
Discovering Matching Dependencies
∗

Shaoxu Song

Hong Kong University of Science and
Technology, Hong Kong

sshaoxu@cs.ust.hk

Lei Chen

Hong Kong University of Science and
Technology, Hong Kong

leichen@cs.ust.hk

ABSTRACT

Matching dependencies (MDs) are recently proposed for various
data quality applications such as detecting the violation of integrity
constraints and duplicate object identification. In this paper, we
study the problem of discovering matching dependencies for a given
database instance. First, we formally define the measures, sup-
port and confidence, for evaluating the utility of MDs in the given
database instance. Then, we study the discovery of MDs with cer-
tain utility requirements of support and confidence. Exact algo-
rithms are developed, together with pruning strategies to improve
the time performance. Finally, our experimental evaluation demon-
strates the efficiency of the proposed methods.

Categories and Subject Descriptors: H.2.0 [Database Manage-
ment]: General

General Terms: Algorithms

1. INTRODUCTION
To make dependencies adapt to this real-world scenario, i.e., to

be tolerant of various representation formats, Fan [4] proposed a
new concept of data dependencies, called matching dependencies

(MDs). Informally, a matching dependency targets on the fuzzy val-
ues like text attributes and defines the dependency between two set
of attributes according to their matching quality measured by some
matching operators (see [1] for a survey), such as Euclidean dis-

tance and cosine similarity. For example, considering the Contacts

relation in Table 1, we may have a MD as

md1 : ([Street] → [City], < 0.8, 0.7 >)

which states that for any two tuples from Contacts, if they agree
on attribute Street (the matching similarity, e.g. cosine similarity,
on the attribute Street is greater than a threshold 0.8), then the
corresponding City attribute should match as well (i.e. similarity
on City is greater than the corresponding threshold 0.7).

MDs can be applied in many tasks [4]. For example, in data
cleaning, we can use MDs to detect the inconsistent data, that is,

∗Funding for this work was provided by the Hong Kong RGC grant
No. 611608

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

Table 1: Example of Contacts relation R
SIN Name CC ZIP City Street
584 Claire Green 44 606 Chicago No.2, Central Rd. t1

584 Claire Greem 44 606 Chicago No.2, Central Rd. t2

584 Claire Gree 44 606 Chicago #2, Central Rd. t3

265 Jason Smith 01 021 Boston No.3, Central Rd. t4

265 J. Smith 01 021 Boston #3, Central Rd. t5

939 W. J. Smith 01 021 Chicago #3, Central Rd. t6

data that do not follow the constraint (rule) specified by MDs. For
example, according to the above md example, for any two tuples ti

and tj having similarity greater than 0.8 on Street, they should be
matched on City as well (similarity ≥ 0.7). If their City similar-
ity is less than 0.7, then there must be something wrong in ti and
tj , i.e., inconsistency. Such inconsistency on text attributes cannot
be detected by using FDs and extensions based on exact matching.
In addition to locating the inconsistent data, object identification,
another important work for data cleaning, can also employ MDs as
matching rules [5]. For instance, according to

md2 : ([Name, Street] → [SIN], < 0.9, 0.9, 1.0 >)

if two tuples have high similarities on Name and Street (both sim-
ilarities are greater than 0.9), then these two tuples probably denote
the same person in the real world, i.e., having the same SIN.

Though the concept of matching dependencies is given in [4],
the authors did not discuss how to discover useful MDs. In fact,
given a database instance, there are enormous MDs that can be dis-
covered if we set different similarity thresholds on attributes. Note
that if all thresholds are set to 1.0, MDs have the same semantics
as traditional FDs, in other words, traditional FDs are special cases
of MDs. For instance, the above fd can be represented by a MD

([ZIP] → [City], < 1.0, 1.0 >). Clearly, not all the settings of
thresholds for MDs are useful.

