
Efficient Set-Correlation Operator Inside Databases

Shaoxu Song

The Hong Kong University of Science and
Technology, Hong Kong

sshaoxu@cse.ust.hk

Lei Chen

The Hong Kong University of Science and
Technology, Hong Kong

leichen@cse.ust.hk

ABSTRACT

Large scale of short text records are now prevalent, such as
news highlights, scientific paper citations, and posted mes-
sages in a discussion forum, which are often stored as set
records in (hidden) databases. Many interesting informa-
tion retrieval tasks are correspondingly raised on the cor-
relation query over these short text records, such as find-
ing hot topics over news highlights and searching related
scientific papers on a certain topic. However, current rela-
tional database management systems (RDBMS) do not di-
rectly provide support on set correlation query. Thus, in
this paper, we address both the effectiveness and efficiency
issues of set correlation query over set records in databases.
First, we present a framework of set correlation query inside
databases. To our best knowledge, only the Pearson’s cor-
relation can be implemented to construct token correlations
by using RDBMS facilities. Thereby, we propose a novel
correlation coefficient to extend Pearson’s correlation, and
provide a pure-SQL implementation inside databases. We
further propose optimal strategies to set up correlation fil-
tering threshold, which can greatly reduce the query time.
Our theoretical analysis proves that, with a proper setting
of filtering threshold, we can improve the query efficiency
with a little effectiveness loss. Finally, we conduct exten-
sive experiments to show the effectiveness and efficiency of
proposed correlation query and optimization strategies.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications

General Terms

Measurement, Performance

1. INTRODUCTION
Short text records become more and more popular, which

are often stored as set records in (hidden) databases. For
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example, in many news agencies web sites, instead of offer-
ing full text documents, often, news highlights are shown
on the front page to attract users’ interests. These news
short highlights are examples of set records. Given another
example, in many scientific paper citation web sites, such
as Citeseer and ACM Portal, paper citations are given in
the form of short texts. Other examples of short texts as
set records include users’ text inputs in the logs of a search
engine and reply messages in a discussion forum. Efficient
set similarity operators over such set records have been well
studied [2, 15, 22].

With the emerging of these short text records, a very use-
ful yet interesting query, correlation query, has been intro-
duced in many applications to find the correlated records
(e.g., with similar topics [36]). For example, in order to
detect hot topics among the news highlights from different
news agencies (e.g. BBC, CNN, and AOL), we can conduct
a correlation query for each highlight (a short set record) to
find a number of other highlights in the database that are
correlated to the query on similar topics. The set record that
has the most number of correlated records can be treated as
the hot topic in the current database. Given another exam-
ple application on managing scientific literature data, liter-
ature records can be collected from different personal web
pages, official publication web sites (IEEE or ACM), and
conference proceedings. As shown in Table 1, we usually
store paper citations as set records in databases. Again, it
is promising to conduct a query of correlated records over
set records in this database. For example, suppose that a
fresh postgraduate student want to search papers related to
“record linkage”. A comprehensive correlation query result is
expected to return the literatures in“duplicate record detec-

tion”, “reference reconciliation” and “entity resolution” as well.
Motivated by these interesting applications, we study the
correlation query over large scale set records in databases.

Unfortunately, current relational database management sys-
tems (RDBMS) do not directly provide support on correla-
tion query. A novel framework should be studied by using
current RDBMS facilities to support the correlation query
on set records effectively and efficiently inside databases. We
emphasize the importance of implementing correlation query
inside RDBMS, since it can be naturally extended to correla-
tion join over set records as well. With the implementation
in RDBMS, correlation query can benefit in the following
aspects. First, we can utilize the optimization facilities pro-
vided by RDBMS engine, such as join order selection, to
automatically achieve the optimal performance [9, 5, 18].
Second, with the help of RDBMS, we can handle very large
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Table 1: Set records in a scientific literature

database

ID Paper (Set records)

1 Duplicate Record Detection: A Survey; Ahmed
K. Elmagarmid et al.; record linkage, data de-
duplication, entity resolution

2 Record Linkage: Similarity Measures and Algo-
rithms; SIGMOD Tutorial 2006.

3 A latent dirichlet model for unsupervised entity res-
olution; Lise Getoor; www.cs.umd.edu/~getoor

4 Reference reconciliation in complex information
spaces; Xin Dong; record linkage, merge/purge, de-
duplication, reference matching, object identifica-
tion, identity uncertainty

size of correlations for real-world vocabularies, for example,
consider the vocabulary from the Web. Therefore, in this
study, we mainly focus on seeking and querying correlations
inside databases.

Contributions. In this paper, motivated by the huge amount
of set records stored in databases, we address both the effec-
tiveness and efficiency issues in the correlation query over
set records in databases. To our best knowledge, this is a
first attempt to support correlation query over set records
inside databases. Our contributions in this paper are sum-
marized as follows:

• We introduce a framework for representing and query-
ing correlations in databases (in Section 3), and present
a pure-SQL implementation of correlation query by
utilizing the optimization facilities in current RDBMS.
By utilizing the facility provided by RDBMS, we can
process the correlation query efficiently and address
the issue of scalability. Furthermore, the SQL-based
implementation of correlation query can be extended
easily to support other applications on set records.

