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ABSTRACT
Efficient and effective manipulation of probabilistic data has be-
come increasingly important recently due to many real applica-
tions that involve the data uncertainty. This is especially crucial
when probabilistic data collected from different sources disagree
with each other and incur inconsistencies. In order to accommo-
date such inconsistencies and enable consistent query answering
(CQA), in this paper, we propose the all-possible-repairs seman-
tics in the context of inconsistent probabilistic databases, which
formalize the repairs on the database as repair worlds via a graph
representation. In turn, the CQA problem can be converted into
one in the so-called repaired possible worlds (w.r.t. both repair
worlds and possible worlds). We investigate a series of consistent
queries in inconsistent probabilistic databases, including consistent
range queries, join, and top-k queries, which, however, need to
deal with an exponential number of the repaired possible worlds
at high cost. To tackle the efficiency problem of CQA, in this pa-
per, we propose efficient approaches for retrieving consistent query
answers, including effective pruning methods to filter out false pos-
itives. Extensive experiments have been conducted to demonstrate
the efficiency and effectiveness of our approaches.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query processing; H.3.3
[Information Systems]: Information Storage and retrieval—Infor-
mation search and retrieval, Search process

General Terms
Algorithms, Design, Experimentation, Performance, Theory

Keywords
Inconsistent probabilistic database, consistent query answering, all-
possible-repairs semantics, repair world, repaired possible world

1. INTRODUCTION
Recently, a variety of data management applications require data

integration [30, 17, 11] from multiple sources, for example, the
crawled Web data from Internet, news or rumors from people’s
personal blogs, and data exchanged or bought from corporations.
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Due to various reasons such as data expiration, input typos, or sub-
jective comments made by people, data from these sources often
exhibit inconsistencies or conflicts. Thus, it has become an increas-
ingly critical yet challenging task for the data integration system to
resolve conflicts and present consistent (clean) query answers to
users.

Table 1 shows an example of an inconsistent database, which
contains records of two restaurants t1 and t2 obtained from dif-
ferent sources on the Internet (e.g., the restaurant homepage, com-
ments from customers, or online surveys), with the table schema:

restaurant(RID, SID, AC, Zip, Loc., Status, QoS),

where each restaurant tuple has attributes of restaurant id RID,
source id SID, area code AC, zip code Zip, relative location in the
area Loc., “Open/Closed” status of the restaurant Status, and the
rating of customers about the quality of services QoS.

RID SID AC Zip Loc. Status QoS tjr.p

t1 t11 44 20000 A Open 5 .2
t1 t12 44 20000 B Closed 4 .4
t1 t13 44 10000 B Closed 3 .1
t2 t21 44 10000 A Closed 3 .8

Table 1: An inconsistent (probabilistic) database (restaurant).
In the table, the first three tuples correspond to records of the

same restaurant t1, obtained from sources t11, t12, and t13. How-
ever, we can see that there are inconsistencies among them. For
example, assuming A 6= B, tuples t11 and t12 have completely
different locations Loc. (“A” and “B”, respectively); tuples t12 and
t13 have distinct zip codes Zip (i.e., “20000” and “10000”, respec-
tively); and tuples t11 and t13 disagree on both Zip and Loc.. Thus,
they all violate our common knowledge that the same restaurant
can have only one address (i.e., Zip and Loc.).

To incorporate such inconsistent information from multiple sour-
ces, probabilistic databases usually associate each tuple with an ex-
istence probability, indicating the (relative) confidence of its source
compared with others [15]. As an example, to transform Table
1 to a probabilistic database, one can add a new column tjr.p ∈
[0, 1] for each tuple tjr , which implies the percentage of customers
/comments that agree on this tuple. As a result, although different
sources may provide inconsistent tuples (or called alternatives1)
such as t11, t12, and t13 for the same restaurant t1 (called x-tuple),
we can easily interpret them as assertions from sources t11, t12, and
t13 believed to be true by people with probabilities 0.2 (= t11.p),
0.4 (= t12.p), and 0.1 (= t13.p), respectively; similarly, the asser-
tion from the single alternative t21 for restaurant t2 is believed to
be true with probability 0.8 (= t21.p).

The manipulation of such probabilistic data usually considers the
possible worlds semantics [15]. Specifically, a possible world is a
1Throughout this paper, we will use terms tuple and alternative in a probabilistic
database interchangeably with the same meaning.
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materialized instance of the probabilistic database that can appear
in the real world, and in each possible world at most one alternative
per x-tuple can appear. For example, tuple set {t11, t21} forms a
possible world, to which each of the two x-tuples t1 and t2 con-
tribute one alternative t11 and t21, respectively.

Although probabilistic databases can accommodate conflicts by
assigning probabilities to different sources for the same data en-
tity (x-tuple), the inconsistency may still exist among different x-
tuples. For example, the two tuples in the possible world, {t11, t21},
of Table 1 come from two distinct restaurants (x-tuples) t1 and t2,
respectively. However, they are inconsistent with each other, that
is, they have the same area code AC (=“44”) and restaurant loca-
tion Loc. (=“A”), but different zip codes Zip (i.e., “20000” and
“10000”, respectively), which violates a functional dependency:

[AC, Loc.] → [Zip].

Therefore, it indicates that these probabilistic data can still contain
errors or exceptions [20], which might lead to erroneous query an-
swers. Inspired by this, in this paper, we investigate how to resolve
the inconsistency among x-tuples and obtain consistent query an-
swers on them, which, to our best knowledge, no prior work has
studied in the context of inconsistent probabilistic database.

SID DR
1 DR

2 DR
3 DR

4 DR
5 DR

6 DR
7

t11 × × √ × × × ×
t12 × √ × × √ × ×
t13

√ × × √ × × ×
t21

√ √ × × × √ ×
Table 2: Minimal repairs DR

1 and DR
2 out of all possible repairs in

Table 1. AC Zip Loc.
44 20000 A
44 30000 B

Table 3: One possible ground truth in reality.
Previous works in inconsistent (certain) databases [4] proposed

to resolve the inconsistency by repairing the raw database. That
is, either data tuples are removed from (inserted into) the database
[12, 4], or attribute values of tuples are modified [8, 38, 13], such
that a consistent (certain) database is obtained. However, they typ-
ically consider minimal repairs of the database [4]. That is, the
repaired database should have the fewest tuple differences from the
original one (or with the smallest repair cost). Taking repairs via
tuple deletion [12] as an example, Table 2 shows all the 7 possible
repairs, DR

1 ∼ DR
7 , to resolve the inconsistency of the database

in Table 1, where “×” represents the tuple deletion, and “
√

” in-
dicates that tuple is retained in the repaired database. The first
two repairs (columns),DR

1 andDR
2 , correspond to minimal repairs,

which delete either tuple set {t11, t12} or {t11, t13} (i.e., the con-
flicts cannot be resolved by deleting fewer than 2 tuples). As a
result, tuple t11 is always deleted under minimal repairs. While
one possible ground truth in reality might be given by Table 3, in-
dicating that tuple t11 is true with AC = “44”, Zip = “20000”, and
Loc. = “A”, the minimal repairs of Table 1 in this example will
never restore the original (clean) database (containing t11).

In fact, the main reason for this is due to an implicit assumption
made by minimal repairs, that is, true data are provided by much
more sources than false ones in the database. Unfortunately, such
an assumption does not always hold in many scenarios [16]. In
practice, rumors can be copied and propagated on the Internet very
fast, which might dominate the truth. Similarly, a newly updated
official website might be more reliable (assuming to contain the
truth), however, its new contents may not appear in caches of the
search engine (database) so fast, due to the delay of the Web crawl-
ing. As investigated in a study [16] about restaurants in Manhattan
from 1/22/2009 to 3/12/2009, among 467 restaurants that are ex-
plicitly marked as “Closed” in the crawled data, only 280 of them

were indeed closed, which indicates that data of the rest restaurants
were stale and out-of-date. Therefore, in such situations, a minimal
repair of an inconsistent database might rule out truths (e.g., t11 in
Table 1) while keeping rumors, and lead to incorrect inference or
query answers [16].

Thus, in this paper, instead of solely considering minimal re-
pairs, we take into account their superset containing all possible
repairs (weighted by their repair confidences) in an inconsistent
probabilistic database, which have at least one repair that is able
to correctly restore a truth database. As shown in Table 2, among
all possible repairs (i.e., DR

1 ∼ DR
7 ), DR

3 exactly contains tuple
t11 which reflects the truth in Table 3. Thus, consider a query that
obtains restaurants with attribute QoS within [4, 5]. For minimal
repairs DR

1 and DR
2 , we can only obtain either empty (i.e., ∅) or

wrong answer (i.e., {t12}), respectively. In contrast, by consider-
ing all possible repairs (including DR

3 ), we are able to report the
(true) answer t11 associated with some confidence.

