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Abstract. Similarity join over text is important in text retrieval and
query. Due to the incomplete formats of information representation, such
as abbreviation and short word, similarity joins should address an asym-
metric feature that these incomplete formats may contain only partial
information of their original representation. Current approaches, includ-
ing cosine similarity with q-grams, can hardly deal with the asymmetric
feature of similarity between words and their incomplete formats. In or-
der to find this type of incomplete format information with asymmetric
features, we develop a new similarity join algorithm, namely IJoin. A
novel matching scheme is proposed to identify the overlap between two
entities with incomplete formats. Other than q-grams, we reconnect the
sequence of words in a string to reserve the abbreviated information.
Based on the asymmetric features of similar entities with incomplete
formats, we adopt a new similarity function. Furthermore, an efficient
algorithm is implemented by using the join operation in SQL, which
reduces pairs of tuples in similarity comparison. The experimental eval-
uation demonstrates the effectiveness and the efficiency of our approach.

1 Introduction

Similarity Join is an important operation in data cleaning and data integra-
tion [4]. It has been studied by various aspects and referred by a variety of
names, including record linkage [7], entity identification [9] and approximate
join [5]. The key issue is to identify whether two entities (e.g., relational tuples)
are approximately the same[7]. Owning to the poor data quality with various
errors caused by human factors and technique problems(e.g., database system
problems), it is difficult to identify the same entities exactly by traditional join
operation in SQL. For example, “International” and “Intenational” with spelling
mistakes do not match exactly. By using edit distance [10], we can deal with the
spelling mistake. Furthermore, due to various kinds of formats in representing
information, it becomes even harder to detect approximate entities, such as dif-
ferent orders (“Shaoxu song” with given name first and “‘SONG, Shaoxu” with
surname first). Cosine similarity with q-grams [6] is used in dealing with block
orders, which is also effective in spelling mistakes. In addition to effectiveness,
efficiency is another key issue. A recent work [2] applied a join operation in
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SQL to identify entities with overlaps first, which reduced the times of compar-
isons between unrelated entities greatly. They proposed an efficient similarity
join operators that can be used in many similarity functions.

However, the current existing approaches, including cosine similarity with q-
grams, can hardly deal with the similarity between words and their incomplete
formats, such as abbreviation, short word and incomplete information. For in-
stance, there are various representing formats in bibliography references, includ-
ing abbreviation (“VLDB” for “Very Large Databases”), short word (“Conf.”
for “Conference”), incomplete information (“In VLDB” for “In Proceedings of
VLDB”). Those incomplete formats have a common asymmetric feature that
incomplete formats contain only partial information of their original representa-
tion, which make it difficult to find and quantify the similarity between words
and their incomplete formats. Current q-grams approach cannot identify the ab-
breviation information, while cosine similarity is not effective in dealing with
such asymmetric features. There is a solution by Rohit [1] which tries to han-
dle the abbreviation case. However, it needs several attributes with hierarchies,
such as, County, State, City and Street. So it is NOT a common solution without
humans domain knowledge.

In this paper, we propose a novel text similarity join approach, IJoin, to ad-
dress both the effectiveness and efficiency issues of identifying the similarity be-
tween text entities with incomplete formats in similarity joins. In text matching,
we connect first letter of each word to reserve potential abbreviation information
and enhance the importance of the first few grams to find high similarity be-
tween words and their short formats. We also consider the asymmetric features
of similarity between entities with incomplete formats in similarity function. Our
contributions in this paper are summarized as follows:

(1) We propose a novel matching scheme to identify overlaps between text enti-
ties and their incomplete formats;

(2) We design a similarity function which can calculate the similarity of entities
with asymmetric features when incomplete formats exist;

(3) We present an efficient implementation of our similarity joins algorithm
which uses the join operation in SQL.

The rest of the paper is organized as follows. Section 2 summarizes text match-
ing schemes, and introduces our IJoin matching approach. Section 3 presents our
IJoin similarity function. In Section 4, we illustrate the basic and extended im-
plementations of our IJoin approach. Section 5 reports the experimental results
on the effectiveness and scalability of IJoin. Finally, we conclude in Section 6.