The utility of MDs in the above applications is often evaluated by
confidence and support. Specifically, we consider a MD of a rela-
tion R, denoted by ϕ(X → Y, λ), where X and Y are the attribute
sets of R, λ is a pattern specifying different similarity thresholds
on each attribute in X and Y . Let λX and λY be the projections
of thresholds in pattern λ on the attributes X and Y respectively.
The support of ϕ is the proportion of tuple pairs whose matching
similarities are higher than the thresholds in ϕ on both attributes of
X and Y . The confidence is the ratio of tuple pairs whose match-
ing similarities satisfy λX also satisfying λY . In real applications
like inconsistency detection, in order to achieve high detection ac-
curacy, we would like to use MDs with high confidence. On the
other hand, if users need high recall of detection, then MDs with
high support are preferred. Intuitively, we would like to discover
those MDs with high support and high confidence. Therefore, in
this work, we would like to discover proper settings of matching

1421

similarity thresholds for MDs, which can satisfy users’ utility re-
quirements of support and confidence.

Contributions. In this paper, given X → Y and a relation in-
stance, we study the issues of discovering matching dependencies.
Our main contributions are summarized as follows:

First, we propose the utility evaluation of matching dependen-

cies. Specifically, the confidence and support evaluations of MDs
are formally defined. To the best of our knowledge, this is the first
paper to study the utility evaluation and discovery of MDs.

Second, we study the algorithms for discovering MDs. The MDs
discovery problem is to find settings of matching similarity thresh-
olds on attributes X and Y for MDs that can satisfy the required
confidence and support. We first present an exact solution and then
study pruning strategies by the minimum requirements of support.

Third, we report an extensive experimental evaluation. Proposed
algorithms on discovering MDs are studied. Our pruning strategies
can significantly improve the efficiency in discovering MDs.

Related Work. The concept of matching dependencies (MDs) is
first proposed in [4] for specifying matching rules for the object
identification (see [3] for a survey). The MDs can be regarded as a
generalization of FDs, which are based on identical values having
matching similarity equal to 1.0 exactly. Thus, FDs can be repre-
sented by the syntax of MDs as well. For any two tuples, if their
X values are identical (with similarity threshold 1.0), then a FD

(X → Y) requires that their Y values are identical too, i.e., a MD

(X → Y, < 1.0, 1.0 >). Koudas et al. [7] also study the depen-
dencies with matching similarities on attributes Y when given the
exactly matched values on X , which can be treated as a special
case of MDs. The reasoning mechanism for deducing MDs from a
set of given MDs is studied in [5]. The MDs and their reasoning
techniques can improve both the quality and efficiency of various
record matching methods.

2. UTILITY MEASURES
In this section, we formally introduce the definitions of MDs.

Then, we develop utility measures for evaluating MDs over a given
database instance.

Traditional functional dependencies FDs and their extensions rely
on the exact matching operator = to identify dependency relation-
ships. However, in the real world application, it is not possible to
use exact matching operator = to identify matching over fuzzy data
values such as text values. For instance, Jason Smith and J.Smith

of attribute Name may refer to the same real world entity. There-
fore, instead of FDs on identical values, the matching dependencies

MDs [4] are proposed based on the matching quality.
Consider a relation R(A1, . . . , AM) with M attributes. Follow-

ing similar syntax of FDs, we define MDs as following: 1

DEFINITION 1. A matching dependency (MD) ϕ is a pair (X →
Y, λ), where X ⊆ R, Y ⊆ R are two sets of attributes, and λ is

a threshold pattern of matching similarity thresholds on attributes

in X ∪ Y , e.g., λ[A] denotes the matching similarity threshold on

attribute A.

A MD ϕ specifies a constraint on the set of attributes X to Y .
Specifically, the constraint states that, for any two tuples t1 and
t2 in a relation instance r of R, if

∧

Ai∈X t1[Ai] ≈λ[Ai] t2[Ai],

then
∧

Aj∈Y t1[Aj] ≈λ[Aj] t2[Aj], where λ[Ai] and λ[Aj] are the

matching similarity thresholds on the attributes of Ai and Aj re-
spectively. In the above constraint, for each attribute Ai ∈ X ∪ Y ,

1The MDs syntax is described with two relation schema R1, R2

for object identification in [4], which can also be represented in a
single relation schema R as the FDs.

the similarity matching operator ≈ returns true, if the similarity
between t1[Ai] and t2[Ai] satisfies the corresponding threshold
λ[Ai]. For example, a MD ϕ([Street] → [City], < 0.8, 0.7 >) in
the Contacts relation denotes that if two tuples have similar Street

(with matching similarity greater than 0.8) then their City values
are probably similar as well (with similarity at least 0.7).