Therefore, in the sequel, we will consider a series of important
and useful consistent query types under the all-possible-repairs se-
mantics in inconsistent probabilistic databases, including proba-
bilistic consistent range query (PC-Range), probabilistic consistent
join (PC-Join), and probabilistic consistent top-k query (PC-Topk).
As in the example of Table 1, PC-Range might report restaurant tu-
ples with the quality of services QoS ∈ [4, 5], and their consistent
scores above a threshold, where a consistent score indicates the
confidence that a tuple satisfies the query predicates w.r.t. all pos-
sible repairs. Similarly, PC-Join computes the joining tuples from
two inconsistent probabilistic databases, whose consistent scores
are above a threshold. Furthermore, PC-Topk returns k tuples with
the highest consistent scores.

Consistent query answering (CQA) in probabilistic databases has
many practical applications. GreenOrbs [28] is a project that real-
izes all-year ecological surveillance in the forest, collecting var-
ious sensory data including temperature, humidity, illumination,
and carbon dioxide titer. These data can be integrated with other
data such as animals’ positions (via RFID) to study their habitats
and behaviors. Due to environmental factors and inaccuracies of
sensing devices, the collected sensor/RFID data are often noisy and
unreliable. We can thus consider such integrated data (i.e., environ-
mental parameters around animals) as an inconsistent probabilistic
database, where the tuple uncertainty results from uncertain join-
ing attributes (i.e., animal positions), and conduct CQA to obtain
consistent query answers with high confidence.

Note that, previous works studied CQA in inconsistent certain
databases [4, 20], which returns the intersection of query answer
sets on different minimal repairs. In contrast, CQA in an inconsis-
tent probabilistic database considers different repair semantics (i.e.,
all-possible-repairs rather than minimal repairs), and reports con-
sistent answers from all possible repairs with certain confidences.
This is more challenging, since CQA has to consider the consistent
confidence, conducted in an exponential number of possible worlds
on a possibly exponential number of the repaired databases. Thus,
the previously proposed techniques in certain databases cannot be
directly applied to our problem. In addition, there are also many
studies on queries in probabilistic databases [15, 31, 34, 40, 23, 14,
27]. Nonetheless, they always assume that databases are consistent,
and thus cannot provide consistent answers over inconsistent data.

In this paper, we make the following contributions.
1. We formalize the CQA problem in an inconsistent probabilis-

tic database, including a series of queries such as PC-Range,
PC-Join, and PC-Topk queries in Section 3.

2. We provide a novel notion of repair worlds (i.e., all-possible-
repairs) using a graph representation to model the repairs of
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an inconsistent probabilistic database, and reduce the CQA
problem to the one under the repaired possible worlds (w.r.t.
possible worlds and repair worlds) in Sections 4.1 and 4.2.

3. We derive a recursive function for computing consistent scores
of tuples via the graph in Sections 4.3 and 4.4. Further, we
present efficient query processing approaches for obtaining
PC-Range, PC-Join, and PC-Topk answers in Section 5.

4. We conduct extensive experiments to confirm the efficiency
and effectiveness of our proposed approaches in Section 6.

In addition, Section 2 reviews previous works on consistent query
answering in certain databases, as well as query answering in prob-
abilistic databases. Finally, Section 7 concludes this paper.

2. RELATED WORK
2.1 CQA in Certain Database

In inconsistent certain databases that contain precise data [4, 20],
inconsistent tuples usually violate some integrity constraints such
as key constraints, functional dependencies, and so on. Many previ-
ous studies focused on how to manipulate (tuples in) the database
to a consistent one with the minimum repair cost. The proposed
repair models [18] include X-repair [12] allowing tuple deletions
only, S-repair [4] with both tuple insertions and deletions, and U-
repair [8, 38, 13] considering tuple value updates. In this paper, we
adopt X-repair semantics (i.e., tuple deletions only) to probabilistic
databases, and we would like to leave consistent query answering
(CQA) under other repair semantics as our future work.

Arenas et al. [4] proposed the notion of consistent query an-
swers over the repaired database, which is the intersection of query
answer sets on all minimal repairs of the database, where a mini-
mal repair is a repair such that the symmetric difference between
the repaired and original databases (i.e., (D−DR)∪ (DR−D)) is
the minimum. Fuxman et al. [20] presented a system, called Con-
Quer, which uses SQL query rewriting as the CQA strategy, and an-
swers consistent relational queries (e.g., selection-projection-join)
on databases that violate the key constraint. Andritsos et al. [2] pro-
posed a probabilistic approach to clean answers on a dirty database
with tuples violating the key constraint. Each tuple in the dirty
database is associated with a probability and tuples with the same
key value have probabilities summed up to 1. The clean answer is
defined as tuples that appear in at least one candidate (minimally
repaired) database with nonzero probabilities. Wijsen [38] con-
sidered the database repair by updating attribute values. The CQA
with this repair semantics is NP-hard, and thus becomes intractable.
Therefore, only a few query classes that allow nuclei of polynomial
size can be computed in polynomial time. Greco and Molinaro [21]
proposed probabilistic CQA by returning approximate answers as-
sociated with the percentages that answers appear in the repaired
databases, where the minimal repair with value updates is consid-
ered. Beskales et al. [7] studied the problem of eliminating du-
plicates in an inconsistent certain database, which models repairs
w.r.t. parameter settings of clustering algorithms, and can answer
relational operations such as selection, projection, and join, as well
as that permits probabilistic constraints.

The aforementioned studies assume that the underlying database
contains certain and precise data. To our best knowledge, no previ-
ous work has studied the CQA problem in probabilistic databases.
Previous techniques (e.g., SQL query rewriting on precise rela-
tional data) cannot be directly applicable to our CQA problem. This
is because, CQA in probabilistic databases has to additionally con-
sider the possible worlds semantics, which is more challenging due
to the exponential size of possible worlds.

Possible World pw(D) Probability Pr{pw(D)}
pw1(D) = {t11} .2× (1− .8) = .04
pw2(D)= {t12} .4× (1− .8) = .08
pw3(D)= {t13} .1× (1− .8) = .02
pw4(D)= {t11, t21} .2× .8 = .16
pw5(D)= {t12, t21} .4× .8 = .32
pw6(D)= {t13, t21} .1× .8 = .08
pw7(D)= {t21} (1− .2− .4− .1)× .8 = .24
pw8(D)= ∅ (1− .2− .4− .1)× (1− .8) = .06

Table 4: Possible worlds of restaurant in Table 1.
Furthermore, previous works usually define CQA on minimal

repairs, which, as mentioned in Section 1, do not guarantee re-
moving all errors and obtaining correct query answers. In contrast,
our work considers all-possible-repairs semantics, which cannot di-
rectly use CQA techniques with minimal repairs.

2.2 Query Answering in Probabilistic Databases
Probabilistic databases [15] can represent inconsistent or uncer-

tain data in many real applications such as sensor data analysis [1,
23], data integration [30, 17, 11], and data cleaning [22]. Many
systems such as MystiQ [9], Orion [10], TRIO [6, 33], MayBMS
[3], MCDB [25], and BayesStore [37] have been proposed to ma-
nipulate uncertain data.

Query answering in probabilistic databases usually considers the
possible worlds semantics [15]. Query processing in probabilistic
databases is equivalent to the procedure of first retrieving query an-
swers in all possible worlds (using any query processing techniques
on certain data), and then aggregating query results obtained from
possible worlds as the final answer. Under different aggregation se-
mantics, the resulting query answer sets differ from each other. For
example, top-k queries have been extensively studied in (consis-
tent) probabilistic databases with different aggregation semantics
[31, 34, 40, 23, 14, 27]. Recently, Li et al. [27] gave a parameter-
ized ranking definition which can incorporate many top-k query se-
mantics such as U-kRank [34, 40], PT-k [23], and Expected-Rank
[14], and also proposed two additional top-k semantics, namely,
PRFw and PRFe.

The repair-key operation in MayBMS [3] repairs certain table
with the violation of key constraints by removing a minimum sub-
set of tuples. Most previous works usually assume queries in a
consistent probabilistic database. In contrast, our work focuses on
that in an inconsistent one, which involves exponential numbers
of possible repairs (possible worlds as well). Thus, it is inefficient
(or even infeasible) to directly borrow the existing approaches (pro-
posed for consistent probabilistic database) and apply them on each
of the repaired databases (with exponential numbers). This inspires
us to carefully design efficient approaches for CQA below.

3. PROBLEM DEFINITION
3.1 Notations
Probabilistic Databases [15]: A probabilistic database D consists
of N x-tuples t1, t2, ..., and tN , where each x-tuple tj contains one
or multiple alternatives (tuples) tjr (1 ≤ r ≤ lj). Each alternative
tjr of an x-tuple tj ∈ D has an existence probability tjr.p ∈ [0, 1]

belonging to the database, satisfying
∑lj

r=1 tjr.p ≤ 1. Any two
alternatives in an x-tuple are mutually exclusive (i.e., they cannot
belong to the database at the same time).
Possible Worlds: Since each alternative tjr can either exist or not
exist in a probabilistic database D, in the real world, D can have
several possible materialized instances, called possible worlds (de-
noted as pw(D)). In each possible world, at most one alternative
appears for any x-tuple.

DEFINITION 3.1. (Possible Worlds, pw(D)) A possible world,
pw(D), is a subset of probabilistic database D such that each x-
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tuple tj ∈ D has either zero or only one alternative tjr in pw(D).
The appearance probability, Pr{pw(D)}, that a possible world
pw(D) occurs is given by:

Pr{pw(D)} =
∏

∀tjr∈pw(D)

tjr.p ·
∏

∀tj /∈pw(D)

(1−
lj∑

r=1

tjr.p),

where lj is the number of alternatives in x-tuple tj .

