|T∗

1 |
|S| . First, for any two

objects ti, tj ∈ T ∗
1 , we have (ti, tj) � ϕ1 according to the

definition of keeping set. It follows (ti, tj) � ϕ2 referring to

the augmentation rule. Thereby, a keeping set T2 could be

as large as T ∗
1 , T2 = T ∗

1 . On the other hand, for any object

ti ∈ S \ T ∗
1 , there must exist an object tj ∈ S such that

(ti, tj) � LHS(ϕ1) and (ti, tj) 6� RHS(ϕ1). Suppose that we

have (ti, tj) 6� θ(Ai, Aj). Since (ti, tj) do not agree on the

left-hand-side of ϕ2, they do not violate ϕ2 either. If ti does

not violate ϕ2 with any other objects, it could appear in a

keeping set T2 but not in T ∗
1 , i.e., T2 ⊃ T ∗

1 . To sum up,

we have T ∗
2 ⊇ T ∗

1 and the conclusion is proved according to

error/confidence definition.

Redundancy: By applying the implication properties, we

can infer dependencies from others. Therefore, there exist

redundancies among all the k-length dependencies. During

the discovery, we would like to eliminate these redundant

dependencies in Σ.

Let ϕ1 be a dependency in Σ, i.e., g3(ϕ1,S) ≤ η. Let ϕ2 be

an argumentation with respect to the new function θ(Ai, Aj),

ϕ2 : LHS(ϕ1) ∧ θ(Ai, Aj) → RHS(ϕ1).
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We always have g3(ϕ2,S) ≤ η as well. This conclusion is

natural according to Proposition VI.1 having g3(ϕ2,S) ≤
g3(ϕ1,S) ≤ η. In other words, those dependencies, which are

already discovered satisfying the measure requirement, could

be ignored in the augmentation.

Moreover, this conclusion also enables the level-wise search

which is often used in data mining and discovering FDs [22],

[23]. Specifically, each level l denotes all the candidates of

function subsets from Θ with size l, having l ≤ k. Once a

candidate in current level l is valid and add in Σ, then all the

candidates expending it in following levels l + 1, . . . , k must

also be valid, and can be ignored in Σ as redundancy.

Algorithm: The pseudo-code for incremental discovery is

given in Algorithm 5, with time complexity O(|Θ|k−1V)
where O(V) is the validation cost of each dependency. Specif-

ically, the discovery algorithm returns a new set of dependen-

cies by considering a new function θ, based on the previous

set Σ of dependencies on functions Θ over a dataspace S .

By calling LEVEL-WISE(Θ, k − 1), it returns a sequence of

function subsets (with length ≤ k − 1) from Θ in a level-

wise order, i.e., a set always comes before all of its supersets.

Possible redundancies are pruned in line 5, 10, 13, according

to the augmentation property in Proposition VI.1.

Algorithm 5 Incremental DISCOVERY(Σ, η, θ)

Input: A set Σ of dependencies on functions Θ over datas-

pace S , a measure requirement η, and a new function θ
Output: A new set Σ of k-length dependencies

1: L := LEVEL-WISE(Θ, k − 1)
2: for each function set LHS in L do

3: if g3(LHS → θ,S) ≤ η then

4: Σ := Σ ∪ {LHS → θ}
5: remove all the function sets in L that are superset of

LHS

6: for each function RHS in Θ do

7: L := LEVEL-WISE(Θ, k − 2)
8: for each function set LHS in L do

9: if LHS → RHS ∈ Σ then

10: remove all the function sets in L that are superset

of LHS

11: else if g3(LHS ∧ θ → RHS,S) ≤ η then

12: Σ := Σ ∪ {LHS ∧ θ → RHS}
13: remove all the function sets in L that are superset

of LHS

14: return Σ

VII. EXPERIMENTS

In this section, we report an extensive experimental eval-

uation of proposed mechanisms on two real data sets, Base

and Wiki. Google Base3 is a very large, self-describing, semi-

structured, heterogeneous data collection. Each entry consists

of several attributes with corresponding values and can be

regarded as an object in dataspaces. Due to the heterogeneity

3http://base.google.com/

TABLE III
EXAMPLE OF DEPENDENCIES

Dependency Conf c

ϕ1 : θ(mpn, upc) → θ(id, id) 0.99

ϕ2 : θ(mpn,mpn) → θ(id, id) 1.00

ϕ3 : θ(mpn,mpn) → θ(imagelink, imagelink) 0.96

of data, which are contributed by users around the world, the

data set is extremely sparse. According to our observation,

there are total 129 attributes in 10,000 objects, while most of

these objects only have less than 10 attributes individually.

Another real data set of dataspaces is from Wikipedia4,

where each article usually has an object with some attributes

and values to describe the basic structured information of the

entry. The attributes of objects in different entries are various

(e.g., 251 attributes in 10k objects), while each object may

only contain a limited number of attributes (less than 10).

Again, all these objects from heterogeneous sources form a

huge spare dataspace in Wikipedia.