Like FDs and CFDs [6, 2], we adopt support and confidence mea-
sures to evaluate the matching dependencies. According to the
above constraint of MDs, we need to consider the matching quality
(e.g., cosine similarity or edit distance) of any pair of tuples t1 and
t2 for R. Therefore, we compute a statistical distribution (denoted
by D) of the matching quality of pair-wised tuple matching for
R. The statistical distribution has a schema D(A1, . . . , AM , P),
where each attribute Ai in D corresponds to the matching quality
values on the attribute Ai of R, and P is the statistical value. Let s
be a statistical tuple in D. The statistic s[P] denotes the probability
that any two tuples t1 and t2 of R have the matching quality values
s[Ai], ∀Ai ∈ R. With a pair-wised evaluation of matching quality

of all the N tuples for R, we can easily compute P by
count(s)

N∗(N−1)/2
,

where count(s) records the pairs of tuples having matching quality
s. Different matching operators have various spaces of matching
values, such as cosine similarity in [0.0, 1.0] while edit distance
having edit operations 1, 2, In order to evaluate in a consis-
tent environment, we map these matching quality values s[A] to
a unified space, say [0, d − 1], which is represented by dom(A)
with d elements. Table 2 shows an example of the statistical dis-
tribution D computed from Contacts in Table 1 by mapping the
cosine similarities in [0.0, 1.0] to elements in [0, d− 1] of dom(A)
with d = 10. According to dom(A) in our example, the first tu-
ple (1, 0, 3, . . . , 0.065) denotes that there are about 6.5% match-
ing pairs in all pair-wised tuple matching, whose similarities are
1, 0, 3, . . . on the attribute A1, A2, A3, . . . respectively.

Table 2: Example of statistical distribution D
A1 A2 A3 A4 A5 A6 P

1 0 3 5 8 4 0.065 s1

7 4 0 0 4 1 0.043 s2

0 4 8 1 6 2 0.124 s3

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Then, we can measure the support and confidence of MDs, with
various attributes X and Y , based on the statistical distribution D.
Let λX and λY be the projections of matching similarity threshold
pattern λ on the attributes of X and Y respectively in a MD ϕ,
which are also specified in terms of elements in dom(A) of each
A ∈ X ∪ Y . Let Z be the set of attributes not specified by ϕ, i.e.,
R\ (X ∪Y). The definitions of support and confidence for the MD

ϕ(X → Y, λ) are presented as follows:

support(ϕ) = P (X � λX , Y � λY)

=
∑

Z

P (X � λX , Y � λY , Z)

confidence(ϕ) = P (Y � λY | X � λX)

=

∑

Z P (X � λX , Y � λY , Z)
∑

Y,Z P (X � λX , Y, Z)

where � denotes the satisfiability relationship, i.e., X � λX de-
notes that the similarity values on all attributes in X satisfy the
corresponding thresholds listed in λX . For example, we say that a
statistical tuple s in D satisfies λX , i.e., s[X] � λX , if s has sim-
ilarity values higher than the corresponding minimum threshold,
i.e., s[A] ≥ λ[A], for each attribute A in X .

1422

3. ALGORITHM
We now study the determination of matching similarity thresh-

old pattern for MDs based on the statistical distribution, which is a
new problem different from FDs. In fact, once the X → Y is given
for a FD, it already implies the similarity threshold to be 1.0, that
is, (X → Y, < 1.0, 1.0 >) if it is represented by the MD syntax.
Unlike FDs, we have various settings of matching similarity thresh-
olds for MDs. Therefore, in this section, we discuss how to find the
right similarity thresholds in order to discover the MDs satisfying
the required support and confidence.