Table 4 shows 8 possible worlds pw(D) and their appearance
probabilities Pr{pw(D)} in the probabilistic database of Table 1.
Repairs on Inconsistent Probabilistic Databases: As mentioned
in Section 1, rather than minimal repairs, in the context of incon-
sistent probabilistic databases, we will consider all possible repairs
of the database. Similar to X-repair [12], we repair the database by
deleting some possibly erroneous (inconsistent) tuples in D.

Specifically, there are three possible causes of an inconsistency
between any two tuples, say t11 and t21 in the previous example of
Table 1, that is, (1) the erroneous input of t11, (2) that of t21, or
(3) that of both t11 and t21. Thus, our repairs can delete: (1) t11,
(2) t21, or (3) both t11 and t21, respectively, in order to purge the
inconsistency. Formally, we say a repaired probabilistic database,
DR, is the one after removing some inconsistent tuples from D,
such that the remaining tuples in DR become consistent.

Following the practice of US national statistical agencies [19,
39], we assume that each tuple tjr ∈ D is associated with a repair
confidence, tjr.rp ∈ [0, 1], which reflects the confidence that tjr

might contain errors and should be repaired (deleted). Such a repair
confidence can be usually obtained from statistics of historical data.
For example, in sensor applications like GreenOrbs project [28],
this repair confidence can be defined as the probability that a sensor
reports abnormal (erroneous) data in history. Moreover, similar to
[32], we assume that each tuple is integrated from one or multiple
independent sources (e.g., a source can be an independent sensor in
sensor networks), and any two tuples do not share common sources
(e.g., sensors). As a result, the repairs (deletions) on these tuples
are independent. In the case where repair confidences of tuples are
correlated, one can utilize the graphical model [37, 27] to describe
the joint distribution of their repair confidences. Nonetheless, we
would like to leave this case as our future work.

Accordingly, each repaired probabilistic database DR is associ-
ated with a repair weight Wr(DR), which is the confidence that we
repair the database. In particular, let ∆(DR) be the set of deleted
tuples for a repair from D (i.e., ∆(DR) = D − DR). Then, the
repair weight Wr(DR) can be given by:

Wr(DR
) (1)

=
∏

∀tj∈D




∑

∀tjr∈∆(DR)

tjr.rp


 ·

∏

∀tj∈D


1−

∑

∀tjr /∈∆(DR)

tjr.rp


 .

As in the restaurant example (Table 1), we can add another at-
tribute, the repair confidence tjr.rp, for each tuple tjr , indicat-
ing the unreliability of this restaurant record tjr . When t11.rp =
t12.rp = 0.8 and t13.rp = t21.rp = 0.1, the repair weight
Wr(DR

1 ) of the repaired database DR
1 (in Table 2) is given by

0.8× 0.8× (1− 0.1)× (1− 0.1) = 0.5184.

3.2 CQA in Inconsistent Probabilistic Databases
Next, we formalize the problem of consistent query answering

(CQA) in an inconsistent probabilistic database, by considering 3
important query types, PC-Range, PC-Join, and PC-Topk. In brief,
any tuple is a consistent answer to a query Q, if and only if it satis-
fies both query predicates PQ and consistent score predicates PS .
Here, a query predicate PQ can be a user-specified querying region
for PC-Range, a similarity join predicate for PC-Join, or a ranking

predicate for PC-Topk; a consistent score predicate PS requires
consistent scores w.r.t. all possible repairs satisfying some con-
straint. We will illustrate PS in detail for each query type below.
PC-Range Queries: We define PC-Range queries as obtaining
tuples tjr within a user-specified query region (i.e., range pred-
icates PR) and having consistent scores greater than a threshold
αR ∈ [0, 1) (i.e., PR : scoreR(tjr) > αR) considering all possi-
ble repairs. Formally, we have:

DEFINITION 3.2. (Consistent Range Query in Inconsistent Prob-
abilistic Databases, PC-Range) Given an inconsistent probabilistic
database D, a range predicate PR, and a consistent score pred-
icate PS : αR ∈ [0, 1), a probabilistic consistent range query
(PC-Range) retrieves all the tuples, tjr , satisfying PR and having
consistent scores, scoreR(tjr), greater than threshold αR, that is,

scoreR(tjr) = tjr.p ·
∑

∀tjr∈DR

Wr(DR
) > αR, (2)

over all possible repairs, DR, where Wr(DR) is given by Eq. (1).

Intuitively, the consistent score, scoreR(tjr), in Eq. (2) is the
probability that tuple tjr appears in possible worlds and it is not
deleted by repairs. Larger consistent score indicates higher confi-
dence that tjr is in the query region in the (consistent) real world.
PC-Join Queries: Assume that we have two distinct inconsistent
probabilistic databases, DA and DB , with a common (join) at-
tribute set A. A PC-Join query retrieves pairs of alternatives tA

and tB from DA and DB , respectively, such that they satisfy a join
predicate PJ on attributes in A and have consistent scores greater
than a threshold αJ (i.e., PS : scoreJ(tA ./PJ tB) > αJ ), over
all their repair combinations.

DEFINITION 3.3. (Consistent Join Query in Inconsistent Prob-
abilistic Databases, PC-Join) Given two inconsistent probabilistic
databases DA and DB , a join predicate PJ : ε, and a consis-
tent score predicate PS : αJ ∈ [0, 1), a probabilistic consistent
join query (PC-Join) retrieves all the joining tuple pairs 〈tA, tB〉
satisfying tA ./PJ tB (i.e., dist(tA[A], tB [A]) ≤ ε) and having
consistent scores, scoreJ(tA ./PJ tB), greater than threshold αJ

over all possible repair combinations, DR
A ×DR

B , given by:

scoreJ (tA ./PJ
tB) (3)

= tA.p · tB .p ·
∑

∀tA∈DR
A

Wr(DR
A) ·

∑

∀tB∈DR
B

Wr(DR
B) > αJ ,

where tA ∈ DA, tB ∈ DB , and Wr(DR
. ) is given by Eq. (1).

The consistent score scoreJ(tA ./PJ tB) in Eq. (3) indicates
the probability that both tuples tA and tB appear in some possible
worlds of repairs. The larger the consistent score, scoreJ(tA ./PJ

tB), is, the higher confidence it has that tA and tB join with each
other in the (consistent) real world. Similar to αR in PC-Range,
threshold αJ indicates the confidence level, and can be specified by
experienced users, based on the quality of historical query answers.
PC-Topk Queries: Top-k queries have been extensively studied in
the literature of consistent probabilistic databases [31, 34, 40, 23,
14, 27]. In particular, Li et al. [27] recently proposed a parameter-
ized ranking definition for top-k queries, which incorporates many
previously studied top-k semantics [31, 34, 40, 23, 14]. Thus, we
will use this unified top-k definition [27] given below2.

DEFINITION 3.4. (Top-k Queries in Consistent Probabilistic
Databases [27]) Given a consistent probabilistic database D and
a preference function f(·), we define the score, Υw(D, tjr), of an
alternative tjr ∈ D as:
2We noted that some probabilistic top-k query semantics such as U-Topk [34] cannot
be captured by this unified definition [27], and we would like to leave it as future work.
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Symbol Description
D a probabilistic database containing N tuples
DR a repaired probabilistic database (i.e.,D −∆(DR))
PW(D) the set of possible worlds, pw(D), inD
RW(D) the set of repair worlds, rw(D), inD
rpw(D) a repaired possible world ofD, where rpw(D)= pw(D) - rw(D)
tj an x-tuple in a probabilistic database
tjr an alternative (tuple) in x-tuple tj (1 ≤ r ≤ lj )
tjr.p the existent probability of tuple tjr

tjr.rp the repair (deletion) confidence of tuple tjr

f(·) the preference function specified by users
Tj j alternatives inD with the highest f(·)
Ginc an inconsistency graph ofD
DI(tjr) a set of tuples that are inconsistent with tjr

Table 5: Symbols and descriptions.

Υw(D, tjr) =
∑

i>0

w(tjr, i) ·
∑

pw(D):tjr∈pw(D)

Pr{pw(D) ∧ rpw(D)(tjr) = i},

(4)
where w(tjr, i) is a weight function of alternative tjr only related
to the rank i, and rpw(D)(tjr) is the rank of tjr in possible world
pw(D). A probabilistic top-k query retrieves k alternatives in D
with the highest scores.

In Eq. (4), with different weight function w(tjr, i), probabilistic
top-k queries can have different top-k semantics [31, 34, 40, 23,
14, 27]; the score Υw(D, tjr) for each alternative tjr ∈ D is the
(weighted) summation of probabilities that tjr has rank i in the
possible worlds; the top-k query answers are k alternatives with
the highest score values, Υw(D, ·).

Below, we formally define the PC-Topk query in an inconsis-
tent probabilistic database, which obtains k tuples with the high-
est consistent scores for all possible repairs (involving both query
predicate PT and consistent score predicate PS).