2 Distance Based Matching

In this section, we first summarize text matching schemes in similarity joins.
Then, we illustrate our IJoin matching scheme, considering asymmetric features
of incomplete information formats.

In similarity joins, we consider two relations (e.g. R and S) with common
attributes (e.g. R.A and S.A). The main issue is to find tuples in R and S with
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exactly same or approximate values of the common attribute A. If the similarity
between two tuples r and s from R and S respectively, satisfies the user specified
similarity threshold η, then these two tuples will be the join result. Different from
edit distance [10] based measure, we first map text strings in tuples to a set of
elements as entity features. Based on the overlap of the sets, we calculate the
similarity value by certain similarity functions (discussed in Section 3).

2.1 Existing Matching Approaches

One common text matching approach used in text retrieval, is to map a string to
a set of word tokens [3]. For example, the string “Computer Science Department”
can be mapped to a set of words, {‘Computer’, ‘Science’, ‘Department’}. The
word token based matching scheme can identify the similarity of same entities
with different representing orders, where each word is treated as a block. A
block move in the string affects the mapping set slightly. The strings “Computer
Science Department” and “Department of Computer Science” have high overlap
in their mapping sets. However, the word based approach is not effective in
dealing with spelling errors. A spelling error, such as “Conputer”, may affect
the similarity of strings significantly.

Another widely used matching method is q-grams, which cuts a string into
several substrings of length q. For the same example, “Computer Science” can
be mapped to {‘Com’, ‘omp’, ‘mpu’, ‘put’, ‘ute’, ‘ter’, ‘er ’, ‘r S’, ‘ Sc’, ‘Sci’, ‘cie’,
‘ien’, ‘enc’, ‘nce’}. The q-grams method is more robust under spelling mistakes
and keeps high similarity with different representing orders [6]. The spelling
mistake of “Conputer” only affect three grams {‘Con’, ‘onp’, ‘npu’}, which take
up small parts of the whole string.

Different tokens in the mapping sets may have different ability of discrimina-
tion. For example, the token ‘ing’, which appears frequently in words, may have
lower significance in discriminating different strings. Tokens are always associ-
ated with weights to represent their importance in a string, where text retrieval
techniques are commonly used, like Inverse Document Frequency (IDF).

The approaches mentioned above can process entities without many incom-
plete information formats, but cannot identify the similarity between words and
their abbreviation formats. For example, there is even no overlap at all between
the q-grams of “Computer Science Department” and its abbreviation “CSD”.

2.2 Matching of Incomplete Formats

We consider two kinds of incomplete information formats, the abbreviation and
short words, in our IJoin matching. For the abbreviation, we generate several
new elements by connecting the first letters of each word to reserve potential
abbreviation information. We also enhance the importance of first few letters in
each word by using a decay factor to enlarge the similarity between words and
their short formats. The matching steps are described as follows:

Step 1. In order to be robust under different representing orders, we first cut a
string into word tokens. Other than q-grams, we do not record any information of
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word order, such as the connecting token ‘r S’ between two words in the 3-grams
sets of “Computer Science”.

Step 2. We cut each word into q-grams to in order to deal with spelling errors.
When we search a word in the dictionary, we can find the word with high prob-
ability by looking up the first few letters of it. Motivated by this, we associate
the first few letters with higher weight than the other ones, by setting a decay
factor γ(0 < γ ≤ 1). The weight of k-th gram gk in a word is:

w(gk) = w(gk−1) · γ (1)

All grams are ordered by the sequence of letters in the word. Note that short word
is always few several letters in its original word (e.g. “Conf.” for “Conference”).
The decay factor can increase the weight of overlap between the short word
and the original one, since we associate higher weight to first few letters (e.g.
w(′Con′) > w(′onf ′) in the word “Conference”).

Step 3. We reconnect the first letters in a string in order to identify the ab-
breviation of the string. Then, the string of first letters is mapped into q-grams.
Each gram in this step has equal importance to represent abbreviation, so we
do not take decay factor here.