• We develop a novel token inverted correlation func-
tion based on the co-occurrence statistics of tokens in
records (in Section 4), which extends and outperforms
the Pearson’s correlation coefficient in terms of effec-
tiveness.

• Our theoretical analysis proves that with a certain fil-
tering threshold, we can improve query efficiency with
a little effectiveness loss (in Section 5). Our extensive
experiments also confirm the optimization analysis.

• Our proposed method achieves about 20% higher ac-
curacy of query results and costs little extra runtime
compared to the similarity matching query. The pro-
posed approach scales well under large data sizes in
the experiments (in Section 6).

The rest of this paper is organized as follows: In Section 3,
we introduce a query framework with respect to correlations
on the set record, and the corresponding implementation
in RDBMS. Section 4 presents the definition of token cor-
relations, as well as the construction of correlations inside
databases. Section 5 addresses how to answer correlation
queries efficiently, and provides theoretical analysis for opti-
mization issues. Section 6 demonstrates the performance of
our approach in the experiments. Finally, we conclude this
paper in Section 7.

2. RELATED WORK
Techniques on set similarity operators over set records

have been well studied [2, 15, 22], where the matching sim-
ilarity is mainly considered between set records. Instead of
set similarity, in this paper, we mainly focus on operators
of set correlation. In order to evaluate the correlated set
records, most of the correlation query approaches [7, 19, 38]
use the Pearson’s correlation coefficient [37] to measure cor-
relations, which can also be implemented in databases.

Recently, Sahami and Heilman [30] measure the corre-
lation between short set records by leveraging web search
results to provide greater context for short texts. Thus,
the correlation relies heavily on the quantity of search re-
sults. Chirita et al. [10] propose the query expansion by us-
ing users’ personalized information. Several techniques for
determining expansion terms from personal documents are
introduced, including co-occurrence statistics and external
thesauri. Theobald et al. [34] also study the query expan-
sion in a dynamical and incremental way. A priority queue
is used for maintaining result candidates and pruning of can-
didates together with probabilistic estimators of candidate
scores. Liu et al. [26] utilized the WordNet to formulate the
correlation between word tokens in documents. However,
these techniques require knowledge outside databases and
can hardly be directly applicable by using current RDBMS
facilities. In this paper, instead of using the general domain
knowledge outside databases, we are interested in conduct-
ing correlation quires inside databases.

The retrieval of small text records as sentence level is also
studied in [27, 1, 4, 25, 24]. Li and Croft [25, 24] learn
sentence level information patterns from the training data
to identify potential answers. Murdock and Croft [28] con-
duct the sentence retrieval as translations from the query to
the results. A parallel corpus has to be exploited for train-
ing the translation model. Fung and Lee [13] also develop
the correlations of new words for translation, by consider-
ing the co-occurrence of other (seed) words in the sentences.
Cao et al. [8] develop a dependency model to incorporate
the co-occurrence information in language modeling. Un-
fortunately, the proposed techniques with language models
are too complicated to be supported by using the current
RDBMS facilities, and again, not directly applicable in our
correlation query (as well as join) problem inside databases.

Furthermore, learnable similarity metrics on set records
have been investigated in recent studies. For example, Jin
et al. [20] propose a supervised term weighting scheme by
considering the correlation between word frequency and cat-
egory information of documents. Bilenko and Mooney [6]
compute the comparison similarity vector of two records and
classify the vector as similar or not with a similarity value
output. Sarawagi et.al. [32] propose an active leaning ap-
proach by picking up the most uncertain data which will
be labeled manually. These approaches are learning tech-
niques, which need training data sets. Different from the
learning approach, in this paper, we mainly focus on the ap-
proaches that explore correlations inside the dataset and do
not require pre-labeled training data.

Hofmann [16, 17] proposes the probabilistic latent seman-
tic analysis (PLSA), which addresses the problem of dif-
ferent words with a similar meaning or the same concept.
However, the probabilistic latent semantic analysis as an ex-
tension of latent semantic analysis LSA [12] is a type of
dimension reduction techniques. Rather than removing the
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Figure 1: Storage scenario of correlation query

tokens, our correlation-based query enriches the correlations
between tokens and finds the correlations between tokens
without any class knowledge.

3. SET CORRELATION QUERY
In this work, we consider set records stored in relational

databases. This section provides a framework to support
correlation query inside databases. Formally, we define the
correlation query problem over set records as follows:

Problem 3.1 (Correlation Query). Given a query
q (a set record with several tokens as well), the correlation
query returns the records r ranked by cor(q, r), where cor is
the correlation between q and r.

3.1 Query Framework
Due to the sparse features of text data, we extend a verti-

cal schema to store set records [5]. The data storage scenario
in query framework is illustrated in Figure 1. Specifically,
we segment each record into a set of tokens (e.g. words or
q-grams) and store all the pairs of token tid and record rid
in the table records(tid, rid). As presented in Section 4, we
can compute a correlation weight of each token pair in the
database. These token correlations corresponding with their
weights are represented in the view, correlation(ti, tj , wij),
where wij denotes the correlation weight cor(ti, tj) between
tokens ti and tj .
Similarity matching-based query of short text strings in

databases has been studied by [11, 14, 9, 3]. The query is
directly performed on records based on matching tokens be-
tween the query and records. As shown in Figure 2(a), we
can evaluate the similarity matching query in our framework
by conducting a Join operation on the query and records ta-
bles with query.tid = records.tid, i.e., the similarity match-
ing query:

Ts ← query ./tid records

The similarity matching query generates all candidate records
which have common matching tokens with the query, when
the results of Ts are grouped by the record rid. For each
group of a record, we can compute an aggregation score as
the matching similarity, e.g., sim(q, r) = |q ∩ r|.
To answer correlation queries, we have to consider all the

pairs of tokens (ti, tj) between the query q and record r.
Based on the pairs of tokens with correlations, we can de-
termine the correlation of the query q and r. Therefore,
as shown in Figure 2(b), we consider the correlations be-
tween set records in the query and records directly one by
one. Specifically, for each pair of query and record (q, r),
we have to search the correlation data frequently, since the

Figure 2: Query framework

correlations between tokens in the query and records are
represented in the correlation view. In terms of storage
in Figure 1, we conduct a Cartesian product on the tables
of query and records to generate a large number of results
as candidates. Then, token correlations are performed on
these pairs of candidates to select the records with highest
correlations, i.e., the q − r − c correlation query order:

Tc ← (query × records) ./tidi,tidj correlation

The correlation query with q − r − c order considers all the
possible combination of token pairs across the query and
each record, and then checks whether the correlations be-
tween those token pairs exist. Again, after finding all the
candidates of query results in Tc, the efficient facilities in
RDBMS, such as GROUP BY and ORDER BY, can be utilized
directly for aggregating and ranking the results.

Moreover, since the data are stored in a relational database,
we can automatically optimize the correlation query by uti-
lizing the efficient facilities provided by RDBMS, such as
join order selection. Note that the results of Cartesian prod-
uct are large in size according to the q − r − c correlation
query order, where most pairs of tokens might not have
correlations. Thus, rather than enumerating all the pairs
of tokens between the query and records, we select the to-
kens with correlations first. In terms of storage in Figure 1,
we first perform the Join operation on the table of query
and correlation, rather than the connecting on query and
records. Since the query size is small, the result of the first
join step will be small as well. Then, we query the small
size output in the records like the similarity matching ap-
proaches. Consequently, the correlation query is rewritten
in the q − c− r order,

T ′

c ← (query ./tidi correlation) ./tidj records

i.e., first generating all the tokens correlated with the tokens
in the query, and then performing the efficient matching with
records based on common (matched) tokens. We use SQL
to implement correlation queries, thus, the query optimizer
of RDBMS can automatically be used to select the above
correct join order based on the join sizes and available in-
dexes.
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Note that this framework can be naturally extended to
correlation join over set records as well. That is, we replace
query with set records on attribute A1 in Figure 1, and
records denote the set records on attribute A2. Then, the
correlation join over A1 and A2 can be evaluated, which is
out of the scope of this paper.

3.2 Record Correlation
We now define the correlation between two set records.

There are many distance functions designed for measuring
string similarity, including matching coefficient, Jaccard co-
efficient, Euclidean distance, Cosine similarity and so on [31].
These distance functions consider pairs of matched tokens
between two strings, where the relationship between matched
tokens are one-to-one. In our correlation query case, instead
of matched token pairs, we study correlated token pairs be-
tween query q and record r. Note that the correlations be-
tween tokens are many-to-many relationship, that is, one
token may be correlated with several tokens in the other set
record.
Given a query q and a record r, C(q, r) is used to represent

the set of all the pairs of tokens between q and r whose token
correlations are greater than 0.

C(q, r) = {cor(ti, tj) | ti ∈ q, tj ∈ r, cor(ti, tj) > 0} (1)

where cor(ti, tj) denotes the token correlation between ti
and tj , i.e., wij in Figure 1. In the following Section 4, we
introduce the construction of such token correlations, i.e., ei-
ther the Pearson’s correlation in formula 3 or our proposed
inverted correlation in formula 9. We evaluate both token
correlation measures through extensive experiments and re-
port the results Section 6.
Consequently, we aggregate all the token correlations cor(ti, tj)

in the set of C(q, r) as the record correlation

cor(q, r) =
∑

ti∈q

∑

tj∈r

cor(ti, tj) (2)

As mentioned, such record correlation score can be naturally
computed by an aggregation query provided by RDBMS,
once token correlations cor(ti, tj) are obtained.

3.3 Correlation Query Implementation
As presented in the query framework in Section 3.1, we

store the query in the table query(qid). The following algo-
rithm aggregates all the correlation weights of each record.
The returned results of rid are ordered in descending or-
der according to the scores. Though the algorithm is im-
plemented with q − c − r order, we can rely on the query
optimizer of RDBMS to select the optimal join order, most
probably the q − c− r order.

SELECT SUM(T.Cweight) AS score, D.rid

FROM records AS D,

(SELECT C.tid2 AS Ctid, C.weight AS Cweight

FROM correlation AS C, query AS Q

WHERE C.tid1 = Q.tid) AS T

WHERE D.tid = T.Ctid

GROUP BY D.rid

ORDER BY score DESC

In order to evaluate and compare the correlation query
and similarity matching query, we also present the imple-
mentation of the inverted index-based similarity matching

approach. The following algorithm counts all the matching
tokens between the query q and the record r as the similarity
score and rank the records in the descending order.