DEFINITION 3.5. (Consistent Top-k Query in Inconsistent Prob-
abilistic Databases, PC-Topk) Given an inconsistent probabilistic
databaseD, a top-k predicate PT : preference function f(·), and a
consistent score predicate PS : k, a probabilistic consistent top-k
query (PC-Topk) retrieves k alternatives, tjr , such that their con-
sistent scores,

scoreT (tjr) =
∑

∀DR

(
Wr(DR

) ·Υw(DR
, tjr)

)
, (5)

over all possible repairs DR are the maximum, where Υw(DR,
tjr) is given by Eq. (4).

In Definition 3.5, we consider all possible repaired databases,
DR, and sum up the (weighted) scores, Υw(DR, tjr), of tuple
tjr under different repairs. Intuitively, higher consistent score,
scoreT (tjr), indicates that tuple tjr is more consistent in the query
answers of the repaired databases, with high ranks and confidences.
Thus, we will return k tuples with the highest consistent scores.

PC-Topk is a bit different from the previous two queries, PC-
Range and PC-Join. That is, PC-Topk needs to compute consistent
scores for candidates, involving both predicates PT and PS , before
obtaining top-k answers, whereas the checking of PR in PC-Range
orPJ in PC-Join does not require calculating any consistent scores.
Therefore, as we will mention later, for query answering, while PC-
Range and PC-Join can filter out false positives using predicates,
say PQ, without considering PS , PC-Topk has to do so via consis-
tent scores w.r.t. both predicates PQ and PS at the same time.

We would like to leave the incorporation of other consistent query
types (such as aggregations [26, 29]) into our CQA framework as
future work. In particular, similar to the three queries above, we
can consider every possible repair and summarize the query an-
swers (e.g., aggregates) in all the repairs by consistent scores.
Challenges: One major challenge of CQA in inconsistent proba-
bilistic databases is related to the efficiency issue. As we can see

from Eqs. (2), (3), and (5), the consistent score, score.(tjr), for
alternative tjr is computed on all possible repairs of the database
with possibly exponential size (i.e., O(

∏N
j=1(lj + 1)) in the worst

case, where lj is the number of alternatives for x-tuple tj), which
is quite inefficient for online query processing. Furthermore, for
PC-Topk in particular, its consistent score also needs to calculate
Υw(DR, tjr) in Eq. (4) considering an exponential number of pos-
sible worlds. As a result, we have to conduct queries on combina-
tions of repairs and possible worlds, both with exponential sizes.
Thus, simple enumeration is inefficient or infeasible in terms of
space and time costs.

Therefore, in the sequel, we propose a notion of repair worlds
with a graph representation, with which CQA can be converted
into the one on a set difference between possible worlds and re-
pair worlds (called repaired possible worlds). Then, we present the
detailed computation for each of consistent queries. To improve the
CQA efficiency, we present either offline pre-computation (for PC-
Range and PC-Join) or online filtering (for PC-Topk) techniques
for fast retrieval. Table 5 summarizes the commonly used symbols.

4. PROBLEM REDUCTION
In order to efficiently process CQA in an inconsistent probabilis-

tic database, we first propose the notion of repair worlds in a graph
representation which contains those tuples to be repaired. Then,
CQA can be considered as the one in the repaired possible worlds.

Note that, for the sake of clear illustration, in the sequel, we will
present the solutions to probabilistic databases with single alterna-
tive per x-tuple. Thus, for an x-tuple tj with its single alternative
tj1, we will omit the subscript “1” in tj1 if the context is clear.
Nonetheless, the multi-alternative case can be easily extended by
considering it as a special single-alternative case where any pairs
of alternatives in the same x-tuple are inconsistent with each other.

4.1 Repair Worlds
Inconsistency Graph: To formalize the notion of repair worlds,
we first give the definition of inconsistency graph, Ginc(D), in a
probabilistic database.

DEFINITION 4.1. (Inconsistency Graph, Ginc(D)) Given an in-
consistent probabilistic databaseD, an inconsistency graph Ginc(D)
is given by 〈V, E〉, where V is a vertex set and E is an edge set.
In Ginc(D), each vertex vj ∈ V corresponds to an alternative of
an x-tuple tj ∈ D; any edge vjvl is in E iff alternatives tj and
tl are inconsistent, violating integrity constraints; and any vertex
vj ∈ V is connected to at least one edge in E. For the multi-
alternative case, any two alternatives in the same x-tuple have an
edge between them.

Figure 1 illustrates a simple example of an inconsistency graph
Ginc(D) with vertices v1 ∼ v4 corresponding to tuples t1 ∼ t4, re-
spectively, where tuple pairs 〈t1, t2〉, 〈t1, t3〉, 〈t2, t3〉, and 〈t2, t4〉
are inconsistent (e.g., violating some functional dependencies).

Note that, the inconsistency graph is similar to the notion of con-
flict hypergraph [12]. The difference is that in the conflict hyper-
graph, each hyper-edge connects a number of tuples (vertices) from
different joining tables that violate the integrity constraints. In con-
trast, each edge of our inconsistency graph pairwisely connects any
two inconsistent tuples in the same probabilistic database.

Figure 1: Illustration of inconsistency graph.
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(a) (b) (c) (d) (e) (f) (g)

Figure 2: Illustration of 7 repair worlds of the inconsistency graph Ginc in Figure 1. (a) rw1(D) = {t1, t2}. (b) rw2(D) = {t1, t3}. (c)
rw3(D) = {t2, t3, t4}. (d) rw4(D) = {t1, t2, t4}. (e) rw5(D) = {t1, t3, t4}. (f) rw6(D) = {t1, t2, t3}. (g) rw7(D) = {t1, t2, t3, t4}.

Repair Worlds: Next, we define the repair world, denoted as rw(D),
using the graph representation mentioned above, which corresponds
to one possible repair of a probabilistic databaseD. As a result, the
repair process in the probabilistic database is exactly equivalent to
the removal of vertices (and their connected edges as well) in its
inconsistency graph such that no edges exist after vertex deletions.

DEFINITION 4.2. (Repair World, rw(D)) Given an inconsis-
tency graph Ginc(D) = 〈V, E〉 in an inconsistent probabilistic
database D, a repair world rw(D) is a set of tuples, {tj |tj ∈
rw(D)}, such that: (1) each tuple tj corresponds to a vertex vj

in V , and (2) by removing all the vertices vj of tj ∈ rw(D) from
Ginc(D), as well as edges connected with them, the resulting graph
has an empty edge set. The confidence (weight), Pr{rw(D)},
of a repair world rw(D) is given by Wr(DR) in Eq. (1), where
DR = D − rw(D).

Figures 2(a)∼2(g) show seven repair worlds, rw1(D) ∼ rw7(D),
of the inconsistency graph Ginc in Figure 1, where each repair
world rwi(D) is mapped to the deletion of tuples (vertices) in the
probabilistic database (inconsistency graph). As an example in Fig-
ure 2(a), by deleting vertices v1 and v2 from Ginc, the resulting
inconsistency graph will not contain any edges. Correspondingly,
tuples t1 and t2 form a repair world rw1(D), indicating that by re-
moving t1 and t2 fromD, the resulting database will be consistent.

4.2 Repaired Possible Worlds
After introducing the notion of repair worlds, we now present

the concept of repaired possible worlds in which CQA is con-
ducted. We denote RW(D) as the set of all repair worlds rwl(D)
in an inconsistent probabilistic database D, that is, RW(D) =
{rwl(D) | ∀l}, and PW(D) as the set of all possible worlds in D.
Our CQA problem is actually answered on the Cartesian product
RW(D)× PW(D).

Specifically, for any repair world rw(D) ∈ RW(D) and any
possible world pw(D) ∈ PW(D), we can combine them using
the operator of set difference, and obtain a repaired possible world,
denoted as rpw(D), by removing all the tuples in rw(D) from
pw(D) (i.e., rpw(D) = pw(D) − rw(D)). The existence proba-
bility Pr{rpw(D)} of rpw(D) is given by:
Pr{rpw(D)} = Pr{rw(D)} · Pr{pw(D)} = Wr(DR

) · Pr{pw(D)}.(6)

Therefore, the CQA problem is equivalent to first conducting
queries in each repaired possible world and then combining the
query answers from all the repaired possible worlds.

4.3 PC-Range and PC-Join Computations
In this subsection, we discuss the CQA computation of PC-Range

and PC-Join queries in the repaired possible worlds. Specifically, as
given in Eq. (6), since the confidence of repair worlds Pr{rw(D)}
is equal to the repair weight Wr(DR), we can rewrite Eq. (2) in
Definition 3.2 and Eq. (3) in Definition 3.3, respectively, as:

scoreR(tj) = tj .Prpw (7)

= tj .p · (1− tj .Prw)

= tj .p · Pr{tj /∈ rw(D) | ∀rw(D) ∈ RW(D)}, and

scoreJ (tA ./PJ
tB) = tA.Prpw · tB .Prpw. (8)

where tj .Prpw is the probability that tj is in the repaired possible
worlds, and tj .Prw is the probability that tj is in the repair worlds.