Problem Statement. In order to discover a MD ϕ with the mini-
mum requirements of support ηs and confidence ηc, the following
preliminary should be given first: (I) what is Y ? and (II) what
is matching quality requirement λY . These two preliminary ques-
tions are usually addressed by specific applications. For example,
if we would like to use discovered MDs to guide objet identification
in the Contacts table, then Y = SIN. The λY is often set to high
similarity thresholds by applications to ensure high matching qual-
ity on Y attributes. For example, λY is set to 1.0 for Y = SIN in
the object identification application. Note that without the prelim-
inary λY , the discovered MDs will be meaningless. For example,
a MD with λY = 0 can always satisfy any requirement of ηc, ηs.
Since all the statistical tuples can satisfy the thresholds λY = 0,
the corresponding support and confidence will always be 1.0.

DEFINITION 2. The threshold determination problem of MDs

is: given the embedded attributes X and Y , the minimum require-

ments of support and confidence ηs, ηc, and the matching similar-

ity threshold pattern λY , to find all the MDs ϕ(X → Y, λ) with

threshold pattern λX on attributes X having confidence(ϕ) ≥ ηc

and support(ϕ) ≥ ηs, if exist; otherwise return infeasible.

The attributes X can be initially assigned to R \ Y if no sug-
gestion is provided by specific applications, since our discovery
process can automatically remove those attributes that are not re-
quired in X for a MD ϕ. Specifically, when a possible discovered
threshold λ[A] on attribute A is 0 ∈ dom(A), it means that any
matching similarity value of the attribute A ∈ X can satisfy the
threshold 0 and will not affect the MD ϕ at all. In other words, the
attribute A can be removed from X of the MD ϕ.

Exact Algorithm. Now, we present an algorithm to compute the
similarity thresholds on attributes X for MDs having support and
confidence greater than ηs and ηc, respectively. Let A1, . . . , AmX

be the mX attributes in X . For simplicity, we use λ to denote the
threshold pattern projection λX with λ[A1], . . . , λ[AmX

] on all the
mX attributes of X . Since, each threshold λ[Ai] on attribute Ai is
a value from dom(Ai), i.e., λ[Ai] ∈ dom(Ai), we can investigate
all the possible candidates of threshold pattern λ. Let Ct be the set
of all the possible threshold pattern candidates, having

Ct = dom(A1) × · · · × dom(AmX
) = dom(X).

The total number of candidates is c = |Ct| = |dom(X)| = dm,
where d is the size of dom(Ai).

Let n be the number of statistical tuples in the input statistical
distribution D. We consider two statistical values P j

i (X, Y) and

P j
i (X), which record P (X � λX , Y � λY) and P (X � λX)

respectively for the candidate λj ∈ Ct based on the information of
the first i tuples in D, initially having P j

0 (X, Y) = P j
0 (X) = 0.

The recursion is defined as follows, with i increasing from 1 to n

and j increasing from 1 to c.

P j
i (X, Y) =

{

P j
i−1(X, Y) + si[P], if si[X] � λj , si[Y] � λY

P j
i−1(X, Y), otherwise

P j
i (X) =

{

P j
i−1(X) + si[P], if si[X] � λj

P j
i−1(X), otherwise

Finally, those λj can be returned if support = P j
n ≥ ηs and

confidence =
P j

n(X,Y)

P
j
n(X)

≥ ηc.

Algorithm 1 Exact algorithm EA(D, Ct)

1: for each candidate λj ∈ Ct, j : 1 → c do

2: P j
0 (X, Y) = P j

0 (X) = 0
3: for each statistical tuples si ∈ D, i : 1 → n do

4: compute P j
i (X, Y), P j

i (X)
5: return λj with confidence and support satisfying ηc, ηs

We can implement the exact algorithm (namely EA) by consider-
ing all the statistical tuples si in D with i from 1 to n, whose time
complexity is O(nc).

Pruning Strategies. Since the original exact algorithm needs to
traverse all the n statistical tuples in D and c candidate thresh-
old patterns in Ct, which is very costly. In fact, with the given
ηs and ηc, we can investigate the relationship between similarity
thresholds and avoid checking all candidate threshold patterns in
Ct. Therefore, in the following, we present pruning techniques
based on the given support requirement ηs.

We first study the relationships among different threshold pat-
terns, based on which we then propose rules to filter out candidates
that have supports lower than ηs.

DEFINITION 3. Given two similarity threshold patterns λ1 and

λ2, if λ1[A] ≤ λ2[A] holds for all the attributes, ∀A ∈ X , then λ1

dominates λ2, denoted as λ1 ⋖ λ2.