SELECT COUNT(*) AS score, r.rid

FROM records AS r, query AS q

WHERE r.tid = q.tid

GROUP BY r.rid

ORDER BY score DESC

4. CORRELATION CONSTRUCTION
As the framework illustrated in Figure 1 and 2, the key

issue of supporting correlation query is to construct token
correlations inside databases. Many sophisticated work on
measuring token correlations have been proposed in informa-
tion retrieval literature. Unfortunately, due to the limitation
of facilities provided by current RDBMS, most of such ad-
vanced techniques cannot be supported by databases. To
our best knowledge, only the Pearson’s correlation coeffi-
cient [37] can be implemented inside databases. Therefore,
in this section, we extend the Pearson’s correlation, namely
inverted correlation, and provide corresponding database
implementation.

4.1 Token Correlation
Assume that we have segmented an unstructured set record

into a set of tokens, e.g. words or q-grams. The Pearson’s
correlation coefficient [37] can be used to compute the cor-
relations between tokens ti and tj .

cor(ti, tj) =
Pr(ti, tj)− Pr(ti) Pr(tj)

√

Pr(ti) Pr(tj)(1− Pr(ti))(1− Pr(tj))
(3)

where Pr(ti) is the support of ti, i.e. Pr(ti) =
f(ti)
N

, f(ti) is
the number of records containing token ti and N is the total
number of records. In other words, Pr(ti) also denotes the
probability that token ti appears in a record in the database.
However, according to the information property of texts, a
token that appears frequently in the records in a dataset,
i.e., high f(ti) value, might not be important in evaluating
the correlations of records [33, 29]. For example, the word
token“and”may appear frequently in set records. However,
the correlation between token ti and token “and” does not
help greatly in finding correlated records.

Thus, to evaluate the correlations between tokens, we
first introduce the concept of inverted probability which has
been successfully adopted in the inverse document frequency
(idf) [33, 29]. The idf is based on the essential intuition that
a token appears frequently in different documents (records)
is not a good discriminator and should be associated with a
low feature weight; while a token with a low document fre-
quency means that it is more relevant to those documents
where it appears. The basic formula of idf is:

idf(ti) = log
1

Pr(ti)
= log

N

f(ti)
(4)

where N denotes the total number of documents (records),
and f(ti) is the number of documents (records) that contain
token ti. Similar to the case of documents in idf, we replace
the documents by our set records in this study.

Specifically, motivated by successes of the inverted doc-
ument frequency in retrieval of correlated text documents,
we propose the inverted probability of a token ti, which is
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defined as:

Pi(ti) = log
1

Pr(ti)
= log

N

f(ti)
(5)

where Pi(ti) denotes the inverted probability of token ti. A
higher frequency f(ti) of token ti appearing in records in-
dicates a lower inverted probability value Pi(ti). Moreover,
considering the case that two tokens ti and tj appear to-
gether, we define the joint inverted probability of ti and tj
as:

Pi(ti, tj) = log
1

Pr(ti, tj)
= log

N

f(ti, tj)
(6)

where f(ti, tj) denotes the number of records where both
token ti and tj appear, i.e. the joint frequency of (ti, tj).
Note that we can model the correlation relationship of to-

ken co-occurrence using a conditional probability. Given two
tokens ti and tj , the conditional probability of tj appearing
in a record when ti has already appeared in the same record
is:

Pr(tj | ti) =
Pr(ti, tj)

Pr(ti)
(7)

where Pr(ti, tj) denotes the probability of ti and tj appear-
ing together in a record.
Now, similar to the conditional probability in Equation 7,

we can compute the token correlations according to the
inverted probability with token frequency. Note that the
conditional probability describes an asymmetric relationship
from ti to tj . With the inverted probability, we define the
asymmetric correlation from token ti to tj as:

Cor(tj | ti) =
Pi(ti)

Pi(ti, tj)
=

log N
f(ti)

log N
f(ti,tj)

(8)

where we have Cor(tj | ti) 6= Cor(ti | tj). However, in the
real world, we prefer to describing the correlations between
two tokens in a symmetric way, i.e. if ti is correlated with
tj then tj is also correlated with ti. Therefore, we define the
token correlations formally in a symmetric style by consid-
ering both Cor(tj | ti) and Cor(ti | tj).

Definition 4.1 (Token Inverted Correlation). Given
two tokens ti and tj , the token correlation between ti and tj
can be represented by:

cor(ti, tj) = Cor(tj | ti)Cor(ti | tj)

=







log N
f(ti)

log N
f(tj)

(log N
f(ti,tj)

)2
if f(ti, tj) 6= 0

0 if f(ti, tj) = 0

(9)

where f(ti) and f(tj) denote the number of records contain-
ing ti and tj respectively, f(ti, tj) is the number of records
with both ti and tj , and N is the total number of records in
the database.

The semantic meaning of the correlation between tokens ti
and tj is described as the probabilistic relationship of these
two tokens appearing together in the same records within the
whole database. Specifically, the larger the value of f(ti, tj)
is, the higher the correlation between ti and tj . Thus, two
tokens appearing together frequently have high correlation.
On the other hand, for a fixed f(ti, tj) observation, if the
frequency values f(ti) and f(tj) of tokens ti and tj are large,

the correlation is low. Thereby, if two tokens ti and tj always
appear together in the same records, i.e. f(ti, tj) = f(ti) =
f(tj), we have the correlation cor(ti, tj) = 1. The intuition
can also be extended to the correlation between the token
ti and itself, i.e. cor(ti, ti) = 1. If two tokens ti and tj
never appear together in the same records, i.e. f(ti, tj) = 0,
then there is no correlation between these two tokens, i.e.,
cor(ti, tj) = 0. In fact, according to the definition of token
correlation, we have the following property:

Property 4.1. If the correlation cor(ti, tj) between two
tokens ti and tj exists, we have the correlation value in the
range of 0 < cor(ti, tj) ≤ 1.