In Eq. (7), since the repaired possible worlds are the set dif-
ferences between possible worlds and repair worlds, tj .Prpw can
be given by the probability that tj appears in the possible worlds
(i.e., tj .p = Pr{tj ∈ pw(D) | ∀pw(D) ∈ PW(D)}) times
the probability that tj does not appear in the repair worlds (i.e.,
1− tj .Prw = Pr{tj /∈ rw(D) | ∀rw(D) ∈ RW(D)}).

Therefore, the consistent score of tj for PC-Range equals to
probability tj .Prpw, whereas that for PC-Join equals to the multi-
plication of tA.Prpw and tB .Prpw from two joining tuples tA and
tB in databases DA and DB , respectively.
Computation of Probability tj .Prpw: We now address the issue
about obtaining the probability tj .Prpw (in Eqs. (7) and (8)), which
is the probability that tj appears in the repaired possible world
rpw(D). In turn, we only need to compute the probability that tj

is not in the repair worlds, that is, (1− tj .Prw). We can derive the
formula for probability tj .Prw with the help of the inconsistency
graph Ginc as follows.

Let NRW(Ginc) be the total weight of repair worlds in the in-
consistency graph Ginc, that is, NRW(Ginc) =

∑
∀DR Wr(DR) =∑

∀rw(D)∈RW(D) Wr(D − rw(D)). Therefore, the probability
tj .Prw is given by the weight summation of repair worlds that does
not contain tj (i.e., tj .rp ·NRW(Ginc−{vj})) divided by the total
weight NRW(Ginc) of graph Ginc. That is,

tj .Prw =
tj .rp ·NRW(Ginc − {vj})

NRW(Ginc)
. (9)

Specifically, NRW(Ginc) can be recursively computed by:

NRW(Ginc
) =





NRW(Ginc − {vl}), if ∀vl ∈ Ginc ∧DI(tl) = ∅.
(1− tl.rp) · (∏∀tm∈DI(tl)

tm.rp)

·NRW(Ginc − {vl} −DI(vl)) + tl.rp

·NRW(Ginc − {vl}), if ∀vl ∈ Ginc ∧DI(tl) 6= ∅.
1, if Ginc contains no edges;

(10)

where DI(tj) (or DI(vj) for inconsistency graph Ginc ) is a set of
tuples (vertices) that are directly inconsistent with tj (i.e., connect-
ing with vertices vj). The intuition of Eq. (10) is given below.

• Case 1: When a vertex vl ∈ Ginc is not connected to any
other vertices, vertex vl can either exist or not exist in re-
pair worlds. Thus, in this case, we have NRW(Ginc) =
NRW(Ginc − {vl}).

(a) (b)

Figure 3: Illustration of NRW computation in Eq. (10) where vl ∈
Ginc ∧DI(tl) 6= ∅. (a) vl is not deleted. (b) vl is deleted.
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• Case 2: When a vertex vl ∈ Ginc is connected to some
vertices vm ∈ DI(vl), we consider two subcases:

– Case 2.1: If vl is not deleted, as shown in Figure 3(a),
all the vertices vm ∈ DI(vl) must be deleted (based
on the repair rule that at least one vertex of an edge
should be deleted), thus contributing to weight a factor
of (1− tl.rp) ·(∏∀tm∈DI(tl)

tm.rp);

– Case 2.2: If tl is deleted, as shown in Figure 3(b), tm ∈
DI(tl) can either exist or not exist in the repair worlds,
thus tl contributing a factor of tl.rp.

• Case 3: In the base case where no edges are left, the remain-
ing vertices can be either deleted or not deleted, thus, the
weight is set to 1.

4.4 PC-Topk Computation
In this subsection, we present how to answer PC-Topk queries

under the repaired possible worlds semantics. Similar to PC-Range
and PC-Join, we can rewrite the PC-Topk query given in Definition
3.5 by considering the repaired possible worlds.

DEFINITION 4.3. (PC-Topk Query in Repaired Possible Worlds)
Given an inconsistent probabilistic database D, a PC-Topk query
retrieves k tuples, tj , such that:

scoreT (tj) =
∑

i>0

w(tj , i) ·
∑

∀rpw(D):tj∈rpw(D)

Pr{rpw(D) ∧ rrpw(D)(tj) = i},

(11)

are the maximum, where rpw(D) = pw(D)− rw(D), ∀pw(D) ∈
PW(D) and ∀rw(D) ∈ RW(D).

We prove below that Definitions 4.3 and 3.5 are equivalent.

LEMMA 4.1. Definition 4.3 is an equivalent version of Defini-
tion 3.5 in repaired possible worlds.

Proof. It is sufficient to prove that Eq. (11) can be obtained by
combining Eqs. (4) and (5). In particular, we substitute Υw(D, tj)
in Eq. (4) into Eq. (5), resulting in:

scoreT (tj) =
∑

∀DR=D−rw(D)

Wr(DR
) ·

∑

i>0

w(tj , i) (12)

·
∑

pw(D):tj∈pw(D)

Pr{pw(D) ∧ rpw(D)(tj) = i}.

By swapping the orders of summations in Eq. (12), we have:

scoreT (tj) =
∑

∀rw(D)

Wr(DR
) ·

∑

pw(D):tj∈pw(D)

∑

i>0

w(tj , i)

·Pr{pw(D) ∧ rpw(D)(tj) = i}. (13)

Then, by considering the pairwise combinations between repair
worlds rw(D) and possible worlds pw(D), we obtain:

scoreT (tj) (14)

=
∑

∀rpw(D):tj∈rpw(D)

∑

i>0

w(tj , i) · Pr{rpw(D) ∧ rrpw(D)(tj) = i},

which, by swapping the two summations above, is exactly Eq. (11).
Thus, the lemma holds. 2

Thus, according to Lemma 4.1, the PC-Topk query can be con-
sidered to the one in the repaired possible worlds as given in Def-
inition 4.3. As mentioned earlier, to check query predicates PT

and consistent score predicates PS of PC-Topk queries, we have to
efficiently compute the consistent scores scoreT (tj) in Eq. (11).

Without loss of generality, assume that we can retrieve tuples tj

from the databaseD, in descending order of their query preferences
f(tj), for example, 〈t1, t2, ..., tl〉 where f(t1) ≥ f(t2) ≥ ... ≥

(a) (b) (c)

Figure 4: Illustration of R(·) computation in Eq. (18) where tl ∈ Tj

and |S| ≥ i. (a) tl ∈ rpw(D). (b) tl /∈ rpw(D) ∧tl /∈ rw(D). (c)
tl /∈ rpw(D) ∧ tl ∈ rw(D).

f(tl). Denote Tl as an ordered sequence 〈t1, t2, ..., tl〉 with the
highest preference scores. Then, we can simplify Eq. (11) as:

scoreT (tj) =
∑

i>0

w(tj , i) ·M(tj , i), (15)

where
M(tj , i) (16)

=
∑

∀rpw(D):tj∈rpw(D)

Pr{rpw(D) ∧ rrpw(D)(tj) = i},

= tj .Prpw ·
∑

∀rpw(D)

Pr{|rpw(D) ∩ Tj−1| = i− 1 | {tj} ⊆ rpw(D)}.

Intuitively, the first term (i.e., tj .Prpw) on RHS of Eq. (16) is the
probability that tj exists in the repaired possible worlds rpw(D),
whereas the second term is a conditional probability that there are
exactly (i− 1) tuples having ranks higher than tj and appearing in
(rpw(D)∩Tj−1), given that tj exists in rpw(D). Note that, based
on the property of our repair rule, if tj exists in rpw(D), then tuples
in DI(tj) (inconsistent with tj) cannot appear in rpw(D). Thus,
the second term is equivalent to

∑
∀rpw(D) Pr{|rpw(D)∩(Tj−1−

DI(tj))| = i− 1 | {tj} ⊆ rpw(D)}.
Computation of Function M(tj , i): In order to calculate function
M(tj , i) in Eq. (16), we can further rewrite it as a function of R(·):

M(tj , i) = tj .Prpw · R(Ginc −DI(vj)− {vj}, (17)

Tj−1 −DI(tj)− {tj}, i− 1).

where R(G, S, i) is given by the recursive function below:

R(G, S, i) =





tl.p · (1− tl.rp) ·∏∀tm∈DI(tl)
tm.rp · R(G − {vl}

−DI(vl), S − {tl} −DI(tl), i− 1)
+(1− tl.p) · (1− tl.rp) ·∏∀tm∈DI(tl)

tm.rp

·R(G − {vl} −DI(vl), S − {tl} −DI(tl), i)
+tl.rp · R(G − {vl}, S − {tl}, i),

if tl ∈ Tj−1 and |S| ≥ i;
(1− tl.rp) ·∏∀tm∈DI(tl)

tm.rp · R(G − {vj}
−DI(vj), S −DI(tl), i) + tl.rp · R(G − {vj}, S, i),

if tl /∈ Tj−1 and |S| ≥ i;∏
∀tm∈S(1− tm.p · (1− tm.rp)),

if S 6= ∅ and i = 0;
0 otherwise.

(18)

Intuitively, a function R(G, S, i) returns the probability that there
are i tuples in S appearing in repaired possible worlds. To compute
R(·), we consider 4 cases, as shown in Eq. (18) above.