Table 1 shows an example of matching scheme in our IJoin approach. The
length of abbreviation word is probably short, so the decay factor does not
affect the weight of abbreviation word significantly.

Table 1. Matching scheme in IJoin

String 1, String 2 {Computer Science Department} , {CSD}

Q-grams of first letters {CSD,

Q-grams of each word g1 Com , Sci , Dep , {CSD}
g2 omp , cie , ept ,
. . . . . . , . . . , . . . ,
gk ter , nce , ent }

3 Similarity Function

In this section, we illustrate our similarity function in IJoin. After mapping
strings to sets with associated weight of elements, tuples (or entities) can be
represented by vector-space model [11]. Each tuple t is represented by a vector
of weights of p grams (or tokens):

ti = (gi1, . . . , gip) (2)

where ti is the vector of tuple i and gik is the weight of gram k in tuple i.
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3.1 Cosine Similarity

The similarity between tuples can be quantified by the correlation, φij , which is
so-called the Cosine Measure:

φ(ti, tj) =
|ti

⋂
tj |

|ti
⋃

tj |
=

∑p
k=1 gikgjk

√∑p
k=1 g2

ik

∑p
k=1 g2

jk

(3)

where φ(ti, tj) is the cosine similarity value between tuples ti and tj . Clearly,
a measure based on cosine similarity can be used when all terms are measured
on the same scale. However, cosine similarity is not so effective in dealing with
asymmetric features of similarity between words and their incomplete formats.
Abbreviation and short word can hardly have high similarity value with their
original representing formats.

3.2 IJoin Similarity

Asymmetric features exist in the similarity measure between words and their in-
complete formats. Considering the asymmetric features that incomplete formats
only take up slight parts of the original information, we calculate the similarity
in IJoin as follows:

ϕ(ti, tj) =
|ti

⋂
tj |

min(|ti|, |tj |)
=

∑p
k=1 gikgjk

min(
∑p

k=1 g2
ik,

∑p
k=1 g2

jk)
(4)

Other than computing the total weight of two tuples, we use only the smaller
one of them. Incomplete formats, such as abbreviation and short word, can keep
high similarity with their original formats.

Let us see the previous example in Table 1, where the overlap of two strings’
3-grams is {‘CSD’}. We assume that the weight of each gram to be 1. Ac-
cording to the formula (3), the cosine similarity between these two strings is
φ(string1, string2) = 1/

√
20 = 0.223. In fact, the cosine similarity value equals

to 0 (no overlap), if the IJoin matching is not adopted. For our IJoin similarity
function, the similarity value is ϕ(string1, string2) = 1.

4 Algorithm Implementation

In this section, we first introduce a basic implementation of our IJoin approach.
Then, we discuss a more efficient way to process similarity joins with incomplete
information.

4.1 Basic IJoin Implementation

Given two relations R and S, the similarity join operation returns all pairs of
tuples r and s from R and S respectively, which satisfy the similarity threshold
η (e.g. φ(r, s) ≥ η). During the preprocessing, we apply the decay factor γ to
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each gram of words. Q-grams of the words’ first letter sequence are added to
reserve the potential information of abbreviation.

Finally, we compare each pair of tuples from two relations based on the simi-
larity function in Formula (4). The number of candidates of pairs to be compared
is large, especially when the data scale increases. An index of tuples may reduce
the accessing time, however, the number of comparisons cannot be decreased.
We will discuss a solution to reduce the number of candidates of comparing pairs
in the next section.

4.2 Extended IJoin Implementation

In order to reduce the candidates of comparisons, we need to filter those pairs of
tuples with no relevancy. A recent study [2] develops a method, namely SSJoin,
by exploiting some new attributes for each tuple, which can be used to decide
whether two tuples are relevant. The relation R(A) is extended to R(A, B), where
B is one of A’s q-grams. For example, the string “Computer Science Department”
can be extended to 20 tuples as follows:

Table 2. Tuples in SSJoin

R.A String R.B 3-grams

Computer Science Department Com
Computer Science Department omp
Computer Science Department mpu
. . . . . .
Computer Science Department men
Computer Science Department ent

Then, a join operation in SQL (exactly matching) is processed on attribute R.B,
which finds pairs of tuples with common grams. Those tuples without common
grams are totally irrelevant and filtered out. Although the rest pairs of tuples
are relevant with common tuples, the number of candidate tuples is still large.
The authors use a prefix-filter to reduce duplicate pairs.