Proof. At first, in the real application, we have f(t) �
N , i.e. N

f(t)
> 1. If the correlation between two tokens ti and

tj exists, then these two tokens should appear together in
some records, i.e., 0 < f(ti, tj)� N . Since each log N

f(t)
> 0

and log N
f(ti,tj)

> 0, the condition 0 < cor(ti, tj) is satis-

fied. Moreover, intuitively, ti and tj appearing together in
the records implicates that ti must exist in these records.
Therefore, we have f(ti, tj) ≤ f(ti) and f(ti, tj) ≤ f(tj),
which implies log N

f(ti)
≤ log N

f(ti,tj)
, and

Cor(tj | ti) =
log N

f(ti)

log N
f(ti,tj)

≤ 1 (10)

It is the same for the Cor(ti | tj) ≤ 1. Consequently, we
also have cor(ti, tj) ≤ 1. To sum up the above arguments,
the correlation with 0 < cor(ti, tj) ≤ 1 is satisfied.

4.2 Database Implementation
We start from the dataset that has already been repre-

sented in the table records(tid, rid). First, we count the
times of each token pair appearing in the records, i.e., f(ti, tj)
in equation 9, and store the generated tuples (ti, tj , f(ti, tj))
in the correlation view with schema correlation(tid1, tid2, weight).
Note that f(ti) of each token is also computed by this step
and represented as (ti, ti, f(ti)). Then, we count all the num-
ber of records in the table of records, namely @N. Next,
we perform the correlation computation according to Equa-
tion 9. Consider a tuple of correlation c3 in the algorithm
with (tid1, tid2, weight). Let c1.weight be the fre-
quency of token c3.tid1 and c2.weight be the frequency
of token c3.tid2, according to the definition in Equation 9
the correlation weight of c3 can be computed as:

LOG(@N/c1.weight) ∗ LOG(@N/c2.weight)

POWER(LOG(@N/c3.weight), 2)
(11)

Finally, we update the correlation weight in correlation.
The SQL statement for token correlation construction is de-
scribed as follows.

INSERT INTO correlation

SELECT DISTINCT r1.tid, r2.tid, COUNT(*)

FROM records AS r1, records AS r2

WHERE r1.rid = r2.rid

GROUP BY r1.tid, r2.tid

DECLARE @N INT

SET @N = (SELECT COUNT(DISTINCT rid)

FROM records)
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UPDATE correlation

SET weight = temp.w

FROM

(SELECT DISTINCT

(LOG(@N/c1.weight) * LOG(@N/c2.weight) /

POWER(LOG(@N/c3.weight),2)

)AS w, c3.tid1 AS id1, c3.tid2 AS id2

FROM correlation c1, correlation c2,

correlation c3

WHERE c1.tid1=c3.tid1 AND c1.tid2=c3.tid1

AND c2.tid1=c3.tid2 AND c2.tid2=c3.tid2

) AS temp

WHERE tid1 = temp.id1 AND tid2 = temp.id2

5. CORRELATION FILTER
According to the correlation query framework, the num-

ber of token correlations affects performance of correlation
queries. Thus, we try to improve the query efficiency by
reducing the size of token correlations. Specifically, we in-
vestigate the interaction between the number of token corre-
lations (correlation count) and the importance of token cor-
relations (correlation weight). Intuitively, two tokens with
low correlation weights have small probability of appear-
ing together, in other words, they are less important in our
correlation query. In fact, noisy data often exist in real
applications, and some false correlations with low weights
might be generated by isolated noise. Therefore, we can set
a minimum correlation threshold η to filter out those token
correlations with low correlation weights. If the threshold η
is small, noisy correlations are taken into account in rank-
ing the results. Consequently, the noisy correlations affect
the results largely. On the other hand, with the increase of
threshold η, only those correlations with high weights are
reserved, which are close to 1. Thereby, the difference be-
tween the correlation query and similarity matching query
also becomes small, and two approaches tend to get similar
query results. From the above discussion, we can find out
that setting a proper filtering threshold is essential to im-
prove both the efficiency and effectiveness of a correlation
query.

5.1 Foundations
A good filter should remove non-important correlations

and reserve the important correlations as many as possible.
Here, the importance of correlations is represented by the
correlation weight. In the rest of this section, we provide an
estimated range of correlations as a guideline of threshold
selection, and prove that we can use less number of cor-
relations to represent more important correlations in that
correlation range.
In order to evaluate the balance of reserving more im-

portant correlation information and reducing more number
of correlations, we compare the distributions of correlations
on correlation numbers and correlation weights. We show
the statistics of correlation distributions of RCV1 and NSF
datasets in Figure 3. For a correlation weight x, the fre-
quency distribution bar f(x) denotes the normalized num-
ber of correlations with the weight x, i.e., correlation weight
distributions. From Figure 3, we find that the correlations
are not distributed uniformly in the whole range of correla-
tion value (0, 1]. A curve of the nominal distribution is also
plotted to compare with the frequency distribution, and we
observe similar patterns in both two datasets.