• Case 1: When a tuple tl in Tj−1 is found and there are no
fewer than i tuples left in S, tuple tl either appears or does
not appear in repaired possible worlds.

– Case 1.1: As illustrated in Figure 4(a), if tl ∈ rpw(D),
then its appearance probability is given by the probabil-
ity that tl exists in possible worlds but not repair worlds
(i.e., tl.p · (1 − tl.rp)). Moreover, based on the repair
rule, since tuples in DI(tl) (inconsistent with tl) can-
not appear in the repaired possible worlds. Thus, tu-
ples in DI(tl) contribute weights

∏
∀tm∈DI(tl)

tm.rp.
Then, we recursively invoke function R(·), consider-
ing the graph G (or set S) excluding vertices in {vl} ∪
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DI(vl) (or {tl} ∪ DI(tl)) and with the parameter of
tuple number (i− 1).

– Case 1.2: If tl /∈ rpw(D), there are two subcases.
When tl is not in repair worlds (Figure 4(b)), it has
appearance probability (1−tl.p)·(1−tl.rp), and those
tuples in DI(tl) should be deleted (contributing weight∏
∀tm∈DI(tl)

tm.rp, similar to Case 1.1); when tl is in
repair worlds (Figure 4(c)), it has probability tj .rp to
appear in repair worlds. Then, we recursively invoke
R(·), with the tuple number i.

• Case 2: When a tuple tl not in Tj−1 is visited and there are
no fewer than i tuples left in S, there are also two subcases
where tl is either in or not in the repair worlds. Since their
appearances in the repaired worlds do not affect the ranking
of tuple tj , the recursive invocation of R(·) will always take
tuple number i as the third parameter.

• Case 3: When the set S is not empty and i = 0, any tuple
in set S should not appear in the repaired possible worlds.
Thus, S contributes weight

∏
∀tm∈S(1−tm.p·(1−tm.rp)).

• Case 4: For other cases, function R(·) outputs 0.

5. CQA PROCESSING
Up to now, we have illustrated the baseline approach for com-

puting consistent scores for PC-Range, PC-Join, and PC-Topk. In
this section, we illustrate the CQA query processing approach in
the inconsistent probabilistic database. Specifically, for PC-Range
and PC-Join, since their consistent scores are related to probability
tj .Prpw for any tuple tj , we can offline pre-compute this proba-
bility, which can facilitate online CQA for PC-Range and PC-Join
and efficiently return the consistent scores. Moreover, for PC-Topk,
due to its costly online computation of consistent scores involving
ranks, we propose an effective pruning strategy to reduce the search
space, as well as an early stopping condition.
Data Pre-Processing: Without loss of generality, we assume that
probabilistic data in the database(s) are indexed by an R*-tree [5],
on which CQA queries can be processed. Specifically, Figure 5 il-
lustrates the pseudo-code of data pre-processing procedure, namely
Pre_Processing. Given an inconsistent probabilistic database D,
we offline pre-process the data by constructing an R-tree index
(lines 1-5). That is, we first enumerate pairwise tuples in the database
and check whether or not they are consistent with each other. If not,
then there is an edge connecting their corresponding vertices in an
inconsistency graph Ginc (line 1). Then, for each alternative tj ,
we pre-compute probabilities such as tj .Prw and tj .Prpw, which
can facilitate fast calculating/outputing consistent scores for online
CQA (lines 2-4). Next, we construct an R*-tree [5], I, by inserting
probabilistic tuples (associated with pre-computed values) into the
index using standard “insert” operator. Each node also stores the
maximum consistent score tj .Prpw for all the tuples under it. This
index can help retrieve tuples tj satisfying the query and consistent
score predicates during CQA (line 5).

5.1 PC-Range and PC-Join Query Processing
PC-Range Query Procedure: Figure 6 illustrates the query pro-
cedure, namely procedure PC-Range_Processing, for retrieving
the PC-Range query answers. Specifically, the query procedure tra-
verses those nodes/tuples in the index I that may satisfy the range
predicate PR, for example, intersecting with a query region QR,
and return the resulting tuples with consistent scores greater than a
threshold αR ∈ [0, 1). We maintain a candidate set Scand storing
PC-Range candidates (line 1). Initially, we traverse the index I [5]

and retrieve all the candidates in Scand. Note that, during the in-
dex traversal, we visit those nodes that both intersect with the query
region QR in the range predicatePR and have their MAX score ag-
gregates in nodes greater than threshold αR (since all tuples under a
node can be safely pruned in case its MAX aggregate≤ αR; line 2).
Then, for each tuple tj ∈ Scand, we retrieve its pre-computed con-
sistent score scoreR(tj) = tj .Prpw, and (if scoreR(tj) > αR)
output it to the PC-Range answer set PC-Range_ans (lines 3-6).
Finally, we return PC-Range answers in PC-Range_ans (line 7).

Procedure Pre_Processing {
Input: an inconsistent probabilistic databaseD and integrity constraints IC
Output: inconsistency graph Ginc and index I
(1) obtain pairwise inconsistent alternatives inD and construct an inconsistency

graph Ginc from IC
(2) for each inconsistent tuple tj ∈ D
(3) pre-compute tj .Prw and tj .Prpw // Eqs. (9) and (7)
(4) pre-compute other statistics // e.g., max{tm.p, 1− tm.p}
(5) construct an R-tree index I overD, where each tuple is associated with

pre-computed values and each node has an MAX consistent score aggregate
}

Figure 5: Data pre-processing for CQA.
Procedure PC-Range_Processing {

Input: index I on an inconsistent probabilistic databaseD, a range predicate PR:
query region QR, and a consistent score predicate PS : αR

Output: the answer to the PC-Range query
(1) PC-Range_ans = ∅; Scand = ∅;
(2) traverse the index I and obtain Scand satisfying range predicates PR

and with MAX consistent score aggregates in nodes > αR

(3) for each tj ∈ Scand

(4) let scoreR(tj) = tj .Prpw // Eq. (7)
(5) if scoreR(tj) > αR

(6) add 〈tj , scoreR(tj)〉 to PC-Range_ans
(7) return PC-Range_ans

}
Figure 6: Procedure of PC-Range query answering.

PC-Join Query Procedure: The PC-Join query is similar to PC-
Range. The difference is that, rather than one single database, PC-
Join is conducted over two inconsistent probabilistic databases DA

and DB (with indexes IA and IB , respectively) with join pred-
icates PJ , for example, tuple pairs within ε-distance from each
other. Thus, we first conduct spatial join [24], where on the node
level, the multiplication of MAX aggregates in node pairs should be
greater than αJ . Then, we can obtain a candidate set Scand contain-
ing pairs, 〈tA, tB〉, satisfying the join predicate PJ : dist(tA[A],
tB [A]) ≤ ε on join attributes inA, where tA ∈ DA and tB ∈ DB .
The consistent score of 〈tA, tB〉 is given by Eq. (8), using the
pre-computed values tA.Prpw and tB .Prpw. We omit the similar
pseudo code here.

5.2 PC-Topk Query Processing

5.2.1 PC-Topk Pruning Rationale
Recall from Section 4.4 that, to answer PC-Topk queries involv-

ing both predicates PT and PS , we need to compute the consistent
score scoreT (tj) given by Eq. (15), and in turn we only need to
calculate the function M(tj , i) . However, the exact computation
of function M(tj , i) for some tuple tj and rank i may take ex-
ponential time complexity in the worst case. Inspired by this, in
the sequel, we propose a pruning technique, which computes the
lower/upper bounds of M(tj , i) at a lower cost.

Without loss of generality, we denote lower and upper bounds
of M(tj , i) as Mlb(tj , i) and Mub(tj , i), respectively. That is,
Mlb(tj , i) ≤ M(tj , i) ≤ Mub(tj , i). Then, the consistent score
scoreT (tj) in Eq. (15) can be bounded by an interval [scorelb(tj),
scoreub(tj)], where

scorelb(tj) =
∑

i>0

w(tj , i) ·Mlb(tj , i), (19)

scoreub(tj) =
∑

i>0

w(tj , i) ·Mub(tj , i). (20)
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Therefore, we have the pruning rule for PC-Topk as follows.
LEMMA 5.1. (Pruning Rule for PC-Topk) Assume that we have

seen (j − 1) tuples in Tj−1 so far, and let threshold τ be the k-th
largest score lower bound among tuples in Tj−1. Then, tuple tj

can be safely pruned, if it holds that scoreub(tj) < τ .
Proof. Since scoreub(tj) is an upper bound of consistent score
scoreT (tj), we have scoreT (tj) ≤ scoreub(tj). Then, by the
lemma assumption (scoreub(tj) < τ ) and the inequality transition,
it holds that scoreT (tj) < τ . Since threshold τ is the k-th largest
score lower bound for tuples we have seen so far, there must exist
k tuples in Tj−1 whose scores are not smaller than tj . Thus, from
Definition 3.5, tj cannot be the answer to the PC-Topk query. 2

Thus, by utilizing Lemma 5.1, we can prune tuples whose con-
sistent scores are definitely lower than those we have seen.