Table III illustrates examples of comparable dependencies

in the Base data set. The attributes mpn and upc denote a

pair of comparable attributes in the heterogeneous data, i.e.,

the manufacture product number and unified product code,

respectively. The dependency ϕ1 in Table III states that if two

products have comparable mpn or upc, then their ids should

be comparable as well (e.g., denote the same product). Such

dependencies are also the examples of results discovered by

Algorithm 5.

Given certain dependencies5, our experiments in Section

VII-A evaluate both the effectiveness and efficiency of various

computation algorithms for error and confidence measures.

Moreover, in Section VII-B, we present the performance of

pay-as-you-go discovery. We adopt the widely used cosine

similarity with q-grams [6] as the comparison operator. Similar

results in the secondary Wiki data set may be omitted due to

the limitation of space. All algorithms are implemented by

Java. Experiments run on a machine with Intel Core 2 CPU

(2.13 GHz) and 2 GB of memory.

A. Validation Evaluation

To evaluate the approximation computation of error and

confidence, we mainly observe the relative performance of ex-

act/approximate measures and the corresponding computation

time cost.

As illustrated in Figure 1 (a) and 3 (a), the relative per-

formance of error (ĝ/g) is not as stable as that of confidence

(c/ĉ). The underlining reason is that we consider dependen-

cies which almost hold, with low error/high confidence. For

example, the confidence of ϕ3 in Table III is about 0.96. A

slight difference between c and ĉ (e.g., 0.97 and 0.96) will

not affect the relative performance (c/ĉ) largely, while such

small absolute difference appears significant in the relative

4http://www.wikipedia.org/
5e.g., in Table III discovered by our Algorithm 5.
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Fig. 1. Performance (ĝ/g, time) of error approximation
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Fig. 2. Scalability of error approximation
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Fig. 3. Performance (c/ĉ, time) of confidence approximation
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Fig. 4. Scalability of confidence approximation

performance of error measure, e.g., between 0.04 and 0.03 of

ĝ and g. For the randomized approach, we have requirements

of additive ε = 0.2 and probability δ = 0.8. Although, the

approximation performance might not be exactly bounded,

e.g., under 350 objects in Figure 1 (a), it is bounded with

high probability (guaranteed by δ = 0.8).

Obviously, exact computation of validation does not scale

well. As presented in Figure 1 (b) and 3 (b), the exact computa-

tion increases exponentially, which is not surprising according

to our previous analysis of hardness in computing error and

confidence. Meanwhile, the approximation computation keeps

significantly lower time cost. To demonstrate the scalability

of approximation computation, Figure 2 and 4 report the

validation cost under various sizes of objects in dataspaces,

in both Base and Wiki data sets.

Nevertheless, we also evaluate the randomized computation

when different additive ε and probability δ are required. Figure

5 reports the sampling sizes under various requirements, and
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the corresponding effects on time costs. Generally, the larger

the additive ε is allowed, the less the number of samples is

required. On the other hand, to achieve higher probability δ
guarantee, we need to draw more samples. Intuitively, using

more samples will increase the computation costs, thereby the

time costs of error and confidence in Figure 5 (b) and (c) are

roughly affected by the size of samples.

B. Discovery Evaluation

In this experiment set, we evaluate the pay-as-you-go dis-

covery of dependencies by calling Algorithm 5 incrementally,

i.e., Σ :=DISCOVERY(Σ, η, θ).

Figure 6 (a) illustrates the incremental discovery of depen-

dencies with the increase of functions. It is notable that the

y-axis is scaled logarithmically, that is, the time cost increases

heavily with the number of functions. In fact, the size k of

functions in a dependency also affects the discovery perfor-

mance largely. It is not surprising due to the intrinsic hardness

in discovering dependencies with respect to attributes (and the

corresponding comparison functions). Although the measure

requirement does not affect the performance significantly, a

loose requirement like larger error requirement enables more

pruning opportunities in Proposition VI.1. As presented in

Figure 6 (b) with various error measure requirements η, a

larger error requirement η needs less time cost.

As shown in Figure 7, the discovery algorithm scales well

in large size of objects, since greedy approximation is adopted

for validation. These results also verify the efficiency of ap-

proximation computation proposed in Section V for validating

dependencies.

VIII. CONCLUSIONS

In this paper, we introduce data dependencies to dataspaces,

namely comparable dependencies (CDs), which turn out prac-

tically useful in handling heterogeneous data. To our best

knowledge, this is the first work to adapt dependencies to
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Fig. 5. Sampling size and time performance of randomized algorithm with various additive ε and probability δ

dataspaces with the consideration of comparable correspon-

dences. Unfortunately, due to the heterogeneous data, as we

proved, it is already hard to determine whether a dependency

almost holds in the data. In fact, the confidence validation is

also proved hard to approximate to within any constant factor.

We propose several greedy and randomized approaches for

approximately solving the validation problem. Our extensive

experimental evaluation on real data sets demonstrates the

performance of proposed greedy and randomized approaches.

We believe that interesting studies can be raised on the

proposed notations, some of which are still open. For example,

a fundamental attempt would be a sound and complete set

of inference rules for dependency implication in dataspaces,

under certain premise of comparison functions.
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