Based on the frequency distribution observation on the
RCV1 and NSF datasets, we model the correlation distri-
bution as the nominal distribution. Let random variable X
be the token correlation weight, we consider the following
two distributions.

Distribution 5.1. Nc(µc, σ
2
c ): The distribution of X in

terms of the number of correlations. Each correlation is
treated as a unit of statistic sample. The probability den-
sity function fc(x) describes the probability distribution of
X on the number of correlations. The cumulative distribu-
tion function Fc(x) denotes the probability of X less than x,
P (X ≤ x), in terms of correlation count. The estimation of
µc and σ2

c can be described as:

µ̂c = x̄ =
1

n

n
∑

i=1

xi (12)

σ̂2
c =

1

n

n
∑

i=1

(xi − x̄)2 (13)

where n is the total number of correlations. The probability
density function of Nc represents the distribution of X on
correlation counts, e.g. how many number of correlations
with the correlation weight in the range of 0.1 < X < 0.2.

Distribution 5.2. Ns(µs, σ
2
s): The distribution of X in

terms of the weight of correlations. Each unit of correlation
weight is treated as a statistic sample, while each correlation
with weight xi is treated as a number of xi statistic samples.
The probability density function fs(x) describes the proba-
bility distribution of X on the weight of correlations. The
cumulative distribution function Fs(x) denotes the probabil-
ity of X less than x, P (X ≤ x), in terms of correlation
weight. The estimation of µs and σ2

s is given by

µ̂s = x̄ =
1

∑n

i=1 xi

n
∑

i=1

xixi (14)

σ̂2
s =

1
∑n

i=1 xi

n
∑

i=1

xi(xi − x̄)2 (15)

where
∑n

i=1 xi denotes the total units of correlation weights.
The variable X is the same with the distribution 1, but the
distributions of the variable are different. In the distribu-
tion 1, one correlation with weight xi is counted as 1 time,
however, for distribution 2, we treat the correlation as xi

units and count one correlation with weight xi for xi times.
The probability density function of distribution 2 represents
the distribution of X on correlation weights, e.g. how many
weight units of correlations with the correlation weights in
the range of 0.1<X<0.2. Recall that our record correlation
function also aggregates the correlation weights.

Now we discuss the selection of the minimum threshold
η, in order to efficiently and effectively achieve the optimal
query results. First, we present the relationship between the
estimate values µc and µs of distribution 1 Nc and distribu-
tion 2 Ns. Then, for a given value x between µc and µs, we
can exploit the bounds of the cumulative distribution func-
tion Fc(x) and Fs(x). Finally, we prove that by setting a
certain filtering threshold, we can remove more less impor-
tant correlations without losing much query effectiveness.

Theorem 5.1. Let µc be the estimate value of distribu-
tion 1 Nc and µs be the estimate value of distribution 2 Ns,
and then we have µc ≤ µs.
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Proof. According to the definition of correlation, all the
correlation weights have 0 < xi < 1. Therefore,

µs − µc =
1

∑n

i=1 xi

n
∑

i=1

xixi −
1

n

n
∑

i=1

xi

=
n
∑n

i=1 x
2
i − (

∑n

i=1 xi)
2

n
∑n

i=1 xi

=

∑n

i=1

∑n

j=1 (x
2
i + x2

j )−
∑n

i=1

∑n

j=1 2xixj

2n
∑n

i=1 xi

=

∑n

i=1

∑n

j=1 (xi − xj)
2

2n
∑n

i=1 xi

≥ 0

i.e. we have proved µc ≤ µs.

Theorem 5.2. Let Fc(x) be the cumulative distribution
function of distribution Nc, Fs(x) be the cumulative distri-
bution function of distribution Ns. If the value x ∈ [µc, µs],
and then we have Fs(x) ≤ 0.5 ≤ Fc(x)

Proof. If a variable X is normally distributed with mean
µ and variance σ2, the definition of cumulative distribution
function F (x) can be described as:

F (x) =
1

σ
√
2π

∫ x

−∞

e
−

(t−µ)2

2σ2 dt (16)

According to the property of cumulative distribution func-
tion, we have F (µ) = 0.5; for x ≥ µ, then F (x) ≥ 0.5; and
vice versa. Consider the value x ∈ [µc, µs], in the distribu-
tion Nc, we have x ≥ µc thus Fc(x) ≥ 0.5; and also in the
distribution Ns, x ≤ µs indicates Fs(x) ≤ 0.5.

Theorem 5.3. By setting the minimum threshold η of
correlation weight in the range of µc ≤ η ≤ µs, we can
use less than 50% number of correlations to represent more
than 50% correlation weights (importance).

Proof. Recall that Fc(x) denotes the proportion of the
number of correlations with weights less than x, while Fs(x)
denotes the proportion of the total weights (importance) of
correlations with weights less than x. For a certain thresh-
old η, the value of cumulative distribution function F (η)
indicates the proportion that are filtered out and (1−F (η))
represents the reserved parts. According to Theorem 5.2,
by setting the minimum threshold η of correlation weights
in the range of µc ≤ η ≤ µs, the lower bound of the number
of correlations that are filtered out is 50%; and the upper
bound of the total weight of correlations that are filtered out
is also 50%.