5.2.2 Lower/Upper Score Bounds
Computation of Lower/Upper Bounds for M(tj , i): We next de-
rive lower/upper bounds for M(tj , i) in Eq. (17), where M(tj , i)
is the probability that tuple tj has rank i in some repaired possible
worlds rpw(D). That is, we want to obtain the weight that, among
(j − 1) tuples in Tj−1, there are exactly (i − 1) tuples appearing
in possible worlds pw(D) but not in repair worlds rw(D).

Now recall from Eq. (10) that, we can compute the total weight,
NRW(Ginc), of repair worlds in an inconsistency graph Ginc, which
is a summation of appearance probabilities for all the repair worlds.
Thus, (tj .Prpw · NRW(Ginc)) is the weight that tj is in repaired
possible worlds.

Next, to compute lower/upper bounds for M(tj , i), we further
consider the (j − 1) positions in Tj−1 having higher ranks than
tj . In fact, given any repair world rw(D), there are two possible
cases for any tuple (position) tm ∈ Tj−1. The first case is that tm

is not in repair worlds rw(D) holds. In this case, the conditional
probability:

Pr{tm ∈ rpw(D)|tm /∈ rw(D)} = tm.p.

Similarly, we have:
Pr{tm /∈ rpw(D)|tm /∈ rw(D)} = 1− tm.p.

On the other hand, the second case is that tm ∈ rw(D) holds
(no matter whether or not tm ∈ pw(D)). In this case, we have the
conditional probability:

Pr{tm /∈ rpw(D)|tm ∈ rw(D)} = 1.

Without loss of generality, let nmin and nmax be the minimum
and maximum numbers of deleted tuples in Tj−1 for any repair
worlds. We can infer that, among (j − 1) positions in Tj−1, there
are n ∈ [nmin, nmax] positions corresponding to the second case
above (i.e., tuples in these positions are in repair worlds). More-
over, there are (i − 1) positions corresponding to the first case
where tuples appear in the repaired possible worlds. The remaining
(j − n − i) tuples corresponding to the first case where tuples do
not appear in the repaired possible worlds.

Therefore, assuming Wm is the m-th largest existence probabil-
ity tl.p for any tl ∈ Tj−1 (i.e., W1 ≤ W2 ≤ ... ≤ Wj−1), we can
obtain the bounds for M(tj , i) by the following lemma.

LEMMA 5.2. Lower/upper bounds of M(Tj , i) are given by:

tj .Prpw ·NRW(Ginc
) ·

i−1∏

m=1

Wm ·
j−1∏

m=i+nmin

(1−Wm) ≤ M(tj , i)

≤ tj .Prpw ·NRW(Ginc
) ·

j−1∏

m=j−i+1

Wm ·
j−i−nmax∏

m=1

(1−Wm). (21)

Proof. Derived from the definition of M(Tj , i) in Eq. (16). 2

Early Stopping Condition: By utilizing the derived upper bound
in Eq. (21), we can give early stopping condition. That is,

(a) (b) (c)
Figure 7: Illustration of incremental Aj computation (“•” represents
labeled vertex and “◦” denotes unlabeled one). (a) |Aj | = |Aj−1|, and
vj is unlabeled. (b) |Aj | = |Aj−1|, and vj is unlabeled. (c) |Aj | =

|Aj−1|+ 1, and vj and vl are labeled.

LEMMA 5.3. Let θj = max∀tm{tm.Prpw} · NRW(Ginc) ·∏j−nmax−1
m=1 max{Wm, 1 −Wm}. Then, if it holds that θj ≤ τ ,

we can terminate the query procedure early.
Computation of nmin and nmax: As mentioned earlier, the re-
pair of an inconsistent probabilistic database is equivalent to vertex
deletions in its inconsistency graph. Thus, the computation of nmin

and nmax is exactly to find minimum and maximum numbers of
deleted vertices in the graph such that no edge exists.

Clearly, the value of nmax can be given by the number of in-
consistent tuples in Tj−1 (i.e., we delete all inconsistent tuples in
Ginc). However, for the problem of computing nmin, it is actu-
ally equivalent to the one that finds the minimum vertex cover in a
graph3. Since this problem is NP-hard, one can use factor-2 approx-
imation, which repeatedly adds an edge to a set A, then removes its
two endpoints from the graph. The resulting edge set A has the
property that |A| ≤ |OPT |, where OPT is the minimum vertex
cover and | · | is the cardinality of a set. Thus, we let nmin = |A|.

Since we need to compute the lower/upper score bounds in In-
equality (21) for each tuple tj we encounter, it is not efficient to
online compute nmin by the factor-2 approximation algorithm ev-
ery time from scratch. Therefore, below, we discuss how to incre-
mentally compute a lower bound, |Aj | (= nmin), of |OPT | for
Tj , given Tj−1 with |Aj−1|. Specifically, we assume that each ver-
tex in the graph is either labeled or unlabeled. Labeled vertices are
endpoints of some edges selected in the set Aj .

Without loss of generality, denote Ginc
j as a subgraph of incon-

sistency graph Ginc containing vertices vm, corresponding to tuples
tm ∈ Tj . We consider adding vertex vj to Ginc

j−1 and appropriately
update |Aj−1| to obtain |Aj |. There are 2 cases:

• Case 1: When vj is not connected with any unlabeled ver-
tex (i.e., either vj is all connecting with the labeled vertices
vr ∈ Ginc

j−1 or vj is disconnected, as illustrated in Figures
7(a) and 7(b), respectively), we let |Aj | = |Aj−1| and vj

remains unlabeled. This is because according to factor-2 ap-
proximation algorithm, vl are endpoints of edges in Aj−1,
and after deleting vertices vl, the edge vjvl will also be re-
moved. Thus, the size of edge set |Aj | remains the same.

• Case 2: When vj is connected with some unlabeled ver-
tex vl ∈ Ginc

j−1 (as shown in Figure 7(c)), we let |Aj | =
|Aj−1| + 1, and then both vertices vj and vl are labeled.
This is because we add an edge vjvl to Aj−1, and thus the
size of Aj is given by |Aj−1|+ 1.

5.2.3 PC-Topk Query Procedure
Next, we illustrate the PC-Topk query procedure, namely PC-

Topk_Processing, in Figure 8. We use τ to record the score
threshold (line 1), which can be used for pruning mentioned in
Lemma 5.1. We traverse the index I and retrieve tuples in non-
increasing order of their preference values f(·) [35] (line 2). For
the first k alternatives, we can calculate their score lower/upper
3http://en.wikipedia.org/wiki/Vertex_cover

311



Procedure PC-Topk_Processing {
Input: index I on a probabilistic databaseD, query predicates PT : a preference

function f(·), weight function w(tj , i), and integer k, and consistent
score predicates PS

Output: the answer to the PC-Topk query
(1) τ = −∞; PC-Topk_ans = ∅; // initialization
(2) retrieve tuples tj in non-increasing order of f(tj) from index I until θj ≤ τ
(3) for the first k tuples tj

(4) compute score lower/upper bounds scorelb(tj) and scoreub(tj)
and set τ to the k-th largest score lower bound // Inequality (21)

(5) add tj to PC-Topk_ans
(6) for each of the subsequent tuples tj

(7) compute score lower/upper bounds scorelb(tj) and scoreub(tj)
(8) if scoreub(tj) > τ // via pruning rule, Lemma 5.1
(9) PC-Topk_ans = PC-Topk_ans ∪ {tj}
(10) if scorelb(tj) > τ , then update the τ value
(11) refine candidates in PC-Topk_ans and return PC-Topk answers

}
Figure 8: Procedure of PC-Topk query answering.

bounds, set threshold τ to the k-th largest score lower bound, and
add them to a candidate set PC-Topk_ans (lines 3-5). Next, for
the subsequent tuples tj that comes in, we compute their score
lower/upper bounds similarly. If the score upper bound scoreub(tj)
of tj is not greater than threshold τ , then tj is a false alarm and
can be removed via our pruning rule (in Lemma 5.1); otherwise,
it indicates that tj is a candidate, and we add it to candidate set
PC-Topk_ans (lines 6-9). Note that, in case the score lower
bound scorelb(tj) of tj is greater than τ , then we can update the
τ value to further improve the pruning power (line 10). Finally,
we refine the candidate set PC-Topk_ans and return the actual
PC-Topk answers (line 11).

Parameters Settings
[emin, emax] (PC-Range) [0, 0.04], [0, 0.08], [0, 0.12], [0, 0.16], [0, 0.2]
ε (PC-Join) 0.01, 0.02, 0.03, 0.04, 0.05
k (PC-Topk) 100, 200, 500, 800, 1000
γ 0.04%, 0.06%, 0.1%, 0.16%, 0.2%
d 2, 3, 4, 5
N 10K, 20K, 30K, 40K, 50K

Table 6: The experimental settings.