In order to improve the efficiency, we do not consider all q-grams of A in
B like the basic SSJoin. As mentioned before, we can detect a word probably
by the first few letters of it. Therefore, in order to improve the efficiency, we
consider the first q-grams of each word only in the first SQL join operation. This
predigest operation will not miss the relevancy between words and their short
word formats (e.g. “Conference” and “Conf.” have the common gram “Con”).
Furthermore, we also add q-grams of A’s first letters into B, in order to reserve
the potential relevancy between strings and their abbreviation. Table 3 shows
an example of tuples in our Extended IJoin approach.

After mapping R(A) and S(A) to R(A, B) and S(A, B) respectively, we op-
erate a SQL join on the attribute B. The result is a group of tuples (R.A, S.A)
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Table 3. Tuples in IJoin

R.A String R.B 3-grams

Computer Science Department Com
Computer Science Department Sci
Computer Science Department Dep
Computer Science Department CSD

 

R(A, B) S(A, B)

R(A) S(A) 

R.B=S.B

Group(R.A, S.A) 

Similarity(R.A, S.A) 

Fig. 1. Extended IJoins steps

with common grams. Each pair(r, s) in the result can get its similarity value
ϕ(r, s) by using the similarity function (4). If the similarity value satisfies the
user specified threshold η, (r, s) will be the final join result. Fig 1 shows the
process of similarity joins by Extended IJoin.

5 Experimental Evaluation

In this section, we illustrate the results of our experiments which evaluate the ef-
fectiveness and efficiency of our IJoin approach. The experiments were performed
on a PC, with 2.0GHz CPU and 2GB memory. All programs were implemented
in C# and SQL Server.

5.1 Data Sets

We use the real bibliography records from the DBLP web site 1. The data set
consists of all records from 4 conferences, including “VLDB”, “ICDE”, “ICLP”
and “FSTTCS”. For each bibliography record, we generated several kinds of
citation formats (as shown in Table 4), which are frequently used in bibliography
references. We divide all citation records (about 10,000) into two parts, and the

1 http://www.informatik.uni-trier.de/˜ley/db/
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Table 4. Example of different citation formats

ID Citations

1 In Proceedings of the 31st International Conference on Very Large Data Bases,
Trondheim, Norway, August 30 - September 2, 2005, 145-156

2 In Proc. of the 31st Int. Conf. on Very Large Data Bases, Trondheim, Norway,
Aug 30 - Sep 2, 2005, 145-156

3 In the International Conference on Very Large Data Bases, 2005, 145-156
4 In the Int. Conf. on Very Large Data Bases, 2005, 145-156
5 In the VLDB, 2005, 145-156

similarity joins are performed to find all pairs of citations which represent the
same bibliography records.

5.2 Evaluation Criteria

We use the F-Measures with Precision and Recall [8] to evaluate the effectiveness
of join operations. Let Sa be actual pairs of citations which represent the same
bibliography records, andSf be pairs found by join operationswith high similarity.

Recall(Sa, Sf ) =
|Sa

⋂
Sf |

Sa
(5)

Precision(Sa, Sf ) =
|Sa

⋂
Sf |

Sf
(6)

F (Sa, Sf ) =
2 ∗ Recall(Sa, Sf ) ∗ Precision(Sa, Sf)
Recall(Sa, Sf ) + Precision(Sa, Sf )

(7)

5.3 Effectiveness

In the first experiment, we evaluate the effectiveness by comparing the accuracy
of cosine similarity with q-grams, basic IJoin and Extended IJion. We divide
2,000 records of citations into two groups, and process them by different simi-
larity joins approaches. Fig. 2 shows the precision, recall and F-Measure under
different specified thresholds of minimum similarity.