Based on the dominate definition, the following Lemma describes
the relationships of supports between similarity threshold patterns.

LEMMA 1. Given two MDs, ϕ1 = (X → Y, λ1) and ϕ2 =
(X → Y, λ2) over the same relation instance of R, if λ1 dominates

λ2, λ1 ⋖ λ2, then we have support(ϕ1) ≥ support(ϕ2).

PROOF. Let cover(λ1) and cover(λ2) denote the set of statis-
tical tuples that satisfy the threshold λ1 and λ2 respectively, e.g.,
cover(λ2) = {s | s[X] � λ2, s ∈ D}. According to the minimum
similarity thresholds, for each attribute A, we have λ2[A] ≤ s[A].
In addition, since λ1 ⋖ λ2, for any tuple s ∈ cover(λ2), we also
have λ1[A] ≤ λ2[A] ≤ s[A] on all the attributes A. In other words,
the set of statistical tuples covered by λ2 also satisfy the threshold
of λ1, i.e., cover(λ2) ⊆ cover(λ1). Referring to the definition of
support, we have support(ϕ1) ≥ support(ϕ2).

According to Lemma 1, given a candidate similarity threshold
pattern λj having support lower than the user specified requirement
ηs, i.e., P j

n(X, Y) < ηs, all the candidates that are dominated by
λj should have support lower than ηs and can be safely pruned
without computing their associated support and confidence.

We present the implementation of pruning by support (namely
EPS) in Algorithm 2.

In order to maximize the pruning, we can heuristically select an
ordering of candidates in Ct that for any j1 < j2 having λj1 ⋖ λj2 .
That is, we always first process the candidates that dominate others.

1423

Algorithm 2 Pruning by support EPS(D, Ct)

1: for each candidate λj ∈ Ct, j : 1 → c do

2: P a
0 j = P b

0 j = 0
3: for each tuple si ∈ D, i : 1 → n do

4: compute P a
i j, P j

i (X)
5: if P a

n j < ηs then

6: remove all the remaining candidates λ′ dominated by λj

from Ct {Pruning by support, λ′
⋗ λj}

7: return λj with confidence and support satisfying ηc, ηs

In fact, we can use a DAG (directed acyclic graph), G, to represent
candidate similarity patterns as vertices and dominant relationships
among the similarity patterns as edges. Thus, the dominant order
of candidate patterns can be obtained by a BFS traversal upon G.

4. EXPERIMENTAL EVALUATION

Experiment Setting. In the experimental evaluation, we use two
real data sets. The Cora2 data set, prepared by McCallum et al. [8],
consists of 12 attributes including author, volume, title, institution,
venue, etc. The CiteSeer3 data set is selected with attributes in-
cluding title, author, address, affiliation, subject, description, etc.
We use the cosine similarity to evaluate the matching quality of
the tuples in the original data. By applying the dom(A) mapping
in Section 2, we can obtain statistical distributions with at most
186, 031 statistical tuples in Cora, and 314, 382 statistical tuples
in CiteSeer. Our experimental evaluation is then conducted in sev-
eral off-line pre-processed statistical distributions with various data
sizes, i.e., statistical tuples n from 10, 000 to 150, 000 respectively.

We mainly observes the efficiency of proposed algorithms. Since
our main task is to discover MDs under the required ηs and ηc, we
study the runtime performance in various distributions with differ-
ent ηs and ηc settings. The discovery algorithms determine the
matching similarity settings of attributes for MDs. Suppose that
users want to discover MDs on the following X → Y of two data
sets respectively: i) the dependencies on

Cora : author, volume, title → venue

with the preliminary requirement of minimum similarity 0.6 on
venue; ii) the dependencies on

CiteSeer : address, affiliation, description → subject

with preliminary 0.1 on subject, respectively.
A returned result is either infeasible, or a MD with threshold pat-

tern on the given X → Y , for example, one of the result returned
by real experiment on Cora is:

ϕ(author, volume, title → venue, < 0.6, 0.0, 0.8, 0.6 >)

with support(ϕ) = 0.020 and confidence(ϕ) = 0.562 both greater
than the specified requirements of ηs and ηc respectively.