6. EXPERIMENTAL STUDY
In this section, we evaluate the performance of consistent query

answering (CQA) in inconsistent probabilistic databases, including
PC-Range, PC-Join, and PC-Topk queries. Specifically, we test
both real and synthetic data sets. For the real data, we use the In-
ternational Ice Patrol, IIP , Iceberg Sighting Dataset4 [27] from
1998 to 2000, which contains the locations (latitude, longitude)
of the iceberg. Similar to [27], we assign each sighting record with
a confidence (i.e., the existence probability) based on the source of
sighting. That is, we transform sources R/V (radar and visual), VIS
(visual only), RAD (radar only), LOW (low earth orbit satellite),
MED (medium earth orbit satellite), HIGH (high earth orbit satel-
lite), and EST (estimated) to (random) probability values within
[1, 0.9], (0.9, 0.8], (0.8, 0.7], (0.7, 0.6], (0.6, 0.5], (0.5, 0.4], and
(0.4, 0.3], respectively. For synthetic data, we first generate alter-
natives in a probabilistic database with attribute values within [0, 1]
following either Uniform or Zipf (with skewness 0.8) distribution,
and obtain data sets uniform and skew, respectively. Then, for
each alternative tj , we randomly produce its existence probability
tj .p within [0, 0.9] and repair probability tj .rp in [0, 1]. Similar to
[20], we simulate the inconsistency among tuples by randomly se-
lecting pairs of tuples and treating them as inconsistent pairs. This
way, a total number of (γ · N ) tuples are connected to at least one
edge in an inconsistency graph of the database. We use an R*-tree
[5] with page size 4K to index each of the data sets above with
pre-computed values (as mentioned in Section 5) to help fast CQA.

We measure the CQA performance in inconsistent probabilistic
databases in terms of the time cost. Table 6 depicts the parameter
4http://nsidc.org/data/g00807.html
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Figure 10: PC-Range vs. query range [emin, emax].

settings of our experiments, where the numbers in bold font are de-
fault values. In each set of subsequent experiments, we will test
one parameter while fixing the default values for others. All the ex-
periments were run on a Pentium IV 3.2GHz PC with 1G memory.
The experimental results are the average of 50 queries.

6.1 PC-Range Performance
The first set of experiments test the performance PC-Range queries

on both real and synthetic data. Recall that PC-Range returns those
tuples satisfying both range predicates and consistent score predi-
cates. In particular, the consistent score given by tj .Prpw in Eq. (9)
for each tuple tj can be offline pre-computed. In turn, we need to
calculate the weight NRW(·) in Eq. (10). Figure 9 illustrates the to-
tal pre-computation time of 3 data sets uniform, skew, and IIP
with default parameter values. When the percentage of inconsis-
tent tuples varies from 0.04% to 0.2%, the pre-computation time
increases due to the higher recursive traversal cost in the inconsis-
tency graph. Once the pre-computed data (e.g., tj .Prpw and Wm)
are obtained, we store them with tuples in leaf nodes of the index,
which can be returned as consistent scores for PC-Range queries
(or help score calculations for PC-Join or PC-Topk).

Figure 10 illustrates the time cost of PC-Range answering for
query regions of different sizes, which are centered at locations
following the data distribution, and with random query extent in
[emin, emax] on each dimension, where [emin, emax] varies from
[0, 0.04] to [0, 0.2], consistent score predicate αR = 0, and other
parameters are set to default values. In figures, larger query region
results in higher time cost, since more PC-Range answers (and their
consistent scores) need to be accessed and returned (incurring more
CPU time and I/O cost).

Moreover, for synthetic data uniform and skew, we test the
same set of experiments by varying dimensionality d and the data
size N . The results are reported in Figures 11(a) and 11(b), respec-
tively. When dimensionality d varies from 2 to 5, the time cost first
decreases and then slightly increases. This is because for higher
dimensionality d (i.e., more sparse data distribution), the number
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Figure 13: PC-Topk vs. parameter k.

of the candidates to retrieve becomes smaller (thus, incurring lower
time cost). On the other hand, large d will result in worse query
performance on the R-tree index [36], which causes the time cost
slightly increases for d = 5 compared with that for d = 4. Further,
in Figure 11(b), the time cost smoothly increases with the increase
of data size N , indicating good scalability of our approach.

6.2 PC-Join Performance
Figure 12(a) evaluates the PC-Join query performance by vary-

ing the joining parameter, similarity threshold ε, from 0.01 to 0.05,
on three combinations of data sets with the same size, uniform
-skew, uniform-uniform, and skew-skew, with default pa-
rameter settings, where consistent score predicate αJ = 0. In
particular, after obtaining candidate pairs from indexes, we return
those pairs with consistent scores (given by Eq. (8)) above αJ .
When threshold ε becomes larger, more PC-Join results will be re-
trieved, and thus higher time cost is required (nonetheless, below
2 seconds). Due to the data distributions, data set pairs uniform
-uniform and skew-skew have more joining tuples, thus result-
ing in higher time cost than uniform-skew.

Similarly, Figure 12(b) presents the same set of experiments on
data sets with different data sizes N . The trends observed from
figures are similar to that of PC-Range queries, and PC-Join can be
processed efficiently in terms of the time cost. For other data set
combinations, that with different αJ , or that with different sizes,
the results are similar and thus omitted due to the space limitation.

6.3 PC-Topk Performance
In this subsection, we present the query performance of PC-Topk

on both real and synthetic data. Note that, PC-Topk queries can
have different top-k semantics [27], by choosing various weight
functions w(tj , i) in score function Υw(D, tj) (given by Eq. (4)).
Due to the similar trend with different weight function, in the sub-
sequent experiments, we will report the experimental results with
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Figure 14: PC-Topk vs. percentage of inconsistent tuples.
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Figure 15: PC-Topk vs. dimensionality d.

the PT-k semantics [23, 27], where w(tj , i) = 1 for i ≤ k and
w(tj , i) = 0 for i > k. For the preference function f(·), we test
the linear function with random coefficients ci within (0, 1) on each
dimension i (i.e., f(x) =

∑d
i=1 ci · x[i]). Nonetheless, our pro-

posed approaches are applicable to any monotonic function f(·)
and we will not present the similar results due to the space limi-
tation. In the sequel, we will report the time cost of our PC-Topk
approach, which applies the early stopping condition (mentioned in
Section 5.2.2). Moreover, we compare our approach with a base-
line method, which sequentially scans the database and calculates
the consistent score for each candidate in the database. We show
the speed-up ratio, defined as the time cost of the baseline method
divided by that of our PC-Topk approach.

Figure 13 illustrates the experimental results of PC-Topk with
different k values from 100 to 1, 000 on synthetic and real data
sets, where default values are used for other parameters. In figures,
when the parameter k increases, the required time cost of our PC-
Topk approach also becomes higher. This is because with larger
k, more candidates need to be retrieved from the database for the
refinement. Nonetheless, the overall time cost remains small (be-
low 1.63 seconds), which indicates the efficiency of our approach.
Furthermore, compared with the baseline method, our PC-Topk ap-
proach can save the time cost by more than 3-7 orders of magni-
tude, which indicates the effectiveness of our filtering techniques
via score bounds as mentioned in Section 5.2.2.

Figure 14 studies the effect of the percentage of inconsistent tu-
ples (0.04% ∼ 0.2%) in the inconsistent probabilistic database on
the PC-Topk query performance, where other parameters are set to
their default values. From the experimental results on both real and
synthetic data sets, we find that the time cost of our PC-Topk ap-
proach slightly increases with more inconsistent tuples, since the
candidate refinement needs to compute consistent scores in a larger
inconsistency graph, thus taking more time. Further, our approach
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Figure 16: PC-Topk vs. data size N .

outperforms the baseline method by 3-9 (or 3-6) orders of mag-
nitude for synthetic (real) data. For more inconsistent tuples, the
speed-up ratio increases. This is because the baseline method has
to traverse the graph with much higher cost for each candidate,
whereas our PC-Topk can utilize the effective filtering technique
to prune candidates at a low cost. Thus, it indicates the good scala-
bility of our approach against the percentage of inconsistent tuples.

Figure 15 varies the dimensionality, d, of uniform and skew
data sets from 2 to 5, where default values are used for other pa-
rameters. In figures, the time cost of both data sets increases and
speed-up ratio decreases for large d, since the candidate retrieval
conducted in higher dimensional space is more costly through the
index [36]. Nevertheless, the time cost is below 0.87 second, and
the speed-up ratio compared with baseline remains high, that is,
about 4-5 orders of magnitude.

Finally, Figure 16 reports the scalability about the PC-Topk query
performance against different sizes N of the database. Specifically,
we vary N from 10K to 50K and set other parameters to their de-
fault values. The results show that time cost smoothly increases
for large data size. Moreover, the speed-up ratio compared with
the baseline method increases by around 3-7 orders of magnitude,
which indicates the good scalability of our PC-Topk approach.

7. CONCLUSION
This paper studies the important problem of consistent query

answering (CQA) in inconsistent probabilistic databases. Specif-
ically, we propose the notion of repair worlds using a graph repre-
sentation, and reduce the CQA problem to the one in the repaired
possible worlds (involving both repair and possible worlds). Under
the all-possible-repairs semantics, we consider three probabilistic
consistent queries, PC-Range, PC-Join, and PC-Topk, in inconsis-
tent probabilistic databases. To enable fast CQA, we propose ef-
ficient approaches to process queries, including effective filtering
methods to prune false positives. We demonstrate through exten-
sive experiments the efficiency and effectiveness of our approaches.
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