Therefore, by setting a minimum correlation threshold
η ∈ [µc, µs], we can remove more than 50% of less important
correlations, but lose less than 50% correlation weights. In
Figure 4, we present an example of the cumulative distri-
bution function F (x). The µc of Nc is about 0.5 and the
µs of Ns is about 0.6. In the range of x ∈ [0.5, 0.6], we
have Fc(x) ≥ 50% and Fs(x) ≤ 50%. With a threshold of
η (0.5 ≤ η ≤ 0.6), for example η = 0.5, we can filter out
about 50% of correlations but only lose 30% of total correla-
tion weights. In other words, by the filter, we reduce the size
of correlations largely but with little loss on the correlation
weights.

So far, we have proved that by using a filter with a thresh-
old η around the range of [µc, µs], we can remove more
correlations (counts) and lose less correlation importance
(weights). In practice, given a set records database, we can
compute token correlation distribution first, and then set up
the filtering threshold according to the above derived opti-
mal threshold range.

5.2 Correlation Filter Implementation
The following algorithm estimates the parameters of µc

and µs. The first query returns the estimation of µc accord-
ing to the definition in equation 12, and the second query
result is the estimation of µs according to the definition in
equation 14. Note that the correlation weight between to-
ken ti to itself is constant, i.e. cor(ti, ti) = 1. Therefore,
we do not take those tuples of the self-correlations into ac-
count and set a condition of tid1 <> tid2 in the algorithm.
Finally, we can implement the filter with threshold η and re-
move all the correlations with weights less than the specified
threshold η.

SELECT SUM(weight) / COUNT(*)

FROM correlation

WHERE tid1 <> tid2

SELECT SUM(weight*weight) / SUM(weight)

FROM correlation

WHERE tid1 <> tid2

DELETE FROM correlation

WHERE weight < $\eta$

6. EXPERIMENTAL EVALUATION
We now present our extensive experimental evaluation,

in terms of both effectiveness and efficiency. We compare
the correlation query with the similarity matching query.
Since the edit operation based approaches like edit distance
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Figure 7: Filter evaluation

can only capture limited similarity and fail in many cases
such as various word orders [14], we adopt the vector space
based approach as the similarity matching technique, i.e.,
the matching coefficient sim(q, r) = |q ∩ r| of text [31]. We
also compare our inverted correlation in formula 9 with the
Pearson’s correlation coefficient [37] in formula 3.

6.1 Experimental Settings
The experiments are conducted on a machine with Intel

Core 2 CPU (2.13 GHz) and 2 GB of memory. RDBMS uses
SQL Server 2005.

Datasets. We run the experiments on Reuters Corpus Vol-
ume I (RCV1) [23], which is also a widely used benchmark
dataset with category labels in text retrieval area. We ab-
stract m (m = 10 in this experiment) words with the highest
tf*idf value from each article as the summary, and merge
these m words to an unstructured set record. The category
label of each article is also utilized as the label of correspond-
ing record. The second dataset we used in the effectiveness
experiments is the 20 Newsgroups (20NG) [21]. The 20NG
data are also text entries with data category labels. Simi-
lar to the RCV1, we use the 20NG dataset to evaluate the
effectiveness in the same way1.

Evaluation Criteria. The evaluation criteria address two
aspects in the experiments, i.e. the effectiveness and the effi-
ciency. Specifically, we select 100 records from the dataset as
queries. For the time performance evaluation, we conduct all
the queries and compute the response time as runtime costs.
In addition, we also report the number of token correlations
left after a minimum correlation threshold applied, since it
is directly related to the running time. For the effectiveness,
we evaluate the accuracy in the top-k query results.

accuracy =
number of results with the same label of q

total number of results k
(17)

The accuracy value denotes the correctness of query results,
i.e., the query and the results belong to the same labeled cat-
egory. Higher accuracy of a query means better effective-
ness. Here, we do not adopt the f-measure [35] with recall to
evaluate the completeness of the top-k results. It is mean-
ingful to tell the high correlation between “NBA” and “bas-

ketball”, but unreasonable (in real applications) to achieve a
complete answer set in top-k results, i.e., to enumerate and
return all possible records that are correlated with the query
“basketball”. Therefore, rather than evaluating the recall, we
mainly concern the accuracy of correlation query.

1Similar results on 20NG are not reported in some experi-
ments, due to the limitation of space.

6.2 Evaluation on Effectiveness
The first experiment is focused on the effectiveness com-

parison of correlation query and similarity matching-based
query. In this experiment, we do not conduct the filter on
token correlations. The program runs on 50,000 records in
the RCV 1 dataset and 10,000 records in the 20NG dataset.
Figure 5 and 6 shows the accuracy of top-k results by three
different approaches, including the similarity matching, the
inverted correlation proposed in this paper, and the Pear-
son’s correlation coefficient. As shown in the results, these
three approaches achieve high accuracy in the top-20 re-
sults. These highly correlated result records have consid-
erable common tokens with each other, thus the similar-
ity matching-based query can also identify the correlation
relationship. However, when larger sizes of query results
are needed, for example top-100 or top-200, the relation-
ships between the query and records can hardly be detected
by only using the overlaps of matching tokens. Therefore,
with the increase of result sizes, the accuracy of similarity
matching-based query drops quickly, while our correlation
query achieves comparatively high accuracy. Most impor-
tantly, our token inverted correlation shows a higher accu-
racy comparing with the Pearson’s correlation coefficient,
which also verifies the derivation in Section 4.1. To summa-
rize, the experiment results demonstrate the effectiveness of
our correlation queries.