Fig. 2 (a) shows that cosine similarity with q-grams has a low accuracy in
both precision and recall, which means that this approach can hardly find simi-
lar entities with incomplete information formats and the obtained results contain
many errors. In Fig. 2 (b)(c), we can find that our IJoin approach achieves higher
precision and recall. When the minimum similarity equals 0.925, it obtains the
best balance between precision and recall. We did not apply the decay factor
γ to IJoin in this experiment (e.g. γ = 1.0), which will be evaluated later.
And in Fig. 2 (d), we compare F-Measure among these three approaches which
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Fig. 2. Accuracy of different approaches

demonstrates the superiority of IJoin in effectiveness. From the figure, we also
indicate that Extended IJoin achieves as high accuracy as the basic one, which
denotes that the filter operation in Extended IJoin does not influence the effec-
tiveness of IJoin too much. We will further discuss it in the next section.

Then, we evaluate the Extended IJoin with different decay factors to validate
that the first several letters have greater importance in a word and can help
to improve the accuracy of similarity joins. The experiment is also performed
in 2,000 records of citations. Fig. 3 shows the results. With the decrease of
decay factor γ, the first few letters (grams) get higher significance in the word
which enhances the similarity value between words and their short word formats.
As shown in figures, by enhancing the importance of first letters, the accuracy
improves when incomplete information formats exist. Note that the decay factor
decreases the whole value of all elements in the entity. It is the reason why
the best balance point between precision and recall decreases together with the
decay factor.
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Fig. 3. Decay factor in Extended IJoin

5.4 Scalability

In this experiment, we evaluate the scalability of three approaches. Different
number of citation records are performed under the best minimum similarity
threshold of each approach, e.g. cosine similarity with q-grams (short as cosine
& q-grams) achieves the best accuracy at η = 0.89, basic IJoin at η = 0.925
and Extended IJoin at η = 0.915. In order to be comparable with the cosine &
q-grams approach, no decay factor is adopted in both IJoin (e.g. γ = 1.0). Fig. 4
shows the results with different data scales. Fig. 4 (a) illustrates the efficiency
of the Extended IJoin approach. Its running time remains low even though the
number of citations is multiplied. The time performance of cosine & q-grams
and basic IJoin are quite similar and increase exponentially. We also show the
accuracy with different data scales in Fig. 4 (b). IJoin approach achieves almost
constant accuracy under the same similarity threshold in different numbers of
citations. The results confirm the scalability of our Extended IJoin approach in
both effectiveness and efficiency.
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Table 5. Basic and Extended IJoin

Pairs of Comparison Time Units Precision Recall

Basic IJoin 3,998,000 9,901,249 0.714 0.814
Extended IJoin 102,080 596,875 0.748 0.792

Finally, we compare the basic and Extended IJoin in our experiment. Table 5
shows the results in 4,000 records of citations. The filter operation in Extended
IJoin reduces the number pairs of comparison greatly by finding out pairs with
common elements. The total number of comparisons in basic IJoin is about 40
times greater than that of Extended IJoin. As shown in “Time Units” column,
the time performance improved greatly in Extended IJoin. For the effectiveness,
although some pairs that are actually similar may be filtered out, the number
of such false negatives is not so large and affects the result slightly as shown
in the table column “Recall”. Only about 2.2% of similar pairs are missed by
Extended IJoin in this experiment. It is interesting that Extended IJoin even
achieves higher accuracy than the basic one. This is because most of irrelevant
pairs are filtered out and the remaining pairs are probably similar.

6 Conclusions

In this paper, we proposed a novel approach, IJoin. to handle similarity joins
of text with incomplete formats, such as abbreviation and short words, are con-
sidered in our text matching scheme and similarity function. We connect the
first letter of each word to reserve potential abbreviation information and en-
hance the importance of the first few grams to find high similarity between
words and their short formats. The similarity function in IJoin is based on the
asymmetric features of similarity between entities with incomplete formats. We
also illustrated an efficient implement of our approach (Extended IJoin). Our
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experiments showed the advantage of our approach in efficiency and effective-
ness when dealing with text entities with incomplete information formats.
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