Approach Evaluation. We evaluate the performance of pruning
by support (EPS) compared with the original exact algorithm (EA).
As shown in (a) and (b) in Figure 1 and 2, the EA, which verifies all
the possible candidates, should have the same cost no matter how
ηs and ηc set. Therefore, the time cost of EA in (a) is exactly the
same as that in (b) in all two data sets.

Moreover, the EPS achieves significantly lower time cost in all
the statistical distributions, which is only about 1/10 of that of the
EA. These results demonstrate that our EPS approach can prune

2http://www.cs.umass.edu/~mccallum/code-data.html
3http://citeseer.ist.psu.edu/

 0

 2

 4

 6

 8

10k 50k 100k 150k

T
im

e
 c

o
s
t

(s
)

Statistical Tuples, n

(a) ηs = 0.02, ηc = 0.15

EA
EPS

 0

 2

 4

 6

 8

10k 50k 100k 150k

T
im

e
 c

o
s
t
(s

)

Statistical Tuples, n

(b) ηs = 0.02, ηc = 0.40

EA
EPS

Figure 1: Pruning on Cora

 0

 2

 4

 6

 8

10k 50k 100k 150k

T
im

e
 c

o
s
t

(s
)

Statistical Tuples, n

(a) ηs = 0.04, ηc = 0.19

EA
EPS

 0

 2

 4

 6

 8

10k 50k 100k 150k

T
im

e
 c

o
s
t

(s
)

Statistical Tuples, n

(b) ηs = 0.01, ηc = 0.19

EA
EPS

Figure 2: Pruning on CiteSeer

most of candidates without costly computation. Note that the time
costs of approaches increase linearly with data sizes, which shows
the scalability of discovering MDs on large data.

According to the pruning strategy, the EPS performance is only
affected by support requirement ηs. In other words, different ηc

settings take no effect on EPS. Thus, EPS has similar time costs in
Figure 1 (a) and (b) with the same ηs but different ηc.

Recall that the EPS approach conducts the pruning based on the
given requirement of support ηs. It is natural that a higher ηs turns
to the better pruning performance. Therefore, EPS with ηs = 0.04
in Figure 2 (a) shows lower time cost, e.g., about 0.4s for 150k,
than that of ηs = 0.01 in (b), e.g., 0.6s for the same 150k. Similar
results with different ηs are also observed on Cora, which are not
presented due to the limit of space.

5. CONCLUSIONS
In this paper, we study the discovery of matching dependen-

cies. First, we formally define the utility evaluation of matching
dependencies by using support and confidence. Then, we introduce
the problem of discovering the MDs with minimum confidence and
support requirements. Pruning strategies of the exact algorithm are
studied. The pruning by support can filter out the candidate pat-
terns with low supports. The experimental evaluation demonstrates
the performance of proposed methods.

6. REFERENCES
[1] M. Bilenko, R. J. Mooney, W. W. Cohen, P. Ravikumar, and S. E.

Fienberg. Adaptive name matching in information integration. IEEE

Intelligent Systems, 18(5):16–23, 2003.

[2] F. Chiang and R. J. Miller. Discovering data quality rules. PVLDB,
1(1):1166–1177, 2008.

[3] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record
detection: A survey. IEEE Trans. Knowl. Data Eng., 19(1):1–16, 2007.

[4] W. Fan. Dependencies revisited for improving data quality. In PODS,
pages 159–170, 2008.

[5] W. Fan, J. Li, X. Jia, and S. Ma. Reasoning about record matching
rules. PVLDB, 2009.

[6] L. Golab, H. J. Karloff, F. Korn, D. Srivastava, and B. Yu. On
generating near-optimal tableaux for conditional functional
dependencies. PVLDB, 1(1):376–390, 2008.

[7] N. Koudas, A. Saha, D. Srivastava, and S. Venkatasubramanian.
Metric functional dependencies. In ICDE, pages 1275–1278, 2009.

[8] A. McCallum, K. Nigam, and L. H. Ungar. Efficient clustering of
high-dimensional data sets with application to reference matching. In
KDD, pages 169–178, 2000.

1424