6.3 Evaluation on Correlation Filter
In this experiment, we study the improvement of effec-

tiveness by applying the correlation filter. Recall that noisy
correlations may affect the query results. The filtering strat-
egy is to set a minimum correlation weight threshold η. We
evaluate the effect of correlation filter by reporting the re-
sults of accuracy (Figure 7).

First, we can improve the effectiveness by introducing a
filter in the correlation query. As shown in the Figure 7, the
accuracy of query results improves by using the minimum
threshold filter η = 0.4. By setting this threshold, we filter
out the correlations with weights less than 0.4, which are
less important (such as noisy data). On the other hand, if
the threshold is set too large, the accuracy drops as shown in
Figure 7 with η = 0.6. As we increase the threshold η, more
correlations are filtered out, and the query can only rely on
the matching tokens and few correlations still left. Thus,
the results of correlation query are closer to the similarity
matching ones, when the threshold is brought near 1.

To estimate the filtering threshold, we observe the dis-
tribution of correlations at first, and compute the estima-
tion value of µc = 0.505 and µs = 0.566 according to the
definition in Section 4.2. According to Lemma 5.3, by set-
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Figure 9: Scalability on filter
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Figure 10: Scalability on efficiency

ting µc ≤ η ≤ µs, we can reduce more than 50% num-
ber of correlations while reserve more than 50% correlation
information. Therefore, in order to improve the efficiency
without losing too much accuracy, the threshold η is pre-
ferred around the range of [µc, µs] to guarantee the tradeoff
between the correlation count (size) and correlation weight
(importance). The results in Figure 9 also confirm that by
setting η = 0.55 ∈ [0.505, 0.566], we can reduce the number
of correlations significantly and with a little loss on effec-
tiveness (Figure 8) compared with η = 0.4 or 0.5.
In fact, the estimation of µc and µs is a guideline strategy

of choosing threshold. As the threshold increases, the values
of Fc(x) and Fs(x) become closer in the cumulative distri-
bution function. In other words, the difference between the
number of correlations (Nc) and the importance of corre-
lations (Ns) is smaller. Since we could no longer keep all
highly important correlations by a smaller number of cor-
relations, the accuracy drops quickly as shown in Figure 7
with η = 0.6.

6.4 Evaluation on Scalability
This experiment demonstrates the scalability of our ap-

proach in different data sizes. We perform a number of 100
queries on the data sizes from 10,000 to 50,000 respectively.
For the effectiveness, we observe the number of results re-
turned in different data scales and the accuracy of the top-
200 results for each data size. For the efficiency, we study
the correlation size under several filters and compare the
runtime costs with the similarity matching-based query.
In Figure 8, we compare the effectiveness of different ap-

proaches. Our correlation query achieves a higher accuracy
under different data sizes. Moreover, the results of corre-
lation query with different filters are quite similar. By in-
creasing the threshold, the accuracy arises at η = 0.4 and
η = 0.5, then drops back to the original level when η = 0.6,
but still without losing too much accuracy.
In Figure 10, we illustrate the time performance of our

approach. The runtime costs largely depend on the size
of correlations in the computation. As shown in Figure 9,
the number of correlations increases approximately in linear
with the increasing of dataset size under different thresholds.
By applying a filter, we can reduce the runtime costs largely.
When the threshold η = 0.6, the time costs of correlation
query are even quite similar to the similarity matching-based
approach, under all of the data sizes. Meanwhile, the effec-
tiveness of correlation query (Figure 8) is much higher than
the similarity matching query.
We also evaluate the scalability on the NSF dataset. Since

the records in the NSF dataset are not labeled with cate-
gories, we only conduct the experiments in terms of time
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performance. The results are presented in Figure 11. We
get similar curves of time costs as the results shown in Fig-
ure 8 on RCV1 dataset. The time costs increase linearly
as the increase of data size. When the threshold is set to
be η = 0.6, the time costs of correlation query are compa-
rable to the similarity matching-based query. On the other
hand, as the same results as described in the previous ex-
periments, the correlation query is more effective than the
similarity matching approach.

7. CONCLUSIONS
In this paper, motivated by the significance of supporting

correlation query over set record in databases, we propose
a novel query framework for set correlation query by using
RDBMS facilities. To our best knowledge, this is the first
work on supporting set correlation query inside databases,
and only the Pearson’s correlation can be implemented to
construct token correlations by using current RDBMS fa-
cilities. Thereby, we study a novel correlation coefficient
to extend Pearson’s correlation, and provide a pure-SQL
implementation inside databases. We emphasize this pure-
SQL implementation of set correlation query inside RDBMS,
which can be naturally extended to set correlation join over
set records as well. Moreover, our theoretical analysis proves
that, with a proper setting of filtering on token correlations,
we can improve the query efficiency with a little effectiveness
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loss. Finally, our experiments demonstrate the superiority
of our approach in terms of both effectiveness and efficiency.
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